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ABSTRACT

A study is made of the Amati, Fubini, Stanghellini (AFS) type

of approximetion to the amplitudes assoclated with the exchange of

a single Regge pole and an elementary spinless particle, and of two
Regge poles, respectiﬁely. The locétion, motion, and nature of

the singularities in the complex angular momentum plane of the s
reaction which appear in these approximations, and their cancellation

in the full diagram, are considered in detail; the singularities are
found to be of two general typés: branch points whose positions are
independent of particle masses, and those which depend on them. Only -
the former ones determine the asymptotic behaviour of the AFS amplitudes
in the physical scattering region, while the latter singularities
apbear only on the physical sheet via the mass-independent branch
points at unphysical momentum transfers. The same method used in the
study of the AFS approximation to the diagrams which do not have the
AFS-~type singularities is applied to the ahalysis éf the Mandelstam
diagrams for which the above-mentioned cancellation of the cuts does

not occur, The analysis, although less rigorous, suggests that the
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location and nature of the singulari ties in the j plane are the

same as those found for the AFS type of approximations to their

simpler versions. With a number of approximations which, although

rlausible, are hard to justify rigorously, an estimate is made of | 4
the relative contributions to the amplitude coming from the angular

momentum cut and the corresponding Regge pole.
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INTRODUCTION

It was originally noticed by Amati, Fubini, and Stanghellini
(AFS) that if one combines two Regge péles according to two-body
unitarity in the ‘t channel (as indicated by the dashed line in
Fig. 3), and then disPerées the resultant absorptive part in t, one
arrives at an amplitude which exhibits moving branch points in the
angular momentum plane.l Although the cuts suggested by AFS were
later found by Mandelstam to be absent in the diagram considered by
them,2 these cuts are nevertheless believed to be present in more
complicated disgrams such as'the ones shown in Figs. 2 and 4 (see
references 2, 4, 5, 8); their crucial feature is the appearance of
the crossed lines. The pfesence of the Mandelstam cuts is the result
of inelastic contributions to the unitarity relation, and is particular
to the relativistic prdblém (fbr potential scattering the crossed
graphs do notAoccur). If'such‘singularities indeed exist then they
cannot be ignored, sinCe it was shown by the above authors that their
contribution to the ampiitude at large t 1is similar to thdt,of a

Regge pole (except for logarithmic factors), where the trajectory

function ofs) is replaced by A(s):

As) = 2a(s/4) -1 .
(Actually, AFS did not write it in this form; we shall see, however,
that the above expressionifor A(s) is rigorously true). Thus if

a(s) is the Pomeranchuk trajectory, for example, then the branch
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point will coincide with the position of the Pomeranchuk pole at

s = 0 (i.e., in the forward direction), while for s g O and large

t, the cut will dominate over the pole. If on the other hand

a(0) = 1 - €, then there exists a region of small momentum %ransfers
where the pole will dominate over the cut. For s sufficiently
negative, however, the situation might very well get turned around,
with the cut giving the dominant contribution. In addition it was
indicated by Mandelstam? and shown by Gribov et §£.5 that the general-
jzation of A(s) = 20(s/4) - 1 to the case where we exchange n

identical Regge poles 1is

A (s) = nals/if) -n+1,
which shows that the trajectories xﬁ(s) become flatter as we increase
n. Thus, if as) 1is the Pomeranchuk trajectory, for example, then

the above singularities could dominate even.more strongly than the

singularity at A = 2a(s/4) - 1 the contribution from the Pomeranchuk

pole for all negative momentum transfers (unless we are dealing with
very weak branch poihts). The above discussion was concerned with
angular momentum branch points that arise from the multiple exchange
- of identical trajectories. In general one will, of course, have to
consider the céntribution to the amplitude coming from the exchange
of different ﬁfajectories; the location of the associated angular
momentum branch points, however, can no loﬁger be given by a simple

formula such as the one discussed above. In view of what has been
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said above, it is desirable to get as clear an understanding as
possible regarding the existence or nonexistence of these cuts in
various types of diagréms, the location and nature of the various
branch points one is dealing with, and, if possible, the strength of
the discontinuities inﬁolved.

Let us now review in @ore'detail the history of branch points
in the angular momentum plane. Following the suggestion of Amati,
Fubini, and Stanghellini that the continued partial-wave amplitude
is not a meerorphic function of the angular momentum, Mandelstam
anslyzed & modified version of the AFS diagram (see Fig. 1), and
shown that the cuts suggested by the above authors were merely the
result of a poor approximation to the unitarity relation. At the
same time he ﬁas able to show thatrin a certain appfoximation (to be
discussed_below) the diagram of Fig. 2 does give rise to a'branch
point in the angular momentum plane whose location is identical to
that.obtained from an AFS type of approximation to the corresponding
diagram of Fig. l.2 The essential featurés.of Fig. 2 are its right-_
and left-hand portidns (i.e., the "crosses") which when considered
by themselyes exhibit a third double spectral function with respect
to the s reaction. The proof of the above result is rather invol&ed.
It seems worthwhile, howé&ér, to glve a brief summary of the general

method used, which leaves little to offer where ingenuity is concerned.

| Rather than making an elastic unitarity approximation with respect to

the t reaction in the diagram of Fig. 1 (which would be the analog

of the AFS procedure in connection with the diagram of Fig. 3),



-4

Mandelstam applies three body unitarity to the s channel. By a

[\

clever choice of variables for the three-body intermediate state,
and equipped with the knowledge of the singﬁlarity structure of each
half of the diagram, Mandelstam is able to show from the large +
behaviour of the amplitude that the AFS singularity is absent from
the diagram, at least in the three-body unitarity approximation. The
method used in the proof depends strongly on the fact that the left-
and right-hand portions of the diagram do not possess a third double
spectral function in the above-mentiqned sense; the method therefore
cannot be exﬁended to the diagram of.Fig. 2. 1In order to establish
the existence of the singularity in ﬁhe latter diagfam, Mandelstam
makes use of the féct that if there exists a bound state or resonance
of spin 0‘ lying on the Régge trajectory, then the diagram will have
¢

a Gribov-Pomeranchuk singularity at J = o - 1, where J is the
angular momentum in the s reaction (the elementary exchange is
taken to have zero spin, for simplicity). He is then able to show,
by a number of ingenious tricks, that the singularity can be made
tb disappear by moving the AFS cut past the point j = o0 - 1; such
a phenomenon, of course, requires that the angular momentum plane
exhibit a sheet structure.5

The above-mentioned method, once again, cannot be used to
either prove or disprove the existence of the angular momentum cut
for diagrams of the type shown in Figs. 5 and 6, siﬁce they dovnot
possesé the Gribov-Pomeranchuk singularity. It Was shown subsequently -

by Wilkin that if the cut is to exist, both the right- and left-hand
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portions of the diagram must possess a third double spectral function
in the sense that we have mentioned previously.u Wilkin's method
consisted dn treating the various diagrams as Feynman graphs, thus

o

avoiding the.cbmpiications introduced by multiparticle unitarity.

‘Upon approximating thé integrand of the Feynman integral in question

by its leading terms at large energies, and subsequently examining

its analytic structure, Wilkin finds that unless both the right- and
left-hand portions of the diaéram possess a third double spectral
function, one may distort the integration contours in such a manner
that the Regge pole never assumes its characterisfic asymptotic form
anywhere along the path of integration; with the amplitude vanishing
like l/t2 for t - 06, he then concludes that the AFS siﬁgularity
must be absent in such diagrams. Although this method ié quiteA
general, it nevertheless does nof provide us with a deeper understanding
of just how the AFS cut is generated, and of the mechanism responsible
for its cancellation.

Several other authors have investigated the moving branch
points in the angular momentum plane. Thus Gribov EE\§£‘5 considered
the possibility of establishing these branch points directly from the
structure bf the multiparticle unitarity condition for the partial-wave
amplitude continued to complex ahgular momenta j . On the basis of
a definite assumption regarding the form of this analytic continuation,

they are able to'obtain, among other results, the above singularity

‘at § = 2a(s/4) - 1 for the double Regge pole exchange case, and its

generalization to the exchange of n Regge polés: jn = n a(s/ng) -n + 1. o

oy
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In addition they conjecture a formula for the discontinuity across
the above-mentioned branch point which has the general form of a
unitarity relation involving the amplitudes for the production of
particles with complex spin (that is, Regge poles).6 The singularities w
associated with the exchange of ohe or two Regge poles have been
further considered by Simonov7 using the form of the many-particle
unitarity relation for complex j proposed by Gribév et al. An
alternative approach has been proposed by Pblkinghorne,8 wholhas
analyzed the diagram of Fig. 2 using the Feynman parametric representa-
tion of the ampliﬁude; in this approach Regge cuts result from pinches
in the interior.of the hyper-contour‘of integration where the coefficient
of the asymptotic Variable t vanishes.9 The absence of the AFS-type
singularities in the diagrams of Figs. 1 and 3, and their presence in
the diagrams of Figs. 2 and 4, can, for all of the above approaches,
be ultimately stated in terms of the absence or presence of the already
mentioned third double spectral function, a fact which had originally
been suggested by Mandélstam.2

Our interesf in the present work was stimulated during a study
of the various types of corrections to approximate scattering amplitudes,
and their relation to the Regge pole picture; we are referring here
in particular to the absorption model of Gottfried and Jackson, and to
the Glauber shadow term which arises in connection with scattering from
the deuteron. Both types of corrections suggest that in their Reggeized
versions they correspond to AFS-type of approximations to the diagrams 5

of Figs. 3 and 7.10 Now, as we have already emphasized, Mandelstam
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(and others) have shown that there must exist another contribution to
the scattering amplitude which precisely cancels the above correction
terms. This suggests ﬁhat the correction formulae should be expected
to hold only at energies below those at which Regge expansions are
legitiméte. In any event, it is undoubtedly of great interest to
understand the generation of the AFS cut and its cancellation in as
much detail as possible. We shall mainly concentrate in»this paper
oﬁ the detailed study of the branch points in the angular momentum
plane which occur in the.AFS type of approximations to the diagrams
of Figs. 1 and 3. The philosophy behind fhis approach is that we
expect the locatibn of the j-plane singularities here, as well as
their general nature (that is, square root type, logarithmic type,
ete) fo be the same as fof the diagrams of Figs. 2 and k4.

The.organization of the paper will be ‘as follows: in Section I
we establlsh the connecﬁidn between the asymptotic behaviour of the
amptitude and the existence of branch points in the angular momentum
plane. We also review_the method of Amati, Fubini, and Stanghellini
which led to the aﬁpearance of aﬁ angular momentum cut.

In Section IT we extract the leading, large-t, contribution
to the Feynman amplitude corrésponding to the diagram of Fig. 1, and
show that the AFS approximetion is equivalent to ignoring certain _
singularities of the integrand. We then proceed to write the amplitude
as a contour integral in the energy plane of the Regge pole and
analyze the analytic structure of the integrand (for which an explicit

expression is given) in great detail. The nature of the branch points
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is established, and the discontinﬁities across the various cuts are
evaluated; we then obtain the correct form for the asymptotic behaviour
in t of the AFS ampiitude, and conclude the section with an exhibition
of the mechanism which is responsible for the cancellation of the cuts, *
and with some general remarks.

In Section III we make a similar analysis of the diagram
involving the exchange of two Regge poles.

Finally, in Section iV, we consider the more complicated
diagrams of Figs. 2 and L4, which, as originally suggested by Mandelstam,2
actually have the AFS-type singularities. Their analysis'is, of
course, substantially more complicated and we have to make a number'Of
approximations, which, although plausible, are hard to justify rigorously;
however, they do lead to the expected results, and allow at least an

estimate of the contribution coming from the angular momentum cut.

.



<

-9~

I. CONNECTION BETWEEN ANGULAR MOMENTUM CUTS AND

THE ASYMPTOTIC BEHAVIOUR OF THE AMPLITUDE

Before examining the AFS approximation to the diagram of Fig. 1
which gives rise to cuts in the aﬁgular momentumvplane, we‘wish‘to
investigate very briefly how such cuts manifest. themselves in the
scattering amplitude; this is necessary if we are to.make the proper
identifications in the subsequent work.

Consider the partial-wave expansion of the invariant amplitude

of -+ or -~ - signature, Ai(s,zs), with respect to the s reaction
t . %
A*(s,z ) = ) (2§ +1) a,(s) Py(z,) (1.1)
J

where s is the square of the center of mass (c.m.) energy, and Zg

' : +
- is the cosine of the c.m. scattering angle. A'(s,zs) is defined in

terms of the t-channel and u-channel absorptive parts as follows:

' (0 0] ) (e0)
+ l At(th') l Au(S,u')
A-(s,z2 ) = = at! - = du'
s xt t'- t(s,z_) 7 .
A s A u'- u(s, - Zs)
0 0

Here to and' uy are the t-channel and u-channel thresholds respectively.

+
The full amplitude is then related to A“(sgzs) according to

PO

A(S)ZS) = § [AG(S:?§) + T]UAG(S" ZS)] P) ' (I-.Q)

where o = + or -, and n_, = %1 . Using the Froissart-Gribov
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+
prescription, one then obtains the continnation of ag(s) to complex
t
J in the usual manner; we denote the continuvation of aj(s) by

N | :
a (j,s). Performing a Sommerfeld-Watson transformation on the right-

hand side of (I.1), we arrive at the well known integral representation «
. P.(-2z )
T i s T, .
Wz = & [ asey +1) (s L2 (1.3)
g , sin

where the contour C encircles the poles of l/sin g at § = 0,1,2,°¢;
for concreteness sake let us assume that at(j,s) is an aﬁalytic function
of j except for a pole at j = ai(s), and a branch point at

j = bt(s). Equation (I.3) can then be written in the following way

+
[making the usual assumptions regarding a~(3j,s)l]:

: P.(- Z )
t i S .
Wz = b [ wse1) et L
CP sin =j
L
. B P+ (-Z)
+ -
- T(s) [2aP(s) +.1] & (s) s s, (1.4)
o ' sin © o (s)
where the contours Ct are shown in Fig. 8. Now z. = 1+ t/éqse,
where q_ 1is related to s according to s = h(qsz + mg); hence,
for large 1,
t,, : 29, ., ' . . j
a™(Jys) Pyl-z ) ~ [ai(J:S)/(EqS )1 () (-£)Y = B (4s) c(3) ()7, -

A

where C(j) is defined by
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Pj(z) S———1ED) 29 . (1.5)

Z =

Thus from (1.2) and (I.4) it follows that the amplitude A(s,zs) will

be asymptotic to an expression of the form

i e +p. 4
Als;z ) ~ f ] a3(24 + 1) 27 (3,8) ¢(3) £,(8) i3
. C+
i s - . . J
T 43(23 + 1) 27(3,8) ¢(3) £.03) gHrs
JC- .
: o
. a (s) ‘
.0 £
+ ), B(s)¢t () (1.6)
o= ¢ sin na’(s) ’
where the signature factor §+(j) is defined by
e, (3) = exp(-imy) 1. (x.7)

Instead of C+ we may, of course, choose any other contour which can
be obtained by.deforming C+ in an arbitrary manner, as long as we
avoid crossing any singularities. Since the real part of the position
of the branch foiqt is determined by a contour which minimizes the
maximum of Re j , where j 1is a point_oh that contour, we shall refer
to 1t as the minimizing contour.

Finally we wish to briefly recapitulate the procedure followed
By Amati, PFubini, and Stanghellini which led to the>appearance of an

angular momentum cut in the diagram of Fig. 3. As we have mentioned in
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the introduction, AFS combined two Regge poles according to elastic
unitarity in the t channel (see Fig. 3); thus for large t they

approximated the absorptive part by

0 0
At(s,t) & %- jr ds' Jr as" R*(t,s') R(t,s") 7(s,s',s"), (1.8)
oo Zoo

where B is an overall constant, At(s,t) is the t-channel absorptive

part, and' R(t,s) stands for the amplitude associated with the exchange

of a Regge pole; T(s,s',s") 1is the usual triangle function
G(-se-s'g—s"2+ 2ss'+ 2ss"+ 2s's")

T(s,s’,s")‘ = — (1.9)
/ 2,2 .2
Al-s"-8'"-s

+ 2ss'+ 288"+ 2s's")

For R(t,s), AFS chose the form
R(t,s) = cC(s) §+(oc) to‘(s)/sin wa(s) , (1.10)

where §+(a) is given by (I.7). Substituting (I.10) into (I.8) one

finds
ZM
Agls,t) @ jr at p(s,s) &, (1.11)
£ .
m
‘where
0 0
’ 1 . 1
o(£,8) = f as' [ as" 8¢ - a(s')- a(s") + 1) —e) c(s")
' Lo Zo : sin nx(s') sin na(s")

x £@(s) ¢,@(s") t(s,s%s") - (1.32)
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Formula (I.11) resembles the expression one would get from a continuous
superposition of Regge poles; its asymptotic behaviour in t 1is determined

by the upper integration limit, ZM(s),‘whére

zM(s) = max [a(s') + a(s") - 1],
with s' and s" within the domain of integration of (I.12). If
a(s) 1s an increasing function of s for s < O (which is the case
in their model), then afs') + a(s") - 1 takes on its maximum value
on the boundary of the integration region (see Fig. 9). Using this

fact one readily arrives at the inequality
£,(0) 2 £4,(s) 2a(s) +a(0) -1 ;

the equality applies only for s = O. The function ofs') + a(s") - 1,
with s' and s" on the boundary of the integration region, has an
extremum at s' = s" = s/b; thus at this point: oafs') + a(s") - 1 -
20(s/4) - 1; we shall see in Section IIT that, for s < 0, the leading
branch point in the anéular momentum plan§ is, in fact, located at

2a(s/4) - 1 (this is not obvious since the above mentioned extremum

could be a minimum).
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IT. THE SINGLE REGGE POLE EXCHANGE DIAGRAM

1. The APFS Approximation .

In this section we analyze the diagram of Fig. 1 which in

€

the elastic unitarity approximation gives rise to cuts in the angular
momentum plané; in complete analogy to the results obtained in Section I.
Rather than starting from the unitarity relation, as was done by Amati,
Fubini, and Stanghellini,l and also by Mandelstam,2 we shall follow
Wilkinh in treating the diagram of Fig. 1 as a Feynman graph. Our
methods will, however, be adapted to the specific purpose of exhibiting
in as clear a way as possible the moving singularities in the angular
momentum plane, and the mechanism which is responsible for their
cancellation.

Consider then the Féynman amplitude corresponding to the diagram

of Fig. 1:
2 2 2 .2 2 1 1
A(s,t) = Cj’dkl dk, dk3 dk), J(kn;s,t) >
k- m+ ie k- m+ ie
1 2
1 2 2 .2
N e R(a(ks), £3%5,K,) (1T.1)

kh- m + ie

where C 1is an overall constant, J(ki; s,t) 1is the Jacobian for the -
transformation
‘Ft

dk, —» I dk _
n=1 : .’
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)2 and

with the invariants s and t defined by s = (ql- 1
32 . 2 2.2 .

t = (pl+ PE) (see Fig. 1), and where Rqﬁ(kB), t,kg,ku) is the

amplitude associated with the exchange of a Regge pole with energy

squared k§ » momentum transfer squared, -t, and variable external

masses, kg and kii; in practice one might take it to be of the form

2
o . a(k)
R(a(k5), t;kg,vki) - B(k?;kg,ki) —Q(Q‘-LQ— (- cos ;) 3", (11.2)
sin @a(kB)

Here B(k?;'kg, ki) is the residue of the Regge pole, C(x) 1is the
coefficient in the asymptotic expansion of the Legendre function [i.e.,
Ia(z)-¥—9C(a) 221, and cos 85 is the c.m. scattering angle in the
channel where kg' is the square of the c.m. energy; in terms of the

invariants it is given by

2k_§(t - ot ) + (k§+ nt - kg)(k§+ n° - ki) (11.5)

cos © = ' . (II.3
3 2. 2 2 ,22 [ 2 2 22 ;22
VQKBf m - kg) - Im k3 4&k3+ m - kh) - by k3

As we shall see later, we do not reguire an explicit expression for
the Regge pole in order to prove the cancellation of the AFS cut; only

its general properties are needed. This is fortunate, since in writing

‘dovm (II.2), or similar expressions, we will, in general, have mutilated

the analytic structure of the original Feymman amplitude associated
with the exchange of a Regge pole. |
Now the Jacobian, J(kng; s,t), is given (we suppress the

arguments) by the following expression
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J = e()//p , (1I.4)
where
D = -16 Detl|2k, -k, |
i™3
2 2.2 2 2 .2 2 .2 2
Ekl kl+k2 kl+k3~s kl+kh-m
2 .2 2 2 2 2 2 2 .2 !
kl+k2 2k2 2+k3 k2+ku-t g
= -16 | ;
2.2 2 2 2 2 2.2 2
kl+k3-s k2 5 2k3 k5+kh-m ;
2 2 2 2 .2 2.2 2 2
k +k)+-m. k +k)+—'b k3+k)+—m 2k1+

Evaluation of the determinant yields, for s/t << 1, and mg/f <1,

: 2 { | | 52 |
D = 16 t i h;k§ - (ki- s - ks) + h(%) [(k§+ e - kg) (k§+ - ki) ( |
’ II.5

+(k1-s-k3)(k+m-%' %i)*‘ (k‘ku)]}

Now we are interested only in the leading contribution to (II.1) for

t - 0; we therefore may approximate the right-hand side of (II.5) by
the first two terms, since the remainder becomes comparable ih magnitude
only when ‘kg or ki (or both) become of the order of t, in which B

case the contribution to the integral is already damped by & factor of



-17-

2
l/% due to the presence of the Feymman propagators involving k2 and

ki . Hence for large t we obtain as our leading contribution to the

amplitude (IT.1)

. . _C 2 2 2 2 1
[A(s,t)]l‘c_ = Eg.j’dkl dk5 T(kl,k5,s) 5 5
l-m+1€
| (11.6)
2 .2 1 2 2
% “[dke &y —>—3 55 Rcd(k5)’ t5kg’ku)’
[kg- m+ ie][ku- m + ie]

where T(ki;kg,s) is the triangle function defined by (I.9). From

the present point of view the AFS approximation corresponds to ignoring
the singularities of RGJ(k?), t;kg,ki) in kg and ki . Now, for

kg fixed at a finite-value, R =~ l/kg as kg d a:;ll we may therefore
close the. kg integration contour in the lower half of ﬁhe complex
plane, and hence pick ué the contribution from the pole of the propagator

(recall that we are ignoring the singularities of R). Repeating the

same procedure with the ki_ integration, we obtain the following

expression for the A¥FS amplitude:l2
2 .2
T(k,k5,s)
2 ¢ 2 2 [ .2 1’3
[A(s,t)] = - = erk R((K5),t) | Ak —=—m— ,  (II.7)
AFS t -2 5 J 1 ki— m?+ ie
where .RQJ(k%),t) = RQ@(R?),t;mQ,mQ . At this point we could perform

immediately the ki

to leave it in the form (II.7).

integration; however, it turns out to be convenient
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2. Representation of the AFS Amplitude as a Contour Integral in the

Energy Plane of the Exchanged Regge Pole

Consider expression (II.7) with®?

2
alx)
R@(S),8) = 705) c@) @) v 0 /fotn m(s) (11.8)

where 7(k§) is related to the full residue B(k?) appearing in

(T.4) vy
() = - e+ 1) p0E)/(2a) (11.9)
3 5 k3 . .
2 2 2 R
Here ¢ = -m + k3/h . It turns out convenient to change the
integration variables in (II.7) from k? and ki, to x and k,
where
x = kKo - (1/b4s) (k2- s - 1:2)2
) 1 3
and
2 2 I
k, = (k-s - kj)/E V- s .

We then obtain, for the AFS amplitude valid for s <O,

: 0 + : 2
: y(x - k%)
[A(s,t)T . j dx j dx z
® AFS T -® WJ:; -0 z X - (kz- -MF:E)?- m2
| afx - k%) -1
x C(a) e(a) L (11.10)

sin na(x - ki)
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Y

Consider for a moment the integrand of the kZ integration; it is

singular at (the positions:of the singularities are shown in Fig. 10a)

N I
k, = V-s * i Vol- x (I1.11a)
and also-at
- + 4 - -
k, =t iju-x , (I1.11b)

where the latter singularities arise from the normal threshold branch
points of the Regge trajectory, a(k%), and residue, 7(k§), and from
the vanishing of sin ﬁa(kg) at the bound states and resonances which

lie on the trajectory; un' sfands for the various values of k2 at

p)
these singularities. Thé'abpve kz-integration contour may, of course,
be deformed in an arbitrary manner, as long as we stay away from any
singularities. So far the integral (II.10) is only valid, as it
stands, for s < 0., 1In coﬁtinuing it to positive s, we must make
sure that at no stage in the continuation the above singularities will
cross the integration contours. As we increase s through negative
values, the complex singularities (II.1lla) will move towards the
imaginary axis, which they reach for s = 0., For s > 0 the singularities
remain on the imaginary axis, both moving either up or down depending
on the continuation chosen for the function wj:mg' (i.e. down

/s = -is, and up: V-s = 1 \/s). As s becomes larger

~ than m2- x , one of the singularities will cross the real k axis,
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and drag the integration contour along the imaginary axis, as is shown

in Figs. 10b and 10c (we have displaced the kz-integration contour .
slightly into the upper haif plane'to facilitate the subsequent

discussion of the integral (II.10); we could, of course, have just

asbwell displaced it into the lower half plane). We now make a final

change of variables from kz and x, to u=x - kz2 and x . The

 above discussion in the kZ plane was only intended to serve as a

crutch for a better understanding of the analysis that follows, as well

as of the similarity existing between the single and double Regge pole

15

exchange diagrams. With the above change of variables, (II.10) becomes

[A(s,t)] - L du c(u,s) golw) - 1 (é'i“a(u) + 1\ (II.12a)
*V/AFS T 3 757 SIn wa(u) , =7 .
Cu
where
clu,s) = - inoC y(u) c(@) I(u,s) (II.12b)
and
0
dx 1
I(us) = f __ .
Y-Xx Vx - u U+ s -m+2 Vs Vx -u

-0
(IT.12¢)

The contour C_ 1is shown in Fig. 11. If we define £ = afu) - 1, then

(I1.12a) can also be written as »
Y/ : L
i ~ t -ing .\
[A(s,t)]AFS = 5 jr az (22 + 1) ¢(s,s) P <§ i1, (11.13)
c ' :

£
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where ¢(4,s) = c(}(ﬁ),s)/(?ﬁ + 1)a'; here X(ﬁ) is the inverse of
the transformation £ = a(u) - 1, and @' is the derivative of o(u).
The contour Cz shown in Fig} 1l2a has been obtained using the fact
that o(u) is a real analytic function of u with the usual right-
hand cut beginning at the lowest threshold. FTom here it follows that
as long as the contour Cu does not cross this cut, complex conjugate
points in the u plane will map into complex conjugate points in the

£ plane; assuming thét a(u) satisfies a dispersion relation with at
most one subtraction (which is very reasonable), one can verify that-
for u <0, it is an increasing function of that wvariable; we thus
arrive at the contour Cz shown in Fig. 12a. We wish to remark at
this point that the quantity £ in (II.13) ié not to be identified
with the complex angular momentum Jj éppearing in (I.6). 1In fact,

£ =.0 -1 can be regarded as the total angular momentum in the

s channel obtained by coupling the (variable) "spin" «a of the Regge
pole to a relative orbital angular momentum I, where L = - 1, If
the Regge pole in (II.7) were replaced by an elementary particle of
spin 0, fhen the partial-wave amplitude would have a singularity at

J = 0 - 1; in fact, this singularity would also be present in the
full amplitude (11.1).16 The Reggeization of the particle results in
the replacement of ¢ by a(u), and the branch points of [A(s,t)]AFS

in the angular momentum plane can be looked upon as arising from an

extension of this singularity throughout the Regge trajectory.



0D

3. Location of the Singularities in the j plane.

Let us return to expression (II.12c) and rewrite it as follows:

0
1
I(ys) = o f dx R(w s, %) (II.1ka)
8 ) o -x Vx - u X - xP(s,u)
where
_'R(u,s,x) - w4 s -mo-2 xftg-wfx_- u (IT.14%0)
and
o 2
xP(u,s) = (-1/bs) [(u+s-m") -k su]

\

(-1/s) Tu - (w4 1TE)) [w - (m - i+/T5)%) . (IL.1ke)

The integrand of (II.lka) is singular at

(a) x

"
(@)
-

(p) x

u o, : (IT.152)

(e¢) x XP(U—) s)

with the possible exception of (c), since the residue function R(u,s,x)
might vanish at the pole. The singularities of I(u,s) will then be
generated by the collision of the moving singularities (b) and (c) with

the end point of the integration contour, or, by the pinching of the
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contour due to (a) and (¢) [any pinches that arise from the collisions
of (b) and (c) are expected to give rise to regular points of I(u,s),
since the residue R(u,s,x) vanishes at the pinch]. We conclude that

I(u,s) will be singular at

(@) u=0
and possibly at ' (I1.15b)

() u=(mti W/:;)g

i)
jd
-

where we say "possibly," since the singularity might be absent due to

the vanishing of the residue function (II.1lb) at the pole. The
analytic propertiesfof i(ugs) on the varioﬁs sheets associated with

the branch point_at u.= 0 may be obtained directly from the integral
represéntafioh (II.1%a). In Figs. 13a through 18a we h;ve shown several

paths of continuation in the u plane, all of which start from a glven

0 just above the negative u axis and lead to the point u = u, -

point u
The new contours of integration whiqh emerge from the continuations are
shown in Fﬁgs. 13b(c) through 18b(c); the motion of the pole at x = x5
is shown by the dashed lines; to keep the picture as clear as possible
we have not shown the corresponding paths taken by the square root
singularity at X = u. As We have already mentioned, the presence or
absence of the singularities at u-= u, and u = u_ 1is determined

by the behaviour of R(u+,s,x)‘ at the end point of the integration
contour, or, at the pinch arising from the coincidence of (a) and (c)

in (IT.15a). We shall illustrate the method used for establishing the

with a few examples.l7

analytic properties of I(w,s) at u=u,
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We shall take the point uw = u, to lie on the contour Cu of (II.lQa).

0
Retracing our steps which led from formula (II.10) to (II.1ka) then

shows that we must choose the branch of the square root, ~,/x - u,

for which

X ;Mﬁg- = +1i |x - uél 3 if x -u, <O0. (II.16).

Let us fix x at some point on the contour\ CX which remains unaffected
by the continuation of I(u,s) in u along the various paths shown

in Figs. 13a through 18a; call this point, x = x We then obtain

c .
- from (II.16) that

. . o
R(ui,s,xc) = u +s-w- 2 ~f-s V- u, o, (I1.17a)

-

where j/xc- u, has a nonnegative imaginary part. Since
. o2y : ey .
Iut +s-m| = |2+/"5 wj-uil. | (I1.170)

it follows that the vanishing of R(u,,s,x) at x = 0 will depend

only on the phase of X - u;_ at that point; we obtain this phase

by continuing (II.17a) in x., along the integration contour C, -

C
A brief reflection shows that‘unless CX crosses the right-hand cut

-of the square root function associated with the branch point at

X =u, VX :“EI will be always of the form a + ib2 everywhere

along the contour, where a and b are real quantities. Such is
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the case, for example, for the continuations shown in Figs. 13b and 14b.
Since Im foE; > 0, we conclude from (II.l?a,b) that the residue function
vanishes at the end-poiﬁt of the integration contour for u = U, but not
for uw=mu_ . Hence TI(w,s) is found to be singular at u = u_, but
regular at u = u, - To find the singularities of I(u,sj on fhe sheets

reached by continuing this function either clockwise or counterclock-

“wise around the branch point at u = 0, we must continue (II.17a) in

XC along the contours shown in Figs. 15 through 18. As an example we

consider the clockwise continuation to the point u = u_ (see Fig. 15a,b,c).
Since the contour C_ crosses the right-hand cut of X - u_, the
residue function will now vanish at the end-poiﬁt of the integration
contour. Nevertheless, I(u,s) is still éingular at u=u_ due to

a pinching of the contour by the pole at x = X;# and the fixed
singularity at. x = 0 (notice that ﬁhe residue functién does not
vanish at the pinch!). A simiiar analysis can be carried out for the
paths of continuation shown in Figs. 16 through 18. The conclusion
reached is that I(u,s) is regular at u = u_ on the "leading" sheet,l
but singular on the remaining sheets, while it is regular at u = u_

on the sheet reached by a counterclockwise continuation around the
branch point at u = 0, but singular on the other two (actually there
are én infinite number of these sheets, of which we have analyzed only
the nearest neighbours of the leading one). The situation for s > 0O

is depicted in Figs. 19 through 24, where, once again, we have shown

the various paths of continuation in the u plane, together with the

integration contours that result from the continuation; as before, the
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corresponding paths followed by the pole at x = Xp are indicated by

the dashed curves. The analysis of the various continuations proceeds
along the same lines as before; the maih differences with the previous

case being that: (1) the singularities at u = u, have moved onto «

the real axis, and now appear at wu, = (/s ¢ m)g, and (2) we must

distinguish among the two possible continuations of the function =/ -s

around the branch point at s = 0 (i.e.n/-s = *tinfs, s >0);
thus for s >0, (II.17a) becomes:
2 R U eerees
R(ut,s,xc) = u +s-m - 2(t 14/ s) Vx, - u -

It is clear that as long as the singularities at u = (1/s ¥ m)2 (on
whatever sheét of I(u,s) they might appear] do not cross the left-hand
cut of I(u,s) arising ffom the branch point at u = 0, they cannot
leave their respective sheets; Hence, for s < mg, we must reach the
same conclusions as before with regard to the singularity structure of

I(u,s) at u= (/s + m)2 and u = (\fs - m)z, where these points

are analytic continuations of u = (m t 4 w/-s)g in s to 0<s< m2.

Thus, for example, if we chose the continuation, A5 = +1A/s,

then all our previous findings about the points u = (m + i x[:g)g

and u = (m -1 w[:E)e will now apply to their respective continuations,
ie., u = (s - m)e, and u = (wf?;+-m)2. The analysis of .

Figs. 19 through 24 shows that this is indeed the case. For s > e ,

-’

the singularity of I(w,s) at u = (s - m)2 has moved onto a

different sheet of the branch point at u = 0; if it was absent on the
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"leating" sheet for 0 < s < m2 (which’is the case if we take /-5 = 1 Vs)
it will now be present for s > mg, but absent from the sheét reached by
a counterclockwise continuation bf I(u,s) around u = 0; alternatively,
if it was present for_ 0<s < me, it will now be absent from the leading
sheet, but present on the other two reached by a clockwise or Qounterf
clockwise continuation.

The above conclusions may be easily translated into the complex
£ plane, where £ = a(u) - 1. From the structure éf (II1.12b) it is
evident that the singularities of c(u,s) which arise from those of
I(u,s) appear.on all the sheets of «(u) and y(u) associated with the
normal threshold branch pqints; if we denote the vélue of a(u) on the
i'th sheet by ai(u), then we conélude from the above discussion iﬁ the
u plane that ¢(4,s) will havevsingularities at £ = ai(o) -1 and
£ = ai(Km + iwf:é)g)'- 1, where the latter ones appear on all sheets of
the former with fhe exception of a single one. Let £ =.al(0) -1 be

the singularity enclosed by the contour C in (II.l}); it then follows

£
from the analytic structure of I(u,s) ih u, that as we increase s

above m2 a new sihgularity located at £ = al((\fg - m)e) -1 will éppear
on the leading sheet of ¢(2L,s) via the branching at £ = al(o)-l; thus
.the new contour in the 4 plane will appear as shown in Fig. 12b [in

the above discussion we considered the continuation of V-8 to s >0
according to a -ie prescription; it is clear, however, that our
conclusions do not depend on the choice for this continuation, since we
could have just as well displaced the -k, ~integration contour of (11.10)

into the lower half plane, in which case a +ie  prescription would lead

to the same situation described abovel. The géneral situation in the



-28-
£ plane can be illustrated with a simple example: let o«(u) =
%(3 -\l - ), where the wu plane is cut from threshold (that is,
u % 4, in units of m2) along the positive axis. One then arrives
in a straightforward manner at the pictﬁre shown in Fig. 25, where "I"
and "II" label the regions of the complex £ plane that are mapped onto
the first and second sheets of o). All the singularities of I(u,s)
will in turn be imaged inté a corresponding set appearing in each of
these regions, and their associated sheet structure will be the same
as that we have found above [in general there will of course exist
additional singularities arising from the transformation, £ = au)-1].
From the abové discussion we conclude that, except for logarithmic

factors, the.asymptotic behaviour in t of the AFS amplitude is given by

ta(o)-l . 2
_{A(s,t)]AFs ~

L ta<‘(\/’s—-m)g) - -

This result ié in agreement with the findings of Mandélstam2 and
Wiikinh.[fhe asymptotic form ta(O)-l for s < m? was found originally
by Wilkin]. The ﬁrecise form for the asyhptotic behaviour of the AFS
amplitude can be obtained directly from (I1.10) for s < m2 and its
continued form for s > me, or, from the expression (II.12) if the
discontinuity Qf c(u,s) is known; since we shall anyway obtain the

formula for the discontinuity in the following section, 1t is easiest

to take the latter approach.
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L, Formulae for the Discontinuities of c(u,s), and Asymptotic Behaviour

of the AFS Amplitude

Having found the location of the singularities of c(u,s) in
the complex wu plane, we now wish to obtain explicit formulae for the
discontinuities across the various cuts. Whereas the positions of the
singularities are the same for the more complicated diagrams which do
exhibit angular homentum cuts (as we shall see in Section IV), one
would not expect that the strength of the discontinuities will be the
same. In Section IV, however, we shall see that in a certain approxima-
tion the discontinuity functions for the diagrams of Figé. 1 and 2, and
Figs. 3 and Y are, in faét, proportional to each other, the proportional-~
ity factor being the square of an.integral over the amplitude associated
with the "cfoss" in Figs. 2 and 4. Since in the following section we

shall‘obtain an explicit expression for the function c(u,s) defined
vin (I1.12a), fhe present discussion might'appear redundant. However,
since the formulae for the discontinuities can be obtained in a
straightforward way, whereas it takes a fair amount of effort to
unscramble -the various sheets of c(u,s), we shall proceed to evaluate
the discontinuities and use them as a check on the function c(u,s)

fo be obtained subsegquently. - |

Let us then consider the integral (II.T) which, as it stands,

is valid only for s < O. Upon performing the integration over ki,_
 we find
. | du 7 () |
[Als; %)) ypg = 0 j ' = ' cla)e(e) t2(®)1
' ' ' : o e 2ye g sin wa(u)
~w ~f(uts-m" ) -bsu

(17.18) -~
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Aside from the singularities arising from the normal threshold branch
points of a(u) and 7y(u), the ihtegrand of (II.18) is singular at
u = s + m2 T2 im VCE;. Notice that the fixéd singularity at
uw =0 [or equivalently, at £ = «a(0) ~ 1], found in the previous
section, does not aPpear in (II.18). This is an indication that we
are dealing with a logarithmic branch point at u = 0O, in agreément
with the result to be obtained in the following section. Comparison
of (II.12) and (II1.18) shows that the latter integral involves an
integfation over the discontinuity in u of c(u,s). We now continue
formula (II.18) to s > 0; as before we must make sure that at no stage
in the continuation the singularities at u = s + ne t 2 im/~s
cross the integration contour. Now as s approaches zero these
singularities move towards the real‘axis along complex conjugate paths.
Independent of the particular continuation chosen for the function
\[:E; one of these singularitiés will approach u = O along the
positive axis,‘while the other keeps receding towards the right and
hencé will never meet the contour of integration. Thus, as s — m2,
the singularity at u = (fs - m)2 will catch the integration contour
of (1I.18) and will pull it to the right as we keep increaSing s
above m? 3 for s > me- the new contour will therefore appear as
shown by the solid or dashéd linés in Figs. 26a,b, depending on whether
‘the path of coﬁtinuation in the s plane passes below or above the
“point s = m2. We’fhus arrive at the following expression for the
continued AFS amplitude, which is the same for both ofvthe above
mentioned paths of continuationn[this is not surérising since one can

verify that the integral (II.18) is not singular at s = mg]:
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0
. du
[A(s,t)] = n30 » y(u) cla) t(a) 1:Oé(u)-l
S AFS ) —\/(u+s-m2 )E_hsu sin :rrOf(u) _
(11.19)
2 .
(/s-m) du 7(u) (@) o)1

+ 2ﬂ3 ‘[. —
0 \ku+s-m2)2-hsu sinna(u)

where C(a) and t(a) are defined by (I.5) and (I.7) with j - a.
Comparing (II.19) with (II.122), we see that

~

5

-2ix”C
y(u) ¢(a), for u<o0,
-w/?u+s-m2)2-hsu
‘ (I1.20a)
‘disc clu,s) = "/ |
-hinBC k o
5 y(u)c(a)e(s-m"), for u >0 .
'Vku+s-m2) -lbsu
L (11.20b)

The above formulae will sérve as a check on the function ,c(ﬁ,s) to be
obtained in the following section. |

The asymptotic behaviour of the AFS amplitude may now be obtained
immediately from the expression (II.19); thus for vs strictly less
than me the intégrand is seen to approéch a constant as u = 0. Now
for t -~ o the ieadiné contribution to the amplitude comes from the
integration region near u = 0. Let us therefore expand o(u) around

u = 0, keeping only the linear terms; we then obtain

'
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' 0
A(s,6)]pg = o0 (R A c@) @) O [ gy 200

sin nox 2
m- s c

. O@a(O)-l-a'(Ok); o = alo) . .

2
Hence, for s <m,

' _ . a(0)-1
FYCR N @Lﬁ% _1 c@) t@) g 5

a = .oz(o), a' = «a'(0) . (11.21)

 The asymptotic behaviocur of the amplitude for s > m2, on the other
hand, is determineci by the second integral in (II.19); its integrand
~ is seen to diverge as u -. \/E - m) P;‘oceeding in an analogous

manner as above, we find

o v u
1 PN a-1 - du a'[u-u_l]
[A(s,t)] & ( 7(u) y C{a) é(oz)> t f t -
AFS sin nc \/g)g_ , . u - m .
a = afu ), o' = a'(u),

where u_ = ('\/5 - m)~. Making a chenge of integration variables, we
obtain -

A 7(u.) c(a)g(a) O T
| [A(s,t)]AFS v 2A/n C (Sln = erf( q'e int), >

(buaf3)2 /G In ©

Q
il

joz(ﬁ_,'), a = a'(u), | - (;i.ee)
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where erf(x) is the well-known error function

erf(x =

dt-e 1. S (1 e/ex 4 -el). (11.23)
fo = G- )

ﬁim

From (II.22) ana (II.23) we therefore find that

—_\2 . 1
(A(s, )]y g % a(s) ta(CV'S'm> )- /(n t)% , for s > o (IT.24a)

where

G(s) =+ =« 3a <s§r(1urra ((:riao)z'i/(:s%2

with

Q.
i

L}

alu ), o a'(u) (1I.24p)
and

- (xfE»- m)?

]
1]

If the AFS amplituae has a Sommerfeld-Watson representation [i.e., it

can be written in the form (I.6)], then we conclude from the asymptotic

behaviour (II.21) and (II.24) that the analytically continued partial-
~wave amplitude agsociated with the g reaction must have a logarithmic
singularity at j = a(0) - 1, and an additional singularity at

. . 2 % 2 . .

J = a(k\]s - m) ) -1, for s >m , which is of the inverse square-

root type.
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5. Evaluation of

CO%S)F

We now wish to obtain an explicit expression for the function

c(u,s) defined by (II.12b,c). Although we do-not éxpect.its detailed

structure to be that of the'corresponding function for the more complicated

diagrams which do exhibit angular mbmentum cuts (see Fig. 2, for

example ), we nevertheless believe that the nature of the singularities

will probably remain the same. It 1s the purpose of this section to

investigate the types of branch points of c(u,s) that we are dealing

with, and also to confirm, and complete, our analysis of the sheet

structure of this function which we began in Section 3. In addition

we shall verify the formulae for the

previous section. Consider then the

discontinuities obtained in the

integral (II.12c),

1

I(u,s)

0]
[ e

Here s 1is to be taken negative. A
shows that it is easiest to evaluate

domain O <u < m2- s, for any prhase

— . . (II.25)

' 2
u+ s -m + 2 nﬁg X o~ U .

closer examination of (II.25)
it for u fixed within the

ambiguities can then be readily

removed; this will become clear below. Since for s < O the

singularity at x =

(- 1/&3) [(u +

2 ) B
s - m2) - Lsu] of the integrand

(a pole) lies on the positive real axis for all real values of wu,

it is immaterial whethér we evaluate

(IT.25) for u <0 or. u >0,

for the two expressions so obtained are analytic continuations of each

other. We therefore shall evaluate (II.25) with u fixed at a point

"located on the sheet on which the contour Cu is exposed [see formula



_35_

(Iz12a) and also Fig. 11], and lying within the above-mentioned range.
As we have already remarked in Section 3, the above choice for u
implies that we must take the branch of </x - u given by (II1.16). 1Let
2.2
glu,s) = (@/4s)(u+ s - m) - bsul

The integral (II.25) may be split up as follows

I(w,s) = Il(uys) + IE(U.,S) P)

where

I (5s) = u_ﬂ:ES«_-_n_l_ f ax
. Vo o - % X + g(u,sj

. and

Ip(us) = - x + g(s,u)

0
[ e

Throughout this paper we shall adopt the conventions that: (a) all square

roots are to be taken positive if their discriminant is positive, and

'(b) 4n z is to be taken real for =z > 0. Notice that for 0 <u < M- s

‘the phases -of I, and I, aregivenby I, = + ic®, and I, = - e,

2 .
where c2 and b are positive quantities. The above integrals for

Il and I2 may be performed with the use of standard tables; we find

that
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I(u,s) = ——j:;::j—— { 1+ i(2/n) En(?/ ‘g,s,m ) - (u ts-nm ):ﬂ,,(II.26a)’
‘\/IZ(U., SJmhé—)- \/ b ’

where

2 4 2 2
K(u,s,m?) WP+ &4 m - 2us - 2um - 2sw

(I1.26b)

(u+s - mg) - hsu .

An elternative form for (II.26a).which we shall find very convenient is

N . \/—(u,s,m ) -(u+s -nm )\}
\/—I;Z;s,me) \/I;E;—;r;l_; + (u+s -m )

I(u,s) =

exp(in) . (IT.26¢)

a. 5 <0

For s <O and u an.arbitrafy positive number, the phase
of the gquantity in brackets appearing in the argument of the logarithm
in (II.26a) or (II.26c) is chosen to be zero. I(u,s) can then be
continued to all complex s and u . From (II.26a) or (II.26c) we
see that the possible singular points of .I(u;s)‘ in u are located at

1) u = (@*iysP = u,

1

(@) u

I}
(@]
-



-37-

where, for s < O, the latter singularity arises from the vanishing

of the denominator in.the argument of the log. If we cut the u plane
from u = 0 along the.negative resl axis, then the contour Cu of
the integral (II.l12a) extehds around this cut, and the value of

I(u,s) on that contour is obtained by continuing (II.26a) or (II.26c)
in u to the points uo t ie, where U, < 0 ; from ﬁere on we shall
refer to the sheet of the logarithmic branch point at u = O which

- contains the contour C =~ as the "leading sheet." We now wish to
verify that I(u,s) is singular at u = u_ , where this point is
reached by the path shown in Fig., 13%a, and regular at__u =u, 1if

+

this point is reached by the corresponding path shown in Fig. lba. Let

N \/Ez;;s,més -(u+s - m2)

= T (1T.27)
\/k(u,s,n?) + (u+s - m?)

Z

Recalling that the phase of =z -is taken to be zero for s < 0 and

v > 0, one may readily Verify that

z = exp(f% in), as u -~ u, .

By carefully following the phase of 2z as we take u around the

points u = u, and u = u, one finds that

- /(K (w 5,12 )]°

[Au I(U., S)Ju

-

and

[Au I('U.,S)]u+ - 0
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We conclude that I(u,s) is regular at u = u, s and singular at
u=u_, where these points are reached via the paths shown in Figs. 13%a
and lbla. To establish the singularity structure.bf I(uw,s) on the
remaining sheets of the logarithmic branch point, we start from formula
(IT.26c) and continue it in uw from the positive axis clockwise, or
counterclockwise around the singularity at u = O ; this gives rise

to a phase for z equal to exp(2inx) or exp(;Einn) respectively,
where n 1is the number of times we encircle the origin [this result

is even more evident from the form (II.26a)]; proceeding as before,

we find that I(u,s) is regular at u = u_, where this point is
reached by a countérclockwise continuation once around u = 0, and
singular on all the remaining sheets.of the logarithmic branch point.

It should be noticed that it is sufficient to specify that particular
sheet (there exists only a single one) on which I(u,s) is regular

at u, or u_. (or both), since the function will be singular on

all the others. We conclude the discussion of the singularity structure
of I(u,s) for s <0 by compﬁting the discontinuity across the
branch point at u = 0 ; to this effect we continue I(u,s) in the form
_(11.26a) or (II.26c) to the points u = uy t ie, where uy <0

(they are located on the leading sheet); the phase of 2z then becomes

exp(¥ i), so that

s e e

i //ao+s-m2-WJK(u ,s,me)
in 0

Vetapo®)  \grones <l o)

exp(in) exp(F in).

I(uoiie,s) =

(11.28)
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(By convention we shall always exhibit the phase of z explicitly;
thus any positive quantity appearing in the argument of the log will

be taken to have zero phase.) The discontinuity is therefore given by

L[]

(2, I(vu,s)]uzo = 2n/[K(u,s,m°)]2 . (11.29)

Upon substituting this result into (II.12b) we retrieve formula (II.20a).
b. >0 .

We now wish to examine I(u,s) for s >0 ; from the above
discussion we expect the following to happen: as we increase s »through
negative values, the cbmpléx singularities of. I(u,s) 'ldcéted at
u = (m* iﬁfrg)e = .ﬁ+ will move towards the real axis, which they
reach for é = 0 ; their motion will préceed, however, on different
sheets of the logarithmic branech point at u = 0. For s > 0O, the
singularities will appear on the real uaxisat u = (m +1f§)2 =u,
and u = (m 4\/5)2 = u_ [notice that u, and u_ as defined
here are not necéssarily the respective continuations of the above
complex locations of the singularities; this depends upon the continua-
tion chosen for the function ‘\£:; . Thus if we continue I(u,s) from
negative s to positive s using a =~ i€ prescription, then the
singularity at u = (m +\f§)2 will appear on the leading sheet,
while that at u = (m -w/é)e will appear on all the remaining sheets
of the logarithmic branch point; the opposite‘conclusions hold if we
had used a + ie prescription; it is, however, not hard to see that

either continuation will lead in the end to the same conclusions, since
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our choice of displacing the contour C, of the integral (11.10)
slightly into the upper half of the kz plane was arbitrary, and we
could have Jjust as well displaced it into the lower half of the complex
plane; in fact, the motion of the singularities in the kz plane is
entirely symmetric with regard_to either one of the continuations

for \/-s ] . All the continuations of I(u,s) in u will be made
starting from the point u = Y, + 1€, lying Jjust above the negative
real axis on the leading logarithmic sheet. As we cbntinue (11.28)

to s >0, the argument of the log acquires the phase exp(® ix) due
to the vanishing of the denominator at s = O ; the upper sign corresﬁonds

to the continuation: V-s = 1\/; and the lower to WJ:E - - i\f; ;

we hence arrive at the following expression for I(u,s) for s > O:

2 2
JK(uO,s,m ) - (uO+ s - m )

nf: exp(F in) ,

et .
2 2 2
\/k(uo,s,m ) {k(uo,s,m ) + (uo+ s - m°)

s >0, Uy <0 .

'I(uo + ie,s) =

(I1.30)

We now examine the singularity structure of I(u,s) at u = u fog
o

two different domains of s:

c.,. 0K é < m2

As we continue I(u,s) in u along the path P shown in
Fig. 27a, the phase of z [where z 1is defined by (II.27)] at

u = u:L becomes exp(+in)dneto‘the vanishing of the denominator of

the argument of the log at u = O‘(in Figs. 2'7a,b the points u = ui
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are denoted by the subscript "i", where i = 1,2,3,4); hence at that
point z = lzll exp(+ ix); similarily one may easily verify that, at

u=1u,, z =(l/lzll) exp(+ in); the discontinuity of I(u,s) across

u = (m Qﬂfé)g therefore becomes
. 0 for Tf:; = i7fs,
I(u.‘;s) - I{u,,s) = ' L e
. 2 —lm/[K(ul,s,m.E)]2 for Y-s = -i\s .
We therefore find that for the continuation \-s = i‘vg-, I(u,s) is
regular at u = (m —\/5)2 '= u_ if this point is located on the

leading sheet, and singular at this point on &1l the remaining sheets

of the logarithmic branch point at u = 0. If, on the other hand, we

had chosen to continue “Jjg according to a + i€ prescription, then

I(u,s) would be found to be singular at u = u_ on every sheet of the

logarithmic branch point except for the one reached by a counterclockwise

continuation around u = O, starting from a point on the contour Cu’
say [this can be easily verified by noticing that as wu encircles the
origin N timés, the quantity =z, defined in (II.27), acquires the
phase eﬁp(i 2iNr), where the upper sign corresponds to a clockwise

and the lower to a counterclockwise continuation].. Next we compute
the discontinuity of I(u,s) across the point u = (m +Wf;)2

according to the path prescription P' of Fig. 27b. For

(m -ng)e <u< (m +\/§)2, z 1is of the form

a + ib s

7z = (jé—:—ig\\ exp(+ in) = exp(ig) exp(+ i) .
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By following the phase of 2z along the path P' we find that

N
1

exp(im5) exp(+ ixn)

and

il

2, exp(-i(p5 - Lig) exp(+vin) .

The discontinuity therefore becomes

him/ljfk(uB;s,mg), for ~f~s = ivs,

B S

I(u,8) - Twes) = ¢ (11.51)

0 for ;-5 = =in/s .

which is in agreement with our expectations. Once again one may verify
that for the choice "VCE = i‘vga, the singdlarity at u = (m +\\é)

is absent from the sheet reached by a counterclockwise continuation of

I(u,s) around the branch point at u = O.

d. 8 > m2

The analysis of the singularity structure of I(w,s) for
s > m2 proceeds along lines similar to those above; in contradistinction
to the previous case, however, it is the numerator in the argument of
the log of formula (II.BO) which will vanish at u = O; hence for
? '

0<u< (m-+s), 2z has the phase exp(- im); the discontinuity

N2, .
across u = (m -3/s)” is now computed as before; we find
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1
lm/[K(ul,s,mg)]2 for “yes = iis

Iﬁﬁ,s)- Iﬁb,s) =

o

0 for j-s = ~iVs .

PR R e

Substituting this result into (II.12b), we retrieve formula (IT.20b).
As an additional check we can compute the diséontinuity of I(u,s)
between the points uy + ic and u, - ie (uo < 0) according to

the path prescription P of Fig. 27a for the case where I{u,s) is
singular at ﬁ = (m -ﬁjE)Q on the leading sheet (that is, for the
continuation “-s = iwf;). A similar analysis to that above leads
once again to formula (II.29); this is in agreement with the result
obtained in Section 4, according to which this discontinuity is the
same for s < m2 and s > m2 . Finally we calculate the discontinuity
of I(u,s) betWeén the points u = u5 and u = u), according to the
path prescriptioﬁ P' of Fig. 2Tb; the analysis is quite similar to
the one discussed for s < m2, except that now wé find that

7y = exp(i@B) exp(- ix) and z), = exp(—i@z) exp(-ix); the dis~-

continuity of I(u,s) for the two possible continuations of ~\/-s

around the branch point at s = O is once again given by (II.31). The

“singularity structure of I(u,s) on the remaining sheets of the

logarithmic'branch point may also be readily obtained; we shall limit

ourselves to merely stating the result: For the choice Wf—s = inE:

I(u,s) 1is regular at u = (m -“/;)2 and u = {(m +—V€)2, where

these points are located on the sheet reached by a counterclockwise
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continuation around the branch point at u = 0, and singular on all
the remaining sheets of the log; 1if, on the other hand, we chose the
éontinuation “fos = -1 MQ;, then I(uw,s) would be foundvto be
regular at the above-mentioned points if they are reached via the
paths P and P' of Figs. 2Ta,b, and singular on all the remaining
sheets of the branch point at u = 0. In Figs. 28a,b, and ¢ we have
summarized the situation for s <0, 0 <s < m2, and s > ﬁg . Since,
as we have pointed out before, there exists only a singie sheet of
the logarithmic branch point on which I{(u,s) is regular at u = u

+

or u or both, it is sufficient to specify that particular sheet.

The paths of continuation leading to regular points of I(u,s) have
been indicated in the above-mentioned figures by either a solid or
dashed line, depending i whether a -ie or + i€ prescription was
used for the continuation of the function “d:; around s = 0; all

paths are shown starting at a point u, + i€, lying Jjust above the

0

negative u axis on the leading sheet.
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6. Concluding Remarks and Summary

It waé gshown in Section 2 that the AFS approximation to the

amplitude associated with the diagram of Fig. 1 can be written in the

form
[A(s t)] _ 1 du c(u,s) [exp(;ina(u)) t 1] ta(u)-l/sin ncr(u)
*VlaFs T2 ’ : ;
Cy | (11.32)
where c(u,s) is given by (II.12b) and (II.26a,c); the + or =~ signs

are to be taken depending on whether we exchange a Regge pole of even
or odd signature. For s < m2 the contour Cu extends around the
logarithmic branch point of c(u,s) at u = O along the negative

u axis; the asymptotic behaviour of (II.32) was then shown to be of

-the form

'[A(s,t)]AFS e ta(o)-l/ﬂn t .
Assuming that the AFS amplitude has a Sommerfeld-Watson representation
[i.e., that it can be written in the form (I.6)], we then conclude that
in the j plane of the s reaction the leading singularity of b(j,s)

is located at " j=a(0)-1 for s < m2, and, furthermore, that near

this singularity, b(j,s) 2 constagt X ﬂn(ﬁ - a(0) + l). As we
increaée s .beyond s = mg, the singuiarity of c(u,s) at u = (\fE—m)g,
which fof s < mgr was located on another sheet of the logarithmic

branch point at . u = 0, moves up onto the leading sheet via the

branching at u = 0, pulling the contour to the right as we keep
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increasing s . Thus for s > m2, the new asymptotic behaviour of

i

(I1.32) is determined by the singularity at u '(ng-m)e; we found

it to be of the form

[A( a(K\fE-m)g)— ' E
66) g ~ b Yn )

From here we conclude that for s > m2 a new singularity located at

j = a(}wfg - m)2> - 1 must have appeared on the physical Jj sheet

of the s reaction via the logarithmic branch point at j = a(0) - 1,

and, furthermore, tﬁat near that singularity, b(j,s) @« const. X

x[3 - a((+/[5 - m)2) + 1]'% . The location of the singularities as

well as their logarithmic and square-root nature agrees with the results

obtained by Mandelstanl{2 Wilkin,u Gribov et gi.,5 and Simonov,7 in

connection with the single Regge pole exchange diagram for which the

cancellation of the cuts does not occur (see Fig. 2, for example).

Before closing this section we wish to make two further remarks

concerning (a) the signature of the partial-wave amplitude in which

the leading branch points appear, and (b) the genera%ion of the

normal threshold branch points in s of the amplitude .[A(s’t)]AFS .

We begin With.a discussion of the first-mentioned point. Let us

rewrite (II.32) as

(Ao, )y = 37 | we(we) (62 £ W/t )

C
u
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We see from this expression that for large % , [A(s,t)]AFS is even
or odd under the transformation t — -t depending on whether we
exchange a Regge pole of odd or even signature, respectively; since
the amplitude can always be written in the form (I.2), we conclude
that in the limit of large t only the'positive (negative) signature

amplitude will contribute to [A(s,t)] if we exchange a Regge

AFS
pole of negative (positive) signature. Thus the leading branch point
in the angular momentum plane appears in the analytically continued
partial-wave amplitude of signature opposite to thaf of the exchanged
Regge pole.

We now turn to the second point and show how the normal threshold
branch points of [A(s;t)]AFS in s are generated; they are expected
to result from the coinéidence of the poles and normal threshold branch
points of the Regge pole amplitude with the pole‘of the propagator
associated with the elementary particle exchange; as we have seen, the
latter manifests itself in the singularity of c(us) at u = (/s -'m)g.
We notice first of all that the integrand of (II.32) will have poles
at u = Mig, where Mi are the masses of physical bound states or
resonances lying on the Regge trajectory; they are a solution to

+ 2
o (Mi ) 0, 2, L":"':

1, 3 5, .

o (Mj2 )
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The residues of the poles at the remaining integers of «a(u) vanish

due to the presence of the signature factor in (II.32). Now for

5 < m2, the contour Cu. extends along the negative u axisband encircles
the branch point of c(u,s) at u = 0; as we increase s above me,

a new singularity at u = (*\[_é—m)2 appears, and the contour Cu

will be pinched between this singularity and the above-mentioned poles

when

si - (m+Mi)2. | (11.%3)

Hence (IT.33) gives the position of the singularities in s of
which arise from bound states and resonances lying on

AFS
the Regge trajectory; they are, in fact, the two-body normal threshold

[A(S:t)]

branch points. . The higher normal threshold branch points are generated
in exactly the same way by the pinching of the contour Cu between the
moving singularity at u = (wfg-m)e, and the normal threshold
singularities at u = uN associated with the Regge pole; their

location is given by

In addition to these singularities the analytically continued partial-
wave amplitude, bi(j,s) will have singularities in s arising'from'
the moving branch point at J = a((xfg-m)2>~ 1, as was originally

pointed out by M’andelstam.2 Their location is given by
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12
s(3) = (m+ [A(G+21)12) , (1T.34)

where ' N 1s the inverse function corresponding to « . For simplicity
let us consider the case in.which we exchange a trajectory of even
singnature (the Pomeranchuk, for example). \The singularity at

j = a(K\fE—m)g) - 1 will then appear in the odd-signature partial-
wave amplitude; thus from (II.3L) we see that if j is an odd integer
[b-(j,s) then coincides with the physical partial wave amplitude],
then the singularity at s(j) coincides with the normal threshold
singularity at Si = (m + Mj+l)2’ where Mj+l is the mass of the
bound state or resonanée of spin o = J+ 1 lying on the Regge
trajectory oa{u). If, on the other hand, j 1is an even integer

'[for which the amplitude b (j,s) is unphysicall, then the singularity
s(j) coincides with an "unphysical" threshold corresponding to a
two-body intermediate state formed by the elementary particle of mass
m and an "unphysical" particle of spin o = Jj + 1 (i.e., odd spin)
lying on the even-signature Regge trajectory. We have seen, however,
that due to the presence of the signature factor in (II.32), [A(s,t)]AFS
has singularities in s corresponding only to physical thresholds;

thus the latter singularities of b (J,s) do not contribute to the

full AFS amplitude; this is what one would have expected in the first
place. |

The above-described mechanism for the generation of the normal

threshold broanch points was gqulte straightforward, slnce we were able
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to cast the amplitude into the form (II.32). The amplitude for the

~ double Regge pole exchange diagram, on the other hand, does not suggest
immediately that it can be written in this form, and we have to base
our analysis on the inteéral représentation (III;ha). In order to
exhibit the similarity of the two mechanisms which generate'the

normal threshold branch points in the single and double Regge pole
exchange diagrams, we briefly repeat the above anélysis starting‘

from the integral representation (IT.10). For fixed x, and s > no- x

the singularity structure of the integrand in the kZ plane is shown

in Fig. 10b (we consider the contimuation V-s = i7/s ; the case
“J:g = —i’\/g~ leads to the same result). For simplicity we assume

that a(u) has only a single bound state of mass M (besides the
normal threshold singularities). In the 'kz plane it gives rise
"l,---———-—'——
to poles located at kz = ti VM?— X .+ As we increase s above
mg— x the kZ integration contour will get pinched when the above
singularity coincides with the singularity at kz = i(ng_-"Vmé-x)
arising from the elementary exchange; the integral over kz will thus
be singular on the surface,

_ e |
x/s-"vfmg-x - V¥P-x = 0.

Subsequent integration over x will then generate an énd-point

singularity of [A(s,t)] Apg Located at
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s = (m+ M)2 s

which is the normal threshold branch point corresponding to a two-body
intermediate state formed by an elementary particle of mass m and a
bound state of mass Mv. The nature of the singularity may be
immediately obbtained from the fact that the contour _Cu is pinched

by an inverse sqyare-root singularity of c¢(u,s) and a pole of

1/sin na(u); if we split up the contour C, into C' and C" as
shown in Fig. 29, then it is clear that the singular part of the
integral arises from the contour integration around the pole so that
the singularity of [A(s,t)]AFS is also of the inverse-square-root
type. The remaining normal threshold singularities are generated in

a completely analogous way; in the case of resonances lying on the
Regge trajectory, the above-deécribed mechanism will generate the
corresponding two-body complex normal thresholds; since in the kZ
plane the resonance poles are reached by going through the cuts located
on the imaginary axis (they correspond to the normal threshold cuts of
the Regge pole amplitude), it is clear that the above complex threshold
singularities will eppear on an unphysical sheet.

7. Cancellation of the Cuts.

In this section we wish to show that the remaining contribution
to (II.6) coming from the so-far neglected singularities of
RG@(R?), t;kg,ki) in kg and ki will exactly cancel the branch
points in the ahgular_momentum plane found for the AFS approximation

to the diagram of Fig. 1.
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Consider the expression (II.6), where the 12 integration has

1
been performed: -
0 . pA o R(a(k' 3K, I )
A(S t)"’ C ! 2 j ___Ll-___ / d.ke . AT
’ h H 2 22, J ke-m2+ € .! 2 ke m2 + i€
\kk+sml) hd{ Too My HE -® 2"
(11.35)

2
Let us begin with the k2 integration; it can be shown quite generally
that the singularities in the external "masses' of any Feynman amplitude

must lie in the lower half of the complex plane if the remaining variables

are real.l9 In particular this will apply to the singularities of R
in kg and ki . Thus the situation in the kg plane might look as
in Fig. 30a, with the integration contour C2 extending along the
real axis. The singularity of R in kg lies in the lower half plane
at kg = a - ip, say.‘ One may easily convince oneself that the

argument given below applies irrespective of the type or number of such

singularities. The contour 02 in Fig. 30a may be split up as shown

in Fig. 30b. Since the integrand of (IT.35) falls off like l/(k:)

for large kg 5

integration contours at infinity. The contribution to the amplitude

as was already pointed out, we may close the various

coming from the contour (see Fig. 30b) is seen to correspond

Cars

to the AFS type of approximation; at the same time we also recognize

that the remaining integral along C’ becomes the dispersion integral

AFS -
for the Regge pole amplitude evaluated at kg = m2. The contributions
from the contours C and C' are thus found to be identical in =

AFS AFS

magnitude and opposite in sign; the integral therefore vanishes, as was
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already evident at the start. If one continues to treat the above
two contributions séparately and performs the remaining integrations,
one finds that a similar cancellation tékes place within each of the
se?arate pieces; the AFS approximation (II.7) is obtained by

consistently ignoring the C' integrations.

AFS
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IIT. THE DOUBLE REGGE POLE EXCHANGE DIAGRAM

1. The AFS Approximation, and Location of the Singularities in the
J Plane |

In this section we analyze the diagram of Fig. 3; for simplicity
we consider the exchange of two identical Regge polés; the modifications
that are required if this condition is relaxed are rather obvious and
we state them at the end of the section. Since the general techniques
to be used are those discussed previously, we recapitulate only the main
steps and point out the features that distinguish the present case
from the single Regge pole exchange case treated in Section IT.

Making the same approximations to the Jacobian (II.4,5) as
before, we arrive at the following expression for the leading contribu-

tion at large t to the amplitude associated with the diagram of Fig. 3:

1

2 2 2 2 2
A(s,t) ~ ¢ I%E'fdkl dk2 d-k5 dku T(}L_L,kg,S) )

2 . 2 2
[k2~ m + ie) [klf m + ie]

X R(oz(ki), t;kg,ki)R(Ol(k;), t;kg;ki)

for s <0, (T1I.1)

where T(ki,k%,é) is the triangle function defined in (I.9), and
where the functions R are the amplitudes associated with the two

Regge poles. The AFS type of approximation corresponds, as before,

to ignoring the singularities of R in kg and ki; closing the kg



_55_

and ki integration contours in the lower half planes, we pick up the
following contribution coming from the poles of the two propagators:go
) 2 2

2 2 2 2
[A(s,t)]AFS = - C g'd_kl dk3 T(kl,kz,s)

sin ﬂa(ki) sin ﬁa(kg)

o ()1

Py a2 |
b C(kl) C(ka) t (111.2)
where we have substituted formula (II.8) for the on-the-mass-shell
Regge pole amplitudes [as before, 7(k2) is related to the full
residue function B(kg) by (I1.9)]; the coefficient C(x) [x = ki,kg]
is defined by
P (z) ——— C(x) L) . (111.3)
alx)

‘Z = O

Except for a trivial change, we treat formula (III.2) by the same

fecipe as'was uséd in dealing with formula (ITI.7). Aside from

providing us with a clearer picture as to how the asymptotic behaviour

of the amplitiude (III.2) is generated, it allows us to continue this
expression to s > 0, and to establish the precise form of the asymptotic
behaviour in t for all s [for s < 0, the latter may of course be
calculated from the integral expression (ITII.2)]. Let us switch to

a new set of integration variables, x and r, which are defined in

terms of ki and k§ by
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2 2 242
x = k3 - (1/4s) (kl- s - kB) s R

and

(here r is related to the variable k, used in Section IT by
r = k - ~/-s/2). In terms of x and r the integral (III.2)

takes the form

(o0}

y(ﬁ-(r+“yjé/é)2> 7(x—(r—“jt§/é)2>

sinﬁa(?-(r+7dig/é)2) sinﬁa(k-(r~ﬂf:§/é)2)

+ (
-—‘-}:’f-fdré
fox {

Zo ¥ -~
x & (x,r38) to:(x-(r+ \’;:;/2 )2.>+a(x_(r-vr:5/2 )2)-1 , (III.ha)

where

£ (x,r;8) = Clx-(r+V-5/2) ) c(x-(z-/-s/2) ) (IIT.k4Db)

The function C(x) dis defined in (ITI.3). Consider the analytic
structure of the integrand of (III.4) in the r plane; except for poles
arising from the wvanishing of the sine factors in the denominator, all
singularities are due to the norﬁal threshold branch points of the
Regge trajectory,i a(u), and residue, ¥(u); the location of the
singularities in the =r plane is thus given by

= t nlgfo + - T11.5)
r tonjes/2 t o4 \,un x (IT1.9)
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where “;un stands for the energy of the bound states and resonances
lying on the Regge trajectory, and fof the normal threshold energies
associated with afu) énd 7(u). The above singularities are shown
together with the integration contour in Fig. 3la. Next we define the

angular momentum variable 2,21
L = a(#-(r+fvfé/@)2) + a(k-(r-ﬁfrg/é)g)_-\l . (II1.6)

Using the fact that a(u) is a real analybic function of u , and
assuming that da/du >0 for u<O0 (which is true under ver& general
conditions as we have emphasized in Section II), one can readily map
the contour Cr of Fig. 3la into the complex £ plane; the resulting
contour C, is shown in Fig. 31b. The integral (III.ka) may thus be

put into the form

0
(A(s,6)]ypg = -0 [ = —& Bssx) ¢t ,  (@In)
AFS Jx (32/or)
: Zo Y C,

here B(4,s,x) stands for the quantity appearing within braces in the
integrand of (III.4a), where r has been expressed in terms of £ and

X through relation (III.6); notice that this latter transformation is
neceséarily singular, since (III.6) is invariant under the transformation
r -+ -r, wvhere r is any complex number. This manifests itself in |
formula (III.7) as a singularity of the integrand at £ = 2a(x + s/4)-1
(corresponding to r = 0) which arises from the vanishing of 0£/dr;

in fact, it follows triViaily from (III.6) that at r = O
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(d¢/or) = o . (III.8)

It is therefore evident that, for any given x, the contour Cﬂ shown
in Fig. 31b 1is the minimizing contour, and the asymptotic behaviour
of the integral over £ in (III.7) will be determined by the singularity
at £ = 2a(x + s/k) - 1.

Next we wish to continue the integral (III.7) to positive values
of s; to this effect it is best to return to the form (III.La), since
we have complete knowledge of the singularity structure of the integrand
in the complex r plane. As we increase s +through negative values
the complex conjugate pairs of Singﬁlarities move towards the imaginary
axis, which they reach for s = 0; the situation for s > 0 will then
be that shown in Fig. 31§ (irrespective of thé continuation chosen for
“/-s around the branch point at s = 0), Thus, for a fixed value of
X, the minimizing contour C. remains undistorted as long as s < h(M?- x),
where M 1is the mass of the lowest-lying bound state on the trajectory
afu); if no such state exists, then M is to be replaced by the first
normal threshold energy Jﬁb = 2m of the Regge pole amplitude. We shall

éssume for the present that there does exist such a bound state; it

then follows that for s = IM(MQ- x) the contour C, will get pinched
by the pair of singularities located at r = —iW/gyé + ime?- X and
r = +i%s/2 - i VM- x [the position of the singularities of the

integrand of (III.l4a) are given by (III.5)], and that for s > M(M?— x)

it will appear as shown in Fig. 31d. The asymptotic behaviour of the
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amplitude (III.7) will, of course, be determined by the upper limit

of the x integraﬁion, i.e., x =0 (notice that this point cannot

be avoided by distorting the x-integration contour). We hence conclude
that for s < Wf the large-t behaviour of (III.7) is controlled by

the singularity at £ = 2a(x + s/U) - 1 with x evaluated at zero,
while for s > HME it is controlled by the singularity at £ = a(ME) +
als + W - 2’\/-s— "/K;) - 1 (arising from the bound state singularity

at r = =~ i'b?&@ + i-VEE:w;), with x evaluated again at the upper
limit of the x integration [that the latter singularity will dominate

\

2
“‘over the former follows from the fact that {§L5> > 0 where
% ' T]:O

- \ On
in = r, and £ 1is defined by (III.6)]. We therefore find that, except

for logarithmic factors, [A(s,t)]AFS behaves for large t as
(fga(s/u)fl ' for s < hMg s

L+ (\,f'sT-M)2 -1
L.t B ( ) - for s z»hM? 3

where 4y 1is the spin of the bound state. If [A(s,t)]AFS has a

Sommerfeld-~Watson representation--i.e., it can be written in the form

[A(s,t)]AFS a7

(I;6)-- then we conclude from the above asymptotic behaviour that the
continued partial-wave amplitude b(j,s) must have a branch point at

2a(s/4) -~ 1 for s MME, and an additional branch point at

J

§ o= Ayt a((~s - M)e) -1 for s > WE; since the latter
singularity has no effeét on the asymptotic behaviour of the AFS
amplitude for s < MM?, it must be located on another sheet of the
branch point at j = 20(s/4) - 1. We shall see below that the

above-mentioned singularities are respectively of the logarithmic



-60-

type and inverse-square-root type. They are evidently the analogs of
the branch point at j = «(0) - 1, and § = a(K'%g“— m)g) -1
associated with the single Regge pole exchange diagram.

2. Asymptotic Behaviour of the AFS Amplitude

We now wish to find the precise form of the asymptotic behaviour
in t of the AFS amplitude (ITI.2). To this effect we return to
formula (IIT.U4); for s < W the leading contribution at large t
comes from the integration region r = 0, x 20, Expanding the
various trajectory funmctions, o(u), around u = s/L, and keeping
only the linear terms, we obtain
s oo(s/b) N ©

[A(s,t)] > 20 | ; £(0,0,s) ’tEa(s/lL)-l
. ,) AFS i (ﬁinﬂa(s/%) Vi /g °

0 0 2
2. 2a(s/4)-1-20' [T 4+x ]
f tx=
xj dx ar 2o lxrTl OCG 00 )) (1I1.9)
"‘-\;/'-'X

_Xo ..ro

] _ ' . 3 . o
where « = (da/du)uzs/u P and ro are small positive quantities,

and where we have approximated the remainder of the integrand by its
value at u = s/h. Making a change of variables one can cast (III.9)

into the form

am———— [

r - ] P —— S
[A(s,t)]AFS 2« B(s) ;tgo‘(s/u) l/ﬂn_tf erf('"JEa’xOBn t) erf("‘v'2cx'r2

0 In t)

where

B(s) = - 0 ( — -@(o,o;s)/ea' s (I11.20)

7y (s/4) \?
]
\sinﬂa(s/H) ya
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and where erf(x) is the well known error function defined in (II.23).
We hence obtain for the leading contribution to the AFS amplitude at

large t
[A(s,t)] e o B(s) teo‘(s/”)'l/zn t (IT1.11)

where B(s) is given by (III.10). Comparison of formula (III.11l) with
the Sommerféld-watsbn representation (I.6) shows that we are dealing
with a logarithmic branch point at § = 2a(s/h)_- 1, or equivalently,
that the discontinﬁity across the complex angular momentum cut approaches
‘a constant near the singularity. Although we were.unable to cast the
integral (III.7) into a contour integral of the form (II.12a), we
nevertheless can write.it as an integral over the discontinuity of

¢(L,s) where this function is defined by (II.13); we have, for s <O,

ga(s/ﬂ)—l
[A(s,t)]AFS = J Car p(g,s) P s (I11.12)

20/ (-0 )-1

where

_ _ Jp +00

o(2,s) = e | :%ég f dr 6[£ - a(#-(r +~y£g/é)2> - a(?-(r-*f:§/2)2)+lj

_wﬂ/’—X “ -0
7(x (r+y- s/2) ) (x- (r-/- s/2 ) }

« Blmrse) | ?
51nﬂa(?-(r +-5/2) ) Sllfl?ﬁ@t(X (r- V‘S/é)2> j

Here .[(x,r;s) is defined by (III.Ub). Making the same approximations

as before, one readily finds that p(%,s) - B(s) as £ - 2a(s/b4)-1



60 -

Thus the discontinuity function does indeed approach a constant at the
singularity.

Next we considef the asymptotic behaviour of the AFS amplitude
for s > )-LME; the r-integration contour in (III.ka) is then to be
replaced by the contour shown in Fig. 31d4; the leading contribution

to the amplitude at 1arge t comes from the bound-state poles of

oS-

the integrand located at r = 11,1’272 -iYM - x and r = -i ,s2 +

oS

iy - x [we are investigating the case in which oa(u) has a bound

state of mass M and spin I,B]. Now for r = i "-,“,v‘:;/E - i"\/lM?- X,

2 ) .
sinrroz(x-(r-i \/'572)2) n 2ix(-1) B oz'(Me) (MZ- x)2 [r-i(~[s/2 -\,/‘;/I"- x)1,

with a similar relation holding for sin 11‘(16(-(1‘ + i”\,-‘g/2 )2) near
’ s ’ .
r = - i“\/—s/E + i'\,-"‘Me- x; hence we arrive at the following expression

for the contribution coming from the bound state poles:

T
B ot ()L (s/m) o (5 s-m)7)]

L0 (V?‘M>2 -1 i
[A(S;t)]AFS ~ D(S) t B ( ) /(En t)2 , (III.l5a)
ere (ITT.13Db)
| s-u)° V4 -Nis/2);s
D(s) = 2 2% r((/s-m)°) 7 0F) £(0, 1(M-"/5/2) 3 5) i

5

sinna(('\fé-M)g) (-1)

Formula (III.13) shows that we are dealing with a branc point at

g = EB + oc(( “;,f:‘s‘-M)g)—l of the inverse-square-root type.
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One can readily generalize our discussion to the case in which
we exchange two different trajectories ai and Qé. The analog of
the singularity at Jj = 2a(s/b)-1 is still determined by (III.8);

the position of the singularity for s < 0O, as shown in the appendix,

is given by

i o= au)+ ozg(-(~\(T§ -NA)P)-1 ~ (III.1lba)

where u 1is a solution to

- f

Aj=s  =Teu

-U

o (u) - aé(—(\;’-“é -*Vv"-'{i)g) —_————— = 0, (III.14p)

while for s > 0, (III.lha,b) are to be replaced by.

j = al(u) + a2<KWfs —“Jh)g) -1 (ITI.1ke)
and '
oy Vs Vwo
at(uw) - ar((vs -vu)) ——=—=— = 0.  (III.1l)
1 2 N
. v U
For the case in which @ = a,,a solution to (III.1lb) is given by
u o= s/ﬁ. Let us suppose, for simplicity, that only one of the
trajectory functions, say al , passes through a physical bound state
of mass ml and spin zl . In the 1r plane of the integrand of

(III.h) this gives rise to a pair of singularities which for s > 0O,

and fixed negative x, appear on the Imaginary axis at the positions
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0
el
]

r = -i”;;/é * i*ﬁmi- X . We are forced to distort the minimizing

contour associated with the vanishing of BZ/Br when the singularity

T a2 .
at r = -~i ws/é + 1“/ml- x reaches r = Ty where Ty s a

solution to (ITI.8); in the £ plane [where b=, + a, - 1]

this corresponds to the coincidence of the bound-state singularity

e e e et

at £ = 4+ ae(s + mi- Q'VE;Vfﬁf x) and the singularity associated
with the vanishing of 34/dr. Let s = h(x) be the value of s at

which the above collision occurs; then for s > h(x) the asymptotic
behaviour of the integral over £ in (III.7) will be controlled by
the bound-state singularity. It is shown in the Appendix that the
corresponding value of s at which the asymptotic behaviour of the
full amplitude (III.7) changes is given as a solution to

5 \ — 5 "\f:%~ - m1 :
gt o SV ———
a; (u)) aE(K Js-m, ) ) = o, (III.lhg)

and that for s greater than the critical value the amplitude will

be dominated at large t by the singularity at j = £, + aé((ﬁgg-ml)g)—l.
The general picture in the angular momentum plane which is suggested

by the above analysis is summarized in the fdllowing section. Finally

we wish to remark that none of the above singularities will be present

in the full amplitude (III.1); the mechanism responsible for their
cancellation is, of course, of the same type as the one discussed in

Section II in connection with the single Regge pole exchange diagram.
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5. Concluding Remarks and Summary

We shall begin by summarizing the situation for the case where
the two exchanged trajeétories are identical, Assuming that the AFS
afproximation to the diagram of Fig. 3 has a Sommerfeld-Watson
representation (in wﬁich case the asymptotic behaviour of the amplitude
is determined by the leading singularities in the J plane), we are
led to the following picture regarding the singularity structure in
the Jj plane of the analytically continued partial-wave amplitude of
" definite signature: i1f there exists a bound state.of mass M on the
trajectory ofu), then for s < e (that is, below the threshold
corresponding to the t?o-particle intermediate state formed by the

!

bound states of the Regge amplitudes) the leading singularity in the

J plane is located at
i = 2a(s/b) - 1. (111.15)

All other singularities which lie to the right of (III.15) hence must
be located on an unphysical sheet. As we increase s above HME, a
new singularity emerges onto the physical J sheet via the branch point
at j = 2a(s/4) - 1 and controls the asymptotic behaviour of the

amplitude; its position is given by the formula
. o 2 |
i = a((xfs - M%) + by =1, - (III.16)

where EB is the spin of the bound state; this is the analog of the
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moving singularity j = a((ﬂfg - m)g) - 1 we found in the single
Regge pole exchange case. If, on the other hand, a(u) has no bound
state, then (IIT.15) remains the leading singularity for s < 16m2,

that is, below the four-particle production threshold (where the

-two pairs of particle states are assocliated with the elastic intermediate
states of the two Regée pole amplitudeé). For s > 16n° a new
singularity has appeared on the physical sheet of the Jj plane via

the branch point at j = 2a(s/4) - 1; its loeation is given by

the formula

J = a(umg) + a({\[g - 2m)2).- 1. (III.;?)

From the singularity.strﬁcture of the integrand of (III.la) in the

r plane we see that no essential difference exists between the wvarious
bound—étate and threshold singularities; thus we expect that any con-
clusions that one reaches regarding the branch points in the J plane
that arise from the latter singularities must hold in the presence, or
absence, of the bound-state singularities. The general picture that
seems to emerge 1s then the following: for s < hME the leading
'singularity is given by (III.15) with new singularities of type (III.16)
and (III.17) appearing on the physical J sheet via the branch point
at J = Ea(s/h) - 1 whenever s has the appropriate value for the
coincidence of the singularities of type (III.16) and (III.17) with
the singularity (III.15). In the present example, where we exchange

two identical trajectories, the critical value of s is given by
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s = MME and s = l6m2, respectively; the appearance of a
singularity of %ype (I1IT.16) or (IIT.17) thus coincides with the
corresponding opening of a new channel in the s reaction. Thus
besides the branch point ét 3 = 2a(s/b) - 1, we expect a multitude
of other singularities to be present in the angular momentum plane,
which,vas we keep incressing s, will each in turn appear on the
physical Jj sheet. The picture just described agrees with the

7

findings of Gribov et 3&.5 and Simonov' in connection with the analog

of Fig. 3 for which the cancellation of the cuts does not take place
(see Fig. 4, for example). From the asymptotic expressions for the
AFS amplitude, given by (III.11l) and (III.13), we conclude that for
3 o~ 2a(s/%) - 1, v(§,s) ~ en(3 - 2a(s/4) + 1), while for
i a a((ns - M)?) + fy -1, b(3s) 2 (§ - a(Vs - M)E) V- oy + 7%
The general éituation where we exchange two different trajectories
o, and «, 1is very similar to the one just describgd, except for a

1 2
few modificationé; thus the analog of (II1.15) is the singularity at

Jo= agu)+ ag((-J; V) - 1, (I11.18a)

where u is a solution to

»‘. g - '\\":'u

al(u) - a((+/s -+[a)?) — - 0 . (II1.18b)
¥

If we assume that there exists a bound state of mass m, and spin

1
Zl which lies on the trajectory Oﬁ’ then this will give rise to a

singulafity in the J plane located at
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§o= 2+ oze(("-,.g - ml)g) -1 . (TTI.19)

The value of s for which this singularity will emerge onto the physical
j -sheet via the branch point (III.18) is now given as a solution to
..a'l(mi) + (s - 'ml)g) r-n-r:t—;-l-s— = 0. (111.20)

This corresponds torthe,coincidence of the two singularities (III.19)
and (ITII.18). In a similar manner the lowest threshold branch point
associated with the exchange of the Regge trajectory ai(u) will givé
rise to a singularity of type (III.19) with £y~ al(hme) and
m, > 2m; this singularity appears on the physical sheet of the angular
momentum pléne at a value of s given by (III.20) with the replacement
ml - 2m. BExcept for modifications of the.above-mentioned type, the
picture in the angular momentum plane is.the same as that obtained in
the case for o = agk.

So far we have not specified which of the two signature amplitudes,
bi(j,s), carries the above-mentioned branch points. To find an answer
to this question we notice that

o, +x -1 e’ 07 o' Q
e () B @) et 2 = L) e () 2 e 7).

Tt follows that the amplitude (III.la) is even or odd under the trans-

formation t -+ -t depending on whether we exchange two Regge poles of
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opposite or equal signatures, respectively [we had omitted the signature
factors in (IiI.ha)]. The amplitude (III;Ha) therefore contributes

for large t +to only one of the terms in the sum (1.2); we hence
conclude that the above-mentioned branch points in the angular momentum
plane will appear in the even or odd signature partiasl-wave amplitudes

associated with the s reaction depending on whether the two exchanged

trajectories have opposite or equal signatures (in that order).
Concerning the normal threshold singularities in s of

[A(s,t)] they are generated in a way entirely analogous to the

AFS ’
single Regge pole exchange case. Thus, let us suppose that there

exist two physical bound states of masses my and m, which lie on

the trajectories ey and Qé

of singularities of the integrand of (III.4a) in the r plane arising

» respectively. For s > O the pairs
from each of the bound states will lie along the imaginary axis; as

we keep increasing s, two of the four singularities (one from

each pair) will pinch the r-integration contour when

Performing the x integration then generates an end-point singularity

of [A(s,t)]AFS at

2
s = (@l + m2) .
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This is the normal threshold branch point corresponding to the two-

body intermediate state formed by the bound states of mass my and

. 2 . .
m., . As we increase s above s = (m + mg) s the r-integration

2 1

contour will again be pinched between the bound-state singularities
and .one from each péir of threshold singularities that arise from

the normal threshold branch points of the Regge pole amplitudes, when

either
Vs - fmi -X - ?jhm -x = 0
or
— i TR
Vs - ~fm§- X - “Jhmg- x = 0.

Subsequent integration over x then produces the corresponding
three~body normal threshold singularities at s = (ml + 2m)2, and

s = (m2 + 2m)2, respectively. The generalization of this result is
self-evident [if there are resonances lying on the trajectories «

1

and O@ ,» they will give rise to complex normal thresholds on the
unphysical s sheet; the latter follows from the fact that in the
r plane the corresponding singularities are reached by goling through
the cuts associated with the singularities that arise from the normal

threshold branch points of the trajectory functions al(u) and

ag(u), and residue functions 7l(u) and 72(u)].
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IV. DIAGRAMS THAT HAVE THE MANDELSTAM SINGULARITIES

So far we have dealt with a set of PFeynman graphs which in
an AFS type of approximation gave rise to angulér momentum branch
points that are, however, absent in the full amplitude. Nevertheless
we have studied them in great detail for two reasons: (a); we wished
to obtain a clearer understanding of the mechanism responsible for
the cancellation of the cuts (which presumably is not in operation
for such diagrams as shown in Figs. 2 and 4); and (b), we expect
that the location and nature of the singularities found for the AFS
type of approximation to the diagrams of Figs. 1 and 3vis the same
as that found for the full amplitudes associated with the diagrams
of Figs. 2 and h; the roles played by the "crosses" (which replace
the original elementary lines) being essentially that of preventing
the‘above;mentioned cancellation mechanism from operating. It is
clear that the complexity of the latter diagrams will make it impossible
to carry out as careful an analysis as was made for their simpler
versions, and we will have to sacrifice a certain amount of rigour in
favor of simplicity. We shall be mainly concerned with the diagram
of Fig. 2, which was shown by Mandelstam2 to have the singularity at
j = a(K%/E - m)2) - 1 found for the AFS type of approximation to
the diagram of Fig. 1 (see Section II). The double Regge pole
exchange case can then be treated in a completely analogous way, and
we shall limit ourselves to a statement of the result.

Consider the Feynman amplitude corresponding to the diagram

of Fig. 2:
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4 L L I

Als,t) = -i.(;%?-} fd g dk dny
T :

ni-m?+ie i=1 [gi-m2+ie][k§-m2+ie]

2

| 2
x R@M3), U5 €, £ K, K) (1v.1)

2
31
the Regge pole, U being the momentum transfer variable defined by

where RQ@(ng), U; ¢ gi, k?,vki) is the amplitude associated with

2
U = (g3‘+ k3) = (54 + kh) (Iv.2)
Let
. 2
5] = T]E 2
" 2
S = T]l y
t' = (q'l+ ’]2 )2)
" = (g- )

The components of the four-vector Ny may be expressed in terms of

the invariants s',7 sy, t', and t"; the Jacobian for the transformation
is given as before by (II.l4) and (II.5) with the replacements ki - s",
kg - s'; kg - t', ki —~ t"; proceeding as in Section II, we will keep

only the first two terms in the expression for D [see Eq. (II.5)]
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for t — o and small momentum transfers s ; with this approximation

our integral (IV.1l) becomes

.6 . oy
N i ' "
Als,t) ~—> - T (-3-2—) -11; fjf as' as" sslys
t->m L - - s"-m"+ ie
[ 4o +00 ‘ B (1v.3)
X 1 j' dt' j' at" F(s',s",t’,'t”;s,t);: ,
‘_ - -0 !
where 1(s,s',s") is the usual triangle function defined in (I.9),
and where
2 2 2 2
o 4 R ),Uses, 6,05,%)
] " 1 " : 5 5
F(s',s",t',t"ss,t) = | a g, dk O - . (TV.4)

-

i=1 [gig- m2+ ie][ki- m2+ ie]

Now among the many singularities of F(s',s",t',t";s,t) there are
" those pertaining to the integral (IV.l) with R replaced by a constant;

i.e., it has the singularities of
- c
%J(s;!isn)t')t":vs) = A'(s,t'38",8") Ac(s;t”551:5") p)

where AC(s,t’;s’,s") is the invariant amplitude associated with the
"cross" in Fig. 2 when the Regge pole is replaced by an elementary
line of 'mass’ s':

AC(s,t';s,',s") = ‘grdhé i ————, (1v.5)

- 1 i=1 gi- m + i€

Now Ac(s,t';s',s") has normal threshold branch points at



£t = hmg- ie
and

H

2
u = (’]2 - Pl)

= hm?-.ie 5

with similar relations for the normal threshold branch points of
AC(s,t”;s',s") in t".and u", .where we have the following constraint

among t', u' and t", u":
th+ u'+ s. = t"+ u'+ s = 2m2+ st+ g",
Tt follows that F(;',s",t',t";s,t) will be singular at
| 2

t! bm™ - ie , | (Tv.6a)

and

-tf

s+ 8" 5 - oMo+ de , (1v.6b)

with an identical set of singularities of F 1in the variable t".
The singﬁlarities (IV.6a,b) correspond to those of the contracted
Feynman diagrams shown in Figs. 32a,b. The essential feature to be
noticed about them is that they appear on.opposite sides.of the t!'
integration contour, Ct’ , Jjust below and above the real axis (the
same, of course, applies to the singularities of F in t"); the
integration contours in the t' and t" planes are thus forced to

cross the real axis somewhere between t' (or t") = Mm? and
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1

2
t'" (or t") = s'+ s"- s - 2m . Now the singularities of F at
£ = bm°- ic and t" = lm°o- ie arise from a pinch of the integration
contours in (IV.4); furthermore, it follows from the Landau conditions

for these singularities that at the pinch

2 = " &
500t = bm- ie (IV.7a)
2 2 2
‘and
ky = - K
2
5 t" = bm - ie . (IV. )
2 2 2 '
kz = k.)_‘- = m
Hence, from (IV.7a,b) we see that at t' = t" = hme— ie there

exists a region of integration in (IV.4),.which cannot be avoided,
where §2, gu, kg’ and kh are on their mass shells and thevintegrand

"pblows up.” In addition one may verify from (IV.7a) and (IV.7b) that,

at the multiple pinch corresponding to t' = t" = hmg- ie,
U = t/b4, where U is defined by (IV.2). Analogous relations to
(IV.72,b) exist for the singularities at t' = t" = sg'+ s"- 5 - 2m2+ ie:
§l = - 53 |
;5 t' = sg'+s8"- s - 2m2+ ie (Tv.7c)
2 2 2
él = &5 = m

and
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5 t" o= s'+s8"- 5 - outt e . (1v.74)

ki = k5 = m

Once-again we find that, at the multiple pinch corresponding to

1"

tt = t" = s'+g"- 5 - 2m2+ ie, U = t/b . WNow, as we have

already noted, the integration contours in the t' and t" planes

are constraint to cross the real axis somewhere between t' (or t") = hm?,

n

and t' (or t") = s'+ 8"~ s - 2m2. From (IV.3) we see, however,

that the s' and s" integration includes the region where s' =« O,
"

and s = s; since s' =0, s" = s 1is a point on the boundary of the

domain of integration

2t s'2+ 3"2- 2ss'~ 288"~ 2s's" = 0,

we cannot distort the s' and s" integration contours so as to

avoid it. Now at s' = 0, sh = s, the singularities of F in t'

and " are located at &' = " = liP- i, and b = t" = -2n2+ ie;
their separation is thus "small" and one might expect that, in this
region of the "approximate pinch," gi 2. k? -y mg, and U =~ t/b.
Now 1t does not seem totally unreasonable_to assume that the major
contribution to the quantity appearing within the square brackets in

(IV.3) comes from the above-mentioned region of the "approximate pinch"

in the t' and t" planes, and from the integration region of (IV.k4)



=77~

for which all four-momenta squared are close to their mass shell value.

- - o) o T,
Thus one might try to approximate the function RQ}(S'), U35§’§Z’k§’ki)
o] a
in (IV.4) by its value for U = t/4, and é? = @Z = k? = ki = m;
with this approximation the integral (IV.3) becomes '
6 rro v
4 ’ " ! "
A(s,t) =4 —,} '\-:g—g—\ %J'J‘ds' ds .T_(_S_:ig_:f_l R(a(s'), t/4)
t—00 b= s"- m + ie
(1v.8)
+ @ ~
, c wy |8
X Jr at' A'(s,t';s',s") } R
-0 !

where Ac(s,t’;s',s") is given by (IV.5). Formula (IV.8) is very
similar to that corresponding to the AFS approximation to the amplitude
associated withvfhe diagram of Fig. 1 'which is given by (II.7). Before
proceeding with the analysis of (IV.8) we wish to emphasize once more
that the existence of thev”approximate pinch" in the t' and "
planes wis essentiol in the derdvation ol expression (IV.8): this 1n
turn requires that both the right and left-hand portions of the
diagrams must have a third double spectral function with respect to

the s reaction; since this is not the case for the diagrams of Figs. 5,
6, and 7, the above-given arguments leading from (IV.3) to formula
(1v.8) do not apply; in fact, it has been shown by Wilkinu that if
either the right or the left-hand portion of the diagram does not

have a third double spectral function, one can distort the integration
contours of'the Feynman amplitude (IV.1) in such a way that the Regge
polé will not assume its characteristic asymptotic form anywhere along

the pnths of inlegration.
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We now return to formula (IV.8) and extract from it the leading

term for t - oo vwhich comes from the integration region where s' -+ O,

1t

and s" ~ s. Approximating AC(s,t';s',s") by Ac(s,t’;O,s) in this
domain, and proceeding as in Section II,we obtain, upon substituting

(11.8) for R,

o .
200 fx(e)? c(a)gt(m(}}?(o)’lf e (£

sinnc(0) /

6

o0 s (&)

-€

] " .
x [as" 145‘45—21—5—2 (1V.%.)

s'"- m + ie

- 6 ’ 2 | a(0)-1 .
2 B (E) 2 B can@(3) e omem,
7 -

sinna(0) m - s

where C(a) = c(a(0)) and gi(oz) = gi(oz(o)) are defined by (I.5)
and (I.7), and '
+ @
K(s) =f at!’ Ac(s,t';O,s). (IV.9b)

1. An BEstimate of the Contribution Coming From the Leading Angular

Momentum Branch Point of the Double Regge Pole Exchange Diagram.

The diagrem involving the exchange of two Regge poles (see
Fig. L4) can be dealt with in exactly the same way as above; for
simplicity we shall consider the case of two idehtical Regge polesf
Making the same type of approximations aé before, one arrives at the

following expression for the ampli@ude:
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. )] £r
0o i ™ 1 : 1" 1
A(s,t) tﬂl " (gg-g/\ T ‘;-J,-'ds' ds" 1(s,s',s )R(a(s'), t/h)
-0 i ~
o \2 (1v.10)
{ i
x R(a(s"), t/u){ I ag AC(s,t'58%,8") b
J )
-0

the leading contribution to (IV.10) comes from the integration region
s' 4 s" a s/b, so that we may approximate AC(s,t’;s’,s") by

AC(S,t';s/h, s/4) in this domain. - If we then substitute

R(a(s), /%) = ¥(s) cla) et(a)(t/h'ﬁ)(_"(s)/sin na(s) (Tv.11)

into Eq. (IV.10) [here t is a reference energy to be specified below]
and make the change of variables £ = g'+ S", 1 = s'-s", we
arrive at the following formula for the asymptotic contribution to

A(s,t):

h / 7(s/br)H(s)C(oz)§ (@) \ 2a(s/h)-1-§ o

i 1/t
A(s,t) = .1_(.:5_. L L2
52 5 . sin nx /o <-1+f
S .
2 - Q' [ 8(2sk- 32- 'qg) o
X j ag (-—_;) dn S e ————— (Iv.12a)
Wt J A o 2
5 y2sk- 5 - 7
_— - .
5
L5 (s/4)u(s)C(@)e, (@) \\2 20 (s/1)-1

~ m < \ sin no | / <-t€—> | ‘v/éa'ﬂn(t/l*jc) 7

where o = ofs/b), o' = o'(s/k), and
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+o0

H(s) = ,( at! AC(s,t';s/lL,s/LL) . (IV.12Db)
J N
) . =00

From formulae (IV.9) and (IV.12) we see that for s < O the position
of the leading branch points in the angular momentum plane for the
amplitudes associated with the diagrams of Figs. 2 and 4 are given by

3 = a(0) =1 and j = 2a(s/L4) - 1, respectively; furthermore, from
the form of the asymptotic behaviour we conclude that both of the
above-mentioned branch points are of the logarithmic type; this is
precisely the result we obtained in connection with the diagrams of
Figs. 1 and 3.

Finally we wish to cast (IV.12b) into a more convenient form
for computational purposes. Since we shall be interested in the value
of‘(IV.lEb) at small momentum transfers s, we will approximate the
integrand by AC(s,t';O,O). Now, on account of the many approximations
made in deriving formuls (IV.10), we can only hope to obtain a very
rough estimate of the contribution to the amplitude coming from the
cut. TFor practical reasons we shall therefore make a further approxima-
tion and replace A (s,t;0,0) by AC(s,t), where the latter is the
amplitude associated with the "cross" with all external masses taken

equal to m, Now, Ac(s,t) is known to have the spectral representation

{ ' 1 '
5,6) = == i!dt’g[du' p(t',u )2 , (1v.1%)
- - (t'- t)u'- (bm“- s - t)]
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where p(t,u) is the well-known Mandelstam double spectral function
23

for the box diagram; the boundary of the region where p(t,u) £ 0
is given by: (t - hme) (u - hmz) - hmh = 0; from here it follows that,

for fixed s, (IV.13) defines an analytic function of t in the

t-plane cut from t = hm? along the positive t axis, and from
t = -« s along the negative axis. The singularities at t = hmg
and t = - s are the ones responsible for the approximate pinch

discussed previously (where the limit € - O has been taken); the
contour Ct' of the integral (IV.lQb) extends just above and Just
below the right- and left-hand cuts, respectively; it is shown in
Fig. 33%a. Now for fixed s, Ac(s,t) vanishes like l/fz for large

t; we therefore may distort the contour C, around the right-hand

t
cut of Ac(s,t), as shown in Fig. 33b, and rewrite the integral (IV.12b)
in the form

H(s) =2 2i at' Ag(s,t') s (Iv.1Lh)

®
/

Jo2
Ly

where Atc(s,t) is the t-channel absorptive part of AC(s,t), which,

in the notation of Ref. 23, is given by

3 alt,u) + (g, /VDIKEWIZ
Ag(s,t) = ——Tee 4n Z * oy / s . y ), (1v.15a)
(x(t,u)]2 alt,u) - (g /NE)K(Eu)12

where
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K(t,u) ktultu - 1Hn2(t +u) + lQmLI.] ,

' : L
a(t,u) tu - ot - hmgu + 6m

o

-+ t/l | (1v.15b)
and

2
u = m -s-1t.

If, in (IV.12), o is taken to be the Pomeranchuk trajectory, then
we obtain, for the contribution coming from the cut at zero momentum

transfer

L
40y = 5 ()  FOHO) 8@0),2)/ T e (0)em(s/1),
3 .
‘ (1Iv.16a)
vwhere
R@(0),t) = - 170} (%) . (IV.16b)

~t

Formula (IV.16) gives the contribution for large +t coming from the
leading angular momentum cut associated with the diagram of Fig. 4 in
terms of the contribution coming from the exchange of the Pomeranchuk
pole. We now wish to estimate the ratio of the two contributions.

From formulae (IV.14) and (IV.15a,b) one finds, after some algebra,
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S0 . 5,02
H(O) = - = | dz Inll +'z(z + 2)] e =1.5% 1 /m .

0  (z+2) 1&z2+ bz)

;
|
J

B

Next we shall assume that an estimate of 7(0) is given by the corre-
sponding residué function associated with the coupling of the Pomeranchuk
‘trajectory to the = ; ¢ sYstem; the 1étter has been estimated in

Ref. 24; taking into account that the Regge pole amplitude R used in
this section is related to that of Ref. 24 (call it R') by R = 16x R',
we find that 7(0) @ -16;, if the reference energy & in (IV.1l) is
chosen to be t = 1.87 (BeV)g. Finally, to obtain an estimate of

the coupling strength g , we take recourse to the foliowing model
consider the amplitude for scattering of two scalar particles in the
ladder approximation to the Bethe-Salpeter equation (all particles
involved in the ladder are taken to have mass m); in this approximation
an estimate of the coupiing strength may be obtained by requiring that
the leading Regge trajectory shall pass through unit angular momentum
at zero energy. The calculations of Ref. 25 show that the required
value of g is approximately given by g = (16x) m (this corresponds
to the value A = 16 in Ref. 25). Substituting the values for

1(0), ¥(0), and g into formula (IV.16a), we Ffind

A(0,t)/R(0,t) 2 -4.7/ T a'(0) fn(t/4t) , (IV.17)
vhere we have written R(0,t) = R(x(0),t). Now,there are indications

that the Pomeranchuk trajectory is rather flat; if we take, for
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example, its slope to be l/thhat of the P' trajectory (which is
presumed to go through angular momentum 2 at the mass of the fO’
and through l/b at zero‘energy), then we find, using formula (IV.17),
that the ratio becomes unity at an energy around 140 BeV. This
dominance of the cut over the pole would become even stronger as

we moved away from the forward direction. Expanding the trajectory
function af(s/4) appearing in (IV.12a) around s = O, one obtains,
for the ratio A/R at small momentum transfers s

A(s,8)/R(s,t) » -b.T expl- & AMt))/ TaG), ~  (1v.18a)

Pjw

where

AMt) = a'(0) sn(t/4t). (I1v.18b)

The above~obtained results should, of course, not be taken
at their face wvalue, in view.of the numerous approximations made in
the derivation of (IV.17) and (IV.18); even if, all parameters appearing
~in (IV.16a) were kﬁown, it would not be surprising if the true result
differed from the one obtained above by an order of magnitude, or
even more.

2. Conclusion

The considerations of the preceding section indicate that the
location and nature of the angular momentum branch points associated
with the diagrams for which the cancellation of the cuts does not
occur is the same as that for the AFS approximation to their simpler

versions, considered in detail in Sections IT and III. The role of
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the third double spectral function associated with the cross in the
diagrams of Figs. 2 and 4 thus appears to be essentially that of
preventing the above-mentioned cancellation from occurring; the latter
diagrams have been studied in much more detail in Refs.2 and 5 via
s-channel unitarity, and the results support the above conclusions.
Concerning our estimate of the contribution to the amplitude coming
from the Mandelstam singﬁlarity associated with the diagram of Fig. U,
it can, of course, not be taken very seriously; it does, however,
suggest that at moderate energies, the cut and pole contributions

might conceivably be of the same order of maghitude. The method used
in the analysis of Figs. 1 and 3 had been originally adapted to the
purpose of exposing in as clear a way as possible the cancellation
mechanism of the Amati, Fubini, Stanghellinivcuts; this mechanism has
been found to be extremely simple., The same method also led to a
relatively simple ahalYSis'of the singularities in the angular momentum
plane of the s reation; we found them to be of the two general types:
those that are independent of particle masses, and those which depend
on them. Only the former ones remain on the physical j. sheet at .
negative momentum transfers;.their positions in the J plane are
givenby § = a0) -1 and j = 20(s/4) - 1 for the single

and double Regge pole exchange diagrams, respectively. It is interesting
to note that both these singulafities are of the logarithmic type and
~are a consequence of the singular nature of the mapping of the kz plane
into the complex 2 plane, where £ 1is the angular momentum in the

s channel obtained by coupling the (complex) spins of the exchanged
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systems to a relative orbital angular momentum I, = -~ 1. The

analog of the singularity at J = a((x{g - m)e) - 1 for the single
’ T 2

Regge pole exchange diagram is the singularity at j = a((wfé - M) )

+ ﬂB - 1 associated with the diagram involving the exchange of two

identical Regge poles; these singularities appear on the physical .
J sheet via the particle-mass independent branch points for s > mg
and s > hM?, respectively; furthermore, both are of the inverse-
square-root type. The similarity between the. amplitudes (IV.9) and
(TI.7), and, (IV.10) and (III.2), suggests that the‘ above picture
in the j plane remains the same for the diagrams of Figs. 2 and k.
In conclusion,_the analysis presented in this papér indicates
that everything we wish to know regarding the location and nature of
the angular momentum branch points associated with the diagrams in
which the éingularities are not cancelled, can be learned by investigating
the corresponding simpler versions of these diagrams in an AFS type
of approximation; thus it appears that the additional complexity of

the former diagrams; aside from modifying the strength of the singularities,

merely serves to prevent the cancellation of the cuts from occurring.

13
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APPENDIX

Position of the Branch Points in the J plane for the Case in Which

Two Different Regge Trajectories are Exchanged

a. s<O0
For any fixed value of x the integrand of (I1I.7) is singular

when

(51&/81') = 0,

where £ 1is defined in terms of x and T by (III.6). 1In the

£ plane the location of this singularity is given by £ = A(x),

Mx) = o x (¢ os/2)) + oy (x - (¢ ATsP) -1, (Ads)

where f = f(x,s) is a solution to

o‘gi@ - (£ +7s/2 )2) (£ +/=5/2) + ozé(gc - (£ -/-s/2 )2)(1" -x_/;';/e) =0 .

(A.1b)

We now show that, for x <0,
A0) > A (x), (A.2)

so that (A.la) takes on its maximum value at x = 0; since the integra-

- tion contour Cz of the integral (III.7) cannot be pushed to the left

of £ = AN(x), and since the integration contour in the x plane

1
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cannot be distorted away from x = O, it is then evident from (A.2)
that the asymptotic behaviour of the amplitude is determined by the
value of (A.la,b) at x = 0. Relation (A.2) can be verified
immediately by computing the total derivative of A(x) with respect

to x :
avax = ag(x - (2 52 ) + ay(x - (£ -~ T5/2)2) + (D) (3t/3x )

now from (A.1b) we have that OAOf = O; hence the last term on
the right-hand side vanishes. Furthermore, the derivatives of e

and a2 are positive) since it follows from (A.1b) that
-“ch/é <f< \[:E/?, so that the arguments of the trajectory functions
are negative; formula (A.2) therefore follows. From the asymptotic
behaviour of the AFS amplitude (III.?) [which, as explained above, is
determined by £ = A(0)] we then-conclude that there exists.a branch

point in the J plane located at
. - 2 — 2
j = al(- (f +\-s/2) ) + oze(-(f -\-5/2) ) -1, (A.3a)

where f 1is a solution to

(A.3b)
Upon making the substitution (f +'bc%/é)2 = - u in formulae (A.3a,b),

we arrive at the expressions (III.1lla,b) of the text.



~90~
b. s >0

For concreteness sake we consider the case where - s is
continued to s > 0 according to: ”J:E = ivs (one may readily
verify that the continuation V-s = -ivfs 1leads to the same results

'presented in the remainder of this Appendix). For s > O and fixed

X , BZ/Br will then vanish for r = 1ig, where g 1is a solution to

ol (x + (g +Js/2) e +~s/2) + a)(x + (g s/ e -Vs/2) = 0 (A.ka)

and the location of the singularity in the £ plane will be given by

4 = N(x), vhere

Ax) = al(? + (g +1ﬁ9@)2) + a2<% + (g -WEQ@)Q) -1 (Afub)

Similar reasoning as before then leads to the conclusion that the
position of the AFS singulérity in the J plane is given by = 2 (0),
where the quantity g in (A.4b) is a solution to (A.La) with x = O.
Upon making the substitution u = (g +-Vg/é)2, one arrives at (III.llc,d).

¢c. The Critical Value of s at Which the Asymptotic Behaviour of the

AFS Amplitude Changes

Let us assume, for simplicity, that only one of the trajectory
functions, say & 1
and spin £.. In the r plane of the integrand of (III.ka) this gives

vasses through a physical bound state of mass m

1

rise to a pair of singularities which, for s > 0, appear on the »

imaginary axis at r = ig+ , Where g, = -st/é * W/ﬁi - x ; these
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singularities are imaged in the £ plane of the integrand of (III.7)

into a corresponding set located at £ = £_, where £_ = ﬂl
fromees + +
L2 :
+ ag(s + mi I 2°Vs Vmi - x) - 1; for fixed x , the value of s at

which the asymptotic behaviour of the infegral over £ in (III.7)
changes then occurs when the singularity at £ = JX(x) collides with
the bound-state singularity at £ = £_, or, equivalently, when
g = g+' is a solution to (A.ba) [that the singularity at £ = Z,

is not involved in the collision can be seen by noticing that g = g_
(where r = ig_ is the position of the singularity in the r plane
corresponding to that at £ = £+) cannot be a solution to (A.hka)].

A moments thought then shows that the change in the asymptotic behaviour
of the full AFS amplitude (III.7) [which is determined by the upper
limit of the x integration] takes place wheﬁ .s is a solﬁtion to

. ﬂfg -m
2y 2 1
CZ]'. (ml ) - Cle' (( —\,/E - ml ) ) —-—m-i———- = 0.

For s greater than the critical wvalue, call it Sq » the large- ¢

behaviour of the amplitude (ITI.7) will be determined by the above-

. . . 2 v -
mentioned singularity at £ = zl + ae(é + m, - 2s WJml - x) -1
with x evaluated at x = 0; we then conclude from the corresponding

asymptotic behaviour that the partial-wave amplitude must have a
. . 2 .
branch point at J = ﬂl + ag(K\fg - ml) ) - 1 which, for s > Sq

appears on the physical | sheet.
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FIGURE CAPTIONS

Box diagram in_which one of the elementary lines has been
replaced by a Regge pole (denoted by a wiggly line); it does
not have the AFS~type singularities.

The analog of Fig. 1, which has the Mandelstam singularity.
Box diagram in which two of the elementary lines have been
replaced by Regge poles; it does not have the singularity
proposed by AFS. The AFS approximation consists in taking
only the elastic contribution to the unitarity relation (as
indicated by the dashed line).

The analog of Fig. 3, which has the Mandelstam singularity.
Diagrams which do not have Mandelstam-type singularities.
Diagram which contributes to the scattering of particle X
from the deuteron, D, and which in the three-body unitarity
approximation gives rise to the Glauber shadow term; the
symbols p and n stand for the proton and neutron,

respectively.
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Fig, 5
Fig, 6

Fig, 7
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Fig. 8. Contour in the complex angular momentum plane associated
with the background term in the Sommerfeld-Watson répresenta-
tion; bi(s) and QF(S) are the positions of a branch point
and a Regge pole of the continued partisl-wave amplitude,
bi(j,s) [in the figures the symbol |x will indicate that
we are dealing with the complex "x plane'].

Fig. 9. The shaded areais the domain of infegration of the integrand
in (I.8); the equation for the boundary is given by
&+ s'2+ 5”2- ESs'-‘2ss”- 2s's" = 0.

Fig. 10a. The integration contour of (II.10) in the k, plane for
s < m2— x; We have displaced it slightly into the upper half

plane to facilitate the discussion of the integral;

, LAl 2 . ‘s . .
k+ = N-s T 1iVYm - x gives the position of the singularities

of the integrand arising from the Feynman propagator (shown

in the figure for s < 0), while + k, and T ky give the

locations of the poles arising from the vanishing of

sin na(x - ki) at a bound state of mass a/ﬁﬁ and a resonance
. = 1°4a L - x

of mass vuR ; here kB,R = i /uB,R X . The resonance

poles, T kR , are reached by going through the neighbouring

cuts, which are assoclated with the image of the normal

threshold singularities of af(u) and y(u) at u = g
(N = 0,1,2¢++) in the k_ plane; in the figure we have also
shown the singularities at * ko = ¥ i'ﬂﬁo- x which arise

from the lowest normal threshold.
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Fig. 10b. The integration contour of (II.10) in the kz plane for
s >m - x, where " -5 has been continued to s > O
according to “v-s5 = i“ﬁsv. For the sake of clarity,

only the singularities at kz = k+ .are shown in the

figure; here k+ and k_ are defined as in Fig. 10a,
with -s ~ i%/s .
Fig. 10c. Same as in Fig. 10b, except "x:; has been continued to
s >0 according to s = -infs .
Fig. 11. The complex u plane, showing the integration contour C#
for the integral (II.12a); we have not shown the singularities
of the integrand.
Figs. 12a,b. Thé_contour Cu' of Fig. 11 as it appears in the £ plane
for s <mo (Fig. 12a)and for s > - (Fig. 12b). Only
the singularities that determine the asymptotic behaviour

of the AFS amplitude are shown.
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Figs. 13a through 18a. Various paths of continuation in the u plane

leading from the point u (lying Just above the negative

0
axis on the "leading sheet") to the possible singular
points of c(u,s) at u = u, , wvhere u_ = (m*ii-s)

Figs. 13b(c) through 18b(c). The integration contours in the x plane
as they appear after the continuation of (II.lka) in u
along the varioué paths shown in Figs. 13%a through 18a.
The motion of the pole at x = xP(u,s) is shown by the
dashed cﬁrves, with x, = XP(uo,s) as starting point.

Figs. 19a,b through 2ka,b. Same as in Figs. 13 through 18, but for

s >0 ; here u, = (~/s * m)g.

2
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The integration contour Cz of (II.13) for the case in
which a(u) = (3 -Vh - u); "I" and "II" label the
regions of the complex £ ©plane corresponding to the two
sheets of ofu) [the dashed line is the dividing line for
the two regions]; the singulafity of c(us) at u = 0

is imaged inithe £ plane as a pair of singularities located

at £ = - l/é and £ = 3/?; the contour C, encloses

)/

only one of these.

Figs. 26,a,b. The integration contour for the integral (II.18) as it

appears after continuation of the integral to s > m2; the
solid contouf (Fig. 26a) corresponds to the case in which
the continuation in s has been effected along a path
passing below the point s = mg, while the dashed contoﬁr
(Fig. 26b) corresponds to the case in which the path of

2

continuation lies above s = m ; both continuations lead

to the same expression for the AFS amplitude.

Figs. 27a,b. The complex u plane, showing the path P (Fig. 27a)

and the path P' (Fig. 27b) along which the discontinuities

of I(u,s) are evaluated. The point uy + i€ is located

on the "leading" logarithmic sheet.



~110~

i 4
| D ]
I L 11
|
i .
C& |
e e\ '
P —— T — T —E
| -5 3/2
}
!
1
}
Fig, 25
e lu
. 4’__)..-\
- g s > L *}
\/\(@_m)z \_\-(—/ LY (J—s'..m)z

+ P +ig P!
uO 1& 1 / uO e 3 y
————t e = -
0——-4——-—-.——-—"fu ) 8 .--—-4_-.».__ —* __.._4__"]r<u
uy-ie | 2 - uy-ie u_ 4 +




-111-

Figs..28a,b,c. Paths leading from the point A = uo + ie , located
on the leading sheet, to regular points of I(u,s) at U= u
and u = u_ for the cases s <0 (Fig. 28a), 0 < s < me
(Fig. 28b), and s >'m2 (Fig. 28c5. The solid and dashed
curves correspond to the two choices for the continuation of
~fas to s > O0: if:;. = ivVs (solid), ~J-s = -i'Vs
(dashed).

Fig. 29. The contour 'Cu in (II.%2) split up into two pieces, C'
and C" ; only the latter contour will be pinched by the

moving singularity at u = (ngﬁ- m)2 and the pole at

w = .
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Fig. 30a. The integration contour of the integral (II.35) in the

kg plane; the point a - ip 1is a singular point of the

Regge pole amplitude.

Fig. 30b. The contour 02 of Fig. 30a split up into CAFS and
1 . . : : .
C AFS the contribution to (II.35) coming from CAFS

corresponds to an AFS type of approximation and is precisely

cancelled by the contribution from C'

AFS °

Fig.ABIa.' The complex r plane, showing thé integration contour Cr
of (III.k4a) and the singularities of the integrand, for
s < 0; the pairs of singularities arising from a bound
state of mass M and a resonance of mass MR Which lie
on the trajectory a(u) are denoted by, (rB, ?E), (r'B,f”B),
and (rR, ?ﬁ), (r'R, ?”R), respectively; they correspond
to the various combinations in (III.5) for which
uN = M? or MRE . The primed and unprimed quantities
refer to singularities arising from the individual Regge
pole amplitudes. The resonance singularities are reached
by going through the neighboﬁring cuts. Also shown are
the singularities arising from the lowest normal threshold

branch point of a(u) and y(u) at u = u, ; once again.

0

they correspond to the various combinations in (111.5)

with .uN - uO .
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The contour Cr of Fig. 3la mapped into the complex £
plane. Only the singularity at £ = 2x(x + s/b) -1 of
the integrand of (III.7), which arises from the vanishing

of 34/dr, is shown.

Figs. 3lc,d. The contour Cr of Fig. 3la, and the singularities

arising from the bound state of the Regge pole as they
appear for 0 < s < o - x, (Pig. 3lc), and for
s > - x (Fig. 31d), where M is the mass of the bound

state.
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Figs. 32a,b. The contracted Feynman diagrams associated with the left-
hand cross in Fig. 2.

Figs. 3%a,b. The origihal integration contour of (IV.12b) in the
t' plane (Fig. 33%a), and the equivalent contour, which
extends around the t-channel threshold cut of AC(s,t)

[Fig. 33b]l.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






