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ABSTRACT

The approximation ideas and methods and the histofic difficultiem
involved with the calculation of ion atom rearrangément écattering are
examined. and redeveloped.E Fivé approximétion schemes are selected to be
tested. The‘transitioh pfobability for symmetfic resénant charge ex- -
change is calculated by‘these methods for a model one-dimensional
scattering syétem whose eéaét solution, serving as the basis for com-
parison, is also attainab%e by‘numericai techniques. The impact
parametér ideas Concérniné the uncoupling of the internal and external
dynamics are built into the model. | | |

None of the high energy theories_are‘found to be adequate
beyond the upper intermediate range;vthié suggests at least that the
convergence of perturbation expansions is slow. The two improved

first order schemes, for which the effects of nonorthogonality have

been eliminated, are adequate only at upper intermediate energies.
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The Born approximation always gives results too high.

An exchange mechanism i1s found to be operative for all energies
up through the intermediate range. The two two-component coupled
channel schemes, one employing atomic form factors, the other molecular
form factors, together covers accurately this span of the spectrum.

Asymmetric resonant and nonrescnant exchange afe examined
briefly at low and intermediate energies, to confirm predictions
drawn from the previous work. The new results are that asymmetric
resonant systems are qualitatively indistinguishable from symmetric
resonant systems, and that the exchange mechanism is.presént also for.
nonresonant systems and may even be the controlling mechanism over
the upper portion of the range of energy mentioned. At decreasing
energies, however, the mechanism of the adiabgtic approximation,
tending to suppress exchange in nonresonant systems, becomes pro-
gressively more important and eventually becomes decisive. The
fofmal statement, embodying the contents of the last two paragraphs,
is. that fhe coupled channel schemes provide an adequate theory for
calculating the exchange probability, within the limitation imposed
by off-manifold processes, over the low and intermediate ranges

of energy for all three types of scattering systems.
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I. INTRODUCTION

The term rearrangement scattering has generally been used to
denote the type of scattering in which the particles comprising the
scattering system in the final‘state are differeht‘from‘those comprising
the initial state. The initial and final states are saild to be statesv
of different channelsl and the process mentioned above a multichannel
collision. The question may arise whether one is dealing with two
different channels or two different states of the same channel. By
our definition of channel, this question becomes a matter of defining
formally different particles as distinct from states of the same
parficle. It will be convenient for us to use the convention where,
for example, an inelastic subchannel is not consiaefed a new channel.
It is pefhaps more common to regard a rearrangement process to be an
exchange of one or more component—particles between the two particle
systems colliding. There is no loss of genefality»in the latter definition
as it is possible and even fashionable to treat'most particles as
composites. However, this latter definition is especially appropriate
in atomic rearrangement scattering in that the structure of an atomic
particle is well understood in terms of electrons and nuclei. Here
the multichannel process is charge exchange, more precisely electron
transfer, and therefore involves at least three particles. No
confusion shoﬁld arise from the use of the term particle at the two
levels of description.

Charge exchange scattering.betweén ion and atom, like all of
nonrelativistic atomic scéttering; is in principle é solved problem

in that the fundamental two-body interaction, the Coulomb interaction,
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is known. However, the exact solution for even the simplest systems
involving composite particles is too complicated to compute, and
recourse must be made to approximation schemes to obtain numerical
results. Two considerations, which may ﬁot always be distinguishable,
enter in the construction of approximation schemes for a particular
class of problems. The first of these is involved in the selection
of the physical features, believed to bé most relevant, with which
to define a physical model; the second consideration is that of
mathematical convenience. An actual approximation scheme .then often
is the outcome of a compromise and is specifically tailored for the
‘problem‘being_investigatéd. We often find, inconveniently, the same
mathemétical approximation under different names in different
situati@ns and the same name shared by apparently different approximation.
Much more important than an imprecision 1n nomenclature is that
practically no approxima%ién model is sufficiently reliable,
theoretically, to serve as a standard for other calculations.

" Ion atom rearrangement sca?tering, of which the proton-hydrogen
charge exchaﬁge process 1is the simplest examplé, is typicai in that
of the many approximations used, only the adiabatic approximatién ié
theoretically justified,‘and that only.rigofously at zero kinetic
energy. There are then no reliablé calculations, and expérimental
verification of the ideas used is neceséary. ﬁowever, the amount
of.relévant experimental data is not extensive in that individual
processes are difficult to isolate. In the absence of meané to
evaluate the various calcﬁlational'methods, we ha§e invented a

honreal, yet not entirely unphysical, model that we can treat not
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only by the various approximation échemes, but also-~to the extent
of computer accuracy-~-exactly.

This mathematically tractable model is a nucleus and an atom,
with one elecﬁron, colliding in a one dimensional world.  The masses
of the nuclei are.éssumed infinitely heavy, and consequently the ideas
of the impacf parameter method apﬁly. In accordance the interaction
between nuclel can.play no physical role and is disregarded altogether.
The problem then may be simply described as two potential wells of
which one holds initially a bound electron in the ground state,
moving past each other.

In Section II we shall describe the physical situation of the
prototype scattering problem that our model attempts to simulate.

The idéas, assumpfions, and methods prevailing already in the prototype
will be briefly mentioned. Then also in thié section we shall present,
rather abstractly, the method of numerical solution employed on our
model problem to obtain the results that serve as experimental data

to test some of the known approximation schemes.

In Section III, theoretical ideas and methods of approximation v
~schemes will be explored and related in an attempt to bring out and
élarify the useful concepts. This is importént particularly because,
for actual physical systems, only approximatién calculations by
numerous means and methods have been carried out. In parf C of this
section, five selected approximation schemes, believed to be pivotal
fof the understanding of charge exchange calculation scheﬁes, are
applied to model systems of ion atom scéttering possessing symmetric

degeneracy.
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In Section IV, an appropriate example of our model system is
briefly described. The "data" obtained on it and the results from
the aﬁplied apﬁroximations schemes are presented,‘compared, and
interpreted. The merits and applicability of the viewpoints and
methods introduced earlier are discussed in the concluding paragraphs

together with other final remarks.

i
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IT. A SCLUBLE MODEL OF CHARGE EXCHANGE

The Tmpact Parameter Method

In atomic scattering an alternative fofmalism, the impact
parameter method,2 may be employed to great advantége in theoretical
| treatments. This method is based on the fact that the high ratio
éf nuclear mass to electron mass permits the heavy particles to be
well localized relative to atomic dimensions over most of the energy
and angular range of interest.v For example the relative motion of
the nuclei in lon atom scattering may be described classically which
for proton hydrogen scattering holds, depending'on angle, down to é
few electron-volts Qf kinetic energy. Usually-the further assumption
is ﬁadetfor computational convenience that the classical trajectory
is unde&iated and uﬁaccelerated. This assumption holds for kinetic
energies above about 1 keV for protoh hydrogen;‘however the error made

in the total charge’exchange cross section in using the straight line

3

trajectory is negligible down to a few hundred eV. The theoretical
description in the impact parameter methoed then reduces to a time
dependent quanium mechanical treatment for the electrons, with the
nuclel treated as moving centefs of force acting only on the electrons,
in place of the more general time independent wave treatment for

all the particles. In this model, charge exchange scattering is always
distinguishable from direct scattering even if the stripped and
stripping pafticles are of the same speéies, for tﬂen in an experiment
to detect that specie of core, exchange will correspond to backward

scattering and direct will correspond to forvard scattering of the

incident particle. To the extent that actual large angle scattering
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is known to be unimportant, this idea is wvalid.

Three Body Systems

Let us consider only the scattering of a charged atom by a
neutral atom. Among the many processes that can occur are elastic
(coherent ) scattering, single excitation of the neutral atom, single
ionization of the neutral atom, single electron transfer from the
neutral to the charged atom in the ground state, and single electron
transfer from the neutral to the charged atom in an excited state.
These five processes mentioned are the only ones that can occur in
all the cases where there are actually or effectively only three
bodies in the scattering system. The best known example of the former
is thevproton hydrogen system. An effective three body system would
be one iﬁ whiéh all the other electrons, presumably in closed shells,
are largely inert. The Pauli exclusion principle can then be neglected.
Although neither of the two colliding atomic particles is required to
be neutral, we shall in this paper focus our attention for convenience
only on ion atom scattering systems that on the "microscopic" level
consists of an electron and two ions, each éingly charged ahd
effectively without internal structure. Typical examples of the five

processes for proton hydrogen are the following:

Coherent scattering, H' + H(is) - H' + H(1s). (1)
Excitation, B +H(1s) - HY +H(nl). (2)
Tonization, Bt 4 H(ls) - HY v+ B + e, (3)
Excited rearrangement; '+ H(ls) - H(nl) + 5. (&)

Rearrangement, B+ H(1ls) — H(1s) +H. ‘ (5)
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Nomenclature. The nomenclature that we shall use is consistent with
the IPM idea that the incident and target particles remain always dis-
tinguishable. Initlally these particles are known specics of ion
and atom pafticles respectively and this combination will be defined
as chanrdel "i", the initial channel. The direct processes of (1) and
(2) aré.singletchannel processes. As the;process of predominate
interest in this study is charge exchange, we shall name the channel,
defined by the projectile being the uncharged atom and the target being
.the ion, the final channel or channel "f". Réaqtions (4) and (5) are
rearrangement or multichannel processes. The remaining reaction (3),
ionization, leaves the system in a third channel, fhe all free channel,

about which little will be said:

Charge Exchange. A more general case of lon atom éharge exchange isi
u* s me(1s°) - H(1s) + HeT(1s). ' (6)

The classic case of symmetric resonance is that giveh in reaction (5).
Asymmetric resonance or accidental degeneracy occurs in reaction (7).
e *T  m(1s) - met(2s) + 1T . ‘ (7)
~ We may note the fact that (7) is a case of excited rearrangement and

that nelther particle is néutral in the final channel. These dis-

tinctions are of no significance here.



~10-

Time Dependent Theory of Scattering

Without much loss in generality we shail express the impact
parameter theory for a three body system possessing symmetric
resonance. The two structureless nuclel are of the same gpecies
and in addition do not mutually interact. The wave function of the
electron satisfy the time dependent Schrodinger €quation that in units

of A =2m=a=1, is
L% ﬁ(t)}w)eo, | (8)

and the boundary condition

L)~ v (8) as & o @
where the initial state v (t), is a solqﬁion to
F‘EE - }ﬁ-(tﬂ wi(t) =0 . | " o | (10)
The Hamiltonian may be formally expressed as

H = K_+ 7wt o (11)

and formslly éepargted in either prior or post forms

B =H +v = +7v . o (12)
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More explicitly

H(t) = 00+ V(x - z) + V(x +2) (13)
where the intérnuclear coordinate 2z =D + Xléb - t, and b is the
impact parameter, and v 1s the incident particle velocity in the

—lab

laboratory coordinate system, which may be taken to be always in the

Al
direction k . Clearly

B () = -0° + V(x + z) (15)
aﬁd |

1 (t)

1

eV -a) . | o as8)

‘The maés of the eléctron is m, and a is some characteristic
leﬁgth of atomic dimensions. KX is‘thé usual kinetic energy cperator,
and the V's . are the two body, local, electron-nucleus potehtials;
Hi_ and Vi are respectively the noninteraction and interaction
Hamiltonians in the initial channel and Hf and . Vf are the
corresponding quantities in the final channel. The terms "prior" and
"post" are used to imply "initial" and "final" respectively, e.g.,
the prior interaction Vi, the post interaction Vf. To avoid a
cluttered notation, we are using the letters 1 and f 1o denote
béth channels and étates. The precise meaning'generally should be
clear from the contéxt as much of the ambiguity is removed when the

process is known to be rearrangement for which the final state implies
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also the final channel. The superscript when used is a channel
label.
Let U(t) be the solution to the initial value problem defined

by (8) and (9) for a set of values of b and v, .. The amplitude

lab
for rearrangement to the final state Wf is
Tpy = Ap(®) = lim 'lwf(t), @(t)} (17)
_ t o
where
D £ |
iz - H (t) \lff(t) =0 . (18)_

The wafe functions of the initial and final states are moving atomic
orbitais trahslating respecfively_with the target and incident nﬁclei.
When we make the reasonable approximation that the ratio of nuclear
mass to eléctron mass is very large, M/m >> l; the velocity of the

ion in the center of mass coordinate system is v = Xlab/g'. Defining
k =mv = %v, we can express these wave functions as

“ikex -iet - ik

v, (5,t) =o(x+z)e - , (19)

]

2
- Hikex ~ i€t - ikt
¢ (x -z)e 2L * ) ' (20)

il

Ve (x,t)

/

with the atomic orbital eigenfunctions and eigenvalues satisfying

[Hf-e}q)(gc_-g)zo . (21)

| EnEsanEE]
=
I_J
i
m
| S |
S
P
>
+
| N
g
il
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The charge exchangé transition probability is given by
P (b,v) = [a(=)? ()
i £

which varies with the magnitudes of both the impact parameter and the

velocity. The total cross section 1s then given by

, [ ,
00 (V) = P.n:! db b P (b,v) . (23)
<0

The transition probability Pfi(b,v) is by definition equal to
Ofi(e;v)/a(e,v) vhere 0., is the differential cross section for that
particular final state and 0(0,v) is simply the classical differential

cross section at angle € given by the impact parameter method for a

particular potential. The IPM assumption that the trajectory is

uncorrelated’ to the internal transitions means o(8,v) = Z_ Ofi(e,v).
o T
It is then easy to show that the total cross section has the standard
form,6
. |
Ofi(v) = dé sin 8 Ufi(e,v). (2k)
. o .

Another expression for the transition or T-matrix, Tfi’ is -
obtained through the integral form of the Schrodinger equation (8)

with boundary condition (9),T



_integral equation we get the Lippmann Schwinger equation8

‘convenient for rearrangement is

1k

. ¥(t) = v (t) + G (t,t") VH(t') B(e') at' . (25)

- 00

Using the post representation in which essentially the basic vectors

are chosen to be the eigenstates of the post Hamiltonian, Hf, we get

the eXpression

att (£ v 1) .. | (26)

" Expression (26) is the IMP analogue to the T-matrix expression derived

from the Lippman Schwinger formalism. As noted previously, in the wave

"method all three particles are treated quantum mechanically using time

ihdependentjfheory. The three particle wave function J, satisfies

(E -H)y = 0 with appropriate scattering boundary conditions.. Con-

verting the differential equation and boundary conditions into an

() _ 5 , 1 RO
BUhrsrae T o

where the (%) refers to the two asymptotic boundary conditions of

outgoing and incoming spherical waves respecﬁively. The'repreSentation

9
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o | 1 o E () '
AL B PO S N CON (28)
+ E+4in - HY ﬁl E +in - *

and since the first term contains no outgoinglwaves in the final

8,10

state the transition matrix arises from the second term.

Ty = () | (29

This is the post form of the T-matrix; the prior form corresponding

to (29) is ¢
v = () | (30)
fi f i
where
() g .1 e () | ~
\If.; ff'+E-in-vagff o )

. The Numericai Solution to An Impact Parameter Model of Ion Atom Scattering .

To this date, no real physical system--not even the proton

hydrogen system—-has beeh solved exactly in'efther the IPM or the
“time independent method. Tt is observed in the IPM that the heavy
vbﬁarticle dynamics .is essentially éne dimensional in that the impact

'Qparameter,  $,_en£ers oﬁly parametrically in the théory. “One expectsf

then %&ét mﬁ%y effects may validl& be investigated in a purely one
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dimensional problem in which the electronic wave function also is
one dimensional. The case is espeecially good fdr rearrangement
processes because, as we shall discuss in detail, almost all of the
mathematical problems there arise from the multichannel feature and
only incidentally from details of distribution.in three space.
There are three dimensional features that we cannot investigate with
a one dimensiocnal model. The first is the centrifugal barrier for
‘orbital angular momentum numbers greater than zero. The second is
the couﬁling Between degenerate states differing in angular momentum.
The third, which is related to the second, is the question regarding
the appropriateness of using, as often done in approximation schemes,
a rotating axis of quantization.

Because we shall employ nonanalytic potential functions, there
will be unrealistic effects; these occur at energies, however, outside
the range that we can meaningfully treat. Beyond the upper end there
are large variations of the amplitudes with momentum transfer; and also
the threshold dependence of the exchange cross section with v_l s
which decreases exponentially for analytic potentials, decreases only
to some power determined by the order of the discontinuity in the
nonanalytic potential function. |
v The initial value problem here, (8a) and (9a), is almost that
of (8) and (9). |

.

%

1—8’-&32 = H(t) Wt) | | (8a)
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FCRERACHE o (92)

The exact solution to (8a) and (9a) is formally

4
J(t) = U(t,to) xlfi(to) =71 exp [-i H(t') dt'] i{(to) (32)

where T 1is the time ordering operator.
The numerical method chosen to solve the abdve‘initial value
problem involves an iterative procedure that at each step requires the:

solution to an equation analogous to (32), but for small time intervals.

Thus
Ftn+l o
Py - v oexpl i) H(E') at']T(E") (32a)
J |
tn
where At = +°™h " and nat =t - t . | (33)

For small Ot we may treat H(t') in the integrand to be a constant,
-Hn, and eliminate the need for the time ordering operator. In obvious
notation (32a) becomes
g | :
Fo=er v ‘ (32p)
The finite differen@e analogue, mentioned earlier, is obtained by

~truncating (32b) to terms linear in At. However,vthe obvious and
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straight forward course leads to

P - ) | (34)

an explicit finite difference scheme that unfortunately is unstable.

Expressing (32b) as

T ¢
e+1 H At %§+l - E? | (32¢)
and truncatiﬁg as before, we get the implicit scheme
04l 1 n
v o= - ¥ (35)
1+1H At :

e operator 1/(i'+ iH™ At), the formal inverse to. (1 +iH" At),

in practicefimplies a matrix inversioﬁ_ :Full.implicit schemes like
(35) é#e stable, and in most other physics problems this would be
Csuffiéient.;;The,probabilistic interpretdtionvof the quanﬁum mechaniéal
 Wave-£unctioﬁ, ho&ever, demands that the solution operator, operating'
on Qﬁ, in addition must be unitary. Writingz(32b) formaiiy as

o-1 HD A

- P S (324)

' éi;i 1" At/
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“we can readily corive

i+ - : o1 -4 nt/2 -
_mn+] - 1 ni iH ¥/ Wn (36)
1+1iH at/2 1

The scheme suitable for iteration, formally represenﬁed by Eq. (36),
is stable and is furthermore unitary because Hn,bthe Hamiltonian,
is Hermitian.
The finite difference schemés described formally by (34), (35);

and»(36) are also known respectively as forward, backward, and centered

time difference schemes. '
n ' n+s -

.The Hamiltonian, H , is well chosen to be H(t '2). The two-!.

dimensional finite difference equation implied by Eq. (36) is realized

|

‘ = i

by quantizing the spatial coordinate and using for Hn the finite f
's

difference operator analogue--obtained straightforwardly from the :
linear differential operator. |

For explicitness we shall henceforth write Hn+%, ihstead of
ﬁn, for H(tn+%). | | |

PO CE 1 1
R T SR A (37)
(£x) |
Or more explicitly
Rt o { s nalo.
PR —— ~ (D, = 2+D, )+ V(x,-2"T2) 1 v(x,+2"2) (38)
J (%)@ J+L J=l J- 7 J
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1 1
) n+s . Ln+s
where 2z ° = v 2

, Xx 1is the quantization interval, and D,
' ? Jt1

are displacement operators. The displacement operators are diagon.l
in momentum space, Dj+l = exp (% i &% p); the potentials however

) . 1 : o
are not. Writing Hjn+§- in a mixed representation, and letting

v E'Vi_'+ Vs
5j = Ez;3§ 1 - cos(& p)l + Vj (39)
) | v
= P+ an+§ S ()12 b , (10)

We seefthat ﬁhe leﬁding term of the truncation error in the analogue
Hamilténian is guadratic in (Ax). By formally expanding the denominator
of (36) it is easiiy shOQh thaf the truncation error theré, as
conventionaliy defined, is quadratic also in At. The leading terms
of the total;truncatibn error in our numerical solution of the
i%éhrodipgeriééuatién iséy*[(At)g];#LCV[(Ax)gléll’le The range of
ﬁgncide%tvenefgies-(or veiocities); with;ﬁhichiour numeriéal program
vcan céiéulaﬁg meaningfully; is limited ét both uppéf and iower ends
by the:truncétién”érrors through the necéssityvof attaining beliévable
éccuracy witﬁout increasing significantly the computer time. Tﬁese |
liimitaﬁions become apparent when we.realize thét high veldcities
impliéévthe‘ﬁresence of significan£ high.momenﬁumAcomponeﬁts that ré-i
qﬁire'g sma%l:spatial quéntization?inter&al, and also that low .

velocities méans a 'long- collision time and hence a large time
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intervel. If is nét clear how to determine quantitatively the net
effect of the truncation errors. Conservation of probability, which
should be exact according to (36) and (39), is violated at most by
a coupie tenth of one percent owing to errors'bf round off. Round
off may justifiebly be ignored. The truncatioh error falsifies the
distribution of the state function via (39) or (40) and also again
by affecting differentially the component-phaéee. An estimate of
the accuracywbased‘on ekﬁerience and on heuristic checks of the
calculation,:among.which varying At aﬁa Ox 1s one, is that the
erroréein the amplitudes typically range: froﬁ less than one percent
to severai percent. ' More pertinent perhaps is the fact that partly
beeause the error is systemetic the precise uncertainty in the value
need not, nor is it allowed to be, a significent factor in the
interpretation.

The potentials in the model may'et this point be chosen almost
.arbitrerily in that only numerical work is invelved; However, itvis_
_desirable to have analytically, atomic and quesimolecular eigen-
functions, to use in the'approximation models, which will be discussed
in the next section. Consequently the potentials were chosen to be

square wells of unit half width. . ,

W) = - Ay (1)
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where 7
lyl < 1, | (42a)

il

'_.I
=N
}—(yJ

fﬁ(y)

i
O

u(y) ir yl> 1, ‘ (42p)

and for accuracy in the humerical calculation (36), define also
u(y) = & for lyl= 1. x | (h2c)

The solution to (8a) and (9a) by the nﬁmerical method (36)
yields ét somé appropriate time - tn - after the scattering the state
Qector '@(tn); Various scattering amplitudes may then be gotten by
projectibn onﬁo the.éppropriate channel states that are effectively
drthogonal aé far as our numerical work is conéern.:vFor instance the

rearrangement amplitude is
: Copg Boany nj|sn ) roe
Tey o= (e, ¥ = (. (172)

At velocities too high for (17a) to be accurate, the rearrangement
amplitude often may still be extracted by using the finite difference
analogue of (26)

o . n=N | NN n :

o=, At (£ VT, . (262.)

fi o T

g n=0 } . )
which réquiréﬁ accuracy in the wave function only in the near zone of

scattering.
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IIT. APPROXIMATE SCATTERING THEORIES

A. Preliminary Remarks

The approximations that we will inveétigate on our model of
ion atom charge exchange are here designated és follows:
(a) The Born

(b) 'The Modified Born - I !

~~

c)  The Modified Born - II
(d) The Coupled States Atomic
e)

(

These and other approximation schemes are found in the literature

-The Coupled States Molecular

under a variety of names and formulations. Since the mathematical state-
meﬁt of these.approximations may not be very familiar and since the

names chosen may be misleading, some preparatory remarks on these and
other schemes will be helpful in understanding the position they occupy
in the later discussicn.

The approximation schemes_used in reafrangemént are usually more
‘esoteric if not more profound than those used in single cﬁgnnel processes.
The latter can be derived or traced rather difectly from 5asic and
simpleltheofétical notioﬁs such as those that lead to the use of
pérturbation“theory for high energy scatteriné and to the?use of
.eigenfﬁnctioﬁ expansions for low énérgy. For;rearrangement these
considératiéns are still applicable bﬁt;more éualitatively. themes’
ﬂifectly fohﬁulateq from sﬁch genéral idéas afé immediately plagued
With difficulties associated with the pféséncé of more £haﬁ one

‘channel. The two most important difficulties were the nohorthogonality
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between thé initial'and final states and the difference between the
initial and final channel boundary conditions. These>have long been
recognized and may from our present vantage be regarded as kinematic
coﬁplications. The schemes modified to remove these defects are,
however, much more complicated and do not possessthe simple properties
aﬁd conceptuél clarity of the inadequate schemes. Their connection
with the earlier work even appears remote from certain viewpoints.
Indeed, it may be more logical and instructive to present the selected
approximations afresh from a modern apprbach, but it is aléo desirable
to relate to the older versions as they are the one encountered in
other areas of scattering theory.

There are probably as many ways to classify approximation
schemes as there are viewpoints to explore them. For convenience of
presentation we shall group all approxiﬁation schemes under two types
distinguished by the means in which mathematical simblification is
achievea. No implication is made that thé ideas of the schemes also
fall into two groups or that all schemes can neatly be so c¢lassified.
The first of the two types, which we shall call T-matrix approximations,
involves the perﬁurbation idea. Mathematically, an integral equation
is reduced to an integral by the substitution in the T-matrix of an
approximate state wave function for the exact $tate function. The
second type includes those schemes-wherevthe integral equation is
made tfactable by restricting the range and domain of the Green's
function to a subspace of the original'Hilbert Space. We shall use
the term——Gréén's function approximation--for the latter type. T-matrix

approxiﬁations includes the Born approximations, the Impulse
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approxiﬁation, and;among]others the wvarious twb potential schemes.
The.Green's function approximation type includes the eigenfunction
expansion method, and the perturbed stationary state method as some

of the more familiar examples. An approx1mat10n scheme may involve
‘both types of asoumptlons at different stages of the calculatlon.

Also a!Green s function approx1matlon,may be reduced to a,T-matrlx
apprbximation by a.justifiable‘further approxi@ation;‘the fwo versions
then éfe subétantiélly ﬁhe same although categbrically different, which
illustrates agaln that 1t can be mlsleadlng to take the classification

too llterally

B. ~Tdeas of Approximation Schemes

T-matrix Approximations

(2) Born Approx1matlon
The 81mplest and best known of the T-matrlx approx1mat1§ns 1#
the Born Approx1matlon. Invthe Llppmann Schw1nger form thls may be
regarded as an approx1mat:on on W (+) by ﬁ. on the r.h.s. of

(T1- 27) or- equnabnﬂy as an approx1mat10n to T by Vf.

il

_ (+) = 1 i '
R Q vt (1 + ETInTE Vo) (1)

TfiBorn‘ _ qgg, V?@;) | ; : (2)-

The corre5ponding approximation in thé,piior form obtain from

? (- - g O Q () -1 is
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The analogous first order "Born" approximation in the impact parameter

13

theory, which is the version of Brinkman Kramers, from expression

(I1-26) is
B’ L v o f »
Tes = —1J at' (Vp, V7 ¥) ()
It can be shown that the post (2) and_prior (3) forms of the Born are
equivalent by using the Hermiticity property of the total'Hamiltonian.
Likewise in the IPM, expression (4) is equivalent to
B s ‘1 gt g . ' '
from the additional fact that the states of two channels are orthogonal
asymptotically. There is then no post-prior discrepancy in the:exact_
T-matrix nor in the Born approximation providing that exact wave
’functions aré used. .
The Born approximation historically has suffered from ambiguities
‘in formulation not usually encountered in direct processéé} These
‘difficulties.arise from the nonorthogonality of initial a@d final
states, are now understood, and are eliﬁihateélin the refined Born
treatments. ‘There is a pluralityLOf such schemes and we have the

hardervproblém ofldeéiding which medificationis most correct. A



~O7-

more sefiousidifficulty'is the inaication that the Born series for

rearrangement collisions does not converge.lu The first Born, which
is based on the reasonable idea of treating the prior interaction as
a perturbation, may still be useful for energies not extremely high

3,15

and may be part of another series that does converge.

(b) Refined treatments

For energies toward the intermediate point where the relative
Velocity of the nuelei is near the orbital velocity of the electron, -
" which in reference to the proton hydrogen system is about 25 keV, the
Born approximation is expected to be inadeéuate. One could consider
multiple scéttering models such as for example the second Born or the
Impulsé approximations. However, a more precise formulation of the
firsérig;as may be sufficient to extend our ability to calculate into
the intermediate region of energy. Historically, much of the motivation
for this work was to remove the unsatisfactory feature of the Born

where--due to the ﬁonorthogonality'mentioned before~--a superfluous

-term in the potential may contribute to the Born transition probability. Pria
Showld be of 70 SquTfSE Ma‘“.o-nn.‘i{c'all ‘gd} This eF(ec'f“ ocCurs alie in QoleyenT o
‘e

Here--within the context of the IPM--the exact contribution to the R
o ' 4
coherent amplitude introduced by such a term is a phase factor of _ S

modulus unity that the Born approximates by its first two terms.
Hence depending on the érgument of the phase factor, unitarity may
be arbitrariiy'exceeded. The sensible prescription then is to drop
‘such terms. For example the internuclear potential, contained
formally in (2) and (3), cannot be included with theoretical con-

'sistenqy in the IPM forms (4), (5).2 However, it is not always
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apparent how to split the Hamiltonian or to know which terms to
disregard.l6 We even suspect that the interaction in the Born

formulations (2)-(5) corrected may contain already too much. Indeed,
the internuclear potenfial has been reintroduced in later worle
phenomenologically to cancel these additional éffecﬁs in the Born.
It is necessary then to clarify our concepts aﬁd employ more

sophisficated models to derive more consistent first order schemes.

(1) Modified Born 7.2,9,18,19

The important idea here 1s to single out the effective inter-
action believed to be responsible for the rearréngement process. For
this usually the two potential idea is formally empioyed. _Even when
an interaction does not admit of a natural separation we may formally
regardig part of it to be the principle interaction and the remainder-
the sécondary:interaction. Interpreting the equations literally, see
Appendix A, the principle interaction is seen ﬁo be superimposed on
the secondary interéction that acts as the backgrouﬁd process. The
.reactidn of iﬁterest, rearrangement, is attributed solely to the
formal principlé potential while the direct channel processes are in-
¢luded “in thé secondary pbtentiai.l8 Thé T-matrix is then, in the post

_description,

f

R AN G O F A0 RN O

The distorted wave approximation to (6) is

R A S N GRS e D (7)
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Tt is illustrative to note that the smallness of (Vf - Uf) per se
does not justify the above T-matrix approximation, which is based
instcad on (Vi - Ui) being small. The potential treated as a
perturbation is often ﬁot the one occurring in the T-matrix formula
-for rearrangement. Then the feedback consistency of single channel
approximation récipes do not exist.

The actual choice of Uf is related directly to the ideas of
the appfoximation scheme employed. In Mittleman,l8’20 Uf is generaiized
to be the optical potential responsible for all of the single channel

final-state interactions. Then (6) may be recasted as

o= GO S V) (8)

where h nf =§: ff)(fi.
v T |

And nOW'approximating both incoming and outgoing waves by plane waves

he obtains the following result.
MET ' £t i | : '
Tos = (@%l[ﬁ ) V-]_ﬁ;) . (9)

The IPM form of this is

o e B (N R AT DS B (92)

—

. of .
.-1j dt (Vfi - 8oy Vop

1l

T (9b)
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where .(wf, Wi) = 5, - | (10)
A c-number potential, at most time dependent, would contribute equally
to both terms in (9b) and hence have no net effect. The somewhat

misleading term "effective orthogonality” is sometimes used to describe

schemes like (8), (9), and (9b).

(2) Modified Born II.
- The position taken here is that an inconsistency is kinematics
has been made in>the first Born of Eq. (5). It was recognized that the
initial and final states are orthogonal4asymptotically'but not orthogonal
at finiﬁe times. However, the channel states, strictly, are not physieally

defined at fiﬁite times. We may choose the definition formally to be

' _ (l-s)% +1(1+S>%

1 i
¥,z (F) b, (p) + Lz8) - (s )?

T Vo . (t) (11a,b)
2(1-57)z i,f 2(1-52)2 £,4870

= = by . ® lo
where s Sfi gif ( a)

and the ¥, f(t) are the wave functions given before (IIL-10, IT-18).
)

As t - o wi’f(t) ~ Wi,f(t) , : - (12)

but the set (ILla,b) is orthornormal at all times.

(Wi gp ¥y ¢ ) = 1sand (¥ o5 ¥ y) = 0. - (13)
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As we shall see thefe is little to be gainéd by using the orthonormal
wave functions. Furthermore, if we imagine the perturbation V:-L and.
Vf to be very weak then it is guite reasonable to make the normal
definition of channel states used in the Born. Then, however, it is
inconsistent to define the physical occupation of the state

Wf by (Wf(t), E(t)). The conception that the channels are somehow

distinct at finite times leads to the sensible superposition
g o= ob, + BY, . | | (1h)

Conversely, if a vector .é- lies in the Hilbert subspace spanned by
Wi and Wf, the appropriate occupation numbers are & and £ respectively.

They are given by

(b s8) - 8, (v )

a = >a,
| - Sfi2 (15a)
- (ef) - 8, (v, 0) .
B = f £ 5 . o (15b)
-8y

In (15a) and (15b) we may consider § to be the projection of an

@', on to the subspace mentioned. ﬁ' = g@“, where

led(el + [0 - leds. (i - Jids, (f]
- i : - fi if . (16)
L= Spy
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Returning to perturbation theory we have V(t) mawi(t) and
V" is the perturbation. The incremental first order part of the
wave function as obtained from the Schrodinger equation is

Is

Vlwiét. Neglecting other states we consider onlyal
i . . »

n Vo et = Bty + BetY, . (1)

From (15b), and (16) and noting that (i,f|lr = (i,f] , we obtain

an expression for éﬁt which we integrate to get the net transition

amplitude to the final state.

i . i
MBII _ . | g (b V7 0y) = 8y (Vg VIU,)
£1 = L .5 ¢? -

: £1

B = T (:1.8)~.

The version of (18) then correctly takes into account the distinction
between the rearrangement and the coherent amplitude that we had
formally assumed to exist. When 1 > S_., such as at high velocities
‘ i ’
we may neglect the denominator of (18). Then we have
CMBII L1 iy, |
Tes = -1 at (vfi - 8.V..T), _ (18a)
vhich is the prior version of (9b). With care then nonorthogonality

is not.a probiem.
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Green's Function Approximations

Two of the familiar examples of this olass of uppfoximation
schemes are the cigenfunction expansion and the adisbalic approximation.
In the eigenfunction expansion, as used in direct processes, there
is an attempt to describe the system.by'only a few low lying eigen-
states. Then the integral equation reduces to a matrix equation of
a small number of dimensions. The coﬁvergenoe of this method is
probably slow as continuum distortion is almost always an important
effect. Oné may restore some of the missing second order effects

through an optical potential formaliSml8’22

or through employment

of not the unperturbed stationary states but the perturbed stationary
states. Clearly the inclusion into the representation of effects of
the interaction Hamiltonian may range from the use of first order
.perturbed atomic orbitals to the use of quasimolecuiar orbitals. The
term PSS is usually reserved for the latter, and in the time dependent
context;—tho IPM--the PSS is equivalent to the adiabotic approximatioh.
A useful statement of the theoretical idea Justilying Llhe AA is thit -~
in the Heiéenberé representation, the state vector in the discrete
part of the épectrum remains a constant in the limit of infinitely
slow fate of change of the Hamiltonian. The assumption that the
conciusion is true even for finite rates of change of the Hamiltonian
is known as the zeroth order adiabatic approximation, AA. In the AA
then, the representaticn is chosen with'respoct to the set of
eigenfunctions of the quasimolecule in fhe Heisenberg pioture; the

formsl interaction Hamiltonian--in the time dependent Schrodinger
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equatién——that coﬁples oné state to another is proportional to the
time rate of change of the total Hamilténian. The étomic orbhitals,
which are discreteveigenstates‘of the prior or post unperturhed
Hamiltonians (I1-15,16), are also the asymptotic limits (infinite
inteﬁnuclear separation) of the quasimolecular eigenstates. It
foilows then that there is no rearrangement generally in the zeroth
adiab?tic approximation since by definition there are no transitions.
Only in the case of symmetric resonance can rearrangement occur for
now the two atomic orbitals of interest correspond to the asymptotic
limit of different superpositions of two quasimolecular eigenstates,
which are degenerate only at the asymptotic limit. This charge
exchahge phenomenon, well known as an instancé of quantum mechanical
resona?ce, reflects the fact that in the Schfddinger picture the
state Iector 1s not constant, the phase relationship of the two
relevant amplitudés is time dependent through the splitting of the
éigenenergies at finite internuclear separations, and that con-
.sequently the final and initial mixtures of the two statés.can
éorrespond to the two different physical situations.

Unfortunately the adiabatic approximation ié almost always
inapplicable, and the ideas stemming from it would be rather mis-
leading for understanding the actual rearrangemenf calculation
‘correctly formulated. The initial and final states (II-19,20) are
channei stateé possessing different boundary conditions; they are
never eigenfunctions of Hamiltonians within the same Galilean

coordinate system, much less eigenfunctions of the same Hamiltonian.



ll Therc is then no unique exten81on of the id(r of initiil anﬂ fih&l

_,,

S channel ututee into tho nenr zono of scattcrinﬂ.‘ Hencm no dJJ— ']" .

’tinction cun be nudc w1th precision between charge transfer by

transition and charge exchange by quantum mechanical resonance.

_ Wc ghall show thnt we. can recast our approximation schemcs to diqn]ay-

more prominently one effect or une other.

The Coupled Chennel‘States

We have established that in rearrangement there is no natural‘

'r‘and convenient Hamiltonian with which to define a reprcsentation,
" no unique interaction 0perator, and not one but two bonndary
4'.conq1tions t0~conSider.; In principle nothing substantial has been

t

o losﬂ;ffFormally only the use of conceptuelly,clear and simple ortho-
_Am~normal expan51ons is precluded..'

|
§
\
\

‘The phy51cal picture of the scattering process that we w1ll

) ‘a.ttempt to describe :f‘ormally is the following. The state function,

”-} initially a translating atomic orbital is: distorted by the passing

fion.é we have already described the possible asymptotic results._

. 3

":fIn the near zone we expect correlation effecte to be moet important

"ﬂ‘vespecially at or below intermediate energies when the 1on velocity o

“‘3ﬁis comparable to electron orbital velocity. We - -can thUb neglect '

.“,£ionization per se and conuider the state function to be 8 sum of

'-i’two amplitudes, centered around cach of the two moving nuclei in

:
i’t

. both: p051tion and momentum apace%? The gtate vectcr'is-then

e

i
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W) = a,(e) v, (t) +a.(e) () . » (19)

The basic vectors: Wi(t) 5 Wf(t), spanning the Hilbert subspace to
which @(t) is confined, are required only to be well centered as
mentioned and are otherwise arbitrary. They could contain the
asymptotic boundary conditions as explicit momentum factors in
accordance with the iPM ideé that the nuclei are unaccelerated.

G(t) = Bi(v) e EE . (20a)

il

wf(t). ﬁg(t) L Ex : (20b)
Obviously, 1if ﬁ;,‘@} contained sufficiently many terms the momentum
factors could - be omiﬁted. Howéver, these factors must be included
in order to describe acéurately the above model by only a few terms;
perhaps a total. of two terms in (19) may then be sufficient.

Expression (19) may be taken as an ansatz for the wave function

with the A's determined from the variational expression (21)
¥ S -
) ¥(t) [ 3¢ - B(e)] W) at = o. (21)
We get ultimately, see Appendix B,

SA = iTA, : (22)
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and the unitarity condition lg(t)l2 = 1. (23)

S and T are 2 by 2 matrices: e.g.,

S = (b ) -  (10)
T o= (h, (59 - 1) ). | | (24)

The matrix Eq;:(QE), whichwthe Euler Lagrange equations reduce to, is
precisely the -set of coupled ofdinary differential equations that the
Schrodinger equation (11-8) assumes when expressed in the representation
defined by having Vi, and Wf as the set of basic vectofs. In‘other

i .

words, the two coupled equations may be written more familiarly as

(b, G -1 = o (22a)
(b G -1 D = 0. | | (22)

(1) Coupled States - Atomic.
At high energies the atomic orbitals @i and $f’. are expected
to be good choices for @; p in (20). TIh other words the asymptotic
. ;) 3

forms of the ihitial'and final states are chosen to be the two basic

states in (19).

il

._wi(t) ¢, (x + vt) expl-1 k-x - 1k5t - i€,t] ©(25)

it

wf(t)_ ‘¢%(§'- vt) expl+i kex - 1Pt - iet] (26)

f
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" where

i}

i f .
(e, ~H (x) ) @ (x) (ep -8 (x) ) o, (x) = 0. (271)
For symmetric resonance the orbital labels may be dropped. Egs. (25)-(27)
are then those of (II-19) through (II-21). We repeat from Section II

t i)f ) . '

The CSA set of eqﬁations (22) with (28) may be reduced to our second
.version of the.modified Borns by further making a first order
,approximatibn that uncouples_fhe set. Clearly, the CSA is at least
“an improvemeﬁt over the various Born:schemes in that the "back coupling"
matrix element is here taken into account (restoring uniﬁarity); and
o consequentiy shogld describe some of the important multipie order
- effects. |

There is.no fuﬁdamental need to use exact étomic wave functions,
although it:is very convenient when they are;available, as long as thé
coupled equétiéns (22) are derived from (21) consistently using the
-actual basie funétions."To formulate a two state scheme that is
unambiguo;s:in interprététidﬁ without'furtheffapproximation, tﬁe

minimgl boundary conditions on Z& r are
. .' ) .
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?ﬁi(t) SIS 9, (t)

lim t » -

Ba(8) e (1)

limt -+ ®

We shall impose the usual stronger condition,

in brief we will entertain as ”correct"zgnly'one asymptotic form,

that Qf the_CSA. The t&pe bf distortion that-the CSA allows in the

wave function is charactérized as pure correlation only, in that besides'
the uhpertufbed fo?m, Ay there is an additional'distribution
corresponding to ah uﬁperfurbed bound_state With the incident particle.
We should be'able to improve'our results at low energies by allowing

~ for additional wavé function distortion és an initial-state-interaction
and a-final#étate—interaétion in the spirit of two potential theory.

In our methods here we don't actually choose éxplicitly'tﬁe secondary
'interéctiqns from which the distorted waves and principle inter-
actions are bbtained but rather we choose the distorted wéves, ‘Wi,f’
with the priﬁciple interaction obtained in the process of derivation
ffom (21) 5r (22). This is equivalent theoretically to specifying

the diagonaliform of the-Green'é functiqn'or specifying the propagators
in the scattering‘process. The employment of & Green's fﬁnctipn,
anticlipated to be more complete, éhould improve the convergence of

the associated two state expansioﬁ.
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(2) Coupled States - Molecular.
The pfopagators of this particular model are as usual specified
formally by ¥, f(t).' For symmetric resonancé, the appropriate forms of
. 2 . ’

wi’f(t) are

i

it

v (2) 2% [u*(t) + Uk XX o ’(298.)

=

H

)

L

1 . _ s . ) B
272 ut(s) - uT(e) ke 2R (~90)
Equations (29)-are Egs. (20) with _@; . taken to be linear combinations
of eigenfunctions of the quasimolecular ion. These molecular functions
& o+ ' .
(E(t) -H(t)] U (t) = O . (30)

are also eigenfunctions of parity, and haVe the correct asymptotic

conditions. As t-% o |

(31)

or

(31a)



where

(E:i_,'f(t> - () ) Ui,f(t) = 0; | : : (S‘L)

and -éi,f accordingly is taken to be Ui,f'

In the coupled channel schemes the basic funétions; Wi,f are
generally normalized butvnot orthogonal. An orthonormal set having the
correct boundary conditions can be ;onstructed from each set of ‘wi,f'
See (1la,b). _Thése functions do not simply trénslate with. the huclei
in fhe near zone as depicted earlier; they are mixtures of two trans-
lating»fackets. Both sets hbwefer are formally equivalent; the exact
solutions»éf“thehtwo corresbonding sets of coupled equations are
identical,.but the respective ﬁBorﬁ” approximafions of the coupled
states scheme$ are formally different.

' The coupled channel states schemes are well suited to describe
rearrangement.throﬁgh a véry restricted type of multiple scattering.
Furthepmore,'in the limited context of only tws states we may display
more aﬁpérenfiy'the.effect of a geﬁeralized qugﬁtum mechaﬁical
resonance, by usiné the basic functions }wi,'which are thé sum and
difference of wi,f' In this représentaﬁibn the Schfodingér equationéz
for the Ai:;ithe wave function, afe coupled, Wéakly‘coupléd, aﬂd |
uncoupled for the cases respectively of.honresdpant,.asymmétric?'
fesonant, and symmetric resonant charge‘éxchange. vafollgws from

this, and unitarity, and the initial condition,

AT (ew) = A‘(-w)f, _ | B ’ (33)
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that the rearrangement amplitude depends'direétly upon, and may be
lafgely controlled by, the phase relation betﬁeen the Ai after
the scatteriﬁg. In the lower intermediate energy range the charged
particle may be transferred to and from the ion several times during
the céllision. Resonant‘and nonresonanf exchange may then be a
difference in degree and not a difference in mechanisn.

Sﬁpport for the last Statementris'found, interestingly, when
'éne investigates thé cése of accidental degeneracy. There if is easy
to show that at large internuclear separatién the molecular orbitals,
obtained from degenerate perturbation theory, are the linear
comb;nations ? 4 x ?

lieved. The immediate “implication is that accidental degéneracy should

and not ¢, and @% as traditionally be-

resembple symmetric degeneracy more significantly than was formerly

23,24

- pbelieved. We. exclude here the possibility where the energy
curves of the actual molecular orbitals of interest, at finite

‘internuclear‘separations, again approach each other closely.

" C. Selected Appfoximation Schemes Applied to the Tractable Model

The Born Approximétion

Another derivation of the Born amplitude is given as follows.

Write the Schrodinger equation,
i3 We) = 8(t) Wt), | (11-8)

" in the pbét interaction picture and in the post Hamiltonian representétibn.

This is equivalént to the variation of constants meﬁhod. We then get
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A = T () Ae) (34)
from () =>;T Am(t)‘\lfmf(t) , - . (35)
[1 %;' - H (%)) \!ff(t) - o, | j | (36)
ana‘.vnmfm - (\Ifnf(t:);.: vie) v ) ). : 1)

The final state amplitude is then given by

, f(

" Af(éo) Ve t) Am(t)b

]
]
o
]
h
8
o }
C{.

. a £ . f

- -if dt (wf(t), vi(s) T(t) ) _ (38)

o0

Born  Born
(oo) - Pfl

is gotteh by using the zeroth order term of ﬁ(t) ‘on the right'hand _

where the superscript has been omitted. The Af

side of (38).

B - £ S |

T Om - -1[ at (v, V) | (%)
£, 2 ‘ ’

CV(%,t) = - N u(xvt), see (II-h2) (39)
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S| . 1.2 .
+ .13 -i vt ~i€t
t o) e TRVE TR

b o) = e (x
< .0 ‘ ~ o
e (x) = H(x) ox) = [ -— - M u(x) Jo(x)
. 5}:5
The eigenvalue € is given by arctan (B/&) =t
where
1 1 1
B o= (~€)2 , & = 0P85 (4 )2

And the normalized ground state eigenfunction is

¥ V
o(x) = (B/B+1)? cos tx. for |x|'< 1,
1 S _ :
= (B/B+1)% cos £ e B(IX{ 1) for lxl >1 .
Then
: - 00 ~ 00
Born . G : ’{ -ivx
T . = i — cdz | ax 9(x-z) u(x+z) Ofx+z) e
Sri o v | ‘
— 0 - o ' -
. )“2 00 , +1. ' .
= i=— | do¥o) e'l—é\{q’] dy o(y) e 2
- 00 -1
where in (458) a change of variables, o0 = x-z, Yy = X#—z, 2
has been made and the relationship, u(x) = o (1 - |x] ), usea.

o(x). “is the unit step function with the jump at x. = O.

(10)

(h1)

(x2)

(43a,b)

(45a)
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Tnserting (44) in (45a), and evaluating the integrals we get

7y

Born . 4 (x sin k cos & = £ sin £ cos k)” -
T = i (p/B+1) A (47)
o : k(1 - ég/kz)2 (1 + B2/K°)
where k = v .
The high energy asymptotic:limit of (47) is
T BOFR 1 (p/B+1) N £20 k cos £ . ' (18)

the Born exchange probability asymptotically iS»inveréely proportional
to the fifth pbwer of the kinetic energy or the tenth power of the

velocity.

The Modified Born I.
We may derive (9a,b) rapidly as follows. Expand fhe state

function by
W) -y A(8) v (b), | (35)

where now .
aw ) - ) ) v = o - (49)

with Uf considered a final state interaction. The Schrodinger équation

becomes

1A (8) = > e - ot 1im Am(i). (50)

m
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Choose. - !mgf) anf (n; 1] (5L)

=]

Fyst

to be the interaction responsible for all single channel processes
within the final channel.. The sum extends only over states of the
final channel. Equation (50) is now

m

DAe) = (), ()W [ 1) 36 ) o (52)

Now restrict Uf in (51) and the analogous initial state interaction to
include only diagonal elements. The "distorted" Born approximation

- then to (52) is

B T N G A A A P2 o (53)

where tﬂ§ ¥ differs from the zeroth order form used in the Born

f,i
only in the phase factor involving the enefgies, which are now per-
turbed and time dependent. These phase factors are
+ . : ~t ]
s 1 1 A ) 1 T t
exp [=1i fo:(t ) dt ] for ¥, and exp ( if o vy (t*) dat']
- 00 - . - 00

for wi' When symmetric resonance exists these energy terms cancel
in (53). The amplitude (9) follows immediately upon integrating (53).
For nonresonance the distortion of the energieé\may be neglected as

‘a further approximation justified at high energies,.

i A = Vo -8, ) : ‘ (53a)
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The Modified Born II

Expand the wave function with respect to a nonorthogonal

basic set as follows:

H SO |

O IR ORROR L R ORRG RS OINCS
The sums include only channel sﬁates; the third term 7 , which completes
the expansion, is orthogonal to both sets of channel states. Completeness
of the‘sets Wi’f however is actually not necessary in this derivation.
The Schrodinger equation is now the set of differential equatilons

' . ] . g 1,T . .
that in matrix form (using all Wnl’ as basic functions) is

i8A = VA o (term arising from ) (55)

—~
2l
g

. ~1
or iA = 8 VA + (term arising from 7 ) . 558,
V 1is appropriately vt oor Vf, and S is the matrix whose elements
are the scalar products of the set of channel basic vectors.
Making a "Born" approximation

f( , . _ (

coa iy o
- t) = 0 An(t) = B

\_
[O)
S~

ni

(55a) becomes

er -1 i " S
1A, = zm: (8" ey Vg - (57)
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Expressing (S-l)fm-‘in terms of Sij’ we can write (57) as

3 c
s f 1 < Det(Sy, ) i I
i A = — Zu V... (L7a)
: Det (5. ) ‘m d8 L
fm mf

The MBII approximation is obtained by neglecting all intermediate

indices other than those for the initial and final states.

A 2,-1 i * i -
A = (1 -8,7)7 (Vg™ - 8py Vyy™) (58)
. - *
The Sfi may be chosen to be real; then» Sfi = Sif = Sfi

The. Coupled Two. States
The Schrodinger Equation for the coupled channel states given

in (22) was
SA = iTA . | (22)
And the two basic states implicit in (22) are those of (20a,b). It is

useful, especially in our problem, to change the représentation by the-

following simple unitary transformation operator

p:-l { l\ ) | o (59)

Note that U = uf = U = T = U (60)
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The transformed set of basic states are
Y .
Vo= 2Ty 2, (61)

that in the case -of symmetric resonance are eigenstates of parity,

(62)

e

- >
because then \ Wi,f = Wf,i' |
As both S and T are diagonal in the parity subspace the components
in (22) are uncoupled in the symmetric resonance problem. The two

independent equations are now written as

ko + 4 o
STAT = iT A, (63)

whose solutions may immediately:be written down as

Ai(W) = Ai(—W) exp[iﬁi(w)} ' | (6h4)
where
) . s
55(4) = at L L) (65)
| 5 (t) - | |

- 00

The initial eonditions, using (59), are

1

27 lA () 2 A(-x) ]

Il

Aig-m)

~~
=
1+
o
p—_
i
l.\)I
o~

(66)
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The rearrangement amplitude by (60), (64), and (66) is

o0 = A=) = 27 (aT(w) - aT(=) )
- %—»exp[i8+(w)] - explid ()] : (67)
= exp[i(5++8—)/2]i sin%(8+ -57) | (67)

. v
Since 8 (t) 4is real, the rearrangement probability is

00

. + - '
P o= |7 ]% = sin® | av L - L (68a)
fi fi o + -
- 00 S S
By (59) and (60)
Ti = 5(r.. +T.) % l(T +T..) and
2Nt fi £ £i/ 2 ,
(69)
+
o= : + % »
S 1 2(sif + sfi)
By using (62) however, it is easy to show that
Tig = Teer Typ = Tegs Sip 7 Spy (62a)
and consequently
+ .o
T =T = Ty . ;
+ (69)
ST = 1 % 8

Pei
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Finally (68a) may be written as

. ST, .
fi fi7ii ) (68)

The CSA scheme uses the asymptotic forms (L40) as the basic functions,

Wi f(x,z,t). The internuclear coordinate, z, is just vt in our
2

problen.
v, - S..V..
Then 25,26 P .CSA = sin2 e £idl at , (70)
i ' 2
1 -5,
-00 fi
i - f _ i f ,
where Vii ~' Vii = fo ; Vfi = Vfi = vfi . | (r1)

The last equality in (71);follows easily from the relation
Wi(x, -z, -t) = W;(x,z,t). |
Although the Born amplitude (38) can be evaluated analytically
in (45) and (47), the time integration of the more complicated expressions
(53), (58), and (70) can be carried out only numerically.
" For the CSM scheme the basic functions are given essentially
by(29).27 Since a unitary phase factor, at most time dependent,

common to both functions has no physical or theoretical significance,

we shall fdr convenience actually employ

v T _. . L B ,
Wi,f(x’ t) = 2 2(Uﬂ(x, z) + U'(x, Z)>e$1kx, 1E(z) 1k t , (72>
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with
— Lty . - : ) . .
CE(z) = AEY) +E(2) . ()
z2 = vt
The eigenfunctions and eigenvalues of the quasimolecular ilon are defined

in equations (30), (31).» Specifically for our problem

C[H(x, z) - Ei(z)] Ui(x, z) = 0 , | (74)
- U#(X,Z;ioo) = o2 @(x+z) £ 0(x - z) ) | (75)
B (2ot w) = E(zotw) = e . | '("(6)

The asymptotic quantities’ are of course - just those used in the CEA

throughout and are defined in (42) and (44). The Hamiltonian is

® 2 2 .
H(x, 2) = -—= - Nu(x +2z)- Xu(x -z) . (r7)
. Ax :

2

~ The matrix elements in the expression for the rearrangemént probability (68)

for this scheme and for our model system become, remembering that

. : 1 '
z ‘= vt, k- = Bv, are

. . ) | _ —l- i "‘v
Se(t) = 3 | ax (U

2
e (v
Jow

) -0 (8) )cos v, (18)
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Tii(t) = 0 (79)
‘/‘00
Tfi(t) = - L [E7(t) - E(1)] ; dx.[U+2(t) +’UM2(t)] cos VX
-~ o 00
1 dk sin vx (U - Ua) (6 ;.v 0 (U +U ) . (80)
T2 - + AR TR SN

For the sake of compactness, not all the'arguments'have been written
in and also the parity labels have been lowered to subscripts. The

do depend on the irrevelant phase

expressions for T,., and T,
ii _ fi

factor that appears in (72); however, the combination Tfi - SfiTij
appearing in the numerator of (68) is indeed an invariant expression
with respect to overall time dependent phase transformations. The

CSM transition probability (68), together with the relations (78)-

(80), now takes the final form,

o B (z) - B (z)

(I, +I,) +I, -I, +I. -1
p CSM 2 4z v 1 2 3 L7 s 6
H 1= K1, - 1,)°
where
il(z) = {+|cos vx|+) , ‘ (82a)
T(z) = (-leos wxl-) - -~ (82)
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13(z) = (+|sin vx g;l -, (Viee)

. . . ) .
I”(z) = (-lsin v BEI +) (fid)

i o (

IB(Z) = { Hsin wx 5;f+ >, (tre)

Te(2) = (<lstn w3l ) (o
c\z = (~|sin vx i S2f)

+ ' '
with [#) = [07(x, z)) . | ()

' +
The quasimolecular eigenvalues E (z) arc implicit functions
of 2z, whose analytic forms in addition change at 2z = 1. Uhe

elgentfunctions satisfy
+ \ + v
U (%, z2) = 2U(~x, z) = *U (%, -z) . (44 )

Therefore only positive values of x and z mneed be considered.
' +
The implicit dependence of the functions U on 2z actually enters
* + + T
through the eigenvalues E; d.e., U (x; z) = U (x, B (z)) .
The latter is an explicit function of X and a rather involved but
explicit function alsoc of E. The relatively simple spatial dependence
t
of U 1is given below.

+ | I i+ : '
U(x; z) = € expl-B7x] for 1 + 2z <x ; (E5a)



sinh
ﬂ | | for  |1-z] ag ; (85¢,d)
LAi :gi (uik), (if z £ 1)
mth
_s O GG NS CO )
and ith
A = a¥(eh) 5 Bt =E () -0 Y st et (e . (o)

The functions:are continuous but not arnalytic throughout the range of
éither of the two arguments. Consequently, although the six integrals
(82a-f) can be evaluated in closed form, it is impractical to do so

owing to theliargevamounﬁ of work involved. 'The time intégration in

ahy event must be done numerically.
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TV. RESULTS AND DISCUSSION

In an actual ion atom scattering problem the two independent
variables are usually chosen to be the impact parameter and thé'energy
(or velociﬁy), and the dependent variable is the transition probability
(or cross éecfion). Our problem simulates a fixed impact parameter
‘situation. And in the case of symmetric resonance  our modél contalns -
formally only one free parameter, the coupling constant or equivalently
the depth of the potentials. Unité where n =2m =a =1 are used
throughout. For accidental degeneracy we have a second parameter, which
is either the depth or the width of the second potential. For the
general caée_of non dégeneracy there are obviously three parameters.
The hﬁmber of bound étates of an atom increases with the coupling
constaﬁt. It is found from the soiutions of the implicit éigenvalue
' equétions that the number of exéited atomic states is equal to the
whoie number of n/é in A, the squarebroot of thé coupling éonstant.
The aﬁomic orbitélé are eiéenstates of parity, alternatively'even and
édd, with the gfound state always of éfen parify.

A scattering system is defined by each.set_éf parameter values.
An interesting éystem on which the results obtainediare clean ahd
relatively‘éasy to interjfet’is the symmetric resonant case where A7,
‘the'couplinéfconstant; is equal to n2/8. Thefonevand only bound
state in this specie of atom haé a bindihg enérgy,: BE, eéual to
.the_kinetic energyy §2,. inside the potential well. Here the decision

on what to consider as the intermediate energy (or velocity) is

e



i

-5
relatively unambiguous. We may note again for reference that for the
proton hydrogen system this intermediate velocity corresponds to a
laboratory kinetic energy of 25 keV¥ Numerical results were reliably
obtained on this model system ranging over a factor of one thousand

in energy. This covers what may conveniently be designated as the lower

intermediate, the upper intermediate, and the (moderately) high energy

ol

regions that on the proton hydrogen system would be between 1% keV to

&l

v

1% MeV:.in the laboratory system.
Figure 1 shows the rearrangement probabilities vs energy in the
upper intermediate and high regimes. The intermediate point is 1.62 on
the energy scale chosen. The‘solid line is the exact result and the
various Eroken lines are results predicted by four of the approximation
schemes. Three of these, the two modified Beorns and the CSA, converge
and are indistinguishable at higﬁ energles. They are definite improve-
ments over the Born-fmorevaccurately the Brinkman Kramers--for energies
not too high.. At lower energies the two state representation is still
very good but the higher order effects such as the depletion of the
initial state through the back coupling term, must be included to prevent
exaggeration of the transition amplitude as evidenced by the CSA curve.
At high‘energy all four approximation schemes, which become in effect
first orderlgchemes; are inadequate. The belief is that transitions
Jbuﬁside thisgmanifold. are importat. The first order rearrangement
-5

amplitude varies asymptotically'as v A;first order direct amplitude

would vary only as v—l. (It is clear then that in this three channel
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problem (including ionization) that there is no unique perturbation
expansion parameter and hence no unique power of the velocity to
characterive an amplitude of a given order. Thus at high energies
the second order effect may be comparable to the first order one.

In other words, the continuum distortioﬁ, which is small to be sure
at high energies, containing high momentum componeﬁts may‘contribute
via second oraer an effect comparable to the first order because the
latter is falling off so répidly with increasing momentum transfer.
This is the case for proton hydrogen scattering.

Figure 2 displays results on the same system for both lower
and upper intermediaté energies. Here the rearrangemént probability
Vs energy is presented for the exact problem and‘for the two coupled
two states mOdels; the CSA and the CSM. .The dominant characteristics
of the éxact results, the oséillations, are described surprisingly
well by the gpproximation schemes. As wé have mentioned before the
coupled two channel schemes contain formally the mechanism to predict
. these oscillations. It is not altogether clear how to distinguish a
mechanism from its effects in a purely quantum mechanical context.

We may simply refer instead to the notions of the qualitative structure
of the mathematical formalism and its actual quantitative results.
 Anyhow, the predicted extrema of these éscillations, for symmetric
resonance, safurates unitarity; there is no'reésonable mechanism

for nonsaturation in the two schemes. The test then is vhether the
positions of the acﬁual maxima and minima‘ére predicﬁed by the

approximations. The agreement is very good. As listed in Table 1.
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Table 1. The location of the symmetric-resonant charge-exchange probability

turning points in the spectrum as predicted by the CSA and COHM, and as

given by the exact results. The intermediate energy value in these units

is 1.62.
lst. Max. , lst. Min. 2nd. Max. 2nd. Min.
csA 1.06 0.430 0.236 0.150
csM ~1.13 0.382 0.203 0.127
EXACT 1.0k 0.ko5 0.213 . 0.132

Below the half-intermediate value of 10.81, the CSM is more
accurate; the CSA and'the CSM results sandwich the exact result. At
around 0.81, the CSA begins to converge toward the exact -solution

while the CSM begins to diverge from them both.
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“the trend of the data is in accordance with theoretical expectations;
j

of the two, the CSA is. relatively better at the higher energies while

the CSM is relatively better at lower enérgies,

At first glance the failure of the exacf rearrangement amplitude
to reach the maximum and minimum of one and zero respectively suggests
a serious inadequaéy in the two states description. However, the
oscillation minima are almost zero. Furthermore, the coherent
amplitude, which is not shown, has similar oscillations that--in perfect
agreement with the two states theory--are 900 out of phase with those
of the rearrénéemenf amplitude. This coincidence of the coherent
maxima and minima with respectively the charge exchange minima and
ﬁaxima substahtiates the conclusion that the difference between the
theoretical and actual maxima is due entirely to ionizafion,'which for
‘reasons:not fully understood is slowly increasing with decreasing enérgyr
Thé_main point then is that thé relative distribution of the state
vector within'thé linear manifold spanned by the two bounded channels
is well described by the coupled channel formulation.

We may now imaginé the charge exchange process to proceed as
follows in the lower intermediate energy regime. The electronic wave
packet initially translates uniformly with the potential wéll-of the
target nuclei to which it is bound. .Upon the approach of the beam
nuclel the wave packet--no longer a steady state in the laboratory
system-~begins "tunneling" in both.position and momentum space over

to the other potential well. During the main collision period the
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electron wave packet may thus, depending on the relative internuclear
velocity, shift its location and momentum several times under the in-
fluence of the combined potentials. The collision phenomenom breaks
off when the internucleaf separation is large enough to inhibit»further
tunneling. The wave packet is then distributed largely around the
values characterizing thé two force centers in both position and
momentum space. During ﬁhe following relaxation period, most of the
amplitude settles into the channel states although a small component
(under 10 per cent) goes into ionization. In this picture the memory
of whiéh nucleus the electron was initially atfached to should not

be too significant. And for appropriate values of the velocity
parameter the packet may‘end up completély on just one of the two
poﬁential wells; this corresponds to the extrema--either zero or
maxima-~-charge exchange prébability. Owing to the symmetries in the
System, the amount of ionization should be independent of the type of
extrema; and indeed the ionization, as found in fhe exact results,
varies smoothly with energy.

A more crucial test is derived from the fact that on the basis
of the foregoing physical picture resonénce peaks should be found in
the exéhange amplitude also for asymmetric resonance and nonrescnance
systems. The data for these two cases are shown in Fig. 3. These
nonsymmetric scattering systems differ primarily from the symmetric
éystem only in that one of the nuclear potentials, chosen.to be that

of the incident particle V', is broader by a factor of 1.60. The
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resﬁlts in Fig. 3 show that the asymmetric resonant system behaves
much like the symmetric fesonant éystemJ The curve for the non-
résonant system does have siﬁilar structure but the pcaks do not attain
the maximum values.

We may summarize the interﬁediate.energy data and their inter-
pretation as follows:
(a) \??é two states coupled channel models are not completely adequate
becausébthe of f-manifold processés-—iohiiation in our examples--are in
fact not negligible.’ |
(b) The distribution of the on—mahifold amplitude, howevef, is well
described by fwd states‘models.
(c)» The ‘collision process may be pictured qualitatively as repeated
exchange of the electron between the two ions. This description of the
effect of thélaccumulated multiple order interactions is decidely lesé
appropriaté for the nonreéonant situation.

In viéw of  these remarks it is of advantage to uselthe guantity
A, rather than the tranéition probability, to dispiay:gyr resﬁlts.

i
2

A =sint (Pf/[Pf + P.iJ) (1)

where .

la

Il

P

_ o ’ '
1,f 1,0l o | (2)

This phenomenological parameter may be justified by the model implied

by the statements (a) - (c). Consider the states Vv,(t), that satisfy-

“hipyt
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only the asymptotic conditions,

Yle) 2w () E oy () (3)

vhere V. f(t) are the initial and final states. As the precise form
2 ’ .

otherwise of V¥, is not going to be relevant, we shall simply define
Yy o=V YL . f (L)

After the scaﬁtering, we may expréss the transition probability by

P. = lAfl? = TI;IIA+—.A_I'2 - (%)
mere & = (21D 5 Ay = (ED = o4 ta, (6)
Pom Aal - [a? + I lla_| s1n® 35" - 67) | (1)
where Ai = lAj:leig:t . (8)

Now
a ] = 3(la,] - a_D? +3(1a 1% + la_I?) (9)

la 1%+ la)® - 2(la | - [a_D7 . | (10)
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Therefore

P, = (B, +B,) sin” (6" - 67) + &l ] - IA_'I)2 (1 - 2si0° 36" - 67))

- (11)

Tt is easy to establish that the second term on the r.h.s. of Eq. (11)
is almost always negligible if the two states-- Wi --do not couple
strongly. -For resonant systems this coupling is indeed either zero or
weak. Furthermore, if lonization is negligible then ,A+l ~ ‘A_l ~ l;
and the second term vanishes. In fact, .howevér, ionization 1s not |
negligible. Let us take the pessimistic éssumption that the ionization
probability Pc arises from the strong coupling to the continuum of
only one of the two states ¥, and estimate the magnitude of the second
term in (11).

)2

1
_ 10 . (1 - Zy _1p @
=31 -7, - (1 2Pcf?) e

2 3
Elal - 1al)® = H1- (@ -2p )
- (12)

Thus even féf 25%-ioni2ation, the second term contributes only of less

than .02 to. Pf, In practice the second term < .0l; therefore

s witp

"

. ’ ..21' —l_
P, = (Pi + Pf) sin® (8" -8 ) - . - _ (13)
and the quantity A is to be identified with (8% - 87) . (1)
Tn Fig. 4 we have plotted the spectrum or aSxact =~ C8M - CSA

exact

AAA, and A (asymnetric), where for the exact results (1) has
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been employed and for the models we have employed (1) & (III«65).

The AA results were obtained as a special case of the COM when instecad
of using Im(z; v)f'of (ITT-82) we used merely Im(Z'; 0). Note in
Fig. 4 we have extended our range by another faétor of ten in inverse
energy. |

Expression (1) determines A only to modulo n. To determine
A absolutely we use the fact that, in accordaﬁce with the physical
picture described in statement (c), the time developmen-t of
,Af (t; E),g ‘for a particular scaﬁteriﬁg at energy E should recapitulate
the spectral distribution of the transition prbbability - TAf(Wy E)_{2 -
between the énergy valueé of e~ and H. It ié sufficient then to count
the number of times lAf(t; E)l2 oscillates over the history of the
Scaﬁtefing to.determine the correct brangh of VA.

It is‘nOW'appareht that the.releVancy of the phenomenological
parameter is model dependent. For‘this reason.it is not useful.to in-
clude the npnresonant case. On the other hand; for resonaht systems,
the cohclusions about the mechanism that is opérativ% at ihtermediatev
energles may be extrapoléted to even lower enefgies, where direct
compariéons of amplitudes is not feasible. thfough the use of this
"phase shift", A. In Fig. ! the adisbatic approximation is too high
throughout the entire'range. For still lower énergies the.application
~ of the impact_parameter méthod itself is challéﬁgeable. We may conclude
thaf oﬁef the range of energies that we can study meaningfully, the AA

is wrong quantitatively for symmetric resonance and for aceidental
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degeneracy the commonly believed lOW'energy'behaVior is wrong even '
qualitatively.

For the nonresonant case the coupled channel mechanism pro-
, ducing the pronounced structure in the rearrangement spectrum i1s masked
rapidly with decreasing collision energy by a damping effect that
qualitatively 1s in agreement with adiabatic theory. |
| We may now summarize all of our ideas ﬁsefully by conjuring up
tﬂis gualitative description.of charge exchangé for all energies below
the intérmediate point. ILet us fofm for conveniént discussion three
energy regimés within which theidistinguishing'featﬁres of the.charge’
exchangévépeatrum are:.'ih the highest -~ III ;— the oscillations
'reach.the'unifarity limit (thé sum of the coherent and exchange
probabilities) imposed by of f manifold processes; in the middle - II_-—
the abo&e’osé;llations plus .the damping of the peaks; in the loﬁest
- I == the‘fapid decrease to zero of the envelope of the éeaks near
threéhold.. For exact resonance systems there is only‘regime IIT, the.
lower two being squeezed out so to speak. For nonresonance, with
appreciable energy difference, the highest regime may not exist or may
not be nbticea5le if displaced partly into the higher intermegiate
region. Wifﬁsnall energy differences, il.e., near resonancé, g%é two
lower rggiméé~are displaced down toward energies sufficientl;Albw
for fhe-translétional factors in the CSM matrix elements to be
justifiably replaced by unity. With this approximation and one more--

the use of ICAO molecular orbitals--we can locate in the mathematical

LN -
- <L/
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structure of the CSM egquations the.theoretical grounds for the
features of' the regimes; The CSM scheme, which conﬁains ubcurately
éll of the abové physics,\also needs oﬂiy to be examined at the lowest
energies as there is little in dispute elsewhere. It is unnecessary
to actually write down the CSM equations. We shall merely use our
knowledge of the adiabatic theorem, which is that if the internuclear
Velocity is Sﬁfficiently éIOW‘for the change iﬁ the Hamiltonian
during a BohrAtransition'péribd'to be small compared to the energy
differencé of the transition then the transition between the two
states of>thé.Hamiltoniag is unlikely. dhargelexchange can then only
occur through quanfum méchanical resonance. Té test this possibility,
we find the two LCAOD-MO by'pérturbation theory. Because the matrix
elements fall3off exponentially with increasing internuclear separation,
with the diagonal exponent about twice that of the off diagonal term,
the asymptotib forms of ILCAO-MO, which are now exact, are always
| for nondegeneracy.

Q@

/i for exact degeneracy and always @i

, T
Therefore, iﬂ the adiabatic regidn the resonance systems alﬁays proceed
by quantum mechaniCal resonance and the nonresdnance systems are always
inert providing the energy curves never cross. This then is the

basis fér regime IIT at threshold for resonant systems and for the
existence of regime I in nonresonant systems. ‘At finite separations
 the LCAO-MO fér nonresonance may approximately'be any of the forms,

‘g%.f; ﬂ%, or the general pﬂg + 9% depending on the magnitude
,f

of the'energy difference, ei - ef, relative to the off diagonal
f

i - A the @ Fforms do exist in bthe nenr

perturbation element, V
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zone then regime ILI commences at velocities fast enough to be

"sudden" in the far zone, where the unperturbed energies are small,

but slow enough to be considered adiabatic in the near zone where the
energy split is wide. ﬁegime II appears at velocities satisfying

either partially or in part the conditions for ITIT. If the form @i
does not exist then there are only the two regimes I and IT. At

higher velocities where translational terms must be kept the description
must be generalized to include the coupling effects existing even
between appropriately chosen molecular orbitals.

The experimental evidence for asymmetric resonance agrees not
with our resonant theory'but'rather with our near resonant theory. This
is probably bécause exact asymmetric resonance in the actual world is
rarely encountered. And what 1s measured is near resonant scattering.
More serious perhaps is the fact that previous work has shown that

23,24

‘ asymmetric resonant exchange vanishes at threshold. Inﬁﬁﬂese
4derivations an assumption is made that a "distorted Born" approximation,
Ai =1, on the coupled equations can validly be made when the off
diagonal terms are small. They then get éonsistently Af =0, as

v > 0. Such approximation however beg the question. One could, in
effect treat the off diagonal terms first, by using the distorted -(i)
basis rather than the (i,f) Dbasis and then treat the femdining

terms as a perturbation. The result would then predict no perturbative

effect as v = 0, and therefore A, = const., which is the condition

for quantum mechanical resonance. The correct conclusion about
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charge exchange by this method of applying perturbation theory in
two steps depends upon which quantities--the diagonal or the off
diagonal terms--are in fgct relatively small if either, or more
pertinently upon Which superposition type the asymptotic LCAO-MOs

assume. This, we have already discussed.

'Conclusion

The coupled channel schemes are decidely appropriate for the
calculation of chargerexchange within the low and intermediate energy
range.. For resonant systems--both symmetric and asymmetric--, one
particular exchange mechanism is operative, while for nonresonant
systems, adiabatic ideas are also in effect aﬁd are even dominant at
low energies. All of this would be encompassed in the results of
coupled two states schemés, had we had them for all three cases. These
schemes are formulated to include explicitly the asymptotic boundary
conditions; this theoretically amounts to just centering the nuclei
in momentum spacevin consistency with that implied by the_usual IPM.
Although the translational terms are essential, the choice of the
"form" factors is itself important for locating precisely the
turning points‘in the spectrum. Atomic form factors are accurate at
upper intermedlate energies and molecular form factors are good over
é surprisingly large range of energies. The coverage provided by the
two forms is continuous with good overlap. Because the relevant
coupled equations may also be derived variationally, approximate

trial form factors should be also reasconably accurate.
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Transitions to states‘eff the linear manifold, beyond the
scope of our type of two statesschemes, shows up as a reduction in
the rearrangement peaks from unity. Since ionization iz involved,
it is unlikely that this effect can be accurately reproduced by
increasing the number of sfates coupled.

The near‘coincidence of the "phase shift" data for the two
difflerent resonant systems below the intermediate energy suggests
the significance of the role played by the binding energy, which for
the two cases was equal. |

For energies above the upper intermediate we have no satis-
factery theory. Ali of the attempts to calculate the charge exchange
probability. gave values too high.

It is perhaps appropriate here to dispel suggestions that
ceftain values of the momentum transfer mey'be extraordinary and
therefore responsible for resonant structure. No evidence for this
was found. Nothing distinct happens at the intermediate point;
and the singularity appearing in the analytic expression:fer the
Born amplitude (II—h?) is in fact removaﬁle. The zeros in the
asymptotic form -of the same expression are due to the sharp edges.

-of the square wells employed and are above the range of energies
treated hei'e .

Finglly, we note that the intermediate energy region, for

which the lack of a theory motivated considerably this investigation,

appears now to be better understood than the high and very low energy
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regimes, which in view of the inadequacy of the earlier ideas can

bear further study.
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Appendix.A: .THE VARIATIONAL METHOD FOR TIME DEPENDENT THEORY

The'solution to the’time dependenﬁ‘Schrodinger eguation satisfies

the stationary principle &I = 0, where

Toe ] a e, GE-ueD U)W

. L
Jow R
: . - - . L s

The trial form of the wave functlion, as in thetéoupled channel schenes,

‘is.'.

N : -
W) = ) ae) v(t),
. o /y

» ) N U\_
where N - is eefinitevinteger.' Substituting (2) into (l) we get u,ing
the Einstein summing convention,

l" 00 . ] . .

i . * ‘ -

i : i)
J dt (i Am Sn An A T An) ’ - ..,:(3)
_® v . . . . . - . .

o-nhere.‘ Sy = '(%m’ Wh) s and . i- o Ah:-, (%)
| 7. = (wm, (i 3 - H) Wn) o : . | {(5)

: : : . . e |
The stationary variation of I with respect to A, 8L =0,
-"yields the Euler Lagrange equations, : ‘ |

O = - a o e o (6)
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From (6), (7), and (8) we get the desired resull

SA = 1TA

_TM_

AT A

mmn n

y q.e.d.

We may verify directly that

L B R

mn

[
TN
1l

.

CHNES SN

, *
where we have used the Hermitian property of H, II.mn
(12), (13), and (14) it is obvious that T - 77 = 1

(11) follows trivially.

(mli n) + (-i m'n)

( m|i gg In) + (n

= iyl w - tmu

*11
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—i.%‘n1*> - (mlH,Il)'

(1)
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(9)
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(13)
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. . From

5 , from which



_75..

The Schrodinger equation (10), and Eq. (11) imply conscrvation of
probability. Teft multiplying Ba. (10) by A+ s

atsa = iATT_A . (15)

The corresponding adjoint equation is

Atsa = = At ’I“t A , wusing the obvious fact ,
*
S = 8 (16)
mn nn

Adding (15) and (16) and-eliminating T1 by (11), we obtain

0 = ATsa+atsa+atsa =a% atsa) = & (Ws a) -

dat m mn o n

%E (¥, ¥) = 0, gq.e.d. : (lT)
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APPENDIX B: THE TWO POTENTTAL FORMALISM

There are many physical situations where the interaction
Hamiltonian, V, is actﬁally the sum of two potentials,
vV o= V_+V., . . (1)
b8} s

An example is proton nucleus scattering where the interaction is the

sum of the nuclear and the coulomb potentials. The T-matrix is then

Toy = (@f;-(vp.+ v,) yi(+>), with (2)
EH) = 853 —;;LH - T, (v, + V) ﬁi(ﬂ . (3)

The noninteraction and the total Hamiltonians, HO and H respectively,

are related as usval by H = H, + V. (4)
Sometimes it may be appropriate to treat the two potentials un-
1symmetrically in approximation work. One of these potentials, the
"principle"”, is perhaps the interaction primarily responsible for the
process of interest and may be treated validly by first ofder
perturbation theory. The other, the ”secondary” potential, may be too
large to bewignored and also large enough to affect adversely the
first.order result. It is then haﬁdled as a background interaction,

as both an initial-state-interaction and a final—state—interaction.

The Lippmann-Schwinger equations for just this interaction are



The principle interaction is now superimposed on the gecondury inter-

action;

yi(+) - Xi(+) Np— L T v, @i(” ' (6)

Even without a natural separation, the interaction V 'may always be
decomposed formally; V = (V - U) + U; the formal secondary
interaction is U. The T-matrix may be shown to be, using (5) and the

fact that all Hamiltonians are Hermitian,

. (-) « (+), = _ +
Tfi‘ - (Xf .~ 2 (V - U) }Ei ) + (éf, u Xi( >) . (1)
The interaction U usually is éo chosen that the second term may be

dropped. Then the final form of the T-matrix is

g
-

i T,
., = 0, o ™) (8)
The two potential formalism thus provides a strﬁcture for a more
desirablé split of the Hamiltonlan, with the secondary interactlon
abéorbed.intd the representafion and the principle interaction expressed
in a form suitable for perturbation expansions. -

In rearrangement.scattering, a two channel process, almost all

of the above formalism carries through with due regard for the twvo
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different representations present. The T-matrix in the post Forw

is
~ £ o (+) ‘
g g s 2 A (1)
i S : i i :
7 E+in ~H
~where H = gtoevt o= wt s v (11)

We now formally split off from V" and Vf respectively au inifinl-
state-interaction, Ul, and a final-state-interaction, Ul. The

solutions to these are

(£)  _ 1 T (£) »
Xir = _ﬁi,f * T vt Sy (12)
E*in -

The state vector in this "distorted" prior representation is

\Ifi(””) = x_(+) + L - (Vi ~Ui)' j’}].(*) . (1)
* E +in - H - U *

The T-matrix may again be expressed as two terms:

re = 07 00D ) e @ o et x ) on
| "

T
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+ 1
with di = T —F -
E i’infﬂi AR § i

When the secondary interactions Ul’L are chosen to contribute only
to direct processes in respectively the initial and final channels,

28,29

the second term in (14) vanishes. The T-matrix is just the

first term of (14); this, the post interaction form, is

r, = 0,00, o - ) (15)

The analogous expression in the prior interaction form is

o= G, ety )

where ﬁf(_) satisfies an equation analogous to (10) or (13) but with

the "incoming" scattered wave boundary condition.
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Appendix C: MATHEMATICAL RELATTIONSHIPS BETWEEN APPROXIMATION SCHEMES

c.1 At high velocities the following approximations may be made
successively on the COA result for charge exchange.
Rl i
csA 2 Ver = Sps Vi 4
P... = sin at . (1)
i 2
1 -5,
oS i
(i) ‘ Approximating the sine by its argument we get the Mod. Born II
result,
(e . 1
! V.. -5, V..
. i . .
P .CSA(i) - P .MBII 1 at i fi i1 . (2)
fi fi 2
1 - 5.
-00 1
(ii) Neglecting the quadratic term, - Sfig,'in the denominator we get
.2
[ |
CBA,.. _ MBI [ L1 : |
Py (11) = Pey =l fdt (Ve - 8gy - Vi )3 (3)
4 oo -

(iii) Dropping now the térm proportional to Spy» which may not be

Justified in all cases,twe get the Born result,

. ( o }2
CSA,. .. B Wy
= = M 1)
P (ii1) Py L / at V., (b))
A oo —
C.é ,At low velaoities we may replace the translation factors by unity

in the wvarious coupled channel equations as an appfoximation that
generally becomes exact at zero velocity (threshold). The adiabatic

approximation scheme is so obtained from the CSM scheme. Conventionally
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the AA scheﬁe is obtained directly from an expansion of the state
wave function about the two molecular orbitals that are relevant to
the two atomic orbitals of interest. Rigorous derivation of the two
component Schrodinger equation from such a étarting point leads to
ambiguous results that depend on the choice of coordinate system,
except when Vv = 0. This is because the expansion is not properly
posed for the two-channel problem in that the boundary conditions for
thé initial and final states are no longer included. The correét AA
scheme, however, may be heuristically formulated with the exercise of
great care, especially when approximate molecular functions are
employed, in identifying and eliminating the spurious interaction
terms that arise. The AA should be meaningful at low energies.
It's asymptotic prediction, as vl/v - o, must agree qualitatively with
the result‘known directly from our sfatement of the adiabatic theorem.
This agreement must exist, even when "spurious" interaction terms are
present (they vanish first as v = 0) , providing the analysis of the
threshold behavior of the equations is correct.

The AA scheme, when LCAO molecular orbitals are used, is
mathematically equivalent to the low energy approximation of the CSA,
For symmetric resonance, the transition probability for this CSA*

scheme is
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7 ‘ e . V..
P ‘CSA - sin2 T at i i "ii
fi {

where . the translational factors have been omitted in the matrix elementy

in Eq. (5).. This is identical to the ICAO-MO version of the PfiAA
expression. ' !
Ah .2 N oy
Py = sin at 2(8"(z) - B (z) ) (6)
+
s . N
4 . ; ¢ _ ~
L/ %+ 9. !H}i P, + Cpf\_; -] P - % TN
S 1 l s _1. . L,H ) 1 ,/
\§2(1+s)]2 Pl 12 2(L+S) 2| [2(1+8)]2
V.t -sv,."
— fi 1i
= 5 , Dbecause
1 -5
T : 5 :
i- . nat = = an = = .
(1 £8) are "c pumbers, Ho, =Hpo =V, , and H,,=H, =V,
S =8p = 55

‘Therefore the exact CSA scheme and the exact ICAO form of the
CSM scheme éonverges at low energies. This then is a rough measure

-of the accuracy of the CSA at low energies or of the inaccuracy of the

ICAO energies.
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