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APPROXIMATIONS IN THE ~{EORY OF REARRANGEMENT COLLISIONS 

AND APPLICATIONS TO A TRACTABLE MODEL 

OF CHARGE EXCHANGE SCATTERING 

James Quong 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

August 19, 1966 

ABSTRACT 

The approximation ideas and methods and the historic difficulties 

involved with the calculation of ion atom rearrangement scattering are 

examined and redeveloped.! Five approximation schemes are selected to be 

tested. The transition probability for symmetric resonant charge ex-

change is calculated by these methods for a model one-dimensional 

scattering system whose exact solution, serving as the basis for com-

parison, is also atta.inab~e by numerical techniques. The impact 
! 
; 

parameter ideas concerning the uncoupling of the internal and external 

dynamics are built into the model. 

None of the high energy theories are found to be adequate 

beyond the upper intermediate range; this suggests at least that the 

convergence of perturbation expansions is slow. The two improved 

first order schemes, for which the effects of nonorthogonality have 

been eliminated, are adequate only at upper intermediate energies. 



The Born approximation always gives results too high. 

An exchange mechanism is found to be operative for all energies 

up through the intermediate range. The two two-component coupled 

channel schemes, one employing atomic form factors, the other molecular 

form factors, together covers accurately this span of the spectrum. 

Asymmetric resonant and nonresonant exchange are examined 

briefly at low and intermediate energies, to confirm predictions 

drawn from the previous work. The new results are that asymmetric 

resonant systems are qualitatively indistinguishable from symmetric 

resonant systems, and that the exchange mechanism is present also for 

nonresonant systems and may even be the controlling mechanism over 

the upper portion of the range of energy mentioned. At decreasing 

energies, however, the mechanism of the adiabatic approximation, 

tending to suppress exchange in nonresonant systems, becomes pro­

gressively more important and eventually becomes decisive. The 

formal statement, embodying the contents of the last two paragraphs, 

is that the coupled channel schemes provide an adequate theory for 

calculating the exchange probability, within the limitation imposed 

by off-manifold processes, over the low and intermediate ranges 

of energy for all three types of scattering systems. 
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I. INTRODUCTION 

The term rearrangement scattering has generally been used to 

denote the type of scattering in which the particles comprising the 

scattering system in the final state are different .from those comprising 

the initial state. The initial and final states are said to be states 

of different channels1 and the process mentioned above a multichannel 

collision. The question may arise whether one is dealing with two 

different channels or two different states of the same channel. By 

our definition of channel, this question becomes a matter of defining 

formally different particles as distinct from states of the same 

particle. It will be convenient for us to use the convention where, 

for example, an inelastic subchannel is not considered a new channel. 

It is perhaps more common to regard a rearrangement process to be an 

exchange of one or more component-particles between the two particle 

systems colliding. There is no loss of generality in the latter definition 

as it is possible and even fashionable to treat most particles as 

composites. However, this latter definition is especially appropriate 

in atomic rearrangement scattering in that the structure of an atomic 

particle is well understood in terms of electrons and nuclei. Here 

the multichannel process is charge exchange, more precisely electron 

transfer, and therefore involves at least three particles. No 

confusion should arise from the use of the term particle at the two 

levels of description. 

Charge exchange scattering between ion and atom, like all of 

nonrelativistic atomic scattering, is in principle a solved problem 

in that the funda.mental two-body interaction, the Coulomb interaction, 
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is known. However, the exact solution for even the simplest systems 

involving composite particles is too complicated to compute, and 

recourse must be made to approximation schemes to obtain numerical 

results. Two considerations, which may not always be distinguishable, 

enter in the construction of approximation schemes for a particular 

class of problems. The first of these is involved in the selection 

of the physical features, believed to be most relevant, with which 

to define a phy.sical model; the second consideration is that of 

mathematical convenience. An actual approximation scheme .then often 

is the outcome of a compromise and is specifically tailored for the 

problem being investigated. We often find, inconveniently, the same 

mathematical approximation under different names in different 

situations and the same name shared by apparently different approximation. 

Much more important than an imprecision :Ln nomenclature is that 

practically no approximation model is sufficiently reliable, 

theoretically, to serve as a standard for other calculations. 

Ion atom rearrangement scattering., of which the proton-hydrogen . 
charge exchange process is the simplest example, is typical in that 

of the many approximations used, only the adiabatic approximation is 

theoretically justified, and that only rigorously at zero kinetic 

energy. There are then no reliable calculations, and experimental 

verification of the ideas used is necessary. However, the amount 

of .relevant experimental data is not ext~nsive in that individual 

processes are difficult to isolate. In the absence of means to 

evaluate the various calculational methods, we have invented a 

nonreal, yet not entirely unphysical, model that we can treat not 

'~ ·-
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only by the various approximation schemes, but also--to the extent 

of computer accuracy--exactly. 

This mathematically tractable model is a nucleus and an atom, 

with one electron, colliding in a one dimensional world. The masses 

of the nuclei are assumed infinitely heavy, and consequently the ideas 

of the impact parameter method apply. In accordance the interaction 

between nuclei can play no physical role and is disregarded altogether. 

The problem then may be simply described as two potential wells of 

which one holds initially a bound electron in the ground state, 

moving past each other. 

In Section II we shall describe the physical situation of the 

prototype scattering problem that our model attempts to simulate. 

' . 
The ideas, assumptions, and methods prevailing already in the prototype 

will be briefly mentioned. Then also in this section we shall present, 

rather abstractly, the method of numerical solution employed on our 

model problem to obtain the results that serve as experimental data 

to test some of the known approximation schemes. 

In Section III, theoretical ideas and methods of approximation 

schemes will be explored and related in an attempt to bring out and 

clarify the useful concepts. This is important particularly because, 

for actual physical systems, only approximation calculations by 

numerous means and methods have been carried out. In part C of this 

section, five selected approximation schemes, believed to be pivotal 

for the understanding of charge exchange calculation schemes, are 

applied to model systems of ion atom scattering possessing symmetric 

degeneracy. 
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In Section IV, an appropriate example of our model system is 

briefly described. The "data11 obtained on it and the results from 

I 
the applied approximations schemes are presented, compared, and 

interpreted. The merits and applicability of the viewpoints and 

methods introduced earlier are discussed in the concluding paragraphs 

together with other final remarks. 
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II • A SOLUBLE MODEL OF CHARGE EXCHANGE 

The Impact Parameter Method 

In atomic scattering an alternative formalism, the impact 

2 parameter method, may be employed to great advantage in theoretical· 

treatments. This method is based on the fact that the high ratio 

of nuclear mass to electron mass permits the heavy particles to be 

well localized relative to atomic dimensions over most of the energy 

and angular range of interest. For example the relative motion of 

the nuclei in ion atom scattering may be described classically which 

for proton hydrogen scattering holds, depending on angle, down to a 

few electron-volts of kinetic energy. Usually the fUrther assumption 

is made for computational convenience that the classical trajectory 

is undeviated and unaccelerated. This assumption hol~s for kinetic 

energies above about 1 keV for proton hydrogenj however the error made 

in the total charge exchange cross section in using the straight line 

trajectory is negligible down to a few hUndred ev. 3 The theoretical 

description in the impact parameter method then reduces to a time 

dependent quantum mechanical treatment for the electrons, with the 

nuclei treated as moving centers of force acting only on the electrons, 

in place of the more general time independent wave treatment for 

all th~ particles. In this model, charge exchange scattering is always 

distinguishable from direct scattering even if the stripped and 

stripping particles are of the same species, for then in an experiment 

to, detect that specie of core, exchange will correspond to backward 

scattering and direct will correspond to forward scattering of the 

incident particle. To the extent that actual large angle scattering 
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is known to be unimportant, this idea is valid.
4 

Three Body Systems 

Let us consider only the scattering of a charged atom by a 

neutral atom. Among the many processes that can occur are elastic 

(coherent) scattering, single excitation of the neutral atom, single 

ionization of the neutral atom, single electron transfer from the 

neutral to the charged atom in the ground state, and sine;le electron 

transfer from the neutral to the charged atom in an excited state. 

These five processes mentioned are the only ones that can occur in 

all the cases where there are actually or effectively only three 

bodies in the scattering system. The best known example of the former 

is the proton hydrogen system. An effective three body system would 
[. 

be one in which all the other electrons, presumably in closed shells, 

are largely inert. The Pauli exclusion p'rinciple can then be neglected. 

Although neither of the two colliding atomic particles is required to 

be neutral, we shall in this paper focus our attention for convenience 

only on ion atom scattering syptems that on the "microscopic" level 

consists of an electron and two ions, each singly cmrged and 

effectively without internal structure. Typical examples of the five 

processes for proton hydrogen are the following: 

Coherent scattering, H+ + H(ls) ----? H+ + H(ls). (l) 

Excitation, H+ + H(ls) ----? H+ + H(nl). (2) 

.Ionization, H+ + H(ls) H+ + -
(3) ----? + H + e 

Excited rearrangement, H+ + H(ls) H(nl) + 
(4) ----? + H . 

Rearrangement, H+ + H(ls) H(ls) + 
( 5) ----? +H. 
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Nomenclature. The nomenclature th'3.t we shall use is consistent with 

the IPM idea that the incident and target particles remain always dis-

tinguishable. Initially these particles are known species of ion 

and atom particles respectively and this combination will be defined 

as chanriel "i 11
, the initial channel. The direct processes of ( 1) and 

(2) are single channel processes. As the 'process of predominate 

interest in this study is charge exchange, we shall name the channel, 

defined by the projectile being the uncharged atom and the target being 

. I 
the ion, the final channel or channel "f". Reactions (4) and (5) are 

rearrangement or multichannel processes. The remaining reaction (3), 

ionization, leaves the system in a third channel, the all free channel, 

about which little will be said: 

Charge Exchange. A more general case of ion atom charge exchange is 

+' 2 + H +He(ls) -4 H(ls)+He (ls). (6) 

The classic case of symmetric resonance is that given in reaction ()). 

Asymmetric resonance or accidental degeneracy occurs in reaction (7). 

He+++ H(ls) -4 He +(2s) + H+. (7) 

We may note the fact that (7) ts a case of excited rearrangement and 

that neither particle is neutral in the final channel. These dis-

tinctions are of no significance here. 
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Time Dependent Theory of Scattering 

Without much loss in generality we shall express the impact 

parruneter theory for a three body system possessing symmetric 

resonance. The two structureless nuclei are of the same species 

and in addition do not mutually interact. The wave fUnction of the 

electron satisfy the time dependent Schrodinger equation that in units 

of 11 = 2m = a = 1, is 

and the boundary condition 

~ ( t) ~ o/. (t) as t 
J.. 

where the initial state *· (t), J.. 

r. d Hi ( t )] *· (t) lJ_ -at -
l 

is a solution to 

= 0 . 

The Hamiltonian may be formally expressed as 

and formally separated in either prior or post forms 

H =Hi +vi f f = H + V • 

(8) 

(9) 

(10) 

(11) 

(12) 
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More explicitly 

H( t) 
2 -v + v(~ - ~) + v(~ + ~) (13) 

where the internuclear coordinate 2~ = E_ + !lab · t, and b is the 

impact parameter, and !lab is tbe incident particle velocity in the 

laboratory coordinate system, which may be taken to be always in the 

" direction k . Clearly 

2 
-'V + v(~ + ~) (15) 

and 

~) (16) 

The mass of the electron is m, and a is some characteristic 

length of atomic dimensions. K is the usual kinetic energy operator, 

and the V's are the two body, local, electron-nucleus potentials; 

Hi and Vi are respectively the noninteraction and interaction 

Hamiltonians in the initial channel and Hf and Vf are the 

corresponding quantities in the final channel. The terms "prior 11 and 

"post" are used to imply "initial" and "final" respectively, e.g., 

the prior interaction Vi, the post interaction Vf. To avoid a 

cluttered notation, we are using the letters i and f to denote 

both channels and states. The precise meaning generally shbuld be 

clear from the context as much of the ambiguity is removed when the 

process is known to be rearrangement for which the final state implies 
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also the final channel. The superscript when used is a channel 

label. 

Let ~(t) be the solution to the initial value problem defined 

by ( 8) and ( 9) for a set of values of b and ::::lab. The aJnplitude 

for rearrangement to the final state ~f is 

where 

lim 
t ~ 00 

0 . 

(17) 

(18) 

The wave functions of the initial and final states are moving atomic 

orbitals translating respectively with the target and incident nuclei. 

When we make the reasonable approximation that the ratio of nuclear 

mass to electron mass is very large, M/m >> 1, the velocity of the 

ion in the center of mass coordinate system is v == vl b/2. -a 
Defining 

k == mv == ~' we can express these wave functions as 

~. (x,t) = cp (x + z) 
l - ' - -

(19) 

(20) 

with the atomic orbital eigenfunctions and eigenvalues satisfying 

l 
E ) cp (x + z) 

J - - ~) = 0 . ( ~~l) 
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The charge exchange transition probability is given by 

= (22) 

which varies with the magnitudes of both the impact parameter and the 

velocity. The total cross section is then given by 

(00 

= 2rc / db b P fi (b, v) 
I 

( 23) 
,/ 0 

The transition probability Pfi(b,v) is by definition equal to 

afi(e,v)/a(9,v) where afi is the differential cross section for that 

particular final state and cr(e,v) is simply the classical differential 

cross section at angle e given by the impact parameter method for a 

particular potential. The IPM assumption that the trajectory is 

uncorrelated5 to the internal transitions means cr(e,v) 
f 

crfi (e,v). 

It is then easy to show that the total cross section has the standard 

6 form, 

(24) 

Another expression for the transition or T-matrix, Tfi' is 

obtained through the integral form of the Schrodinger equation (8) 

with boundary condition (9), 7 
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t(t) Vi(t) + [ G0(t,t') Vi(t') f(t') dt' . (25) 

Using the post representation in which essentially the basic vectors 

are chosen to be the eigenstates of the post Hamiltonian, Hf, we get 

the expression 

(26) 
(· 

Expression (26) is the IMP analogue to the T-matrix express1.on derived 

from the Lippman Schwinger formalism. As noted previously, in the wave 

· metho~ all three particles are treated quantum mechanically using time 

independent theory. The three particle wave function ~' satisfies 

(E -H)~ = 0 with appropriate scattering boundary conditions. Con-

verting the differential equation and boundary conditions into an 

. integral equation we get the Lippmann Schwinger equation8 

,r, (±) ::: ;i- + __ 1_~ 
1~ ~i E ± i~ - Hi 

(27) 

where the (±) refers to the two asymptotic boundary conditions of 

outgoing and incoming spherical waves respectively. The representation 

·convenient for rearrangement is9 

" I : \ ~ 
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i T1 f /i + 1 f vf 'E . ( +) 
E + iTJ - R E + iT) - H ~ 

and since the first term contains no outgoing waves in the final 

8 10 state ' the transitionmatrix arises from the second term. 

(28) 

(29) 

This is the post form of the T-matrix; the prtor form corresponding 

to (29) is 

- < c-) I iJ ) Tfi- ~f V pi (30) 

where 

. !f ( -) = /., + , 1 Vf"!rf(-) . 
f f E _ Rf 

- iT) 

(31) 

The Numerical Solution to An Impact Parameter Model of Ion Atom Scattering . 

To this date, no real physical system--not even the proton 

··. 
hydrogen system--has been solved exactly in either the IPM or the 

time independent method. It is observed in the IPM that the heavy 

·.:Particle dyile.mics is essentially one dimensional in that the impact 

·J?arameter, E_, ente:r-s only parametrically in the theory. One expects 

then t~at rril£Jby effects may validly be investigated in a purely one 

":' 

....... 
' 

':•'' 
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dimensional p'roblem in which the electronic wave function also is 

one dimensional. The case is especially good for rearrangement 

processes ·because, as ·we shall discuss in detail, almost all of the 

mathematical pro"blems there arise from the multichannel feature and 

only incidentally from details of distribution in three space. 

There are three dimensional features that we cannot investigate with 

a one dimensional model. The first is the centrifugal barrier for 

orbital angular momentum numbers greater than zero. The second is 

the coupling between degenerate states differing in angular momentum. 

The third, which is related to the second, is the question regarding 

the appropriateness of using, as often done in approximation schemes, 

a rotating axis of quantization. 

Because we shall employ nonanalytic potential functions, there 

will be unrealistic effects; these occur at energies, however, outside 

the range that we can meaningfully treat. Beyond the upper end there 

are large variations of the amplitudes with momentum transfer; and also 

-1 
the threshold dependence of the exchange cross section with v , 

which decreases exponentially for analytic potentials, decreases only 

to some power determined by the order of the discontinuity in the 

nonanalytic potential function. 

The initial value problem here, (Sa) and (9a), is almost that 

of ( S ) and ( 9) . 

i 
0*tt') - H(t) f(t) (Sa) 

,t . 

. . . ''. ~· 
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( 9a) 

The exact solution to (Sa) and (9a) is formally 

-t -

~(t) "u(t,t0 ) i<1(t0 ) = T exp [-iJ H(t') dt' l f(t0 ) (32) 

to 

where -r is the time ordering operator. 

The numerical method chosen to solve the above initial value 

problem involves an iterative procedure that at each step requires the 

solution to an equation analogous to (32), but for small time intervals. 

Thus 

rtn+l 

~ ( t n + 1 ) = -r exp [ - i / H ( t 1 ) d t 1 ] H t n ) 

) n 
t 

where .. .6t = tn+l - tn, and n.6t t - t . 
0 

(32a) 

(33) 

For small .6t we may treat H(t 1
) in the integrand to be a constant, 

Hn, and eliminate the need for the time ordering operator. In obvious 

notation (32a) becomes 

(32b) 

~e finite difference analogue, mentioned earlier, is obta}ned by . ' . 

truncating (32b) to terms l"i.near in 6t. However, the obvious and 
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straight forward course leads to 

an explicit finite difference scheme that unfortunately is unstable. 

Expressing (32b) as 

(32c) 

and truncating as before, we get the imp lie it scheme 

~n+l = l 
(35) 

The operator l/(1 + iHn 6t), the formal inverse to,. (l +:iHn 6t), 

in practice \implies a matrix inversion. Full implicit schemes like 

(35) _a;re stable, and in most other physics problems this would be 

sufficient. The probabilistic interpretation-of the quantum mechanical 

wave function, however, demands that the solution operator, operating 

on ~n, in addition must be unitary. Writing:(32-b) formally as 

~n+l = 

, .. '· 

~.:i -~~ Ai/2 

:o-i:i Hn t.t/~ e . 
(32d) 
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we can readily d. ·rJ.ve 

= 
., 1 

1 + i Hn 6t/2 

l - i Hn 6t 12_ '::.L ~n (36) 
1 

The scheme suitable for iteration, formally represertted by Eq. (36), 

is stable and is furthermore unitary because Hn, the Hamiltonian, 

is Hermitian. 

The finite difference schemes described formally by ( 34), ( 3 5), 

and (36) are also known respectively as forward, backward, and certtered 

time difference schemes. 

_.The Hamil toni an, 
n 

H ' 
1 

is well chosen to be H(tn+2). The t-{!o- I . 

dimensional finite difference equation implied by Eq. (36) is realized 

n 
by quantizing the spatial coordinate and using for H the finite 

difference operator analogue--obtained straightforwardly from the 

linear differential operator. 

For explicitness we shall henceforth write 
1 

1 

Hn+2 , instead of 

·n 
H , for H( tn+2). 

Or more. explicitly 

: n+~ H. 
J 

1 
- -·--0 

(&)"' 

n+!.. + v 2 
f 

1 

V 
n+2 + . 

l 
(37) 

(38) 
I. 

'''I dl j 

I' , , I 
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', 

where 
n+l.. z 2 tsx. is the quantization interval, and Dj±l 

are diSplacement operators. The displacemen.t operators are diagon;_cl 

in momentwn space, exp ( ~ i tsx. p ); the potentials however 

are not. Writing 

v = v. + vf, 
l 

in a mixed representation, and letting 

[1 - cos(& p)] 

2 V n~ 4( )2/ = p + . - p 6x 12 + - + . . • . . . ' 
J 

(39) 

( L~o) 

we see that the leading term of the truncation error in the analogue 

Hamiltonian is quadratic in (&). By formally expanding the denominator 

of (36) it is easily shown that the truncation error there, as 

conventiondlly defined, is quadratic also in 6t. The leading terms 

of the total -truncation error in our nu~erical solution of the 

's· ·h d.i .A_ t · . · /·.Cl.:. [ (At )2 ] ': ~r ( Av )
2J' ;l.l, 12 Th f ·/ ro ~ger =:iua 10n lS U . u + c_,~ .·WA ··:: e range o 

A.ncide~t energies (or velocities), with; which ~our numerical program 

can ca~cula:ti~ meaningfully, is limited at both upper and lower ends 
. . . 

by the truncation errors through the necessity of attaining ·believable 

accuracy without increasing significantly the computer time. These 

limitations ~ecome apparent when we realize that high velocities 
. 

implies the presence of significant high momentum components that re-

quire El. small· spatial quantization interval, and alsCD that low 

velocit"ies means a long· collision time and hence a large time 
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interval. It is not clear how to determine quantitatively the net 

effect of the truncation errors. Conservation of probability, which 

should be exact according to (36) and (39), is violated. at most by 

a couple tenth of one percent owing to errors "of round off. Round 

off may justifiably be ignored. The truncation error falsifies the 

distribution of the state function via (39) or (40) and also again 

by affecting differentially the component phases. An estimate of 

the accuracy based on experience and on heuristic checl{s of the 

calculation, among .which varying 6t arid tsx is one, is that the 

errors in the amplitudes typically range from less than one percent 

to several percent. ·More pertinent perhaps is the fact that partly 

because the error is systematic the precise uncertainty in the value 

need not, nor is it allowed to be, a significant factor in the 

interpretation. 

The potentials in the model may at this point be chosen almost 

arbitrarily in that only numerical work is involved. However, it is 

desirable to have analytically, atomic and quasimolecular eigen-

functions, to use in the approximation models, which will be discussed 

in the next section. Consequently the potentials were chosen to be 

square wells of unit half width. 

V(y) 2 = - A. u(y) (1+1) 
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where 

u(y) l if IYI < l 
' 

u(y) :: 0 if ·1Y1 > l 

and for accuracy in' tbe numerical calculation (36), define also 

u(y) 1 
= 2 for IYI = l . 

The solution to (8a) and (9a) by the numerical method (36) 

(42a) 

( ~~2b) 

( l.12c) 

yields at some appropriate time - tn - after the scattering the state 

vector· f(tn). V~r'ious scattering amplitudes may then be gotten by 

projection onto the. appropriate channel states .that are effectively 

orthogonal as far as our numerical work is concern. For instance the 

rearrangement amplitude is 

= . ( ,1, n ;r,n ) 
·Tfi 't'f ' ! (lTa) 

At velocities too high for (lTa) to be accurate, the rearrangement 

amplitude often may still be extracted by using the finite difference 

analogue of (26) 

(26a) 

which requires accuracy in the wave function only in the near zone of 
;.'· 

scattering. 
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III • APPROXIMATE SCAT'rERING T'.dEORIES 

A. Preliminary Rema~ks 

The approximations that we will investigate on our model of 

ion atom charge exGhange are here designated as follows: 

(a) The Born 

(b) ·The Modified Born I 

(c) The Modified Born -II 

(d) 

(e) 

The Coupled States Atomic 

The Coupled States Molecular 

These and other approximation schemes are found in the literature 

under a variety of names and. formulations. Since the mathematical state­

ment of these approximations may not be very familiar and. since the 

names chosen may be misleading, some preparatory remarks on these and 

other schemes will be helpful in understanding the position they occupy 

in the later discussion. 

The approximation schemes used. in rearrangement are usually more 

esoteric if not more profound than those used in single channel processes. 

'The latter can be derived or traced rather directly from basic and 

simple, theoreti.cal notions such as those that lead to the use of 

perturbation,theory for high energy scattering and to theuse of 

eigenfunctioh expansions for low energy. For , rearrangement the·se 

considerations are still· applicable but .more ct.ualitati vely. Schemes 

tlirectly fon!iulat ed from such general id.~as a~e immediately plagued 

.With difficulties associated with the presence of more than one 

channel. The two most important difficulties were the nonorthogonality 



between the initia1 and final states and the difference between the 

initial and final channel boundary conditions. These have long been 

recognized and may· from our present vantage be regarded. r,ts kinemaU.c: 

complications. The schemes modified to remove these defects are, 

however, much more complicated and do not possesS the simple properties 

and conceptual clarity of the inadequate schemes. TlJ.eir connection 

with the earlier work even appears remote from-certain viewpoints. 

Indeed, it may be more logical and instructive to present the selected 

approximations afresh from a modern approach, but it is also desirable 

to relate to the older versions as they are the one encountered in 

other areas of scattering theory. 

There are probably as many ways to classify approximation 

schemes as there are viewpoints to explore them. For convenience of 

presentation we shall group all approximation schemes under two types 

distinguished by the means in which mathematical simplification is 

acl1ieved. No implication is made that the ideas of the schemes also 

fall into two groups or that all schemes can neatly be so classified. 

The first of the two types, which we shall call '1.'-matrix approximations, 

involves the perturbation idea. Mathematically, an integral equation 

is reduced to an integral by the substitution in the T-nntrix of an 

approximate state wave function for the exact State function. The 

second type includes those schemes where the integral equation is 

n1ade tractable by restricting the range and domain of the Green's 

function to a subspace of the original Hilbert space. We shall use 

the term--Green's function approximation--for the latter type. T-m.a.trix 

approximations includes the Born a.pproxima tions, the Impulse 

''';, 
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approximation, and among· others the various two potential schemes. 

The Green's function approximation tYJ?e includes the eigenfunction 

expansion method, and the perturbed stationary state method as some 

of the more familiar examples. An approximation scheme nBy involve 

both types of assumptions at different stages of the calculation. 

Also a.Green's function approximation may be reduced to a T-matrix 

ap:proximation by a justifiable further approximation; ·the two versions 

then are substantially the same although categorically different, 1-1hich 

illustrates again that it can be misleading to take the classification 

too literally. 

B. Ideas of Approximation Schemes 

T-matrix Approximations 

(a) Born Approximation 

The simplest and best known of the T-matrix approximations is 

the Born Approximation. In the Lippmann Schwinger form thl.s may be 

regarded as a;n approxima t:i.on on 

(II-27) or·'e.9.U:i:'.a.Jeiilily as an approximation to Tf 

vf n. ( +) -

T 
Born· 

fi 

l 

on the r.h.s. of 

f by v . 

The corresponding approx:i.ma tion in the prior form obtain from 

W/-) ~J£,, ~r Df( ... ) ·-71 is 

(l) 

(2) 



.;: .. 

·.:. 
' 

'· 

T Born 
fi. 
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(3) 

The analogous first order "Born" approximation in the impact parameter 

theory, which is the version of Brinkman Kramers, 13 from expression 

(II-26) is 

r 
= -i J dt' (4) 

It can be shown that the post (2) and prior (3) forms of the Born are 

equivalent by using the Hermiticity property of the total Hamiltonian. 

Likewise in the IPM, expression (4) is equivalent to 

= (5) 

from the additional fact that the states of two channels are orthogonal 

'asymptotically. There is then no post-p:dor discrepancy fh the exact 

T-matrix nor .in the Bornapproxirnation I>roviding that exact wave 

functions are used. 

The Born approximation historically h~s suffered from ambiguities 

·in formulation not usually encountered in direct processes. 'These 

difficulties arise from the nonorthogonality of initial atl.d final 

states:, are now understood, and are eliminated:· in the refined Born 

treatments. There is a plurality: of such schE;!mes and we have the 
' . 
harder problem of cdeeiding which modification· is most correct. A 
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more seriousdifficulty is the indication that the Born series for 

' . 14. 
rearrangement collisions does not converge. The first Born, which 

is based on the reasonable idea of treating the prior interaction as 

a perturbation, may still be useful for energies not extremely high 

and may be part of another series that does converge. 3' 15 

(b) Refined treatments 

For energies toward the intermediate point where the relative 

velocity of the nuclei is near the orbital velocity of the electron, 

which in reference to the proton hydrogen system is about 25 keV, the 

Born approximation is expected to be inadequate. One could consider 

multiple scattering models such as for example the second Born or the 

Impulse approximations. However, a more precise formulation of the 
onler-

first ideas may be sufficient to extend our ability to calculate into 

the intermediate region of energy. Historically, much of the motivation 

for this work was to remove the unsatisfactory feature of the Born 

where--due to the nonorthogonality mentioned before--a superfluous 

term in the potential may contribute to the Born transition probability. ~ 
:,'),G~A.IJ b~ c..f no su..-fYiSe 'Wta.fiH'"'~-f.-c-..lly fu-r thi<;. e~{ee.i' occurs '?l,u ;,. Q6~PVP .. 1- P 
Here--within the context. of the IPM--the exact contribution to the ~';6,: 

... ~ 
coherent ~plitude introduced by such a term is a phase factor of ~. 

modulus unity that the Born approximates by its first two terms. 

Hence depending on the argument of the phase factor, unitarity may 

be arbitrarily exceeded. The sensible prescription then is to drop 

such terms. For example the internuclear potential, contained 

formally in (2) and (3), cannot be included with theoretical con­

sistency in the IPM forms (4), (5). 2 
However, it is not always 
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apparent how to split the Hamiltonian or to know which terms to 

disregard.16 We even suspect that the interaction in the Born 

formulations (2)-(5) corrected may contain already too much. Indeed, 

the internuclear potential has been reintroduc·ed in later work17 

phenomenologically to cancel these additional effects in the Born. 

It is necessary then to clarify our concepts and employ more 

sophisticated models to derive more consistent first order schemes. 

(l) Modified Born I. 2 ' 9,l8,l9 

The important idea here is to single out the effective inter-

action believed to be responsible for the rearrangement process. For 

this usually the two potential idea is formally employed .. Even when 

an interaction does not admit of a natural separation we may formally 

regard .. a part of it to be the principle interaction and the remainder 
:: 

the secondary. interaction. Interpreting the equations literally, see 

Appendix A, the principle interaction is seen to be superimposed on 

the secondary interaction that acts as the background process. The 

reaction of interest, rearrangement, is attributed solely to the 

formal principle potential while the direct channel processes are in­

. 18 
eluded in the secondary potential. The T-matrix is then, in the post 

description, 

The distorted wave approxi.mation to ( 6) is 

T DW 
fi . 

(6) 

(7) 



It is illustrative to note that the smallness of per se 

does not justify the above T-matrix approximation, which is based 

instead on (Vi - Ui) being small. The potential treated. as a 

perturbation is often not the one occurring in the T-matrix formula 

for rearrangement. Then the feedback consistency of single channel 

approximation recipes do not exist. 

The actual choice of Uf is related directly to the ideas of 

the approximation scheme employed. In Mittleman, 18, 20 ~ is generalized 

to be the optical potential responsible for all of the single channel 

final-state interactions. Then (6) may be recasted as 

= (8) 

where 

And now approximating both incoming and outgoing vaves by plane waves 

he obtains the following result. . . 

T MBI 
fi 

The IPM form of this is 

r . 

-i_/ dt (vrir- sriVfrrl 

(9 )· 

(9a) 

( 9b) 
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(10) 

A c-munber potential, at most time dependent, would contribute equally 

to both terms in (9b) and hence have no net effect. The somewhat 

misleading term "effective orthogonality11 is sometimes used to describe 

ochemes like (8), (9), and (9b). 

(2) Modified Born II. 

The position taken here is that an inconsistency is kinematics 

has been made in the first Born of Eq. ( 5). It was recognized that the 
' 

initial and final states are orthogonal.asymptotically but not orthogonal 

at finite times. However, the channel states, strictly, are not physically 

defined at finite times. We ma;r choose the definition formally to be 

I 

wi,r (t) 

1 l 
(l-s)2 + (l+s)2 

2(l-s
2 )2 

1 l 
..~,. (t) + (l-s):2"- (l+s) 2 

( ) "' f 1Jrf . t ( lla, b ) 
l, 2(l-s2)2 ,l 

where s (lOa) 

and the 1)r. f(t) are the· wave functions given before (II -10, II -18). 
l, 

As t ~ oo, 1jr .' f( t) "' 1jr. f( t) ' 
~, l, 

. (12) 

but the set (lla,b) is orthornormal at all times. 

0. ( 13) 
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As we shall see there is little to be gained by using the orthonormal 

wave functions. Furthermore, if we imagine the perturbation Vi and 

Vf to be very weak then it is quite reasonable to make the normal 

definition of channel states used in tlle Born. Then, however, it is 

inconsistent to define the physical occupation of the state 

ljr f by ( ljr f( t), ~( t)). The conception that the channels are someho-vr 

distinct at finite times leads to the sensible superposition 

= exljr. 
l 

+ ( J)l-) 

Conversely, if a vector J lies in the Hilbert subspace spanned by 

ljri and ljrf' the appropriate occupation numbers are ex and f3 respectively. 

'I'hey are given by 

ex 
(cjri,_@) - 8ir<*f'p) 

= 
1 - 8fi 

2 

f3 
( ljr f,j) - 8n (cjri,p) 

= 
l - 8ri 

2 

In (l5a) and (l5b) we may consider j to be the projection of an 

p1
, on to the subspace mentioned. f = rr./1

, where 

/r)(f/ + /i)(i/ - /r)sfi(i/ - /i)sif(f/ 

1 - s 2 
fi 

:,., . ~ 

( l5a) 

( l')b) 

(16) 
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Returning to perturbation theory we have 1ii(t) -7w.(t) and 
- l 

Vj_ is the perturbation. The incremental ftrst order part of the 

wave function as obtained from the Schrodinger equation is 

i 21 V !V.Bt. Neglecting other states we consider only 
l 

(17) 

From (l5b), and (16) and noting that (i,fiJt = (i,fl J we obtain 

an expression for (36t which we integrate to get the net transition 

amplitude to the final state. 

-i J dt 
( \jif' 

i w.) - sf. ( *--' vi~~-) 
MB II 

v 
(3 Tfi 

l . J_ .L )_ (18 )· = - 2 l - sfi 

The version of (18) then correctly takes into account the distinction 

between the rearrangement and the coherent amplitude that we had 

formally assumed to exist. When l >> Sfi' such as at high velocities, 

we may neglect the denominator of (18). Then we have 

T 
. MB II 

fi (l8a.) 

which is the prior version of ( 9b). With care then nonorthogonality 

·. 
is not.a problem. 
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Green's Function Approximations 

Two of the f3Jrri.liar examples of th:i.s cla;:;s of approximation 

schemes are the eigenfunction expansion and the adiabaLic o.pproximation. 

In the eigenfunction expansion, as used in direct processes, there 

is an attempt to describe the system by only a few low lying eigen-

states. 'l'hen the integral equation reduces to a matrix equation of 

a small number of dimensions. The convergence of this method is 

probably slow as continuum distortion is almost always an important 

effect. One may restore some of the missing second order effects 

through an optical potential fonnalism
18

'
22 

or through employment 

of not the unperturbed stationary states but the :perturbed stationary 

states. Clearly the inclusion into the representation of effects of 

the interaction Hamiltonian may range from the use of first order 

perturbed atomic orbitals to the use of quasimolecular orbitals. The 

term PSS is usually reserved for the latter, and in the time dependent 

context--the IPM--the PSS is equivalent to the adiabatic approximation. 

A useful statement of the theoretical idea just:i fying "Lhe AA :is t11at--

in the Heisenberg representat:Lon, the state vector in the·discrete 

part of the spectrum remains a constant in the limit of infinitely 

slow rate of change of the Hamiltonian. The assumption that the 

conclusion is true even for finite rates of change of the Hamiltonj.an 

is known as the zeroth order adiabatic approximation, AA •. In the AJ\. 

then, the representation is chosen with respect to the set of 

eigenfunctions of the quasimolecule in the Heisenberg picture; the 

formal interaction Hamiltonian--in the time dependent Schrodinger 
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equation--that couples one state to another is proportjonal to the 

time rate uf ehuuge of the total. Hamiltonian. 1'be atomic or.hi.taJ.G, 

which are discrete eigens tates of the prior or post unpertur-bed 

Hmniltonians (II-15,16), are also the asymptotic limits (infinite 
' 

inte4nuclear separation) of the quasimolecular eigenstates. It 

follows theh that there is no rearrangement generally in the zerotlJ 

adiabftic approximation since by definition there are no transitions. 

Only in the case of symmetric resonance can rearrangement occur for 

now the two atomic orbitals of interest correspond to the as~nptotic 

limit of different superpositions of two quasimolecular eigenstates, 

which are degenerate only at the asymptotic limit. Th).s charge 

exchange phenomenon, well known as an instance of quantum mechanical 

resona!•.ce, reflects 

state ector is not 
' 

the fact that in the Schrodinger picture the 

constant, the phase relationship of the two 

relevant amplitudes is time dependent through the splitting of the 

eigenenergies at finite internuclear separations, and that con-

sequently the final and initial mixtures of the two states can 

correspond to the two different physical situations. 

Unfortunately the adiabatic approximation is almost always 

inapplicable, and the ideas stemming from it would be rather mis-

leading for understanding the actual rearrangement calculation 

correctly formulated. The initial and final states (II-19,20) are 

channel states possessing different boundary conditions; they are 

never eigenfunctions of Hamiltonians within the same Galilean 

coordinate system, much less eigenfunctions of the same Hamiltonian. 
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·, ·, 
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The:re is_ then no )~?ique · e~tensiori of the 

.. 

j_den ·of' .l:ni tial and firlaJ.·· 

_· C]ltlllllel i.1tu.teB :tnt6 tho .'near %one of scatter:trig •. Hence; no iltn- .. 

· · · . > ; · tinction cu.~ ,be made : with precision qetween chare;e transfer. by 

.transition and charge exchange by qu~mtum mecl¥tnica+ resonance • 

. 1 ..• · We shall show that. we can :recast 9ur approximation· schemes to display 

more prominent~y one effect or the other. 

The Coupled Channel States 
• 
. We have established that in rearrangement· there is no nat1u·al 

. . . 
·and .convenient Hamiltonian with· which to define· a. representation,_ 

~~ uniq~e interaction operator, .and not one but two boundary 
I - . \ 

·.conch tions to consider. In prinCiple nothing substantial has been 
\ . 

lost!; __ · Formally_ only the use of conceptually _clear and simple ortho-
1 
i 

· -norrrl,al expansions is precluded, 

The physical picture of the scattering process_that we will 

. attelllpt to describe formally is the following. The state i'm1ction, 

. i~: ini t~ally a. transla·ting atorriic orbital ;is· distorte'd by th~. passinG 
~ ., 
~ . '.t.; ' . . 

ion.j ·We have already described the possible asymptotic results·._ 
I 

·In t~e near zone we expect. corr~lation ·effects 'to be most 1Jnportant 
. ' 

l ' . :· 
espe~ially at or belol-T intermediate energies when the ion .velocity_ 

·:.·.·is cbm:Parable to electron orbital velocity. We-can thus ~eglect 
I - . . . 

:. ' 

. , ·ionization per Se and con~ider the state function to be a 'SUl'Jl Of 

two 8.mplitudes1 centered around each of\he two moving nucl~i in 

': ,;. ' 

·; ', 

.. ·. ~. f.· ' 

•, 
.,. 
•.' 

: J .. ,. 
' .. 

' -· . ... :.,.:. ,_ 

' ' .,;·' 
J'. 

-: -1 .·· '\ .' ;.'· 

-, 
I 

, 
': 

; I 
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The basic vectors ~ri (t) , vf(t), spanning the Hilbert subspace to 

which f(t) is confined, are reQuired only to be well centered as 

mentioned and are otherwise arbitrary. They could contain the 

asymptotic boundary conditions as explicit momentum factors in 

accordance with the IPM idea that the nuclei are unaccelerated. 

"\)r. ( t) 
l 

p. (t) 
l 

-i k·x 
e 

+i k·x e 

(19) 

(20a) 

(20b) 

Obviously, if Ji, Jf contained sufficiently many terms the momentum 

factors could. be omitted. However, these factors must be included 

in order to describe accurately the above model by only a few term:3; 

perhaps a total. of two terms in (19) may then be sufficient. 

Expression (19) may be taken as an ansatz for the wave function 

with the A1 s determined from the variational expression (21) 

B J t(t) [i & -H(t)] ;l'(t) dt ~ 0 . (21) 

We get ultimately, see Appendix B, 

SA= iTA, (22) 
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and the unitarity condition lf(t) 1
2 

::::: 1 . (23) 

S and T are 2 by 2 matrices: e.g., 

(ljri' ljrf) (10) 

. d 
(ljri' (l dt -H) ljrf) = 

The matrix Eq. (22), which the Euler Lagrange equations reduce to, js 

precisely the set of coupled ordinary differential equations thc'1.t the 

Schrodinger equat~on (rr-8) assumes when expressed in the representation 

defined by having ~i' and ljrf as the set df basic vectors. In other 

words, the two coupled equations may be written more familiarly as 

d 
(ljri' (i dt -H) ~) = 0 (22a) 

(ljrf' (i %t '-H) f) = 0. (22b) 

(1) Coupled States -Atomic. 

At high energies the atomic orbitals qJi and cpf'. are expected 

to be good choices for /.. f in ( 20). In other -vmrds the asymptotic: 
l, 

forms of the initial and final states are chosen to be the two basic 

states in ( 19). 

ljr. ( t) cp.(x + vt) exp[-i k·x - ik2t - iE.t] 
l l- - -- l 

(25) 

ljrf(t) = qp (x - vt) exp[+i k·x - ik2t.- iEft] . f- - -- (26) 
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where 

For symmetric resonance the orbital labels may be droppec1. Eqs. ( 25 )-( 2'r) 

are then those of (II-19) through (II-21). We repeat from Section II 

that 

( • (J i ' f ) ,1, 1 dt - H o/i,f 0 . (28) 

The CSA. set of equations (22) with (28) may be reduced to our second 

version of the modified Borns by further making a first order 

approximation that uncouples the set. Clearly, the CSA is at least 

an improvement over the various Born schemes in that the "back coupling" 

matrix element is here taken into account (restoring unitarity), and 

consequently should describe some of the important multiple order 

effects. 

There is no fundamental need to use exact atomic wave functions, 

although it is very convenient when they are available, as long as the 

coupled equations (22) are derived from (21) consistently using the 

actual basic functions. To formulate a two state scheme that is 

unambiguous in interpretation without fUrther approximation, the 

mipimal boundary conditions on lli,f are 
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-·----····---__;'? cp. ( t) 
lim t -> - oo l 

_. ·--.-77 
lim t --7 + oo 

We shall j~pose the usual stronger condition, 

j;. f( t) -----·-----~ cp. f( t) 
l, 1" t + 00 . l, . lill --7 -

In brief we will entertain as "correct",only one asymptotic form, 

that of the CSA. The type of distortion that the CSA allows in the 

wave function is characterized as pure correlation only, in that besides 

the unperturbed form, A.<\r., there is an additional distribution 
l l 

corresponding to ah unperturbed bound state ·with the incident partj_cle. 

We should. be able to improve our results at low energies by allowing 

for additional wave function distortion as an initial-state-interaction 

and a final-'state-interaction in the spirit of two potential. theory. 

In our methods here we don't actually choose explicitly the secondary 

interactions from which the distorted waves and principle inter-

actions are obtainea. but rather we choose the distorted. waves, ~~- f' l, 

with the principle interaction obtained in the process of derivation 

from (21) or (22). This is equivalent theoretically to specifyin8 

the diagonal form of the Green's function or specifying the propagators 

in the scattering process. The employment of a Green's function, 

anticipated to be more complete, Should improve the convergence of 

the associated. two state expansion. 



-40-

(2) Coupled States - Molecular. 

The propagators of this particular model are as usual specified 

formally by 1jf, f( t). 
l, 

For symmetric resonance, the appropriate forms of 

1jf, f(t) are 
l, 

1 

[U+(t) + U-(t)Je-i k·x 
1jf, ( t) ::= 2-2 (29a) 

J_ 

1 

[U+(t) u-( t) ]e +i k·x 1)r+'(t) ::= 2-2 . ( :)9b) 
.L 

Equations (29)·are Eqs. (20) with £ f taken to be linear combinations 
l, 

of eigenfunctions of the quasimolecular ion. These molecular functi.ons 

Uo) 

are also eigenfunctions of parity, and have the correct asymptotic 

conditions. As t ~+ ()() 
- ' 

~ ~ (cp, ± cp )/2~ 
. l f· (31) 

or 

(3la) 

For nbnresonance, U . f -v cp. . f as 
l,- l, 
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where 

0 

and j. f accordingly is taken to be U. f' 
l, l, 

In the coupled channel schemes the basic functions· \jli f are 

' 
generally normalized but not orthogonal. An orthonormal set having the 

correct boundary conditions can be constructed from each set of \)!. f. 
l., 

See (lla, b). These functions do not simply translate wHh the nuclei 

in the near zone as depicted earlier; they are mixtures of two trans-

lating packets. Both sets however are formally equivalent; the exact 

solutions ofthe two corresponding sets df coupled equations are 

identical, but the respective "Born" approximations of the coupled 

states schemes are formally different. 

The coupled channel states schemes are well suited to describe 

rearrangement through a very restricted·type of multiple scattering. 

Furthermore, in the.limited context of only two states we may display 

more apparently the effect of a generalized qu~tum mechanical 

resonance, by using the basic functions which are the sum and 

difference of l!r. f' In this representation the SchTodinger equations. 
l, 

+ 
for the A- ,. the wave function, are coupled, weakly coupled, and 

Uncoupled for the cases respectively of nonresonant,. asymmetric. 

resonant, and symmetric resonant charge exchange. It follows from 

this, and uni'tarity, and the initial condition, 

'+ . ' - . A (• oo) . :::. A ( -co) , (33) 
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that the rearrangement amplitude depends directly upon, and may be 

+ 
largely controlled by, the phase relation between the A- after 

the scattering. In the lower intermediate enere:;y range the charged 

particle may be transferred to and from the ion several times during 

the collision. Resonant and nonresonant exchange may then be a 

difference in degree and not a difference in mechanism. 

Support for the last statement is found, interestingly, when 

one investigates the case of accidental degeneracy. There it is easy 

to show that at large internuclear separation the molecular orbitals, 

obtained from degenerate perturbation theory, are the linear 

combinations cp i ± cpf and not cpi and cpf as traditionally be­

lieved. The immediate ''implication is that accidental degeneracy should 

resemble symmetric degeneracy more significantly than was formerly 

believed. 23 , 24 We exclude here the possibility where the energy 

curve's ·of the actua,l molecular orbitals of interest, at finite 

internuclear separations, again approach each other closely. 

C. Selected Approximation Schemes Applied to the Tractable Model 

The Born Approximation 

Another derivation of the Born ampl:i. tude is given as follm.;rs. 

Write the Schrodinger equation, 

i ~ ~(t) = H(t) !(t), (II-8) 

in the post interaction picture and in the post Hamiltonian representation. 

This is equivalent to the variation of constants method.. We then get 
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,~--·-, 

i A (t) == \ V f(t) A (t) n ,;.,.._ run m 
m 

from l(t) = ~ 
m 

A (t) \jJ f(t) 
m , m 

(3)) 

(37) 

The final state amplitude is then given by 

Af( oo) ~ -i ~· f 00 

dt V fm f ( t) Am ( t) 
_oo 

~ -i 1: at ~ (;c/, vf ;emf) Am 

(38) 

h t. h . t h b . tt d Th AfBorn( ~) -- 'rfiBorn w ere e superscr1p as een om1 e • e ~ 

is gotten by using the zeroth order term of !r(t) qn the right hand 

side of (38). 

T Born 
fi 

vf(x,t) == - ~2 u(x+vt), see (II-42) 

(!+) 

(39) 
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\jr. f(x,t) = cp (x ± vt) 
l, 

The eigenvalue E is given by arctan (f3/s) == s 

where 

And the normalized ground state eigenfunction is 

1 

cp(x) == (f3/f3+1)2 cos sx for lxl ~ l , 

( A/A+l)~ -f3(-ixl .- l) == f-' f-' cos t; e fo.r lxl >l . 

Then 

T Born 
fi 

"J-..2 
:::: i­

v 

r...2 
:::: i­

·v 

1-oo . dz ~~rYJ 
_oo .) -CO 

reo 

I· . dcrcp( cr) 
·-' -CO 

dx cp(x-z) u(x+z) cp(x+z) -ivx e 

.1 J"+l 
-l2VCf e -

- -1 

dy cp(y) 
. l 

-l2VY' e 

( lj.Q) 

( '-! l) 

(1+3a, b) 

( ).4_)+) 

( ~-5) 

( 45a) 

where in (45a)a change of variables, a = x-z, y x+z, z = vt, 

has been made and the relationship, u(x) = e (l- !xi ), used. (46) 

e(x) is the unit step function with the jump at x == o. 
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Inserting (44)- in (45a), and evaluating the integrals we get 

T Born 
fi 

where k ::: 1 2V • 

The high energy asymptotic limit of (47) is 

TfiBo;rn · ~ i (13/13+ 1) 
k -7 00 

A.4 siri k cos s 
. k5 

(48) 

the Born exchange probability asymptotically is-inversely proportional 

to the fifth power of the kinetic energy or the tenth power of the 

velocity. 

The Modified Born I 

We may derive (9a,b) rapidly as follows. Expand the state 

function by 

i'(t) - L A (t) \jr (t) , 
n n (35) 

n 

where now 

(49) 

with ~ considered a final state interaction. The Schrodinger equation 

becomes 

i A. (t) 
11 

( '~0) 



Choose lm;f) v 
mn 

f 
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(n;fl (51) 

to be the interaction responsible for all singlB channel processes 

within the final channel. The sum· .extends only over states of the 

final channel. Equation (50) is now 

Now restrict Uf in (51) and the analogous ini tj_al state interaction to 

include only diagonal elements. The 11 distorted 11 Born approximation 

then to (52) is 

(53) 

··-. 
where th~ ljff . differs from the zeroth order form used in the Born 

,l 

only :i,n the phase factor involving the energies, which are nm.;r per-

turbed and time dependent. These phase factors are 

exp 1
-t 

[.-i 

-co 

V f ( t I ) dt I ] 

ff 
for o/f and exp [ -ij. ""t 

- 00 

v .. i(t') c1t 1 ] 
ll 

for o/ .• When symmetric resonance exists these energy terms cancel 
l 

in (53). The amplitude (9) follows immediatE;lY upon integrating (53). 

For nonresonance the distortion of the energies'may be neglected as 

a further approximation justified at high energies. 

l
. • MBI 

Af 

. . (' 
-~· 

( 53a) 



The Modified Born Il 

Expand the wave function with respect to a nonorthogonal 

basic set as follows: 

~( t) == [ A f(t) ~ f(t) + 7(t) • 
m m 

(54) 
n 

The sums include only channel states; the third term y , which completes 

the expansion, is orthogonal to both sets of channel states. Com:pletenes~~ 

t 
,,,i,f of he sets 'I' however is actually not necessary in this derivati.on. 

The Schrodinger equation is now the set of differential equations 

that in matrix form (using all ~ i, f as basic functions) ir:; 
n 

iSA ==VA + (term arising from y) 

or 
-1 

i A == S V A + (term ari.sing from l ) . 

(55) 

( 55a) 

v is appropriately vi f or V , and S is the matrix whose elements 

are the scalar products of the set of channel basic vectors. 

Maklo ng a 11 Born11 0 t · approxlma lon 

A f(t) 
·m 0 A i(t) = 5 0 

n nl ( )6) 

(55a) becomes 

== [ (57) 
m 



Expressing (s-1
)frn in terms of Sij' we can write {57) as 

i A. f 
f 

1 
\~ 

L 
m 

d Det(Sfm) 

d s 
mf 

i v. 
mJ. 

The MBII approximation is obtained by neglecting all inter:inediate 

indices oth'er than those for the initial and final states. 

The sfi may be chosen to be real; then sfi 

Th~Co'Upled Two. States 

( )7a) 

( ')8) 

The Schrodinger Equation for the coupled channel states given 

in (22) was 

SA= iTA (22) 

And the two basic states implicit in (22) are those of (20a,b). ·It is 

useful, especially in our problem, to change the representation by the 

following simple unitary transformation operator 

u 1 
= -{2-

Note that U = ut -1 u u 

.J 

/ 

* u 

(59) 

(60) 
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The transformed set of basic states are 

(61) 

('"'J 

that in the case ·of symmetric resonance are eigenstates of parHy, 0 , 
~"') 

because then u w. f = wf .. 
l, 'l 

(62) 

As both S and T are diagonal in the parity subspa~e the components 

in (22) are uncoupled in the symmetric resonance problem. The two 

independent equations are now written as 

+ + 
i T- A-

whose solutions may immediately be written down as 

where 

+ = J .... t dt o-(t) 

-00 

The initial conditions, using (59), are 

1 

= 2-2 (l ± 0) 

( 63) 

(65) 

(66) 



The rearrangement amplitude by ( 60), ( 64), and ( 66) .is 

T CS == A ( oo) 
fi f 

+ 
Since 5-(t) is real, the rearrangement probability is 

By (59) and (6o), 

T 

s 

+ 
T- == ~(T .. +Tf.)±MT.f+Tf.) and 

ll l . l l 

By using (62) however, it is easy to show that 

and consequently 

± 
T = T. 

J.i 

± s = 1 

± 

± 

Tfi 

8 . fJ_ 

S.f l: 

(67) 

(67) 

(GSa) 

( 69a) 

( 62a) 

(69) 
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Finally (68a) may be written as 

"[ • c. s ]_11 . 

-00 

dt . (03) 

The CSA scheme uses the asymptotic forms (40) as the basic functions, 

\jr. f(x, z, t). The internuclear coordinate, z, is just vt in our 
l, 

problem. 

r 25,26 CSA 2 vn - srv .. 
Then pfi sin 

l ll dt 
2 ' 1 - sn . -00 

where v .. v .. 
i 

vff 
f 

vfi vn 
i 

vfi 
f 

= ; = 
ll ll 

The last equality in (71) follows easily from the relation 

<!r. (x, -z, -t) 
l 

== 

('TO) 

( '{l) 

Although the Born amplitude (38) can be evaluated analytically 

in (45) and (47), the time integration of the more complicated expressions 

(53), (58), and (70) can be carried out only numerically. 

For the CSM scheme the basic functions are given essentially 

by ( 29) . 27 Sinc.e a unitary phase factor, at most time dependent, 

common to both functions has no physical or theoretical significance, 

we shall for convenience actually employ 

(72) 



-52,-

with· 

E(z) ( 73) 

z = vt 

The eigenfunctions and eigenvalues of the quasimolecular ion are defined 

in equations (30), (31). Specifically for our problem 

= () 
' 

( '(4) 

+ . u-c x, z :.. ± 00 ) 

1 

2-2 (cp(x+z) ± (j)(x- z) ) , (75) 

( '"(6) 

The asymptotic quantities are of course just those used in the CSA 

throughout and are defined in ( 42) and ( 44) . The Hamiltonian is 

H(x, z) 
()2 

2 2 
( 77) = -- - X u(x + z) - A.u(x- z) 

Cx2 

The matrix elements in the expression f'or the rearrangement probability (68) 

for this scheme and for our model system become, remembering that 

z '= vt, k 1 
= 2-v, are 

a.x cu 2
( t) - u 2

( t) ) cos 
+ -

vx, (78) 



T .. (t) 
LL 

0 

-~ loo dx 

-00 

sin 
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("00 

I 
I 

../_oo 

dx [U 
2(t) + U 

2
(t)l co;:> vx 

+ ·-

For the sake of compactness, not all the arguments have l1een writ ten 

in and also the parity labels have been lowered to subseripts. The 

expressions for T .. 
ll 

do depend on the irrevelant phase 

factor that appears in (72); however, the combination ']'fi - Sfi~'ij 

appearing in the numerator of (68) is indeed an invariant expression 

with respect.to overall time dependent phase transformations. The 

CSM transition probability (68), together with the relations (78)-

(So), now takes the final form, 

P 
CSM 

fi 

where 

l
ao E+(z)- E-(z) ( ) I I 

2 2v Il + 12 + I3 - I4 + 5 - -6 
sin 

0 

dz --------------------~~--~------~-----
1 - t-(I - I )

2 

1 2 (81) 

<+I cos vx I+> ' 
(82a) 

(-Ieos vxl-) ( 82b) 
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r
3

(z) :::: (+!sin vx ~I -) 
' 

( ,,, ) , .,.~c 

( - ! sin 
d 

+) I ( z) == vx. 07.1 ( ,l,;'d) 
)I ( z 

( -H sin 
d ) Ir.; ( z) :::: vx o:xl + (I.e, ) 

' 
~. ,[.e 

/ 

(-!sin 
d ) r 6(z) = vx dxl- ( •;;:)f) 

I±> + 
with ;::: iu~(x, z)) ( ',,,) . ' J _) 

+ 
The quasirnolecular eigenvalues E-(z) arc: implJcit ftmctio tr:; 

of z, whose analytic forms in addition change at z ':.'he 

eigenfunctions satj_sfy 

+ = ± u-·c-x, z) 
+ 

+ -c - u x, -z) . 

Therefore only positive values of x and z need be considered. 

+ 
The implic:Lt dependence of the functions u-· on z. actually enterc; 

+ + ± ± 
tbrough the eigenvalues E-; Le., u-(x; z) = U (x, E ( z)) 

The latter is an explicit function of x and a rat her involved but 

explicit function also of E. The relatively simple spatial dependt·nce 

± 
of U is given below. 

for l + z < x (t''.>a) 



= 

= 

wi.th 

± cos 
B . SJ.n 

( ± cosh 
/A sinh 

A± cos 
sin 

and with· 

-55-

+ + 
!1-z I ~ x ~ l + z ( 85b) (Cx +B-) for 

+ 
( 13-x) 

' 
(if Z· ~1) 

for !1-z I ~X (85c,d) 

(if z .:s 1) 

( 86) 

(87) 

The functions are continuous but not analytic throughout the range of 

either of the two argu~ents. Consequently, although the six integrals 

(82a-f) can be evaluated in closed form, it is impractical to do so 

owing to the -iiarge amount of work involved. 'I'he time integration in 

any event must be done numerically. 
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IV. RESULTS AND DISCUSSION 

In an actual ion atom scattering problem the two ind~:pendent 

variables are usually chosen to be the impact parameter and the energy 

(or velocity), and the dependent variable is the transition probability 

(or cross section). Our problem simulates a fixed impact parameter 

situation. And in the case of symmetric resonance our model contains 

formally only one free parameter, the coupling constant or equivalently 

the depth of the potentials. Units where n = 2m =a = l are used 

throughout. For accidental degeneracy we have a second parameter, which 

is either the depth or the width of the second potential. }'or the 

general case of non degeneracy there are obviously three parameters. 

The number of bound states of an atom increases with the coupling 

constant. It is found from the solutions of the implicit eigenvalue 

equations that the number of excited atomic states is equal to the 

whole number of rc/2 in A. , the square root of the coupling constant. 

The atomic orbitals are eigenstates of parity, alternatively even and 

odd, with the ground state always of even parity. 

A scattering system is defined by each. set of parameter values. 

An interesting system on which the results obtained are clean and 

relatively easy to interpret is the symmetric resonant case where 

the coupling constant, is equal to i;s. The one and only bound 

state in this specie of atom has a binding energy,· 13
2

, equal to 

2 A. . 
' 

the kinetic energy, s2 , inside the potential well. Here the decision 

on what to consider as the intermediate energy (or velocity) j_s 
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relatively unambiguous. We may note ae::,ain fer reference that for the 

proton hydrogen system this intermediate velocity corresponds to a 

laboratory kinetic energy of 25 ke\L Numerical results were reliably 

obtained on this model system ranging over a factor of one thousand 

in energy. This cove:rs what may conveniently be designated as the lower 

intermediate, the upper intermediate, and the (moderately) high energy 

l 1·egions that on the proton hydrogen system would be bet-vreen 1;_;- keV to 

1~ MeV .:in the laboratory system. 

Figure 1 shows the rearrangement probabilities vs energy in the 

upper intennediate and high regimes. The intermediate point is 1.62 on 

the energy scale chosen. The solid line is the exact result and the 

various broken lines are results predicted by four of the approximation 

schemes. Three of these, the two modified Borns and the CSA, converge 

and are ind.istinguishable at high energies. They are definite improve-

ments over the Born--more accurately the Brinkman Kramers--for energies 

not too high. At lower energies the two state representation is still 

very good but the higher order effects such as the depletion of the 

initial state through the back coupling term, must be included to prevent 

exaggeration of the transition amplitude as evidenced by the CSA curve. 

At high energy all four approximation schemes, which become in effect 

first order ,?chemes, are inadeguate. The belief is that transitions 

~outside thisr;ra.anifold are importa:Jt. The first order rearrangement 

ampli tlide varies asymptotically as -5 v . Afirst order direct amplitude 

would vary only as 
-1 

v It is clear then that in this three channel 
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problem (including ionization) tbat there is no un:i.que perturbation 

expansion parameter and hence no unique power of the velocity to 

charucterize an amplitude of a given order. Thus at high energies 

the second order effect may oe comparable to the first order one. 

In other words, the continuum distortion, which is small to be sure 

at high energies, containing high momentum components Jik'lY contribute 

via second order an effect comparable to the first order because the 

latter is falling off so rapidly with increasing momentum transfer. 

This is the case for proton hydrogen scattering. 

Figure 2 displays results on the same system for both lower 

and upper intermediate energies. Here the rearrangement probability 

vs energy is presented for the exact problem and for the two coupled 

two states models, the CSA and the CSM. The dominant characteristics 

of the exact results, the oscillations, are described surpris:i.ngly 

well by the approximation schemes. As we have mentioned. before the 

coupled two channel schemes contain formally the mechanism to predtct 

these oscillations. It is not altogether clear how to clistinguish a 

mechanism from its effects in a purely quantummechanical context. 

We may simply refer instead to the notions of the qualitative structure 

of the mathematical formalism and its actual quantitative results. 

Anyhow, the predicted extrema of these oscillations, for symmetric 

resonance, saturates unitarity; there is no reasonable mechanism 

for nonsaturatj.on in the two schemes. The test then is 1-rhether the 

positions of the actual maxima and minima are predicted by the 

approximations. The agreement is very good. As listed in 'l'able 1. 
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Table l. 'l"'he location of the symmetric-resonant charge-exchange probab:ility 

turning points in the spectrum as predicted by ttJe CSJ\. and c~;M, and as 

given by the exact resuJ:ts. The intermediate energy value :i.n these un:i.t:3 

is 1.62. 

CSA 

CSM 

EXACT 

lst. Max. 

1.06 

1.13 

1.04 

lst. Min. 

0.430 

0.382 

0.405 

2nd. Max. 

0.236 

0.203 

0.213 

2nd. Min. 

0.150 

0.127 

0.132 

Below the half-intermediate value of 0.81, the CSM is more 

accurate; the CSA and the CSM results sandwich the exact result. At 

around 0.81, the CSA begins to converge toward the exact solution 

while the CSM begins to diverge from them both. 
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·the trend of the data is in accordance wi tl1 theoretical expectations; 
j 

of the two, the CSA is, relatively better at the :higher energies wlLi.le 

the CSM is relatively better at lower energies. 

At first glance the failure of the exact rearrangement amplitude 

to reach the maximum and minimum of one and zero respectively suggests 

a serious inadequacy in the tvo states description. However, the 

oscillation minima are almost zero. Furthermore, the coherent 

amplitude, which is not shown, has similar oscillations that--in pc:rfect 

agreement with the two states theory--are 90° out of phase witb tl1o::;;e 

of the rearrangement amplitude. This coincidence of the coherent 

maxima and·minima with respectively the charge exchange minima and 

maxima substatJ.tiates the conclusion that the difference between the 

theoretical and actual maxima is due entirely to ionization, whicb for 

reasons not fully understood is slowly increasing with decreasing energy. 

The main point then is that the relative distribution of the state 

vector within the linear manifold spanned by the two bounded channels 

is well described by the coupled channel formulation. 

We may now imagine the charge exchange process to proceed as 

follows in the lower intermediate energy regime. The electronic wave 

packet initially translates uniformly with the potential well of the 

target nuclei to which it is bound. Upon the approach of the beam 

nuclei the wave packet--no longer a steady state in the laboratory 

system--begins "tunneling" in both position and momentum space over 

to the other potential well. During the main collision period the 



-61-

electron wave packet may thus, depending on the relative internuclear 

velocity, shift its location and momentum several times under the in­

fluence of the combined potentials. The collision phenomenon breaks 

off when the internuc.lear separation is large enough to inhibit further 

tunneling. The v1ave packet is then distributed largely around the 

values characterizing the two force centers in both position and 

momentum space. During the following relaxation peri_od, most of the 

amplitude settles into the channel states although a small component 

(under 10 per cent) goes into ionization. In this picture the memory 

of which nucleus the electron was initially attached to should not 

be too significant. And for appropriate values of the velocity 

parameter the packet may end up completely on just one of the two 

potential wells; this corresponds to the extrema--either zero or 

maxima--charge exchange probability. Owing to the symmetries in the 

system, the amount of ionization should be independent of the type of 

extrema; and indeed the ionization, as found in the exact results, 

varies smoothly with energy. 

A more crucial test is derived from the fact that on the basis 

of the foregoing physical picture resonance peaks should be found in 

the exchange amplitude also for asymmetric resonance and nonresonance 

systems. The data for these two cases are shown in Fig. 3. These 

nonsymmetric scattering systems differ primarily from the symmetric 

system only in that one of the nuclear potentials, chosen to be that 

of the incident particle Vi, is broader by a factor of l. 60. The 
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results in Fig. 3 show that the asynnnetric resonant system behaves 

much like the symmetric resonant system. The curve for the non-

re;:;onant system <lues have simila.r stT!wture but the peaks clr.> not at l.::dn 

the maximum values. 

We may summarize the intermediate energy data and their inter-

pretation as follows: 

(a) The two states coupled channel models are not completely adequate 

-------" because the off-manifold processes--ionization in our ex@nples--are in 

fact not negligible.' 

(b) The distribution of the on-manifold amplitude, however, is well 

described by two states models. 

(c) The·collision process may be pictured qualitatively as repeated 

exchange of the electron between the two ions. This description of the 

effect of the :accumulated multiple order interactions is decid.ely less 

appropriate for the nonresonant situation. 

6. ' 

where 

In view of these remarks it is of advantage to use the quantity 

rather than the transition probability, to display our results. ., .. ,;;.-, 

P. f l, 
= 

(1) 

(2) 

This phenomenological parameter may be justified by the model impl'ied 

by the statements (a) - (c). Consider the ,states 1jr±(t), that 'Satisfy 
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only the asymptotic cond1tions, 

(3) 

where 1Jri,f(t) are the initial and final states. As the precise form 

otherwise of \jr± is not going to be relevant, we shall simply define 

After the scattering, we may express the transition probability by 

IA±Ie
io± 

where A± = 

Now 

(±I!> = A. ±A 
1. f 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Therefore 

(P. 
l 

P ) . 2 1 ( ~ + , .. -) 1 ( lA I + f Sln ~ 0 - 0 + ~ + 
,-, 

- c 
• ~~ J. ., + (•-

SJ.n 2(b - o )) 

(11) 

It is easy to establish that the second ter.m on the r.h.s. of Eq. (11) 

is almost always negligible if the two states-- 1jf± --do not couple 

strongly. For resonant systems this coupling is indeed either zero or 

1-reak. Furthermore, if ionization is negligible then lA I 'V lA I 'V 1, + - - -

and the second ter.m vanishes. In fact, . .however, ionization is not 

negligible. Let us take the pessimistic assumption that the ionization 

probability P arises from the strong coupling to the continuum of 
c 

only one of the tva states 1jf± and estimate the magnitude of the second 

\ term in (11). 

M !AI- !Ai)2 = i(l- (l- 2Pc)t)
2 = ~(1- Pc- (l- 2PcJ) = kPc

2 

(l;?) 

Thus even for 25% ioni'zation, the second ter.m contributes only or less 

than .02 to Pf. In practice the second ter.m ~ .Ol; therefore 

) 
.21(+ _). 

(Pi + Pf Sln ~ 6 - 5 · · · (13) 

and the quantity !::::. is to be identified with !-( 5 + - 5-) . ( llf) 

In Fig. 4 we have plotted the spectrum of 6CSM 

' 
AAA d Aexact 
t_.' , an '-' (asyrmnetric), where for the exact results (l) has 

CSA 
6 
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' been employed and for the models we have employed (14) e'" (III-65). 

The AA results were obtained as a spec:ial case of the C~iM 1-1ben instead 

of using Im(z; v) of (III-82) we used merely Im(z ; 0). Note in 

Fig. !+ we have extended mJ.r range by another factor of ten in inver~:;e 

energy. 

Expression (1) determines 6 only to modulo rc. To determine 

!:!. absolutely we use the·fact that, in accordance with the physical 

picture described in statement (c), the.time development of 

IAf (t; E) !2 
for a particular scattering at energy E should recapitulate· 

the spectral distribution of the transition probability- IAf(oo; E)i
2

-

between the energy values of oo and E. It is sufficient then to count 

the number of times IAf(t; E)J 2 oscillates over the history of the 

scattering to.determine the correct branch of 6. 

It is now apparent that the relevancy of the phenomenological 

parameter is model dependent. For this reason it is not useful to in-

elude the nonresonant case. On the other hand, for resonant systeJns, 
. . 

the conclusions about the mechanism that is operative at ihtermediate 

energies may be extrapolated to even lower energies, where.direct 

comparisons of amplitudes is not feasible. thr0ugh the use of this 

"phase shift", 6. In Fig. 4 the adiabatic approximation iS too high 

throughout the entire range. For still lower energies the application 

of the impact parameter method itself is challengeable. We may conclude 

that over the range of energies that we can study meaningfully, tbe M 

is wrong quantitatively for symmetric resonance and for accidental 

.. 
' 
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degeneracy the commonly believed lovr energy behavior is wrong even 

qualitatively. 

For the nonresonant case the coupled_ channel meehanism pro-

ducing the pronounced structure in the rearrangement spectrunt is masked 

rapidly with ·decreasing collision energy by a damping ef,fect that 

qualitatively is in agreement with adiabatic theory. 

We may now summarize all of our ideas usefully by conjuring up 

this qualitative description of charge exchange for all energies below 

the intermediate point. Let us form for convenient discus.sion three 

energy regimes within which the distinguishing·features of the charge 

exchange spectrum are: in the highest -- III -- the oscillations 

reach the unitarity limit (the sum of the coherent and exchange 

probabilities) imposed by off manifold p,rocesses; in the middle -- II 

the above oscillations plus the damping of the peaks; in the lowest 

-- I -- the rapid decrease to zero of the envelope of the peaks near 

threshold. For exact resonance systems there is only regime III, the 

lower two being squeezed out so to speak. For nonresonance, -vri th 

appreciable energy difference, the highest regime may not exist or may 

not be noticeable if displaced partly into the higher interme~iate 

' region. With snall energy differences, i.e., near resonance, the t \YO 

lower regimes are displaced down toward energies sufficiently low 

for the translational factors in the CSM matrix elements to be 

justifiably replaced by unity. With this approximation and one more--

the use of LCAO molecular orbitals--we can locate in the mathematical 
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structure of the CSM equations the theoret:ical groun.ds for the 

features of the reg:i.mes. The CSM scl:wme, wl1h:h contatm;; accurately 

all of the above :physics, also needs only to be examined at the lowest 

energies as there is little in dispute elsewhere. It j_s unnecessary 

to actually write down the CSM equations. We sha,ll merely use our 

knowledge of the adiabatic theorem, which is that if the j_nternuclear 

velocity is sufnciently slow for the change in the Hamtltonia.n 

during a Bohr. transitioriper:iod to be small compared to the energy 

difference of the transition then the transition between the two 

states of the Hamiltonian is unlikely. Charge exchange can then only 

occur through quantum mechanical resonance. To test this possibility, 

we find the two LCAO-MO by perturbation theory. Because the matrj_x 

elements fall off exponentially Hith increastng internuclear separation, 

~-lith the diag;onal exponent about twice that of the off diagonal term, 

the asymptotic forms of LCAO-MO, which are now exact, are al·ways 

q)± for exact degeneracy and always CfJ. f for now1egeneracy. 
l, 

Therefore, in the adiabatic region the resonance systems always proceed 

by quantum mechanical resonance and the nonresonance systems are always 

inert providing the energy curves never cross. This then is the 

basis for regime III at threshold for resonant systems and for the 

existence of regime I in nonresonant systems. At finite separations 

the LCAO-MO for nonresonance may approximately be any of the forms., 

cpi f; cp±' or the general P.'CfJi + q,cpf , depending on the magnitude 

' 
of the energy difference, 

pert1u~ba t Jon element, 

€ € . - f' l 
relative to the off diagonal 
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zone then regime III commences at velocities fast enough to be 

"sudclen" in the far zone, where the unperturbed energies are small, 

but slovr enough to be considered adiabatic in the near zone where the 

energy split is -..vide. Regime II appears at velocities satisfying 

either partially or in part the conditions for III. If the form ~± 

does not exist then there are only the two regimes I and II. At 

hie:;her velocities where translational terms must be kept the descrj_ption 

must be generalized to include the coupling effects existing even 

between appropriately chosen molecular orbitals. 

The experimental evidence for asymmetric resonance agrees not 

vrith our resonant theory but rather with our near resonant theory. This 

is probably because exact asymmetric resonance in the actual world is 

rarely encountered. And what is measured is near resonant scattering. 

More serious perhaps is the fact that previous work has shown that 

asymmetric resonant exchange vanishes at threshold. 23 ,
24 ---~· In these 

derivations an assumption is made that a "distorted Born" approxinu:1t:i.on, 

A. = 1, on the coupled equations can validly be made when the off 
1. 

diagonal terms are small. They then get consistently Af == 0, as 

v -4 0. Such approximation however beg the question. One could, in 

effect treat the off diagonal terms first, by using the distorted (:!:) 

basis rather than the (i,f) basis and then treat the remaining 

terms as a perturbation. The result would then predict no perturbative 

effect as v -4 0, and therefore A± == const., vrhich is the condition 

for quantum mechanical resonance. The correct conclusion about 



charge exchange by this method of applying perturbatton theory in 

two steps rlepend:c; upon which quantities--the diagonal or the off 

diagonal terms--are in fact relatively small if either, or more 

pertinently upon which superposition type the asymptotic LCAO-MOs 

assume. This, we have already discussed. 

Conclusion 

The coupled channel schemes are decidely appropriate for Ute 

calculation of charge exchange within the low and intermediate energy 

range. For resonant systems--both symmetric and asymmetric--, one 

particular exchange mechanism is operative, while for nonresonant 

systems, adiabatic ideas are also in effect and are even dominant at 

low energies. All of this would be encompassed in the results of 

coupled two states schemes, had we had them for all three cases. 'I'hese 

schemes are formulated to include explicitly the asymptotic boundary 

conditions; this theoretically amounts to just centering the nuclei 

in momentum space in consistency with that implied by the usual IPM. 

Although the translational terms are essential, the choice of the 

11 form11 factors is itself important for locating precisely the 

turning points in the spectrum. Atomic form factors are accurate at 

upper intermediate energies and molecular form factors are good over 

a surprisingly large range of energies. The coverage provided by the 

two forms is continuous with good overlap. Because the relevant 

coupled equations may also be derived variationally, approximate 

trial form factors should be also reasonably accurate. 
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Transitions to states off the linear manifold, beyond the 

scope of our type of two states schemes, shoVJs up as a reduction in 

tlle rearrangement peaks from unity. f:lince ionization is involved, 

it is unlikely that this effect can be accurately reproduced by 

increasing the number of states coupled. 

The near coincidence of the "phase shift" data for the two 

different resona.nt systems below the intermediate energy suggests 

the significance of the role played by the binding energy, which for 

the two cases was equal. 

For energies q.bove the upper intermediate we have no satis­

factory theory. All of the attempts to calculate the charge exchange 

probability gave values too high. 

It is perhaps appropriate here to dispel suggestions that 

certain values of the momentum transfer may be extraordinary and 

therefore responsible for resonant structure. No evidence i'or thi.s 

was found. Nothing distinct happens at the intermediate point; 

and the singularity appearing in the analytic expression for the 

Born amplitude (II-47) is in fact removable. The zeros in the 

asymptotic form of the same expression are due to the sharp edges 

of the square wells employed and are above the range of energies 

treated here. 

Finally, we note that the intermediate energy region, for 

which the lack of a theory motivated considerably this investigatton, 

appears nmr to be better understood than the high and very low energy 
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regimes, which in view of the inadequacy of the earlier iderts can 

bear further study. 
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Appendix .A:. .. THE VARIATIONAL METHOD FOR TD1E TlEPENDEN'I' TJIEORY ., 

The solution tc:i the time dependent' Schrod.inger equat.i.on satisfies 
I 

th~ stationary principle oi = o, where 

I :;:: I 
I 

)_oo 
dt (!(t), (i & -H(t)) l(t)) • 

The trial form of the wave ,function, as in the coupled channel schemes, 

is 

i(t) (2) 

\ . 

where N is a finite integer. Substituting (2) into (1) we get, using 

the Einstein ·sUmming convention, 

where 

,·· 00 

I ( * . * ) I :;:: I dt iA SA +AT A 
j_oo mmnn mmnn ' 

·' 

s :;:: (wm, *n) ' 
and mn 

(wm, 
d 

T· :;:: (i ot -H) *n) mn . 

The stationary variation of I * with respec~ to Am 

yields the EUler Ls;.grange equations, 
.. 

'. 

(3) 

BI :;:: o, 

(G) 

J. •·. 
t ,: f I 

.. ·, 
' .. : 
., 'j 
• ! 

i .:-·· 



with 
-)(- • -t:-

L - (t A S A +A 'r II. ) 
m mn n m mn n 

. ()y_, 

CJA * 
m 

= t S A + T A mn n mn n 

d cL 
- dt ?JA. * 0 

m 

:From (6), (7), and (8) we get the desired resu.LI~ 

SA ~ t T A , q.e.d. 

We may vertfy directly that 

T == <mli ~c.(. I n) mn 01 . 
(m I H I n) 

. 
i s mn 

* = T 
run 

(mli ~) + (-t ~In) 

( n* I · d I m*) -1. Ct (m I H I n) 

where we have used i~he Hermitian property of H, * H "'H • From nm rnn 

('i') 

(8) 

(9) 

(10) 

(n) 

(13) 

( JJ.,.) 

(12), (13), and (14) His obvious th<J.t T - Tt == i S, from wtJ:i.cl1 

( 11) follmrs tr-i vio..lly. 



The Schrod.inger equation (10), and Eq. (11) imply consorvaUon of 

probabil:Lty. Left multiplying Eq. ( 10) by A+ , 

The corresponding adjoiirt equation is 

s 
mn 

ustng the obvious fact 

* snm 

Adding (15) and (16) and eHminating Tt by (11), we obtajn 

0 

d 
dt (~, ~) 

d 
= dt 

o, q.e.d. 

(15) 

(16) 

(17) 



APPENDIX B: THE TWO POTENTIAL FOillf.lALISM 

'r:here arc mo.ny physical situ:.ttions where the :i_nteraction 

Hamiltonian, V, is actually the sum of two potentials, 

v :::: v + v 
p s (l) 

An example is proton nucleus scattering where the interaction is the 

sum of the nuclear and the coulomb potentials. Tbe T-matrix is then 

( 2) 

I + 1 (v + v ) 
i E + i~ - H

0 
p s 

~. ( +) 
]. 

( 3) 

The noninteraction and the total Hamiltonians, 110 and H respectively, 

are related as usual by H = H0 + V. 

Sometimes it may be appropriate to treat the two potentials un-

symmetrically in approximation work. One of these potentials, the 

"principle", is perhaps the interaction primarily responsible for the 

process of interest and may be treated validly by first order 

perturbation theory. The other, the "secondary" potenti.al, may be too 

large to be .. ignored and also large enough to affect adversely the 

first order result. It is then handled as a background interaction, 

as both an initial-state-interaction and a final-state-interaction. 

The Lippmann-Schwinger equations for just this interaction are 



(±) 
X. f 
l, 

+ 
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1 
E ± iT) - H 

0 

(±) 
V X. i' • s l, : 

(5) 

Tllc princj_ple j_nteraetion :Ls now superimposed on the seeond;try inter-

action; 

X ( +) 
i 

1 
+ E + iT) - H - V 0 s 

v 
p 

~/+) (6) 

Even w:L thout a natural separation, the interaction V may ahrayt:; be 

decomposed formally; V = (V - U) + U; the formal secondary 

interaction is U. The T-matrix may be shown to be, using ( 5) and the 

fact that all Hamiltonians are Hermitian, 

(7) 

The interaction U usUally is so chosen that the second term rna.y l)e 

dropped. Then the final form of the T-matrix is 

::: ( (-) 
xf ' (v - u) (8) 

The two potential formalism thus provides a structure for a more 

desirable split of the Hamiltonian, 1-lith the secondary interact1o.tl 

absorbed into the representation and the principle interaction expressed 

in a form suitable for perturbation expansions. 

In rearrangement scattering, a two channel process, almost all 

of the above formalism carries through >vith due regard for the tvo 



different representations present. The T-:matrix in tlJ<' po:;t J\,rllr 

is 

}i. 
( +) _fi 1 vi 

fi 
(+) 

= + 
-Hi ' J. 

E + iTJ 

( l:)) 

where Hi i Hf + vf H = +V ;: ( Jl) 

We now formally split off from Vi 
f 

and V reupecti vely < . ..Lu J.n.i L i ~.tl-

state-interaction, ui' and a final-state-interaction, u''. 'J.'}w 

solutions to these are 

(±) 
X. f' 

J.' . 

ui,f X (±) 
i,f 

The state vector jn this "distortedn prior representation .L:J 

(+) 
~ i 

X (+) 
i 

+ 
1 

E + i TJ 

The T-:matrix may again be expressed as two tenns: 

·-- ( +) ,lr 
I • -·:L 

(12) 



with 
± 

d. f 
l, 
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1 

E ±iT) -Hi,f - Ui,f 

When the secondary inte'ractions Ui' f are chosen to contribute only 

to direct processes in respectively the initial and final channels, 

the second term in (1~-) vanishes.
28 , 29 The T-matrix is just the 

first term of (14); this, the post interaction form, is 

(15) 

The analogous expression in the prior interaction form j_s 

= (16) 

where 1V (-) 
-f satisfies an equation analogous to (10) or (13) but with 

the "incomingn scattered Have boundary condition. 
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Appendix C: MATHEMATICAL RELATIONSHIPS BETWEEN APPROXI:fv'.!A.TION SCHFM\!38 

c .1 At high velocities the follo1-.rj.ng approximations may be made 

SUCC8GSi.VC1,Y Oll LltE.' C~;J\. rE;G1JJ.t for charge exchange. 

.-(X) i i vfi - sri v .. 
pfi 

CSA sin 
2 

1 dt 
ll (1) 

2 
1 - sri -00 

(i) Approximating the sine by its argument we get the Mod. Born II 

result, 

(ii) 

(iii) 

Neglecting the quadratic term, · 

P CSA( .. ) 
f

. ll 
. l 

= 

vr. - sf. v .. i I l l ll 

1- sfi2 
(2) 

2 
sfi ' in the d.enominator vre get 

.l2 
(Vf. -Sf. -V .. i) 

l l ll J 
( 3) 

Dropping now the term proportional to Sfi' vrhich may not be 

justified in all cases, we get the Born result, 

p CSA( ... ) 
fi ll}. = 

12 
I 

vfi I 
I 

( !+) .· 

C. 2 At low vela:ities vre may rerJlace the translation factors by uni.ty 

in the various coupled channel equations as an approximation that 

generally becomes exact at zero velocity (threshold). 'rhe adiabatic 

approximation scheme is so obtained from the CSM scheme. Conventionally 
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the AA scheme is obtained directly from an expansion of the state 

wave function about the two molecular orbitals th:.1t are relevant to 

the two atomic orbitals of interest. Rigorous derivation of the two 

component Schrodinger equation from such a starting point leads to 

ambiguous results that depend on the choice of coordinate system, 

except when v = 0. This is because the expansion is not properly 

posed for the tvro-channel problem in that the boundary conditions for 

t~e initial and final states are no longer included. The correct M 

scheme, however, may be heuristically formulated with the exercise of 

great care, especially when approximate molecular functions are 

employed, in identifying and eliminating the spurious interaction 

terms that arise. The AA should be meaningful at low energies. 

It Is asymptotic prediction, as 1/v --7 oo, must agree qualitatively vii_ th 

the result known directly from our statement of the adiabatic theorem. 

This agreement must exist, even when "spurious" interaction terms are 

present (they vanish first as v --7 0) , providing the analysis of the 

threshold behavior of the equations is correct. 

The AA scheme, when LCAO molecular orbitals are used., is 

mathematically equivalent to the low energy approximation of the CSA. 

* For symmetric resonance, the transition probability for this CSA 

scheme is 



pfi 
* CSA . 2 

- Sll1 
; 

.J_co 

-.82-

dt (5} 

v1bc~re the tram;;lational factors have been omittecl in the matrix eJe.menL:~ 

in Eq. ( 5). : 

expression. 

1 

(1 ± S)-2 are 

This j_s identical to the LCAO-MO version of the p AA 
fj_ 

2[ sin 

-00 

(6) 

= l ( +In I+ ) !(-lui-) 

::: 

"c 11 numbers, 

' 
because 

// cp _ cp i cp _ cp 
/ i f; i f 
\ 1:H ----1 

\(2(1+S)J 2 i [2(1+B)J2 

i 
H.. = Hff = V.. , and H. f = Hf. = Vf. . 
ll ll l _l l 

·Therefore the exact CSA scheme and the exact LCAO form of the 

CSM scheme converges at low energies. This then is a rough measlrre 

of the accUracy of the CSA at low energies or of the inaccuracy of the 

LCAO energies. 
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