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ABSTRACT _

A study is made of the Amati, Fubini, Stanghellini (AFs) tybe
of approximation to the‘amplitudeé éssociéted with the exchange of
a single Regge pole and an elementary spinless particlé, andlof two
Regge poles, respectively. The location, motion,‘and nature of the
singularities in.the complexjangular momentum plane of the s reaction
which appear in these approximations, and their canceliation in the
full diagram, aye'considered in detail; the‘é}ngularities afe found to
be of two general types: branch pointé wﬁbse positions:are indépendent
of particle masses, and those which depend on them.l Only tﬁe former
ones determine the asymptotic béhavior of the AFS amplitudés in the
physical scattéring region, while the latter singulafities appeaf only
oﬁ.the physical sheet via the mass-independent branch points at
unphysical momentunm transfers. The same method used in the study of

the AFS appfoximation to the diagrams which do not have the AFS-type

,singularities is applied to the analysis of the Mandelstam diagrams

for which the above-mentioned cancellation of the cuts does not. occur.

' The analysis, although less rigorous, suggests that the location and

nature of the singularities in the j plane are the same as those



~-jiv-

found for the AFS type of approximaﬁions to their simpler versions.
'With & number of approximations which, although plausible, are hard
to justify rigorously, an estimate is made of the contribution to

the amplitude coming from the angular monentum cut.
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I. INTRODUCTION

Tt was originally noticed by Amati, Fubini, and Stanghellini

(AFS) that if one combines two Regge poles according to two-body

.ﬁnitarity in the t channel, and then disperses the resultant

absorptive part in ft, oﬁé arrives at an amplitude which exhibits
meing_branch points.in the angular‘momentum plane of the s reaétion.l
Althdugh the cuts suggesfed by AFS'wéré.later found by Mandelstam to
be absent in the diagram considered by them,g_these cufs are neverthe-
less believedlto be present in more complicated diagrams such as the
ones . shown in Figs. 11 and 12 (see references.2, 4, 5, 8); their
crucial-featuré is the appearance of the croésed lines. The prescnce
of the Mandelstam cuts is the result of inelastic contributions to

the unitarity relation, and is particular to the relativistip

 problem (for potential scattering the crossed graphs do not oceur ).

If such singularities indeed exist then they cannot be ignored, since

it was shown by the above authors that their contribution to the

amplitude at large t is similar to that of a Regge pole (except

for logarithmic factors), where the trajectory function af(s) is

replaced by A(s):

A S

A(s) = ca(s/M) -1 .

(Actuaily, AFS did not write it in this form; we shall see, however,
that the above expression for A(s) 1is rigbrously true). Thus it

a(s) is the Ibmeranchuk trajectory, for example, then the branch
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point will coincide with the position of the»Pbmefanchuk bolevat'
s =0 (i.e., in the forward direction), while for s < 0 ‘and
large t, the cut will dominate over the pble, If_on the other
hand «(0) = 1 - €, then there exists a region of'smali momentum
transfers where the pole will dominate over the cut. For s
sufficiently negative, however, the situation might very well get
turned around, with the cut giving the dominant contribution. In
addition it was indicated by M_andelstam2 and shown by Gribov gﬁ éL.B
that the generalization of A(s) = 2a(s/h) - 1 to éhe case where

. we exchange. n “identicel Regge poles is
. . ) 2 ‘
Xn(s) = nal(s/n) -n+1,

which shows that the trajectories ‘Kﬁ(s) become fldtter'as we
increase n. Thus; if afs) is the Pomeranchuk trajecfory, for
example, then for suffiéiently large energies the above singularities
would dominate even more strongly than the singuiarityiaf

A= 2a(s/4) -1 'thg cbhfribﬁ?ioﬁ from the Pomeranchuk poie,

The above discussion was concerned with angular momentum branch

points that arise from the multiple exchange of identical trajectories.

.In general one will, of course, havé to consider the contfibﬁtion to
fhe amplitude coming“frém the exchangé of different‘trajectories; the
locatiqn of the associétéd angular momentum branch points;'howeQere
can no longer be giﬁen_by a simple forhula such as the one:disdussed

above. 1In view of what has been saild, it is desirable to get as

v



-3~

clear an understapding ag possible regarding the existence or non-
existence éf these cuts in various types of diagrams, the location
and nature of the various branch.points one is dealing with, and,

if poséible; the strength of the discontinuitieé involved.

Let us now review in more detail the history of branch pointé

in thé angular ﬁomentﬁm plane. Following the suggestion of Amati, .
Fubini, and Stanghellini that the continued partial-wave amplitude

is not a‘meromorphic_function of thé angular momentum, Mandelstam

analyzed a modified version of the AFS diagram (see Fig. 1), and

. shown that the cuts suggested by the above authors were merely the

- result of a poor approximation to the unitarity relation. At the

same time he was able to show that in a certain approximation (to be
discussed below) the diagram of Fig. 11 does give rise to a branch
point in the angular momentum plane whosé location is identical to

that obtained from an AFS type of approximation to the corresponding

diagram of Fig. l.2 The essential features of Fig. 11 are its right-

and left-hand portions (i.e., the "crosses") which when considered

by themselves exhibit a third double spectral function with respect

to the s reaction. The proof of the above result is rather involved.

It seems worthwhile, however, to give a brief summary of the general

method used, which leaves little to offer where ingenuity is concerned.

‘Rather than making»an elastic unitarity approximation with respect to

the t reaction in the diagram of Fig. 1 (which would bé'the.analogue'

of the AFS procedure) Mandelstam applies three body unitarity in the

s channel. By a clever choice of variables for the three-body inter-

mediate state, and equipped with ﬁhe knowledge -of the singularity
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structure of each half of the diagram, Mendelstam is able to show
from the large t Dbehavior of the amplitude that the AFS singularity
is absent from the diagram, at least in ﬁhé ﬁhree-body unitarity |
approximation. The method used in the prébf depends strongly on thg
fact that the left- and right-hand portions of the diagram do not
possess a third double spectral function in the above-mentioned sense;
the method therefore cannot be extended to the diagram of Fig. 11.
In order to establish the existence of thé singularity in the latter
'diagram, Mandelstam makes use of the fact that if there exists a
bound state or resonance of spin ¢ 1lying on the Regge trajectory,
then the diagram wili have a Gribov-Pomeranchuk sinéularity at
"J = o -1, wvhere j is the angular momentum in the s reaction
(tﬁe eleméntaryvexchange is taken to have zero spih, for simplicity).
" He is theﬂ able to show, by a number.of ingenious tricks, that the
singularityvcén be made to disappear by moving the AFS cut-_past
“the point j = 0 - l;,such‘a phenomenon, of course, requires that
the angular momentum plane exhibit a sheet sfructure.5
This method, however, cannot be used to either prove or
disprove the existence 6f the angular momentum cut for diagrams
‘whose right- or left-hand portions do not ha§e the above-mentioned
double spectral functions, since they do not possess the Gribov-
Pomeranchuk singularity. It was shown subsequently by Wilkin that
if the cut is to exist, both the right-and left-hand portions‘of'the
diagram must possess & third double spectral function in ﬁhe sense

that we have méntioned previou‘sly.l‘L Wilkin's method consisted in
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treating fhe various diagrams as Feyﬁﬁan graphs, thus avoiding the
complications introdﬁced by multiparticle unitarity. He finds that
unless both the right- and left-~-hand portions of the diagram possess
a third doﬁble spéctrai function,.one may distort the integration
contours in such a manner that the Regge pole never assumes its
characteristic asymptotic form anywhere along the path of integration;
with the amplitude vanishing like J/%g for + - oo, he then

concludes that the AFS singularity must be absent in such diagrams.

~Although tﬁis method is quite general, it nevertheless does not

provide us with a deeper understanding of Jjust how the AFS cut is
generated, and bf the mechanism responsible for its cancellation.
- Several other authors have investigated the moving branch

5

points in the angular momentum plane. Thus Gribov et al.” considered

the possibility of establishing these branch points directly from the

‘structure of the multipafticle unitarity condition for ﬁhe partial -

'wave amplitude continued to complex angular momenta J . On the basis

of a defihite assumption regarding the form of this analytic continua-
tion, they are'able to obtain, hmong other results, the.ébove
singularity af‘ j = 2a(s/4) -1 for the double Regge pole exchange
case, and its generalization to the exchange of n Regge pgles:

j, = n a(s/hQ) - n + 1. Inaddition they obtain a formula for the

discontinuity across the above-mentioned branch point which has the

© general form of & unitarity relation involving the amplitudes for

_ . . ' ) ‘ . o ., b
the production of particles with complex spin (that is, Regge poles).

The singularities associated with the exchange of one or two Regge
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poles ha&e been furtﬁer considered by Simonov7 using the form of the
meny-particle unitarity relation for complex. j proposed by Gribovb.
et al. An alternative approach has been proposed by Pblkinghorne,g ' | »
who hgs analyzed'the disgram of Fig. 11 using the Feynman representation
of the ampiithde; in this approach Régge cuts result from pinches in
the interior of the hyper-contour of integration where the coefficient
of the asymptotic variable t vanishes.9 The absence of the AFS-fype
singularities in the diagrams of Figs. 1 and 8, and their presence in
the diagrams of Figs. 11 .and 12, can, in all of the aboye approaches,>
be ultimately stated in terms of the absence or piesencé of the
already meﬁtioned third double sgpectral function, a fact which had
originally been suggested byMandelstam.2
In this paper wé’shall mainly concentrate on the detaileéd
study of the branch points in the angular momentum plane which occur
‘for an AFS-type of approximation to the diagrams of Figs. 1 and 8.
The'philosophy behind'this approach is that we.expeét the location
of the j~piane singularities, as well as their general natufe
(that is,'square root type, logarithmic type, etc.) to be the same -
fdf theAcorresponding diagrams shown in Figs. 11 and 12. vThe
] organization of the paper will be as follows: in Section IT we
extract the leading contribution at large t to the Feynman amplitude ' v
associgted with the diagram ofJFig.ll, and show that the'AFS approxi-
mation corresponds to ignoring certain‘singularities of’ the integrand.
We then proceed to write the amplitude as a contour integrél in the

energy plane of the exchanged Regge pole and investigate the analytic

£
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.
structure éf thé integrand in detail. The nature of the branch points
is established, and the discontinuities across the various cuts
evaluated; we then obtain the correct form fér the asymptotic 5ehavior
in t of the AFS amplitude, which in turn tells us the nature and

location of the leading branch point in‘thevangular momentum pléne of’

the s reaction; we conclude the section by exhibiting the mechanism

. which is responsible for the cancellation of the cuts, and with some

general remarks.

In Section III = we make & similar analysis of the diagram

' involving the exchange of two Regge poles.

Finally, in Section IV, we consider the more complicated

. diagrams of Figs. 11 and 12, which, as originally suggested by

Mandelstam, actually have the AFS-type singularities. Their analysis
is, of cburée, substantially more complicated and we have to make a
number of approximations (wﬁich do not. seem unréasonable) in order to
arrive at a numerical esﬁimate'of the large-t contribution to the

amplitude coming from the leading angular momentum branch poiht.
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II. THE SINGLE REGGE POLE EXCHANGE DIAGRAM

1. The AFS Approximation

In this section we analyze the diagram of Fig. 1 which in the )
elastic unitarity approximation gives rise to cuts ih the angular
momentum plane. Rather than starting from the unitarity relation, és
- was done by Amati; Fubini, and Stanghellini,l and also by M’andelstém,2
-we shall follow Wilkinu and treat the diagram as a Feynman graph. Our
methods will, however, be adapted to the specific purpose of exhibiting
in as clear avway as possible the moving singuiarities in the angular
momentum plane, and the mechanism which is responsiblé for their

cancellation.

Consider then the Feynman amplitude corresponding to the

diagram of Fig{ 1

o 2 o p D 2 1 1
A(s,t) = Cfdkl dk,’ dlk3 dk), J(kn,s,t) G . -

2 . . 2 2
kl -m+ ie k., - m + i€

x ——s— Rk, t; &7, k), (11.1)
2 2 3 2 L
kLl. - m+ i€ .
where C 1is an overall constant, J(kne;s,t) is the Jacobian for
the transformation
e —s 1 oax? ) :
1 , n
. n=1
- - . ‘ ) i

X e 2 2 , i ' L
and R(@(kB'), t; k2 ’-kh ) .isthe off~-the-mass-shell amplitude

associated With the exchange of a Regge pole with trajectory G(RB ):
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the invariants s and t are defined by s = (ql- pl) , and

t = (p1+ p2)2. As we shall see later, we do not require an

‘explicit expression for the Regge pole in order to prove the cancella-

tion of the AFS cut; only its general properties are needed.
: 2
Now the Jacobian, J(kn :8,t), is given (we suppress the

arguments.) by the following expression

ey
1

G(D)/(D)% , (IIfEa)

where

e
i

| .16 Detlok, -k.| . | (1T.2Db)
17

5 .
Evaluation of the determinant yields, for s/% <<1l, and m /f << 1,

‘ 2 ‘ v .
D - ;6t2 {uskf- (x5 s - k52')- + W) [(k3£+ i - kf)(x%% n- k,°)

- ' 2 ’
| 8 o
© 0% s - 150 Ot 3 50 ¢ B 057 1) ]}

(11.3)
Now we are interested only in the 1ea§ing canbribution to (II.1) for
t - co; we therefore may approximate ﬁhe right-hand side of (1133) by
the first two terms, since the remainder becomes comparable in:

magnitude only when k22 or khg (or both) become of the order of

t, in which case the contribution to the integral is already stfongly

suppressed due to the>presence of the Feynman propagators. Hence for

t - 60 Wwe expect the leading contribution-to.(II.l) to be given by
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e )

Als,t) = IICE fdkle dkf T(kf,k;,s) ~—-§———1---—-
, k.~

- m2+ ie
1 (TT.k) y
2 2 1 . 2 2, 2
X fdkz dke), 55 5D R(o‘(k's )tk Iy ):
[k."- m™+ iellk, - m + i€] - —
2 © ho
2 2 P . o
where T(kl B k5 ,8) is the usual triangle function defined by
. R 2 12 H2’ t n' T 1! 7
Hx, xhx") = Gbg-izqé+&m +2%xxX +&<x2 (11.5)
- ' (~-x"-x'"-x""42xx" +2xx" +2x'x" )2

From”the'preéent péiﬁﬁ of view the AFS approximation corresponds to
' ignoring'the,singularities of R(@(kBQ),t;kez,kug) in k22 and

kf; since for fixed kf we expect that R = 1/1\:22 as _k22‘ ~ 00,10
wg‘may_close the k22 integration contour in the lowervhalf of the
5: cémpléx plane; if we ignore the singularities of R, then‘tﬁe only
contribution to the integrél‘éomes from the pole of the propagator;

repeating the same procedure with the k 2 integration, we obtain
n &

the following expression for the AFS am.plitude:ll

| 2 ¢ 2. 2y N[ 2 2,2 I
‘[A(s’t)]AFS = =7 T fdkB R(Clﬂ(k5 );t)fdkl T(kl ,k3.,S) -1:—-2———5'—--— 3
’ . - A -m + 1€
o | (11.6)
where R(oe(ksg ),t) = R(oz(kf),t;mg,me). At this point we could

perform immediately the k1? integration; however, it turns dut

convenierit to leave it in the form (II.6).
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2. Representation of the AFS Amplitude as a Contour Integral in the

Energy Plane of the Exchanged Regge Fole.

We now wish to write (II.6) as a contour integral in the

energy plane of the exchanged Regge pole. To this effect we change
12 and k a’

the integration variables in (II.6) from k 5

12

to k and

, kz,,where

x o= kP - /) (s o)
' ké . (2 -5 - k3?)/é(- )2,

1

and substitute for R(@(kBE),p) the expression15

. , 2
. . : a(k_ ) :
2 2 ey 2 i
R@(k,),t) = (k) cl@) g(@) t 2/ sin (k) , (11.77)
3 p) 1 3 o
where C(a) 1is the coefficient of z% in the asymptotic expansion
of the Legendre function Rj(z), and where 7(k32): is a reduced
residue function which iS'relatéd to the full residue _B(kBE) of

the Regge pole by

7(k32) = -5 (e +v1)6(1%2)/(2q2)0‘, ‘- 2 f.k;f/u,,-

Finally, §+(a) 'is the usual signature factor

. §+(a) ,= exp(-ina) T 1 .
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We then obtain for the AFS amplitude, valid for g <O,

+ Qo

[A(s,t)] “c © s a 7y )
S, = =~ 7 . — =
AFS ‘];co (-x)l 2 .1;0 Z: X - (kz~ \[f;)“_ mc,

alx-k 2)-1 5
x Cla) (@) t 2 /sin nalx - k) (11.8)

Consider the integrand of the kz integration; it is singular at

k= ‘(‘~s)l/2 + 1(m°- le/é | | s : (Ii.9a)v

»and also at

2

k = * i(ué- x)l/é , _ '.  (IL.9b)

whefe-the latter singularities arise from the normal threshoid branch

- points of the éegge trajectory, a(kBQ), and reduced residue, 7(k52),
.and from the vanishing of sin na(k32) .at the bound states and resonances
which 1lie bn the trajectory (the resonance poles are reached by going
through thg normal threshold chs); ﬁn giveé the position of these
‘singularities in the k32 pléne. So far the integral (II.8) is valid
for s < 0. As we increase s through negative values, the’cémplex
singularities (II.Qa).move towards the imaginary axis, which éhey reach
for s =0, PFor s >0 the singularitiés remain on the imaginary axis,
both mbving either up 6f.down depending.on'the continuation chosen for
‘the function (-s)l/é;vas s becomes larger than me— x,véne.of the

singularities will cross the real ké axis -and drag the integration

e

|
i
i
|
!
:
'
i
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contour along the imaginary axis, as is shown in Figs; 2a and 2b.
We now mgke»a final change of variables from kZ and x, to- u = x4k7“
and x . The above discussion in the.'kzt-plane was only intended to

serve as a crutch for a better understanding of the analysis that

:'follows, as well as of the similarity existing between the single and

double Regge pole exchange diagrams. With the above change of

variebles, (II.8) bécomesllL

.fA(s,t)]AFS. = %jc du clu,s) [e’s‘ipr(l'ig%g)t 1] 'to‘(u)'l}, (11.10a)
where : ‘
Celus) = - irc y(u) cla) I(us) - (1T.10b)
and
- 0 o L |
I(ws) = j RSV VR 2, (-0 2 (x - )2

u+ s -m+

(IT.10c)

The contour C_- is shown in Fig. 3. It is clear from (II.1Oc)

that I(u,¢) will have a branch point at u = 0 which arises from
the collisi§n of the“équare-rooﬁ singularity at x = u with the
upper limit of infegration; if we cut.fhe u plane from u = 0 along

the negative u axis, then the contour Cu is seen to extend around

) ' D
‘this cut; the branch of the square-root function, (x - u)l/ , to be

taken is evidently giveh‘by

(x - u)l/é = +1 | (x - u)l/zl, for u >x ;“;
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and corresponds to displacing the .kz-integration contour in (II.8)
slightly into the upper half of the complex plane.

If we define £ = a(u) - 1, then (II.10) can be written
in the form | |
]

.CL

[A(s,t)]

. MOj-

ae (2¢ + 1) b(¢,s) {‘”Q%'i“£) il } £t

AFS Y

.where -b(@,s) c(k(&),s)/(QL + 1)a', A(2) being the inverse of
the transfofmation .t‘ =. a(u) - 1, and a' the derivative:df a(u).
"'The contour C, showh in Fig. 4 has been obtained using the fact
that .a(u) ié a real analytic function of u with the usual right-
hand'cut beginning at the lowest threshold, and aSsuming that a(u)

satisfies.a dispersion relation with at ﬁost one subtraction; the

latter assumption insures that «(u) is an increasing function for

a < Uy s where u l/é is the lowest normal thfeshold energy. Formula

0
(II.lai)has_the form one would expect for the éontribution to. the
amplitude comiﬁg from an angular momentum cut (assuming that the
amplitude has a Sommerfeld-Watson representation).15 | o
Next we wish to examine the siﬁgularity structure of ﬁhé

function c(u,s) appearing in (II.10a), and to continue the integral

to the positive s region, The reason -for meking such a detailed

study is that we believe that the motion, and nature of the angular -

- momentum branch-points to be inferred from the present study are the
‘same for the-more complicated diagrams which do exhibit anghlar

. momentum cuts; the latter diagrams will be considered in a later

(11.104)
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section. Now c(ws) is defined by (II.10b), Where'vI(u,s) is

given by (IT.20c); the integral may‘be,readilyvevaiuafed; one finds

. i *",' [K@g&meﬂL@-(u+-s-zf)
T e T\ a2 s ar ey P
, ' L . _ (IT.11a)
‘where |
Kku;s,me) = (u+s - m2)2.-'hsu , ~ (II.11b)

and Whefe, for s < 0 and.:u > 0, the phase of the quantity éppearing

- within br&ckefs-in the argument of the log is to be taken zero.

Throughout this paper we adopt the conventions that: ‘(a) all_s@uare

roots are td be taken positive if their discriminant is positive,

- and (b) ¢nz is taken to be real for z > 0; all phases will therefore -

be.explicitely exhibited. We now examine (II.1lla) for three real

. domains of the varisble s.

a. s <0

" From (II.11a) we see that the possible singular points of

C .
" I(u,s) are located at

- i‘vcg)év,,

@

and

 i(2) . u = 6 5.

where, for s <'O,bthe latter singularity arisesjfrom'thefVahishing'

of thefdengmiﬂator'ih the argument'of the'log. If we cut‘the>'ﬁ plane
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. from u = 0 along the nagative real axis, then the contour Cu of-

the integral (II;lOa) extends around thig cut, and the value of

T(u,s) on that contour is obtained by continuing (IT.11) in u to

the points uo * ie s, Where uO < 0; from here on we shall refer to

“that sheet of the logarithmic branch‘point on which Cu appears

.as the "leading sheet." We now vefifyvthat i(u,s) is singular at

u = (m - i\f:;,)2 and regular at u = (m + iWJré)g where these

points are reached via the paths shown in Fig. 5. Let

[K(u,s,mg)]l/é -(u+ s - me)

z = 3 (11.12)

['K(u,s,m.?‘)]l/2 +{u+s - me)

Recalling that the phase of 2z 1is zero for s <0 and u >0,

one may readily verify that
z » exp(F in) , as u - (m* if~s)" .

Tt is then an easy watter to show that I(u,s) is singular at

u = (m - iﬂ/:;)e and regular at u = (m + i\/:é)e. The continua-

tion of (II.11) to the remaining sheéts of the logarithmic branch

point at u = O may also be readily effected; one finds that I(u,s)

is singular at .u = (m + i‘V-s)2 on all sheets of the log. with

the exception of the leading one, arnd singular at u = (m - i’Jté):

on every sheet but the one which ié reached by a counterclockwise
continuation around the branch point at u = 0. Finally one obtains
the discontinuity of I(u,s) across the logarithmic branch point by

: cdntinuing (IT.21) to the points u

t 1¢, where R A:.
0 1¢, wherc Uy “\ 33 the
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‘qpantity z ,,defined_by (II.12), then acquires a corresponding

phase "3 im, and the.discontinuity becomes:

{discu I(u,é)}u=o = éﬂ/[K(u,s,mg)]l/é ) (11.13)

b. O0<s < m2

As s becomes positive, the complex singularities of I(u,s)
located at u = (m + i '\/-—s)2 and u = (m - iw/:é)g move onto
the real axis; if (-'s)l/2 is cont{nued to s >0 according to

1/2

= 1 s .,‘then their positions will be given by:

u = (é;/? - m)e = u_ and u = (sl/é + m)2 = u, respectively.

' Ifﬂwe_had chosen the other branch of the'square root, then the above

order of u_ and u, would be interchanged. For the remainder of
this section we shall restrict ourself to the case where (--s)l/2

has been continued to s > 0 according to the above given prescription;

;the other possibility may be discussed just as easily and leads, of

course, to the same éonciusions(with regard to>the singularities

of the s channel~partial-wave-émplitude in the angular momentum
plane [that this must bé‘so becomes évident when one follows the
motion of the singulérities of the integrand of (II.8) in the k,
plane for the two possible continuations of (—s)l/é]. With the
above convention, u_ = (sl/2 - m).2 and u = (sl/2 + m)g' are
the resbectivgvconfiﬁuations of the comblex locations of the'singularitiés
of I(u,s) at u = (m+ i\fj;)e and u = (m - iWJfg)Q; since for

2
s <m neither one of the above singularities could have left their
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v”réspectiVE logarithmic,éheet, it is clear from our previous discussion
of the case s <O that I(us) will be regﬁi&r at u = u_ and
singular at u = u, on the leading sheet, and that it ﬁill be
regplar at the latter point on the sheét reached by a counterclockwise.
continuation around ﬁhe logarithmic branch point atv u = nO. The
‘above expectations may be readily verified by starting from an
expression for I(u,s) valid for s >0 and u = u, + e, where
the latter point is located Jjust above the left handvcut on the leading

sheet; one finds (recall that all phases are exhibited explicitely)

. . [/ K(u ,s,me)]l/é- (u,+s-m° )
I(u0+ ie,s) = = 75 in 9 s—175 0 5 exp(~in) ,
: : [K(uo,s,m )] /: [K(uo,s,m )] /7+ (uo+s-m )
w. <0, §>0. : (TT.1h4)

0]

As one continues this expression in u along the path P shown in

Fig. 6 one finds that at u = u, 2z, = lzil exp(+ in), while
- ét U= oy, 7z, = (l/lel) exp(+in), where z; is the value éf-
(II.lQ) at u = ui [in the figure we have denoted the points ug

by their subscripts 'i]; the discontinuity of TI(u,s) across
u = u ° therefore vanishes; to computethe discontinuity of I(u,s)

‘across u = u, we notice that if u <u< u,

: a - ib ' _ . .
7z = (a————+ 5 veXp(-f—vifrt) = exp(lcp_) exp(+ 171‘),.

thus onhe finds that at u = u3 and u = u), 25'>= je}gp(ich)
exp(+ iﬁ) and  z) = exp(-icP5 - lbigx) exp(+ in), respectively; hence

the discontinuity becomes



-19-

_ . 2. .1/0 .
(discu I(u3,8)1u=u+ = hﬂ/[K(uB,s,m )] /: . v (11.15)"
C.. 5 2> me
 The case & > ne  cen be analyzed in a similar manner as
abové; one fins that z, = lzll exp(=~in), z2, = (1/lzl|)-exp'(—iﬂ),

75 = ‘exp (i¢5) exp(-ix), and z), = _exp(-i®3) exp (-in); we are

therefore led'to the conclusion that
{aiso 1(w,s)) = b/[K(u,s m.g)]l/2 ' ' (11.16)
o Tl u=u_ 1’ ot .

whilo:the discoofinuity of I(u,s) across u = u% isrstillvgiven
by‘(11.15). Thus, for s > m2, I(u,s) is founq to be singular at |

u, and ﬁ on the leadiog sheet of the logarithmic bronch'point; in
fact,. one: may verify that I(u,s) is singular at these points on all
sheets of the log, except for the one reached by a counterclockw1oe
‘continuation. Finally one may readily check that the discontinuity of

I(u,s) across the branch point,at u = 0, is still given by (II.13).

3, Asymptotic Behavior of the AFS Amplitude, and Location and Nature

of the Singularities in the j Plane

From the above discussion of the singularities of I(u,s),

. and therefore also of c(u,s), we 1mmediately obtain the proper

continuation of the integral (II lOa) to s.> 0% for s < m2' the
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contour of Cu of (Ii.loa) extends around the logarithmic branch i
point of c(ﬁ;s) at .u -~ 0, and the asymptotic behavior in t
of the intégral is determined by this singularity. The discontinuity 9
of c(u,s) across the left-hand cut associated with the logarithmic

branch point is given by - e y(u) C(a) (disc I(u,s)}, where we

must substitute (II.13) for disc I(w,s). [This expression remains

valid also for s > m2]. As s Dbecomes larger than ma, the ‘ %
. . 1/2 2 . ' i

singularity of I(u,s) [or c(u,s)] at u = (s7/°- m)", which f

for s < m2 was absent from the leading logarithmic sheet, now

appears on the leading sheet via the branching at u = 0 and

for s >'m2 the new aéymptotic behavior of the amplitude (II.10a)

will be determined bylthe singularity at u = (sl/2 - m)g; the

i

| | . |

draggs the contour Cu to the right as we keep increasing s; thus o

I

|

1

discontinuity of c¢{(u,s) across this branch point, for :

1/2 2 - . o

0<uc<(s / -m)", is given by - ate y(u) ¢(a) {disc I(u,s)}u s : |

where (II.16) is to be substituted for the discontinuity of I(u,s).
The integral (II.10) may therefore be cast intovthe following form,

valid for all real s : | | | : |

v . 0 . |
_ 3 du ' ) (u)-1 T
(A(S’t)]AFS = wC jr [(a+s - me)e_ usu]l/z siz(za(ﬂ) ¢(ar) €<a) Ch :

. . _ _(Sl/é_m)e
4 o0 e(s-mg) -]

0

au | 7 (u) T
[(u+s-m?52 —»Msu]l/2 sin sor(u)

&

a(u)-1 ’

bs

c(a) E(x) t V(Ii;l7)
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0]~
The asymptotic behavior of the AFS émplitude may be obtained immediately
from the éxpression (I1.17); thus for s strictiy less than m2

:(only the first,integral then contributes) the infégrand'is seen to
approach a constant as u — 0, while for s. > me, the integrand of

the second integral diverges as u- (sl/é- m)g; now for large t

the leading contributioh‘to (II.l?).comes from the upper integration
limit of the first or second integral, depending on Whether s < m2

or s >‘m2, respectively. The 1eading term in (II.17) is then readily
obtained by expanding the trajectory‘function a(u) around the

appropriate upper limit of integration ahd neglecting the variations

of any other slowly varying factors in the integrand; one finds

’

[A(é’tQ]AFS ‘E":fzg B(s) ta(o)-l/tn t, for s < m2 ) | (II.lBa).
where
B(s) = C 7(0) 0(a) t() (1T.18b)

sin £1(07 'a'(O)(m2~ S)

and o = «a0). Similariiy one finds that for s > m2
| ﬂ a((sl/é~m)2)-i' 1/2 :
[A(s,t))ps T2, C(s) ® /Ten £, (11.1%)
.whefe ’
7/2'. y(u_) Cla) t(a)

T

fi

Q(s) sin ma(u_) Cme' (u ) 5%11/2 _(II'lgb).
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and o ="d(u_), u ; ~(sl/e- m)2 .

If the AFS amplitude has a Sommerfeld-Watson repreSenﬁation
[in which case the large-t behavior of the amplitude is determined hy
the leading singularities in the J plane of the s reaction], then

" we conclude from the aéymptotic expressions (I1.18) and (II.19) tﬁatun

the leading branch points in the angular momentum plane associated
with the s reaction are located at j = a(0) -1 énd
i = a((sl/é; m)?) -1, for s <uw° and s >-m2, respectively,

and,.furthefmore, that these singularities are of the logarithmic

type,'énd3ihverse'sqﬁare-root type. Since for s < m2 the singwlarity =

at j = .a((sl/é- m)e) -1 no longer determines the asymptotic
behavior of the AFS amplitude, it must have movéd onto aﬁ ”unpﬁysical”
sheet via the logarithmic branch point at j = a(0) - 1; notice
that the latter singularity does not depend on any mass paraméters,
»thle the former one depends on m, the mass of the exchanged
elemehtary parficle. The location of the singularities as well as
their logarithmic and square-root nature agrees with the results
obtained by Mandelstam, 2 Wilkin; ' Gribov et al.,” and Simonov, | in
connection with the single Regge pole exchange diagram for which the

cancellation of the cuts does not occur (see Fig. 11, for example).

ﬁ. Concluding Remarks

_ Befbre cldsiﬁg our discussibn of the AFS ampiitude associated
with the single Regge pole exchange diagram we wish to make two further
remarks concerning (a) the signature of the partial-wave amplitude in

which the leading branch points appear, and (b) the genérationvof the
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normal threshold branch points in s of the amplitude [A(S,t)]AFé ]
. A0

<I‘Wé begin by considering.the first mentioned point. Let us rewrite

(I1.108) as follows:

;[A(s,tﬂAFs = g% Jf du c(u,s) ((—t)a(u)aj tg(u)}/sin ax(u) . (Ii.QO)
. . ‘ ,

We see from this expression that for large t, [A(s,t)] is even or

AFS
~odd under the transformation -t - -t depending on whether we exchange
a Regge pole-bf odd or even signature, respectively. Now any amplitude

that satisfies the usual one-dimensional dispersion relation can be

© 'written in the form

I + - -
A(s,zs) = 5 [A (s,zs) + A (s, - zs) + A (S’Zs) - A (s, - zs)], |
(IT.21)
where 'zé is the cosine of the center of mass (c.m.) scattering

' angle‘for'the s reaction (i.e., z, = 1+ t/2q82, a being the

 corresponding c.m.. momentum) and where

S - .00 A (s, t) : ® A (é u')
¥, - v s sl
A"(S’ZS) = }.. f . dt' t : i_ _i_-_ [ du! 1
R C 3 u'- u(s,- z_)
here At(s,t) and Au(s;u)7_are the t-channel and u-channel
absorptive parts of A(s,t) respectively, and t, and uo are the
‘squares bffthe lowest normal thresholds in the t and - u reactiohs;

since for large‘.t, z d;vt; it follows from (I1.20) and (IT.21) that

‘ 'in_the;limit' t - o  only the positive (negative) signature amplitude
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will contribute to [A(é,t)]AFS if we exchange a Regge pble of
negative (positive) signature. Thus the leading.branéh points in
the angulgr momentum plane appear in the analytically continﬁed
partial-wave amplitude of signature opposite to that of the exchanged
Regge pole. |

We now tﬁrn to the second point and show how the ndrmal
threshold branch points of [A(s,t)]AFS in s are genérated; they
are expected to result from the coincidence of the poles and normal
threshold branch points of the Regge pole amplitude Qith the pole of
the propagator associated_with the elementary particle exchange; the
latter manifests itself in the singularity éf c(u,s) at
u = (sl/é- m)2. We notice first of all that the integrand of (II.20).
has poles at u = Mie, where Mi are the masses of the physical
bound states or resonances lying on the Regge trajectory [the latter
singularities are reached by going through the ﬁormal thfeshold cuté

of the trajectory function a(u)]; they are therefore a solution to

o 2

i
L
n
-
=
e

and

-, D
1o} (Mj )

1
[}
A
N
e
\J
e

o« s
b

[We have suppressed the signature labels. on the trajectory function
in (II.20)]. The residues of the poles at the remsining integers of
+ .

a~(u) vanish on account of the signature. Now for s < mg,_the

‘contour C_  extends along the negative ‘u axis and encircles
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the branch point of c(w,s) at u = O; as we increase s above

2 1/2 " 2 , _
m’, a new singularity at u = (s -m)" appears on the leading
sheet, and the contour Cu will be pinched between this singularity

and the above-mentioned poles when

2
s; = (m Mi) 5
. This gives the position of the two-bhody normal threshold branch points.
The highér.normal threshold branch points are generated in exactly

the same.wéy'by the pinching of the contour Cu between the moving

singularity at u = (sl/é- m)e, and the normal threshold singularities
at u = »qu of_the'Regge pole amplitude; their locétions are given
by |

3,2
sy = (m+ w?) .
In addition to the abbve normal threshold branéh points the continued
partial-wave amplitude of definite signature, bt(j,s), will have
singularities in s arising from the moving branch point at
j = a((sl/é- m)g) - 1, as wvas originally pointed ouﬁ by Mandelstan.”

Their locations are given by
. 1o
s(3) = (m+ [A(G +21)1%) , : (I1.22)

‘where N is the inverse function corresponding to «afu).  TFor

definiteness sake let us consider the case in which we exchange a
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trajectory of even Signéture (the Pomeranchuk, for example). The
singularity at j = a((sl/é- m)e) ~ 1 will then appear.in the odd-
éignature partial wave amplitude; thus from. (I1.22) we see that il

J is an odd integer [b (j,s) then coincides with the physical
ﬁartial-wave amplitude], the singularity 's(j). coincides with the‘

normal threshold branch point at s = (m+ M )2, where

J+i J+1
Mj+l is the mass of the bound state or resonance of spin o =.J + 1
‘iying on the trajectory ofu). If, on the other hand, J is an
‘even integer [for which b—(j,s)v is unphysical], then the singularity
s(3) coincidés with ah "unphysical" threshold corresponding to the f
two-bodyvintermediate state formed by the elementary particle of mass
m and an "unphyéical" particle of spiﬁ o = J+1 (i.e., an odd-
gpﬁn particlevlying on an even-signaturé trajectory); this latter ?
singtlarity will, of_course, be'absent in the full amplitude.

5. Cancellation of the Cuts.

So far we have been dealing wifh'a particular contribution to
the amplitude (II.l) which has the angular momentum cutsvexpected on‘
the.basis of an AFS type of appro#imation. As was originally suggestéd
by Mandelstam,gvtheSe cuts are absent in the full amplitude;-the purpose
 of this section is to exhibit the simplicity of the cancellation
mechanism. To this effect we retﬁrn to formula (II.&) which oné would
- expect to give the leading éontribution ﬁo (I1.1) forf‘t—;oo ; the.
approkimation which led to expression (II.6), and hence to the.cuts’in
_the angula? mbméntum plane, consisted in‘ignoring the éinguiarities

: .2 27 2 : -~ S
of iRQ}(k3 ), t; k2 fkh )_ in.the‘ k2 and kh planes. .Wg now show
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tlhatzv‘i»f“w.ve include the latter singularities, the integral (IT.k)
'§anishes identicellf;l.To see this ene only has to realize that the
sihgulafitlee'of a Feynman.amplitﬁde in any one of its external
invariant masses must lie'in the lowerﬁhalfIOf the complex plane,
o if the remalnlng variables are kept real (we are referring here to

'four -line connected parts) 16 Thus, if iRGx(k ), t3 2, kh2>
vanishes ag ”kee or kle‘ becomes infinite, as we believe to be
the case,lo then the integral (II.4) will wvanish idenilcaLly, since
the singularltles of the 1ntegrand'1n K © (or k)+ ) are all

e
located in the lower half of the complex plane. The two cancelling

= R pleces of the amplltude (II L) may be readlly exhibited. 'ansider_

the k22 integration for,example; the contour integral along the

'feal_éxis méy be split up as shown in Fig. 7; the contribution to

the amplitude coming from the contour CAFS corresponds to an AFS
type of approximation, while the integral along the'contdur C’AFS
“(whlch encloses all the 51ngular1t1es of R in k ) becomes the

dispersion integral for the function R(;q(k3 , t; mz,,kh >; the two

contributiphs mentioned above dvidently caneel, It one centinues to
tfeat the two pieceslseperately and performs the remaininé integfatﬂans,
ohe finds that é similar cencellation takes.place within each of the
separate pleces, the AFS approx1mation to (1I.1) is obtained by

conslstently 1gnor1ng the C’AFS 1ntegratlons.v

o
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III. THE DOUBLE REGGE POLE EXCHANGE DIAGRAM

1. The AFS Approximation

In this section we analyze the diagram of Fig. 8;vfor
simplicify'we conéider the exchange of two identical Regge poles;
the modifications thét are required if this condition is relaxed
"aré rather dﬁvious’a@d we state them at the end of the section.

Making fhe same approximations to the Jacobian (iI.E,B) as
before; we arriveiatvthe following expression for the leéding contrif

bution to the amplitude at large t, and s < O:

' | \ 1
Als,t) & g5 | ak ® ax® ax,’ dkf (2,52, s)
T4t 1 e 3 R [%f-rf+i£][%f-n?+ie]
2 2 oy oy L. L2 .2y N
,x R(a(kl )y ts k)5, k) ), R(a(k3 )t kS K)o (111.1)

-~

where T(k12,'k52,s) is the triangle function defined in (II.5), and
where the funétions R are the amplitudes éssociatedIWith the two
Regge poles. The.AFS approximation corresponds, as before, to ignofing-
" the singularities of R in kgg “and kf; closing the k22 and kf

integration contours in the lower half”planes, we pick up the following

contribution coming from the poles of the two propagators:

2 2
| ) | » 7 (%) 7(k, )
. '[A(s,t,)]AFS' = - _nEC fdhle dkBE T‘(kl-g, k;’,s) il 5 3 5

sin na(kl )v sin :rra(k5 )

| O .
x o(k,%) C(k;) g T ) , (111.2)
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vhere we have substituted (II.7) for the on-the-mass-shell Regge pole
- amplitudes (througho{it this section we shall omit all signature factors
and signature labels,” since they are not pertinent to the discussion);

the coefficients C(klg) and C(k32) are defined by

)(z) — &(y) 20) | Y(IiI.B)

a( Z?>

Except for a trivial change, we treat formula (III.2) by the same
recipe as was used in dealing with the single Regge pole exchange
diagram. Let us switch to a new set of integration variables, x

 and r, which are defined in terms of kle and k32 by

2)2

»
il

s

k;‘ - (1/ls) (kf- 5 - Xy

and -

=
it

2 2 1/2, 1 1/2
(0% o - 12)/e(-6)7%) - § ()2
,. In terms of x and r the integral (III.2) becomes

N [A(s )]

AFS

2 9 ' d_x P " 7(}( - (r +\[:s/2)2)
- 7 - 7
f (—x)l; 2 j sin nalx - (r + ¥-s/2 )B)

r(e- G -NFRP) Oé(x (r+ rs/e))w(x—(r Vo)),

X C(x,r;s)

sin ﬂa(x - (r - -5/2)2)

(111 ha)

where

B(x,r;s) = ofx - (r + J-‘E/e)g) Cx - (r - F’s/e)ej , (TTT. %)
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and C(y) is defined by (ITI.3). Conslder the analytic structure of
 the integrand of (III.4) in the r plane; there will be poies.ariéing

from the vanishing of the sine factors in the denominator, as well as

branch points which arise from the normal threshold branch points of
" the Regge. trajectory function, «a(u), and reduced residue function,

“y(u); the location of the singularities in the 1r plane is thus given

by

r = + % (—é)l/é i (un- x)l/2 s (I11.5)

where u, stands for the équare of the masses of the bound states
and resonances lying on the trajectory af(u), and for the position
of the normal threshold branch points of a(u) and y(u). If we

define the "angular momentum" variable 5;17

L = a(x - (r +\J;T§/2)2) + a(x - (r - \Fé/e)e) -1, A(IIi..6)

then the integral (III.L4) may be written in the form

. 0 ’ ‘ .
. . o) dx : at . A : -
[A(S;t)]AFS = -z C f (_x)l ) [C —g';/_a'; B(L)S’X) t s (III'()
-0
o L .

where the contour C, is shown in Fig. 9, and where B({,s,x) is

£

the quentity appearing within braces in (III.4) expressedbin'térms of

¢ and x through relation (III.6). To obtain the contour C, of

Fig. 9 we have used the fact that o(u) 1s a real énalyﬁié_function

of u, and have made the assumption that da/du > 0O for m <0
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- (which is true under very general conditions as was emphasized in

Section II). Notice that the Jacobian for the transformation
dx dr - dx d¢ is singular at r = O, since (III.6) is invariant

under the transformetion r - -r. This ménifests itself in formula

(II1.7) as a singularity of the integrand at ¢ = 2a(x + s/4)-1

(corresponding to r = 0). which arises from the vanishing of Jt/dr ;

in fact, it'follows.trivially from (IIi.6) that at r = 0

dtfor = o . | T (111.8)

B

Thus, for any given1 X, the contour C& of Fig. 9 is the "minimizing"

contour {since any other contour obtained by diétorting C, must

pass through a point ty for which Re &% > 20(x + s/4) - 1]; the

asymptotic behavior of the integral over ¢ in (ITI.7) will therefore

:bevdetermined,by the'singularity at ¢ = 2a(x + s/ﬁ) - 1.

In order to continue the expression (III.7) to positive values

of s 1t is easiest to return to the form (III.k), since we have

complete knowledge of the singularity structure of'the integrand in

the r plane. As we increase s froh negative to positive values,’

the complex conjugate pairs of singuwlarities (III.5) move‘ohto the

imaginary axis, and remain on that axis for s > 0; for a fixed

~value of  x, the raintegratibn contour of (III.k4) [corresponding

L} will then remain undistorted as long’

as -s < h(ME-.x), where M is the mass of the lowest-lying bound

stéte 6n‘the trajectory  a(u); if no such state exists, théen M- ig
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"to be replaced by the energy correéponding to the lowest normal
threshold branch point'of the Regge pole. We shall assume for the

present that there exists such a bound state; it then follows that

for s = h(ME- x) the r-integration contour will be pinched by
the pair of singularities located at r = -(1/2)51/2 + i(M2- x)'l/_gv-
and r = + (i/'v2)sl/2 - i(ME- x)l/é; thus for s > M(M2~'x) the

contour will appear as shown in Fig. 10.

2. Asymptotic Behavior of the AFS Amplitude, and Location of the

J-plane Singularitieé

The asymptotic behavior of the amplitude (ITI.k4) will be
'determinéd.by the above-mentioned singularifies in the .r pléne,
and by the upper limit of the x integration (i.e., x = 0); Thus

for s < MME' the large t-behavior of (III.7) is controlled by

the singularity of the integrand at & = 2a(x + s/b)-1, and x = O

(coryesponding to r =x =0), while for s > we it is controlled
by the singularity at £ = oc(ME) + a(s + M- 251/2 (Ng— x)'lv_/g)'- 1,
and x = 0 [corresponding to r = ¢t ('i/2)sl/2 ;Ai(M?- X)l/é,

and x = 0]; that the latter sihgularity will dominate over the
former for s > MME, follows from the fact that Bet/BnE > 0, where
in = r, and ¢ is defined by (III.6). To find the précise form

:for the asymptotic behavior of (III.4), we expand the various Regge

trajectory functions around the above mentioned points in the x and’

" r planes keeping only the linear terms, and ignore the variation of

all slowly vérying functions in the ihtegrand; onevreadiiy finds that
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[A(s,t)]AFS E—:fzg D(s) téa(s/h)-l/tn t, for s < hM?, | (IT1.9)

where

7(s/4)

2 _ o
———— ] ©(0,0,s)/2a' (/) , X
'sin'na(s/h):) ! V/ear (s/4) - (III‘)b)

aﬁd
N | . /2 A2y
(A(s,t)) e T2 His) t B’ ( & )Al/(ln ‘c)l/2 p .
for s. > P 5 (1I1.108)
where
H(s) . 5/20 7 (722 wP) y0F) S0, - 1 5%/250)
s = T - 5 - G "~ o..1/0
sin (572 w)7)  (-1)°B war 08 (V2 ) o (572 m)%) 12
' (I11.10b)

and ZB_ is the spin of the bound state of mass M . Assuming that

the amplitude (IIT.L) has a Sommerfeld-Watson representation, we then

conclude from (IIi.Q)‘ that the continued partial-wave amplitude
_associated with the s reaction must have a logarithmic branch point
cat j = 2a(s/k) -1 which for s < Wf 1is the leading singularity .

'in the j plane; similarily, one may conclude from (III.lQ) that,for S

s > hM? the leading singularity is a branch point of the’invérée—

square-root type located at J = {j + a((si/é— M)E) - 1; since for
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's.< MM? fhe latfer sinéularity has'no\effecp on the asymptotic' f Iv o %

| behav1or of the amplitude (III L), it must appear on an unphysical g D ,‘é

_sheet of the logarlthmlc branch point. | : . *\ ' o S
" One can readlly genera114e the above d]SCUSSIOH to the caco

:>Where we exchange two dlfferent trajectories ‘ali ‘and Qé . The

~analogue of the singularity at J o= Qa(s/h) -1 is still determihed

by _(I'II'.S) and by the upper limit of the x integration in (IIT.7).

The position of the singularity is readily found to be
o (u) + 0‘2((31/2" u1/2)2)--. 1, - (111.11a)

where u is a solution to v ' L . L

a.l'(u') - d',2<(s.1/2_.ﬁ1/2)2>‘ (Sl/e’__. u_1/9)/-111/27‘ =0 o (-H;'lvlb)'_

Let us suppose, for 51mp11c1ty, that only one of: the tragectory

'functlons, say QI » passes through a phys1ca1 bound state of mass ml

and spin (&lI.. In the r plane of the 1ntegrand of (III h) thls glves

Tise to.a pair of singularities which for s > O, and.flxed negatlve

. X, appear on the imaginary axis at r = i.%'sl/ét‘i(mle - X)l/é-

*FWe;are‘forCed'ﬁo'distort the minimizing contour associated,with the

vanishing of Jd¢/or (where o= o o, - 1) when the 31ngularlty
1 1/2

+ 1(m1 - x)l/ coincides with r '= r. , where ' !

‘at r =.—-i Q2 MEE - .

.'ro is a SOlution to (III.8); in the ¢ plane this correspbnds to

the coincidence of the bound-state singularity at

*
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' 2 1/, 2 1/2
i = &l-+ Qé s + my -_25- ,(ml - )

arlslng from the vanlshlng of St/ar in (III.7); now with regard

-1 and the singularity .

to the -x 1ntegratlon, the asymptoulc behavior ofv(III;Y) is determined

by its‘upper'limitﬁ furthermore, the above-mentionedlsingnlafities in

" the "¢ plane Willncoineide at x = 0, vhen s is a solution to'

s

aﬁﬁﬁé)TGE(@Lé'mif)(gﬂilﬂbﬁl”elQ; l'. (hj@g)ih

Let -'é be'the‘critical value”of-vs;-it then follows that (exeépt"

for logarlthmlc factors)the asymptotlc behav1or of the amplltude will

A(s)

be of ‘the form % , where A(s) is glven by (11I1. ll) it s-<_sc ,'

and by Ll + (Xsl/é_ ml) ) - 1, if s >, (the latter behaler isl

V-determlned by the above mentloned bound state 51ngular1ty) The
: general plcture in the angular momentum plane whnch is sug ested by

- the analys1s of thls section is summarlzed below. Flnally we w1sh

to remark that none of the above 51npularit1es w1ll be preoent in the

. complete amplltude (111. l), the mechanlsm respon51ble for thelr-'
caneellatlon is, of course, of the same type'as the one discussed in .

"Sectlbn'II’ invconnectionrwith the singlevRegge-pole exchange diagram,

3, Cencluding Remarks'and Summary

Let us summarlze the 31tuat10n for the case where the two

exchanged tragectorles are 1dentical. Assumlng that the AFS approx1ma-
'ftlon to the dlagram of Flg 8 has a Sommerfeld Watson representatlon,

z‘we are led on the ba51s of the asymptotlc expresolons (III 9) and

'(III,lO), to theﬁfollow1ng picture in the angular momentum plane off
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the s reaction:’ if there exists a bound state of mass M lying
on the trajectory oa(u), then for s < AME (that is below the
threshold corresponding to the two-particle intermediate state formed

by the bound states of the Regge pole amplitudes) the leading -

-singularity in the J plane is located at

J = 2a(s/4) - 1. (111.13)
. All other singularities which lie to the right of (ITI.13) hence must

- appear on én unphysical sheet. As we increase s above hMg, a new
sihgularity emerges onto the physical sheet via the branching at

(III.lB) and contrels the asymptotic behavior of the amplitude; its

position is given by the formula

'(iII.lu)

j, & a(Ksl/é; M)E)v+ @B -1,

where ty 1is the spin of the bound state; (III.14) is the analogue
of the moving singularity é a((sl/é— m)g) ~ 1 found in the

single Regge pole exchange case. If; on the other hand, «a(u) has

no bound state, ther (III.13) remains the leading singularity for
5 < l6m2, that is, below the four-partiéle production threshold
(corresponding to tﬁonpartiéle intermediate states for each of the
Regge pole amplitudeés). For é > 16m2 .é new singulafity then

S

appears on the physical sheet via the branching at (III;iS); it
location is givenlby



»

_3."(-
j = a(hme) + a(Ksl/é- 2m)2) -1 . | (111.15)

Now there exists no essential differenceé between the various types of
singularities in the r plane of the integrand of (III.h4): the geﬁeral
picture thus suggested by the above analysis is tha£ as we keep
increasing' s 'through positive values, all the mass-dependent
singularities (which arise from the bound‘states and norﬁal thresholds

of the Regge pole amplitudes) will appear in turn on the physicdl

sheet via the mass—ihdependent branch point at j = 2@(3/&) -1

wheénever s has the éppropriate value forvthé coincidence of the
singﬁlaritiés of type (III.14) and (LII.15) with the singulérity

(IiI.lB); for any given s,-the rightmost singularity will thenl

determine the asymptotic behavior of the amplitude.

So far we have not specified which of the two 5-channel

.partial-wave amplitudes_of definite signature carries the above-

mentioned branch points; to answer this question we notice that

a+ -1 |
s e )t 2 s @A) () e (8) 2t D)

It follows that the amplitude. (IIT.L4a) is even or odd under the

,transformation_ t > -t depending on whether,we exchange two Regge

poles of opposite or equal signatures,'respectively [the signature

factors had been omitted in (III.la)]. Similar reasoning to that

_in Section IT in connectioniwith the single Regge pole exchange diagram
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fhen leads us to conclude that the above-mentioned branch points in
fhe J plane will‘appear in the even‘o£ odd signature partial-wave
Kamplitudes depending on whether the two exchanged trajectories have
opposite or equal signatures (in that order).

Concefning the normal threshold éingularities of [A(S,t)]AFS
in s ; they are generated in a similar way to thqse of the sihgle
'Regge pole exchangé émplitude; thus, let us suppose that there'exist

two physical bound states of masses m, .&nd m? which lie on the

1

trajectories ay and @, , respectively. For s > O the pairs of
o .

singularities of the integrand of (III.ha) in the 1r plane which

arise from each of thé bound state poles of the Regge ampiitudes

[their locations are given by (III.5) with u - le and mee] lie

on the imaginary axis; as we keep increasing s, two of the four

singularities (one from each pair) will pinch the r-integration

/

contour when

/2 (m.2- X)1/2 - (.- X).1/2 - 0
17 2
Performing the x integration then generates an end4§oint singularity
of [A(s,t)]AFS at

: 2
s = (ml + mg)

This is the two-Bodyhnormal threshold branch point corresponding to

the intermediate state‘formed by the bound states of mass my and m,
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As we keep increasing s above s = (ml

contour will again be pinched between two of the bound-state sinéularities'

+ m2)2, the r-integration

and one from each pair of threshold singularities'(which arise from the

normal threéhold branch points of the Regge pole amplitudes) when either

S1/2 ’~(m12' X)1/2 - (P X)l/e A
or .
s1/2 ) (m22~_x)1/2 - (lm2- X)1/2 Ny
{we have assumed that u = hmg is the lowest normal threshold of

qul(u),t) and Rng(u),t)]. Subsequent integration over x then
prqduCes the corresponding three-body normal threshold branch points
at s = (ml + 2m)2, and s = (m2 + 2m)2, respectively; the
generalization of the abové results to include highef normal threshold
singularities (which will be complex if they arise from resonances

lying on the trajectbries o, and Qé) is self-evident.

1
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IV. DIAGRAMS THAT HAVE THE MANDELSTAM SINGULARITIES

So far we have dealt with a set of Feynman graphs Which.in
an AFS type of approximation gave rise to angular momentum branch
points‘which are, however, gbsent in the full amplitude. Nevertheless
we have sfudied them in great detail for two reasons: (a), we wished.
to obtain a clearer understanding of the mechaﬁism responsible for
the cancellation of the singularities (which preéumably is not in

operation for such diagrams as shown in Figs. 11 and 12); and (b), we

expect that the location and nature of the singularities found in an
AFS type of approximation to the diagrams of Figs. 1 and 8 is the

: same as théi found for ‘the full amplitudes associated with the
'diagramsvof Figs. 11 and 12. It is clear that the complexity of the
latter diagrams will make it impossible to carry buthas careful an
analysis'as was made for thgir simpler versions, and we will have

to sacrifice a certain amount of rigour in favor of simplicity.

1. The Single Regge Pole Exchange Diagram

Consider the Feynman amplltude correspondlng to the diagram
of Fig. 11 which is éxpected to have the angular momentum branch

points,that we found in Section II in connection with the AFS . -

approximation to the diagram of Fig. 1:2

4 1 b T , . |
A(s,t) = -1 ) 2‘) d £, a k dmy —m——m—— I ST 55 |
- Mg ' ;

55 . . T3 B B 3.
Ny - m o+ e i=1 [gi m +1€][ki —m_rle]

..- o~ . 0 o N ‘ ’ - -, - )
x R(Ol('ﬂgd); U §327 gu) k3 » kb, ) 2 : : (IV!)
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wvhere R 418 the amplitude associated with the Regge pole,l U

being the invariant momentum transfer squared
(1v.2)

: o ’
Let s' = n,, s" = n,°, t' = (ql + ng)‘, and t" = |
(qe-- M )2. The compbnen'ts of the four-vector N, may be expressed

in terms of the invariants s', s", t', and. t'"; the Jacobian for

the transformation is given as before by (II.2,3) with the replacements:

2 -2 .
kl - s", 1%2-* s', k22_—> t', and kf-—» t"; proceeding as in Section IT,

we shall keep for t - co . and small momentum transfers s only the"

first two terms in the expression for D [see Eq. (II.3)]. With

this approximation the integral (IV.1l) becomes

A(s,t) t - H (_____) fds' ds" T'(',,,s ,s8")

- m + i€

(1v.3)

+ 00 +CO

X f dt'j at" F(s',s",t",t";s,t) |

=00 -

where 1(s,s',s") is the triangle function defined in (II.5), and

where

i=1 [gie- m2+ 1e][k12— n+ ie]

: r L Ra(s") T
1 » R ‘
i F(S',S",t',t";s;t) - —[dugl d‘kl I ( 3 l} 5 )_f) .

(Tv.h)
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Included among the singularities of F there are those pertaining to
the integral (IV.M) with- R replaced by a‘constant; i.e., it has the

singularities of ¥ , where o : I ' BT
= ' 11 ' n‘ C ' f " C _ir. 1> n.
F(s »8,t0,t ;s)- = Al(s,t';s ,S})VA (s,t"s58",8") ;

here Ac(s;t;s},s”) is the invariant amplitude associated with the

"cross" in Fig. 11:

, : . 1 , ,
a%(s,t0580,8") = dhgl I o~ - - (1v.5)
e , i=1 g, m+ e :

o o o | L .
Now Ac(s,t’;s',s") has normal threshold branch points at t' = bm - ie

and u' = (qe - pl)2 g"hmz - ie , where t' and u' are related
according to: t''+u' +s = .2m2 + 8" + s“._'It.follows that (IV.h)
will be singular at

, ‘ 2 . ‘ . ) X . . .

t' = bm - e ; - (1v.6)
~and | '

.v ' " 2 s :

t' = s' +s8" - s -2m + ie, - (IV.T7)
with an identical set of singularities of F' in the variable t" = = o

which arise from the normalvthreshoid singulérities of Ac(s,t”;s‘,s”).
'Tﬁé essential feature to be noticed about the singularities (IV.€,7) is'
thaf'theyvappear'on opposite sides of the t! integratiohjcénﬁour,. v‘ S
Ct' b(thé same; of course; applies tq'the singularities of F 'inb t"); | -

the integration contours of (1v.3) in the t' and t" planes are Lhus
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forced to cross the real axis somewhere between t' . (or t") = lm™
and t'" (or t") = s' +s" - s - one Now from the Landau equations
for the nofmai thréshold singulafities of the two crosses in Fig. 11

it follows that when - t' = hif - ie the vgl integration qontouré

in (IV.%) cannot be distorted so as to avoidbthe region where

2"= Eug = m2;vsimilarily,_when' £ o hme_ ie,:

= -, and 552 E

2 |
we cannot avoid the integration region where k, = - ku, and

2 .
2 . 2 2 . . - PR " " Yy
k," =k, = m; from this it follows that when t' = t = bm

U £ t/4, where ‘U is defined by (IV.2). Similarily, from the

2

~ 1€,;'

k Iandau'eduatioﬁs for the u-channel thresholdvsingularitieé at

u’ =_:hm?”- ie and u" = b - i€ (corresponding to t' =
i _ v ,

‘ v 2 v ’ : - o ‘
s' +s" - s -2m + ie and t" = s' +s" - s -2m + ie), one .

finds that there exist corresponding unavoidable integration regions

= e ? - gC = n°, and X =

.ip (Iv.h)-where PO

- k3,_k1 = .k3_ = m, respectively; once again one may verify
that at t' = t" = s' +s" - s .ot +ie, U = t/b, - Next -

we noticé.that.the~ s' and s" integrations in (IV.3) include the

"

boundary point 'é' =0, s" = s (the boundary of the _S',.sb

.tiOnsrbeing given by &2 +~S’2,+ "2 -IESs'-‘éssf- 2s's" = 0);

‘integra-

furtherméré, We'canﬁot distort thé integration ¢oﬁtours sb as to

avoid this point; now at s’ ¥-O, s" = s, the singularities bfv”F -:
in ¢! énd {tﬁ are 1ocated at t' = hm?e ie, t" = hm?; ie, and._

1 tf = _; ém2+_i€; f"  = - 2m2+ ie, so.thét the t"iand _ﬁ"v intégré— A
.fion coﬁtéﬁrsvare forcéd'to cfbss'thé real axis sbméwhére_bétween

g (or t") = ~)—lm? and t' (or t") = - 2m2; thus one might expact
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. ‘ [o]
that in this region of the "approximate pinch," §.2¢; k.gcy m",

1 1

and U & Q/M . In order to get an estimaté of the contribution

to the amplitude at large t coming from the angular momentum cut,

- we shall make the (not totally unreasonable) assumption that the
major contribution to the guantity appearing within_brackets in (IV.B)
comes from the ebove-mentioned region of the "approximate pinch"
in the t' ahd t" planes, and from the integration region of (IV.4)

" where all four-momehta squared are close to their mass-shéll value;
thus one might attempt to approximate the function .RG}(S’), U
g32, gf, _k3'2, kf) appearing in (IV.4) by its value at U ‘= _t/u,. |

ahd 552 = gh?:_s k32 = kh? = m2 (wg cértainly‘cannot.consider

thg present discﬁssion'as rigorous; however, the approkimations will

at least give us some kind of estimate for the strength of the cut);

with this approximation the integral (IV.3) becomes

t -+ s"- m + ie

. 6 . Coory
A(s,t) ——> - %; (-f-é—) %— fds’ ds" lg_&_s.é.z_s_.__). R(a(sf)! JC/M)
5t , .

(1v.8)

: t® : .Vv 2
e - ‘ X J’ at’ Ac(slt'}s'}su) )

-

vhere Ac(s,t';s',s") is giveﬁ by (IV.5).

Before proceeding with the énalysis of (IV.8) we wish to
emphasize once more that the existénce of the "approximate pinch".
in the t' and tﬁ' planes was essential in deriving thé_expression;

this in turn requires that both the right and left-hand portidns of

the diagram must have a third double spectral function with respe¢t to
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the .s reaction; in faét; it has been showﬁ by Wilkinu thatvif either
the right or left~-hand fortion of the diagram does not have a third
douﬁie spectral function, cone can diétort the inteération contours ol
the Feynman amplitude .(IV.'J.) in.such a way that the Regge po].}.e will
notvassume its.characteristic asymptotic form anywhere élong the pﬁths‘
of integration.

We now returﬁ to formula (IV.B)'and;extract_frOm it the leading
terﬁ for t - oo which comes from the integration region s' a O,
s" ~ s; Approximating Ac(s,t‘;s',s") by AC(s,t’;O,s),_and
.proceeding‘aé_in Section II, we obtain, upon substituting (iI.?)

for 'R,

7(0)

sin 7 (0)

)-1

e o 6 a(0
A(s,t) - f_i—(;(hie) - [K(s)1° c() E’t.(a)(%

0

[ G Jar demen

s« m + i€’
~€

sinna(0) Lo o

; 6 ' 2 : o1,
2 %(fe) 200). - KL o(a) §+(a)(%)a( ) /a' (0) n(t/h)
7t ) - '

for s <O, (IV.%)
where C(a) = CQ}(O)); é+(a) = §+QJ(O)), and
e | |
K(s) =_‘/~ at'’ Ac(é,t'; 0,s) . e (Iv.9b)

-0
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Except for the factor fK(s)]2 and the replacement t.é t/h,
formulav(IV.9a)vis identical to that obtained for.the AFS approxima-
tion to.the single Regge pole exchange diagram treatéd in Seetion 1T
[see (II.18)]; thus once again we conclude that, for s < O, the
leading branch point in the angular momentﬁm‘plane of the s-channel
'paft;al-wave amblitude is located at j = a(0) - 1, and that it is

‘of the logarithmic type.

2. The Double Regge Pole Exchange Diagram_.
-The diagram'inVolving the exchange of two Regge polés
(see Fig.-lE) can be dealt with iﬁ exactly the Same way'as above;
for simplicity we shall consider the case of two identical Reggev:
| pbles; Making the same type of approximations as before, ohe arrives

at the following expression for the amplitude:

. . L : '
1 | " 1 1" [IAY
A(s,t) tfm'i<§%) E]]“'d? ﬁ&s,g)R@@),tﬂ) ,
' ' , (Iv.10)
. + 00 o 2
X R(a(s"), t/h) f at’ AC(S,t';s',s") o
- . "—o ‘ '

the leading contribution to (IV.10) comes from the integration region

s' % s" a s/b, so that we may approximate Ac(s,t';s’,s”) by

Ac(s,t';s/h, s/4) in this domain. If we then substitute

R(as) t/4) = F(a) cla) e, @/R)  fotn a(s)  (1va1)

into Eq. (IV.10) [here T 4is a reference energy to be specified

below] and m&kevthe-change of'Variablés- £ = ‘s(‘+_s",'n  = s’f-sﬁ,

.!’j .

LI
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we arrive at the following formula for the asymptotic contribution

to A(s,t):

sin no Wt -

o u' 7(s/l+)1{(s)c(a)g @\2 1 2_@(5/)-&)-1-;30"
A(;,t)m.}.%g_(;;) < £ ) Ly

S

2 g e é(25§ - 5. ng)' .
x f At (—;) fdn ' © (1v.12a)
S ¢ Lt Wﬁésg ) S2_ ﬂ2

o 2" |
o (TG )e)e (a)>2 ool |
o == (£ ﬁ i (X to'en(t/4E),
33 (8n3 ( DI <lﬁ5> o ‘/toz tn(t/ t)‘v
where ;a. = a(s/4), .dY = a'(s/h), and
. : + 00 . ' _
o H(s) = j at! _Ac(s,t';s/u, s/4) . - (Tv.12p).
o S e

 From formula (.IV..12) we see that for s < O the position of tvhev‘
leading singularity in the aﬁgular momentum plane of the s reaction

is a logarithmic branéh point loéated at § = 2a(s/4) ; 1.

| Fihally we wish'to‘caSt (IV.12b) into a more convenient form

fdr éompﬁtational purposés. Since we shall.be interested inlthefvalue
of (IV.12b) at small momentum transfers s , we Wili approximate the
.intégrand by Ac(s,t’;0,0). -Noﬁ, on acéountipf the many approXimations
‘méde-infderiﬁing formula (IV.lO), we can only hope to obtaiﬁ a very
‘rOuéh esfiméte of the‘contribution to the~amplitude cominé‘from the
cuﬁ. For praéticél reasons we shéll therefore make é furthef approxié

mation and replacé;*AQ(s,t;0,0) by ,Ac(s;t);,where thellatfer is the
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amplitude associated with the "oross" with all external masses
taken equal to . Now, Ac(s,t) is known to have the spectral

representation

o - | p(t', u') B
A'(s,t) = ?[dt’jdu' , (Iv.13)
. T (t'-

) [u'- (bm- s - )]

where p(t,u) is‘tﬁe well-known Mandelstam double spectral function
19

for the box diagram;”~ the boundary .of the region where p(t,u) #£ 0

is given by: (t—lma)ll—ME)-lmu>= 0; from here it follows
fhat, for fixed s, (iV.lB) defines an analytic function of t in'
the +t plane cut from 't = hme along the positive ¢ axis, and froﬁ
f = -8 élong the.ﬁegative axis. The singularities at t = hm?'
and t = - s are the ones responsible for the approximate pinch
.discussed previousiy (where the limit € - O has been taken); the

contour C of the integral (IV.12b) extends just above and just

£1
* below the right- and left-hand cuts, respeqtively. Now for fixed s ,
Ac(s,t)  vanishes like l/%e for 1érge 't:; we ﬁhereforekmay distort
the contour Ct‘ around the right-hand cut‘of Ap(s,t) and rewrite

the integral (IV.12b) in the form | |

Q0

H(s) ~ 2i f at’ Atc(s,t') , (TV.14)
_ ) |
hm

where Atc(s,t) is the t-channel absorptive part of AC(s,t), which,

~in the notation of Ref. 19 is given by
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. : 1 l_
.3 a(t,u) + (g, /%) [K(t,u))" :
Atc(s,t) - '“:iﬂ'—"ﬁ, in ’ it T y ' (1v.15a)
B (AL a(t,u) - (g /t¥)K(t, )12/
where
| 2 - 4
K(t,u) = UWtul[tu - Wm ™ (t + u) + 12m ] ,
a(t,u) = tu.- 2m21t'l-41_4m2u + 6mh s . - (1v.15Db)
,qte =__m2+t/h’
and '

u = lee-s-t'}

© If, in (IV.12); « is taken to be the Pomeranchuk trajectory, then

we obtain for s = O

[a(0,6)) 0y = 158 (é%) 5(0)[H(0)1% R(@(0),t)/ € o' (0) tn(t/4T),
: ' : (1v.16a)

where

R(@(0),t) = -17(0)(-5-). | ‘, (IV.16b)

"We now wish to obtain a'numerical:estimate for the right-hand side
of (IV.16a). From formulae (IV.14) and (IV.15a,b) one Tinds, after

some algebra,



-50_

: . 1. v : ' ~
H(O) = - 55 ,[ dz - tnl1l 4 oz(z + 2)] & -1.53 nB/h“
0

Next wé shall assumebthat the value of ‘;KO) is approximately giveﬁ
by the corresponding residue function associated with the coupling of
the Pomeranchuk trajectory to the =« - = system;.the latter has been
estimated in Ref.'EO; teking into account thaf the Regge pole amplifude
R used in thié section jis related to that of Ref. 20 (céll it R') by
R = 16x R', we find that ¥(0) = -16x, if the reference energy +t
in (IV.11) is chosen to be.'f - 1.87 (BeV). Finally, to obtain

an estimate ofvthe coupling strength g , we take recourse to the
'folldwing model: consider the amplitude for scattering of_two scaiar
particles in the ladder approximation to the Bethe-Salpeter equation

' (all particles involved in the ladder are taken to have masé h);
in_this approximation an estimate of the coupling strength may Be
”dbtained by requiring that the leading Regge trajectory shall péss
through unit anguiar moﬁéntum af Zero energj; The calculations

Ref. 21 show that the required Galue of g 1is approximately given

by g = (16x) m (tﬁis corresponds to A = 16 in Ref. 21). .
Substituting the values for H(0), 7(0), and g into formula (IV.l6a),

we find

A(0,t)/R(0,t) = -k.7/ T a'(0) tn(t/4E) , (Iv.1,7)i-

where we have written R(O,t) = RQJ(O),t). Now, there are indications |

]
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.that the Pomeranchuk trajectory is rather flaﬁ; if we take, for
example, its slopeto be 1/3 that of the P' trajectory (which we
shall assume té go through angular momentum 2 at the_mass éf the fo ,
-and through l/é at zero:energy), ﬁhen we find, using formula (IV.lT)’,
that the ratio becdmes;unity at an eﬁergy éround th BeV.. This.
dominance of the cut over the pole would become éven stronger as we
moved away from the_forward direction. Expénding the‘trajectofy
function a(s/h) éﬁpearing in (IV.12a) around s = O, oﬁe'obtains,
- 'for the fétibv'A/Rv at small‘momentum fransfers s

A(s,t)/h(s,t)’g: 4.7 exp [- g_x(t)] JEAL), (1v.18a)
'whgre | - | |

A(t) = a'(0) tn(t/bt) . | |  ._ b(IV.iBbjA

" The above;obtainedvresults should, of cbﬁrée,’not be taken
vat their face valué, in'view of the numerous appréximétions_made in
the derivation ofv(IV.l7) and (IV.18); even if'éll parameters appearing
in (IV.16a) were known, it would not be surprising if the true result
" differed from the.one obtained above by an order of magnitude, or

even more.



-52-
V. CONCLUSION

The considerations of the preceding section indicate that the
locatioﬁ and nature of the angular momentum branch points assqciated
with the diagrams for which the céncellation of the cuts does not
occur is the same as that for the AFS approﬁimation to their simpler
versions, considered in detail in Sections II and III. The rolé of
the third double spectral function associated with the cross in the
diagrams of Figs. 11 and 12 thus appears fo be essentially that of
preventiné the above-mentioned cancellation from occurring; the latter
diagrams have been studied in much more detail in.Refs. 2 and 5 via
s-chanhel-unitarity, and the results'supporf‘the above conclusions._

_ Concérning our estimate of the contribution to the ampliﬁude coming
from the Mandelstam singularity associated with the diagam of Fig. 12,
it can, of course, not be téken very seriously; it does, however,
Vsugge;t that at moderate energies, the cut and pole contributions

_ mightvconceivably-be of the same order of magnitude. The method used

in the analysis pf Figs..l and 8 had been originally adapted to the

purpose of exposing iﬁ as clear é way as possible the cancellation

mechanism of the Amati, Fubini; Stanghellini cuts; this mechanism has

been found to be extremelyvsimple. The same method also led to-a

relatively simple analysis of the singularities in the angular momentum

- plane of the s reaction; we found them to be'of two general types:
those that are independent of particle masses, and those which depend
on-them. Only the former ones remain on the physical j shéet at

negative momentum transfers; their positions in the j plane are given
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by J = a(0) -1 iaﬁd 3 = 2a(s/4) - 1 for the single and double .
Regge pole exchange diagrams, respectively. It is interesting to note
that both these singuiarities are of the logarithmié type and are a
consequence of the siﬁgular nature of the mepping of the kz plane
into the complex i'plane, where ¢ is the angular ﬁomentum in the

s channel obtained by coupling the (complex)vspins of the exchanged

systems to a relative orbital angular momentum L = ~ 1 . The
EW L N
analogue of the singularity at j = a((sl/?— m)“) - 1 for the single
‘ - D
 Regge pole exchange diagram is the singularity at Jj = a((sl/é- M)C>

+ LB ~ 1 associated with the diagram involving the exchange of two

identical Regge poles; these singularities appear on the physiéal
“J sheet via the particle-mass independent branch points for s S m2
and s > MMEQ resﬁectively; furthermore, both are of the inverse-
square-root type. _The similarity betweenvthe amplitudes (IV.8) and
(I1.6), and, (IV.10) and (III.2), suggests that the above ﬁicture in
the J plane remains the same for the diagrams of Figs 1i and 12.
In conclusion, the énalysis‘presented in this paper indicates
that everything we wish to know regarding the location and nature of
the angulaf momentum branch.points‘aséociated with the diagrams in
which the Singularities are not cancelled, can be‘learned by investigating.
the corresponding simpler versions of these diagrams in an AFS type -
of approximation; thus it appears ﬁhaf the additional complexity of
- the former diagrams, aside from modifying the strength of the singularitieé,

merely serves to prevent the cancellation of the cuts from"occurring.
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As before, the quantity ¢ should not in general be ldentilied with

the total angular momentum Jj in the s channel: one may interpret
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FIGURE CAPTIONSV
Fié.vl.__Box d:agram in which one of the elementary lines has been
" replaced by a Regce pole (denoted by the wiggly llne) |
.Fig. ée. .The new 1ntegratjon contour of (II 8) in the k plane as it
| | ',pappears when 's >'m2- x, for the case- Where (-s) /é has been-
contlnued to s >0 accordlna to - (- s)l/é =; i sl/é;j only
the s1ngular1t1es at k, = 1 sl/2 + i(m -» ) /é ere shown,
'the shaded portlons on the 1maginafy ax1s are cuts assoc1ated
.w1th the branch p01nts that arlse from the normal threshold

;31ngular1t1es in k 2 of . the Regge pole amplltude (they extend

. P
to i i oo) ' )
S 1/@ | .
- Fig. 2b. ‘Same as. in Flg. 2a, except that ( s) has been contlned to .
. 8>0 according to ( s) 1/2 = -1 sl/é;~"“' | |
Fig. 3.  The'contour Cy of the 1ntegral (II 10a), only the slngularlty )

- of c(u,s) at w = 0 is shown
Fig. 4. fThe contour c of the 1ntegral (11 nmi) only the s1ncular1ty
| of b(L,s) at 1 = a(0) -1 is shown -
3+ ie, located

O
'on the contour Cyr to the possible: s1ngular p01nts of I(u,s)

at u = (m + 1 V'")

Fig. 6. The complex u plane, showing the paths along whwch the di scon=<

' Fig.:5; ‘Eaths of contlnuatlon leadlng from the p01nt u

tlnuitles of I(u,s) across u ="u+’ and u~ ;__u“ are

evaluated.

Fig. 7. :The integretion contour of (II.4) .in the 'k 2“plane“split

2
;uP 1§t0.tW0 Pieces, Carg &nd'_CVAFSj'whene‘the-latter contour
- encircles all the singularities in k22 of the Regge pole

hamplitude (these'singularities are,symbolically denoted by the

‘cross).



Fig. 8.

:Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.
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Box diagram in which two of theqelementary lines have been

- replaced by Regge poles.

. The complex ¢ plane showing the contour >CL_ of the integral

(iII.7) for the case where we exéhange two Regge poles, together

'w1th ‘the s1ngular1ty of the integrand. at L = 2 alx + s/h) - 1.

The new 1ntegratlon contour of (III Ya) in the complex r plane

as it appears for s > h(M? x); rB, r! B’ rB; and r'B give

"the pos1t10n of the 51ngular1t1es arlslng from a bound state

of mass 1 l/b lying'on the trajectory a(u); they are given

B ‘ |
R - 1 1/2. 1/2 ~ 1 1/2 N2
| by: .rB'yé 1 5 s / + i(uB x) / ) Ty = i 5 / - i(uB %) /.,
?.'B = - i -2- s / + i(u.B- x) / , and rvB = - i 5 s / -

';'x)l/é ;

Single Regée‘pole exchange diagfém'yhiéh'has sinéularities pf
the AFS type..' | |

Double Regge pole exchange diagram which has 31ngu1ar1t1es of

the AFS type
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