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ABS~CT 

A study is made of the Amati, Fubini, Stanghellini (AFS) type 

of approximation to the amplitudes associated with the exchange of 

a single Regge ·pole and an elementary spinless particle, and of ti-ro 

Regge poles, respectively. The location, motion, and nature of the 

singularities in the complex angular momentum plane of. the ·s reaction 

which appear in these approximations, and tbeir cancellation in the 

full diagram, are considered in detailj the singularities are found to 

be of t;.ro general types: branch points whose positions- are independent 

of pa,rticle masses, and those which depend on them. Only the former 

ones determine the asymptotic behavior of the AFS amplitudes in the 

physical scattering region, while the latter singularities appear only 

on the physical sheet via the mass-independent branch points at 

unphysical momentum transfers. The same method used in the study of 

the AFS approximation to the diagrams ;.rhich do not have the AFS-type 

singularities is applied to the analysis of tlJ.e Mandelstam diagrams 

for which the above-mentioned cancel1ation of the cuts does not. occur. 

The analysis, although less rigorous, suggests that the location and 

nature of the singularities in the j plane are the same as those 
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found for the AFS type of approxin::a tions to their simpler versj_ons. 

Hith a number of approximations -vrhich" although plausible) are hard 

to justify rigorously,. an estimate is made of the contribution to 

the amplitude coming from the angular momentum cut. 
., 
: . 
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I. INTRODUCTION 

It was originally noticed by Amati, Fubini., and f:)tangheJl.i.ni. 

(AFS) that if one combines two Regge poles according to two-body 

unitarity in the t channel, and then disperses the resultant 

absorptive p:~.rt in t, one arrives at an amplitude which exhibltB 

moving branch points in the angular momentum plane of the 
"] 

s reaction. 

Although the cuts suggested by AFS were later found by Mand.elsta.m to 

2 
be absent in the diagram considered by them, these cuts are neverthe-

less believed to be present in more complicated diagrams such as the 

dnes shown in Figs. 11 and 12 (see references. 2, 4.. :-:;., 8); their 

crucial feature is the appearance of the crossed lines. The presc;nce 

of the Mandelstam cuts is the result of inelastic contrtbutlons to 

the unHarity relation, and is particular to the relativtstip 

problem (for potential scattering the crossed graphs do not oecur). 

If such singularities indeed exist then they cannot be ignored, si.nce 

it was shown by the above authors that their contribution to the 

amplitude at large t is similar to that of a Regge pole (except 

for logarithmic factors), where the trajectory functi.on cx(s) is 

replaced by ~(s): 

~(s) 2cx(s/4) - l . 

(Aetua~lly, AFS did not Write it in this form; we shall f3ee, however, 

that the above expression for ~(s) is rlgorously true) .. · Thu~i i.J:' 

cx(s) is the Porneranchulr trajectory, for exampJe, then the branch 

_,.,· 
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.Point will coincide with the position of the· Pomeranchuk pole at 

s = 0 (i.e., in the forward di.recU.on), while for s < 0 ·and 
"" 

large t, the cut will dominate over the pole, If on the other 

hand a(O) l - €, then there exists a region of small momentum 

transfers where the pole will dominate over the cut. For s 

sufficiently negative, however, the situation might very well get 

turned around, with the cut giving the dominant contribution. In 

addition it was indicated by Mandelstam2 and shown by Gribov et a1. 5 

that tb.F.i generalization o:f A. ( s) 

we exchange. n identical Regge poles is 

A. (s) 
n 

' 2 
n a(s/n ) - n + 1 , 

which shows that the trajectories A.n(s) become flatter as we 

increase n. Thus, if a(s) is the Pomeranchuk trajectory, for 

example, then for sufficiently large energies the above singularities 

would dominate even more strongly than the singularity at 

A. == 2a(s/4) - 1 the contribution from the Pomeranchuk pole. 

The above discussion was concerned with angular momentum branch 

points that arise from the multiple exchange of identical trajectories. 

In general one will, of course, have to consider the contribution to 

the amplitude coming from the exchange of different trajectories; the 

location of the associated angular momentum branch points,· however, 

can no longer be given by a simple formula such as· the one dtseusned 

above. In view of what has l,een :;:.aid, jt ts. destrable to get aG 

\ 
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clear an understanding as possible regarding the existence or non--

existence of these cuts in various types of diag_rams, the location 

and nature of the various branch points one is dealing with, and, 

if possible, the strength of the discontinuities involved. 

Let us now review in more detail the history of branch points 

in the angular momentum plane. Following the suggestion of A.mati, 

Fubini, and Stanghel.lini that the continued partial-wave amplitude 

is not a meromorphic function of the angular momentum, Mandelstam 

analyzed a modified version of the AFS diagram (see Fig. 1 )_, and 

shown that the cuts suggested by the above authors were merely the 

result of a poor approximation to the unitarity relation. At the 

same time he was able to show that in a certain approximation (to be 

discussed below) the diagram of Fig. 11 does give rise to a branch 

point in the angular momentum plane whose location is identical to 

that obtained from an AFS type of approximation to the corresponding 

diagram of Fig. 1.
2 

The essential features of Fig. 11 are its right-

and left-hand portions (i.e., the "crosses") which when considered 

by themselves exhibit a third double spectral function with respect 

to the s reaction. The proof of the above result is rather involved. 

It seems worthwhile, however, to give a brief summary of the general 

method used, which leaves little to offer where ingenuity is concerned. 

Rather than making an elastic unitarity approximation with respect to 

the t reaction in the aiagram of Fig. l (which would be the analogue 

of the AFS procedure) Mandelstam applies three body uni tarHy in the 

s channel. By a clever choice of variables for the three-body inter--

mediate state, and eq_uipped with the knowledge of the t>ingular]_ty 

--- ~-··-··-· ----------- -~--~---··-·· 



-4-

structure of each half of the diag~am, Mandelstam is able to sl1ow 

from the large t behavior of the amplHude that the AFS singularHy 

is absent from the diagram, at least in the _three-body unitarity 

approximation. The method used in the proof depends strongJ y nn tho> 

fact that the left- and right-hand portions of the diagram do not 

possess a third double spectral function in the above-mentioned sense; 

the method therefore cannot be extended to the diagram of Fig. 11. 

In order to establish the existence of the singula:d ty in the latter 

diagram, Mandelstam makes use of the fact that if there exists a 

bound state or resonance of spin a lying on the Regge trajectory, 

then the diagram will have a Gribov-Pomeranchuk singularity at 

j a - 1, where j is the angular momentum in the s reaction 

(the elementary exchange is taken to have zero spin, for si.mplici ty). 

He is then able to show, by a number of ingenious tricks, that the 

singularity can be made to disappear by moving the AFS cut rast 

the point j a- 1;. such a phenomenon, of course, requires that 

the angular momentum plane exhibit a sheet structure. 3 

This method, however, cannot be used to either prove or 

disprove the existence of the angular momentum cut for diagrams 

whose right- or left-hand portions do not have the above-mentioned 

double spectral functions, since they do not possess the Gribov--

Pomeranchuk singularity. It was shown subsequently by Wilk:Ln that 

if the cut is to exist, bothtte right-and left-hand portions ·of the 

diagram must possess a third double spectral function in the sense 

that we have mentioned previously. 4 Wilkin's method consisted in 

..., 
• 

,, 
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treating the various diagrams as Feynman graphs, thus avoiding the 

complications introduced. by multiparticle unitarity. He'fl.nds that 

unless both the right- and left-hand portions of the diagram possess 

a third double spectral function, one may distort the integration 

contours in such a manner that the Regge pole never assumes its 

characteristic asymptotic form anywhere along the path of l.nt.egrat1on_; 

with the ampJ.j.tude vanishl.ng like l/t
2 

for t ..... cx.1, he then 

concludes that the AFS singularity must be absent in such diagrams. 

Although this method is quite general, it nevertheless does not 

provide us with a deeper understanding of just how the AFS cut l.s 

generated, and of the mechanism responsible for its cancellation. 

Several other authors have investigated the moving branch 

points in the angular momentum plane. Thus Gribov et al. 5 considered 

the possibility of establishing these branch points directly from the 

structure of the multiparticle unitarity condition for the partiaJ-

wave amplitude continued to complex angular momenta j On the basis 

of a definite assumption regarding the form of this analytic continua-

tion, they are able to obtain, among other results, the above 

singularity at j = 2a(s/4) - l for the double Regge pole exchange 

case, and its generalization to the exchange of n Regge P?les: 

n a(s/n2 ) - n + 1. In addition they obtain a formula for the 

discontinuity across the above-menU.oned branch poi.nt whlch has the 

general form of a unitarity relation involving the amplitudes for 

6 
the production of particles with.complex spin (that is, Regge poles). 

The singularities associated with the exchange of one or two Regge 
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poles have been further considered by Simonov7 using the form of the 

many-particle unitarity relation for complex j proposed by Gribov 

13 
~ aJ.. An alternative approach has been proposed by PoJl<Jnghorne, 

who has analyzed the diagram of Fig. 11 using the Feynman representation 

of the amplitude; in this approach Regge cuts result from pinches :i.n 

the interior of the hyper-contour of integration where the coefficient 

of the asymptotic variable t . h 9 van1s es. The absence of the AFS-type 

singularities in the diagrams of Figs. 1 and 8, and their presence in 

the diagrams of Figs. 11 .and 12, can, in all of the above approaches, 

be ultimately stated in terms of the absence or presence of the 

already mentioned third double spectral function, a fact which had 

2 
or~ginally been suggested by Mandelstam. 

In this r;aper we shall mainly concentrate ori the detailed· 

study of the branch points in the angular momentum plane which occur 

for an AFS-type of approximation to the diagrams of Figs. 1 and 8. 

The philosophy behind this approach is that we expect the location 

of the j-plane singularities, as well as their general nature 

(that is, square root type, logarithmic type, etc.) to be the same 

for the corresponding diagrams shown in Figs. 11 and 12. The 

organization of the paper will be as follows: in Section II we 

extract the leading contribution at large t to the Feynman amplitude 

associated with the diagram of lig. 1, and show that the AFS approx.i-

mation corresponds to ignoring certain singularities of the integrand. 

We then proceed to write the amplitude as a contour integral in the 

energy plane of the exchanged Regge pole and investigate the analytic 

" .. 
·• 

.. 
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structure of the integrand in detail. The nature of the branch points 

is established, and the discontinuities across the various cuts 

evaluated; we then obtain the correct for~ for the asymptotic behavior 

in t of the AFS amplitude, which in turn tells us the nature and 

location of the leading branch point in the angular momentum plane of 

the s reaction; we conclude the section by exhibiting the mechard.sm 

which is responsible for the cancellation of the cuts, a.nd with some 

general remarks. 

In Section III we make a similar analysis of the diagram 

involving the exchange of two Regge poles. 

Finally, in .Section IV, we consider the more complicated 

d~agrams of Figs. 11 and 12, which, as originally suggested by 

Mandelstam, actually have the AFS-type singularities. Their analysis 

' 
is, of course, substantially more complicated and we have to make a 

number of approximations (which do not. seem unreasonable) in order to 

arrive at a numerical estimate of the large-t contribution to the 

amplitude coming from the leading angular momentum branch point . 

. . , ... 
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II. TIIE SINGLE RIDGE roLE EXCHANGE DIAGRAM 

l. The AFS Approximation 

In this sectibn we analyze the diagram of Fig. 1 whjch in the 

elastic unitarity approximation gives rise to cuts in the angular 

momentum plane. Rather than starting fr'om the unitarity relation, as 

l 2 was done by Amati, Fubini, and Stanghellini, and also by Mandelstam, 

we shall follow Wilkin
4 

and treat the diagram as a Feynman graph. 01rr 

methods will, however, be adapted to the specific purpose of exhibiting 

in as clear a way as possible the moving singularities in the angular 

momentum plane, and the mechanism which is responsible for their 

cancellation. 

Consider then the Feynma.n ampUtude corresponding to the 

diagram of Fig. 1: 

1 1 
2 2 

~ - m + i€ 1 
2 ~~ l"E,· ~ - m -1· 

2 

l k 2) 
4 ' (II.l) X 

where C is an overall constant, 2 J (k ; s, t) is the Jacobian for 
n . 

the transformation 

and 

4 
--t IT 

n=l 
dk 

2 
n ' 

is 'the off-the-rnass-she.Ll ampJ itude 

associated with the exchange of a Regge pole with trajectory 
2 

a(k" ): 
) 

·~ 
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the invariants s and t are defined by s = 

t = 2 (p
1
+ p

2
) . As we shall see later, we do not require an 

·explicit expression for the Regge pole in order to prove the cancella-

tion of the AFS cut; only its general properties are needed. 

Now the Jacobian, 2 
J(kn _: s, t ), is given (we suppress tl1e 

arguments) by the following expression 

l 

J e(n)/(n)"2 , (IL2a) 

where 

p -16 Det l2k. ·k .I . 
. l J (II.2b) 

Evaluation of the determinant yields, for 
2 

s/t << 1, and rn /t << 1, 

2 
·(k .. 2 _ 2) ( 2 2 ! k 2 _ 1 2) s-Bm 

+ -~ s - k3 ~3 + m - 2 2 2 k4 + 4t (k2 2- k42 f l} 
(IL3) 

Now we are interested only in the leading ccntribution to (II.l) for 

t -+ oo_: we therefore may approximate the right-hand side of (II.3) ·by 

the first two terms, since the remainder becomes comparable in 

magnitude only when k 2 
2 

or k 2 
4 (or both) become of the order of 

t, ·in which case the contribution to the integral is already strongly 

suppressed due to the presence of the Feynman propagators. Hence for 

t -+ <00 we expect the leading contribution to (II.l) to be given by 
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A( Srt) 2 2 
,.(~ J ~ 's) 

1 

(IL 4.) 

1 

where is the usual triangle function defined by 

( f. ") T X 1 X 1X 
! 

2 2 2 ' 
Q( -x -x 1 -x" +2xx 1 +2xx" +2x 'x") 

(-x2 -x• 2 -x"2+2xx' +2xx" +~x'x")"~ 
(II. 5) 

From the present point of view the AFS approximation corresponds to 

ignoring the. singularities of R(a(k
3
2 ),t;k2

2,k4
2

) in k2
2 

and 

k4
2

; since for fixed k4
2 we expect that R QS· l/k

2
2 as k2

2
-+ oo, 

10 

we may close the k2
2 

integration contour in the lower half of the 

complex plane; if we ignore the singularities of R, then the only 

contribution to the integral comes from the pole of the propagator; 

repeating the same procedure with the k 2 
4 integration, we obtain 

the following expression for the AFS amplitude:
11 

, [A(s,t)]AFS = 

(II.6) 

where R(a(k
3
2

),t) ;i:. R(a(~ 2 ),t;m2,m
2
). At this point we could 

perform immediately the ~~ integration; however, it turns out 

convenient to leave it in the form (II.6). 

' 
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2. Representation of the AFS Amplitude as a Contour Integral in the 

Ener~y Plane of the Exchanged Regge :Pole 

We now wish to write (II.6) as a eontom· integral in the 

energy plane of the exchanged Regge pole. To this effect we change 

the integration variables in (II. 6) from k 2 
1 

wid k 2 
3 ' 

to X and 

k , .where 12 
z 

2 2 2 2 
, x = ~ - (l/4s ) ( ~ - s - ~ ) 

k = z 

and substitute for R(a(~2 ),t) the expression13 

(II.'i) 

where C(a) is the coefficient of za in the asymptotic expansion 

of the Legendre function is a reduced 

residue function which is related to the full residue ~(k3
2 ) of 

the Regge pole by 

2 
q = 

Finally, ~+(a) is the usual signature factor 

g (a) = exp(-t1ra) + 1 
+ 

2 '> 
m + k

3
'/4 
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We then obtain for the AFS amplitude, valid for. s < o, 

+m () 

2c l dx J 
r (x - k '-) 

[A(s, t)) AFS dk 
z 

= - 1! 

(-xl/2 ~2 2 z 
(k -X - s) - m 

-oo -oo z 

a(x-k 2)-1 
)( C(a) Ha) t z /sin rra(x - k 2 ) . 

z 
(II. 8) 

Consider the integrand of the 

and also at 

k z 
integration; lt is singular at 

(II.~) 

k 
z 

+ . ( . )1/2 
1 U - X 

n 
(II. 9b) 

where the latter singularities arise from the normal threshold branch 

2 2 
points of the Regge trajectory, a(k

3 
), and reduced residue, r(k

3 
), 

and from the vanishing of sin rra(~2 ) .at the bound states and resonances 

which lie on the trajectory (the resonance poles are reached by going 

through the. normal threshold cu~s); u gives the position of these 
n 

singularities in the ~ 2 plane. So far the integral (rr.8) is vaJ id 

for s < 0. As we increase s through negative values, the complex 

singularities (II.9a) move towards the imaginary axis, which they reach 

for s = 0. For s > 0 the singularities remain on the imaginary axi.s, 

both moving either up or down depending. on the continuation chosen for 

t h f t• (-s)1/ 2 ,· as b 1 th 
2 

f th ~·e unc 1on s ecomes arger an m - x,. ,one o e 

singularities will cross the real k 
z 

axis ·and drag the integration 

.~ 

~ i 
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contour along the imaginary axis, as is shown in Figs. 2a and 2b. 

We now make a final change of var:l.ables from 
I 

k and x, z to u 'iii x~k 

and X . The above discussion in the k plane was only intended to z 

serve as a crutch for a better understanding of the analysis that 

follows, as well as of the similarity existing between the single and 

double Regge pole exchange diagrams. With the above change of 

variables, (Ir.B) becomes14 

2 
z 

(A(s,t))AFS - i f du c(u,s) 
- 2 c ( 

exp(-i:rra) ± 1 J t. a(u)-1 ( ) 
sin :rra(u) ' II.J.Oa . 

u 

where 

c(u, s) = - i:rr
2

C y(u) C(a) I(u, s) 

and 
0 

I(u, s) = J 
-oo 

dx 1 

The contour C is shown in Fig. 3. It is clear from (II.lOc) 
u 

(II. lOb) 

u)l/2 

(II.lOc) 

that I(u,~) will have a branch point at u = 0 which arises from 

the collision of the 'square-root singularity at x = u with the 

upper limit of integration; if we cut the u plane from u = 0 along 

the negative u axis, then the contour c 
u 

is seen to extend around. 

this cut; the branch of the square-root function, (x - )1/2 
u ' to be 

taken is evidently given.by 

( )1/2 
X - U + i I (x - u )

1
/

2 1, for u > x 
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and corresponds to displacing the . k -integration contm1r in (II. 8) 
z 

slightly into the upper half of the complex plane. 

If we define t a(u) - 1, then (II.lO) can be written 

in the'form 

[A ( s' t ) J AFS 
i 
2 

d.f; ( 2 t + 1 ) b ( t, s ) { exp (- irr t ) + 1 } 
sin :n:t 

where b (t, s) 

(II.JOd) 

c(A.(t),s)/(2t + l)a', A.(t) being the inverse of 

the transformation t' a(u) - 1, and a' the derivative of a(u). 

The cpritour Ct shown in Fig. lJ. has been obtained using the fact 

that a(u) is a real analytic function of u with the usual right-

hand cut beginning at the lowest threshold, and assuming that a(u) 

satisfies a dispersion relation with at most one subtraction; the 

latter assumption insures that a(u) is an increasing function for 

.u < u0 , where is the lowest normal threshold energy. Formula 

(II.lexi,) has the form ·one would expect for the contribution to the 

amplitude coming from an angular momentum cut (assuming that the 

amplitude has a Sommerfeld-Watson representation).15 

.; 

Next we wish to examine the singularity structure of the 

function c(u,s) appearing i~ (II.lOa), and to continue the integral 

to the positive s region. The reason for making such a detailed 

study is that we believe that the motion, and nature of the angular 

momentum branch po'ints to be inferred from the present study are the 

same for the more complicated diagrams which do exhibit angular 

momentum cuts; the latter diagrams·will be considered in a later 

" . 
.• 
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section. Now c(u,s) is defined by (II.lOb), where I(u,s) is 

given by (II.lOc); the integral ma~,r be readily evaluated; one f:i.nds 

I(u,s) = 

where 

i ' 
2 172. 

[K(u, s,m )] 

' .. 2 
K(u, s,m ) 

( 

2 1/2 ·~) 
[K(u,s,m )] - (u+ s- m'·)) 

tn 2 1/2 2 
. [K(u,s,m )] + (u + s- m-) 

2 2 
(u + s - m ) - 4su , 

exp(j:rr) 

(II.lla) 

(II.1Tb) 

and where, for s < 0 and u > 0, the phase of the quantity appeari.ng 

within brackets in the argument of the log is to be taken zero. 

Throughout this paper we adopt the conventions that: (a) all square 

roots are to be taken positive if their discriminant is positive, 

and (b) tn z is taken to be real for z > 0; all phases wHl therefore 

be explici tely exhibited. We now examine (II.lla) for three real 

domains of the variable s. 

a. s < 0 · 

From (II.lla) we see that the possible singular points of 
. . i 

I(u,s) are located at 

_· (1) u = 

and 

. (2). u = 0 ' 

where, for s < 0, the latter singularity arises from the- vanishin&: 

of the denominator in the argument of the log. If we cut. the u plane 
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from u = 0 along the'nagative real axis, then the contour C of 
u 

the integral (II.lQa) extends around this cut, and the value of 

I ( u, s) on that contour is obtained by continuing (II.ll) in u to 

the points u
0 

"!: i·.E: , where u
0 

< 0; from here on we shall refer to 

that sheet of the logarithmic branch point on which C appears 
u 

as the "leading sheet." We now verify that I(u, s) is singular at 

u = · (m - i V-s )2 and regular at u = (m + i -V-"s )2 where these 

points are reached via the paths shown in Fig. 5. Let 

( 2)]1/2 m2) [K u,s,m · - (u + s -
z = (II.1~~) 

Recalling that the phase of z is zero for s < 0 and u > 0, 

one may readily verify that 

z--. exp(+ irr), as 

It is then an easy matter to show that I(u,s) is singular at 

u = (m- iV-'s)
2 

and regular at u (m + i V-s )
2

. The continua-

tion of (II.ll) to the remaining sheets of the logarithmic branch 

point at u = 0 may also be readily effectedj one finds that I(u,s) 

is singular at . u = (m + i V-s )2 on all sheets of the log. with 

the exception of the leading one, and singular at u = 2 
(m- i ~) 

on every sheet but the one which is reached by a counterclockwise 

continuation around the branch point at u = 0. FinallY'; one obtains 

the discontinuity of I ( u, s) across the logari thmi_c brant: h point by 

continu1.ng (II .:n) to the poJnts u0 ± 1.<::. wh(·:re u0 < u : tilt'.! 
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quantity z , defined by (II.l2 ), then acquires a corresponding 

phase '~ irt, and the discontinuity becomes: 

b. 
2 

O<s<m 

= I 2 1/2 2rt [K(u,s,m )] (II .13) 

As s becomes positive, the complex singularities of I(u,s) 

located at u = (m + i -V-s)2 and u (m - i V::s )2 
move bnto 

the real axisj if ( -s )1/2 is ' continued to s > 0 according to 

( -s )1/2 = i 1/2 s ., then their positions will be given by: 

. 1/2 m)2 and u = (s . - u - (s1/ 2 + m)2 _ u , respectively. 
+ 

u 

If we had chosen the other branch of the square root, then the above 

order of u and u+ would be interchanged. For the remainder of 

this section we shall restrict ourself to the case where 

has been continued to s > 0 according to the above given prescription; 

the other possibility may be discussed just as easily and leads, of 

course, to the same conclusions with regard to the singularities 

of the s channel partial-wave amplitude in the angular momentum 

plane [that this must be so becomes evident when one follows the 

motion of the singularities of the integrand of (II.8) in the k 
z 

plane for the two possible continuations of (-s)l/2]. With the 

above convention, u ( 1/2 )2 s - m and ( 1/2 )2 s + m are 

the respective continuations of the complex locations of the singularities 

of I (u, s) at u u = 
"2 

(m- i --.[:'"s) ; since for 

2 
s < m neither one cf the above singularities could have 1e:ft thei.r 
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respective logarithmic sheet, it is clear from our previous discussion 

of the case s < 0 that I ( u, f:>) will be regu:Lar at u u o.nd 

singular at u = oii the leading sheet, and that it will be 

regular at the latter point on the sheet reached by a counterclockwise 

continuation around the logarithmic branch point at u = 0. The 

'above expectations may be readily verified by starting from an 

expression for I(u,s) valid for s > 0 and u = u
0 

+ iE, where 

the latter point is located just above the left hand cut on the leading 

sheet; one finds (recall that all phases are exhibited explicitely) 

i 

uo < o, s > 0 • (II.l4) 

As one continues this expression in u along the path P shown in 

Fig. 6 one finds that at u = lzll exp(+ irr), while 

at u = ~' z2 

(II.l2) at u 

= (l/lz
1

l) exp(+irr), where z. is the value of 
l. 

[in the figure we have denoted the points ui 

by their subscripts · .i]; the d:i.scontinui ty of I ( u, s) across 

u = u therefore vanishes; to computethe discontinuity of I(u,s) 

·across u = u+ we notice that if u <u<u, 
+ 

z = (: ~ ~~) v exp ( + irr) = exp ( i~) exp ( + irr); 

thus ohe finds that at and u == 

exp(+ irr) and 4irr) exp(+' irr), respectively; hence 

the discontinuity becomes 
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(disc I(u.,.,s)} 
U ) U=U 

+ 
= I . 2 1/2 

4n: [K(~, s,m )] • (II.l5) 

c •. 

The case 
2 

s > m can be analyzed in a similar manner as 

above; one fins that z
1 

= lz
1

1 exp(-in:), z
2 

(l/lz
1

1) exp (-in:), 

z
3 

= 'exp (icp
3

) exp(-i:it.), and z 4 = exp(-icp
3

) exp (-ire); we are 

therefore led to the conclusion that 

= 

while the discontinuity of I(u,s) across u = u 
+ 

(II.16) 

is still given 

by (IL15). Thus, for s > m2
, I(u,s) is found to be singular at 

u+ and u on the leading sheet of the logarithmic branch point; in 

fac.t, one may verify that I (u, s) is singular at these points on all 

sheets of the log, except for the one reached by a counterclockwise 

continuation. Finally one may readily check that the discontinuity of 

I ( u, s) across the branch point, at u = 0, is still given by (II .13 ). 

3. Asymptotic Behavior of the AFS Amplitude, and Location and Nature 

of the Singu1arities in the j Plane 

From the above discussion of the singularities of I(u,s), 

and therefore also of c(u, s), we immediately obtain the proper 

continuation of the integral (II.lOa) to s > o: for s < rri2 
the 

·. 
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extends around the logarithmic branch 

point of c(u, s) at u = 0, and the asymptotic behavior in t 

of the integral is determined by this singularity. The discontinuity 

of c(u,s) across the left-hand cut associated with the logarithmic 

branch point is given by ilc r(u) C(a) (disc I(u,s)}, where we 

must substitute (II.l3) for disc I(u,s). [This expression remains 

valid also for s > m2
]. As s becomes larger 2 than m-, the 

singularity of I ( u, s) [or c(u,s)] at u = (s1/ 2 - m)2, which 

for 2 
s < m was absent from the leading logarithmic sheet, now 

appears on the leading sheet via the branching at u 0 and 

draggs the contour C to the right as we keep increasing s; thus 
u 

. 2 . 
for: 1s > m the new asymptotic behavior of the amplitude (II. lOa) 

( l/2 )2. will be determined by the singularity at u = s - m , the 

discontinuity of c(u,s) across this branch point, for 

1/2 2 . 
0 < u < (s - m) ; is given by iic r(u) c(a) (disc I(u, s)} , u 

where (II.l6) is to be substituted for the discontinuity of I(u,s). 

The integral ( II.lO) may therefore be cast into the following form, 

valid for all real s 

[A(s,t)]AFS 
du 

. .3 . 2 
+ 21( c e(s-m ) 

x c(a) S(a) ta(u)-l 

r(u) 
sin 1(a(u) 

c(a) ~(a) ta(u)-l 

du r(u) 
2 2 

[(u+s-m) 4 ]l/2 - su sin 1ra(u) 

(II.l7) 

... 
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The asymptotic behavior of the AFS amplitude may be obtained immediately 

from the expression (IL17); thus for s strictly less than 
2 

m 

(.only the first integral then contributes) the integrand is seen to 

2 
approach a constant as u ~ 0, while for s > m , the integrand of 

the second integral diverges as u ~ ( s
1

/
2

- m )
2 

.: now for large t 

the leading contribution to (II .17) comes from the upper integration 

limit of the first or second integral, depending on whether s < m2 

2 
or s > m , respectively. The leading term in (II.l7) is then read.:i.ly 

obtained by expanding the trajectory function a(u) around the 

appropriate upper limit of integration and. neglecting the variations 

of any other slowly varying factors in the integrand; one finds 

[A(s, t ~] AFS t ~ 
00 

B(s) ta(O)-l/tn t, for 
2 

s < m ) 

where 

B(s) 
1(0) 

sin rra 
C(a) s (a) 

a'(o)(m
2

- s) 

and a - a(o ). Similarily one finds that for 
2 

s>m 

where 

[A(s)t)]AFS 

G(s) 
7/2. 

1( c 
r(u_) 

sin rra{ u _) 

c(a) s(a) 

[rna' (u _) 1. 1/2 s2.J 

(II.l8a) 

(II.l8b) 

(II.l9a) 

(II.19b) 
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and a = a(u_), 

If the AFS amplitude has a Sommerfeld-Watson representation 

[in which case the large:-t bef.t.avior of the amplitude .i.s determined. by 

the leading singularities in the j plane of the s reaction], then 

we conclude fran the asymptotic expressions (II.l8) and (II.l9) that 

the leading branch points in the ang·ular momentum plane associated 

with the s reaction are located at j 

j ( 1/2 2) a ( s - m) - 1, for 
. 2 

s < m and 

a(O) - 1 and 

2 s > m , respectiyely, 

and, furthermore, that these singularities are of the logaritl:unic 

type, and inverse square-root type. Since for 2 s < m the singu1ari ty 

at j = a((s1/ 2 _ m)2) - 1 no longer determines the asymptotic 

behavior of the AFS amplitude, it must have moved onto an "unphysical" 

sheet via the logarithmic branch point at j == a( 0) - 1; notice 

that the latter singularity does not depend on any mass parameters, 

while the former one depends on m, the mass of the exchanged 

elementary particle. The location of the singularities as well as 

their logarithmic and square-root nature agrees withthe results 

obtained by Mandelstam, 2 Wilkinj 4 Gribov et a1., 5 and Simonov, 7 in 

connection with the single Regge pole exchange diagram for which the 

cancellation of the cuts does not occur (see Fig. 11, for example). 

4. Concluding Remarks 

Before closing our discussion of the AFS amplitude associated 

with the single Regge pole exchange diagram we wish to make two further 

remarks concerning (a) the signature of the partial-wave amplitude in 

which the leading branch points appear, and (b) the generation of the 

J 

·' 
.I 
! 
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normal threshold branch points in s of the amplitude [A ( s, t) ]AF'S 

We begin by considering the first mentioned poj_nt. Let us rewrite 

(II. lOa) as follows: 

: [A(s, tUAFS 
i :;: 2t ~ d\l c(u, s) ( (-t)a(u) + ta(u)l/sin •a(u) . 

u 

We see from this expression that for large t, [A(s, t)] AFS ls even or 

odd under the transformation t ~ -t dependlng on whether we exchange 

aRegge pole of odd or even signature, respectively. l'bw any amplitude 

that satisfies the usual one-dimensional dispersion relation can be 

written in the form 

A(s,zs) = ~ [A+(s,zs) + A+(s,- zs) + A-(s,zs)- A-(s,- zs)], 

(II.21) 

where z is the cosine of the center of mass (c.m.) scattering 
s 

angle for the s reaction (i.e., z 
s = 1 + t/2q 2, q being the 

s s 

corresponding c.m .. momentum) and where 

here At(s, t) 

1 
:rr dt' 

At(s,t') 

t'- t(s,z ) 
s 

and A (s, u) are the t-channel and 
u 

A ( s, u I ) 
u 

u'- u(s,- z) . s 

u-channel 

absorptive parts of A( s, t) respectively, and t 0 and u0 are the 

squares of the lowest normal thresholds in the t and u reactions; 

since for large t, z oc t, it follows from (II.20) and (II.21) that 

in the limit t ~ m only the positive (negative) signature amplitude 
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will contribute to [A(s,t)]AFS if we exchange a Regge pole of 

negative (positive) signature. Thus the leading branch points in 

the angular momentum plane appear in the analytically continued 

partial-wave amplitude of signature opposite to that of the exchanged 

Regge pole. 

We now turn to the second point and show how the normal 

threshold branch points of [A(s, t )JAFS in s are generated; they 

are expected to result from the coincidence of the poles and normal 

threshold branch points of the Regge pole amplitude with the pole of 

the propagator assoc.iated with the elementary particle exchange; the 

latter manifests itself in the singularity of c(u,s) at 

u (i/2 - m)
2

. We notice first of all that the j_ntegrand of (II.20) 

has poles at u = 
2 M

1 
, where M. are the masses of the physical 

J. 

bound states or resonances lying on the Regge trajectory [the latter 

singularities are reached by going through the normal threshold cuts 

of the trajectory function a·(u)]; they are therefore a solution to 

o, 2, 4 ... 
' 

and 

1, 3, 5, ... ; 

[we have suppressed the signature labels on the trajectory function 

in (II.20)]. The residues of the poles at the remaining integers of 

vanish on account of the signature. Now for -2 
s < m" ·' the 

contour C extends~long the negative u axis and encircles 
u 

.. 
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the branch point of c(~,s) at u = 0; as we increase s above 

m
2

, a new singularity at u :::: ( J./2 ' )2 
s - m appearG on the 1eacUng 

sheet, and· the contour C will be pinched between this singular:ity 
u 

and the above-mentioned poles when 

This gives the position of the two-body normal threshold branch plltnts. 

The higher normal threshold branch points are generated in exactly 

the same.way by the pinching of the contour C between the moving 
u 

singularity at u == (s1/ 2 _ m)2, and the normal threshold singuJariUes 

at u = of the Regge pole amplitude; their locations are given 

by 

::= (m + 
l 
2)2 

~' . 

In addition to the above normal threshold branch points the continued. 

rartial-wave amplitude of definite signature, b±(J, s ), will have 

singularities in s arising fram the moving branch point at 

j = ~((sl/2_ m)2) 2 '""' - 1, as was originally pointed out by Mandelstam. -

Their locations are given by 

s (j) 
J. 2 

(m + [A.(j + 1)]2} , 

where A. is the inverse function corresponding to a( u). ·· For 

definiteness sake let us consider the case in which we exchange a 

(II.~~2) 
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trajectory of even signature (the Pomeranchuk, for example). The 

singularlty at ,j = cx((s
1/

2
- m)

2
) - 1 will then appear J.n the odd-

signature partial wave amplitude; thus from (II.22) we see that H 

j is an odd integer [b-(j,s) then coincides with the physical 

:Partial-wave amplitude], the singul.arity s(j) coincides with the 

normal threshold branch point at s. 1 J+ 
2 

(m + Mj+l) _, where 

Mj+l is the mass· of the bound state or resonance of spin cr = j + 1 

lying on the trajectory o:(u). If, on the other hand, j :is an 

even integer [for which b- ( j, s) is unphysical.], then the singu1ari ty 

s(j) coincides with an "unphysical" threshold eorrespo:nding to the 

two-body intermediate state formed by the elementary partic.1.e of mass 

m and an "unphysical" particle of spin c:r j + 1 (i.e., an odd-
I 

spin particle lying on an even-signature trajectory); this latter 

singhl..arity will, of course, be absent in the full amplitude. 

5. Cancellation of the Cuts. 

So far we have been dealing with a particular contribution to 

the amplitude (II.l) which has the angular momentum cuts expected on 

the basis of an AFS type of approximation. As was originally suggested 

. 2 
by Mandelstam, these cuts are absent in the full amplitude; the purpose 

of this section is to exhibit the simplicity of the cancellation 

mechanism. To this effect we return to formula (II.4) which one would 

expect to give the leading contribution to (II.l) for. · t-+ ro .• the 

approximation which led to expression (II.6), and hence tu the cuts in 

the angular mom€:mtum plane, consisted in ignoring the s_ingularities 
·• 

(, 2 2 2 
of' R\.o:(k3 ), tj k2 , k1.~ ) in the k 2 and · k 

2 
2 4 planes. We now show 

·' 



-27-

that if we include the latter singularities, the integral (II. 4) 

vanishes identically. . To see this one only bas to realize that the 

singularities of a Feyrtman amplitude in any one of its external 

invariant masses must lie in the lower half of the complex plane, 

if the remaining variables are kept real (we are referring here to 

. . . 16 2 2 2 
four-line connected parts). Thus, if R(a(k

3 
), t; k

2 
, k4 ) 

2 2. 
vanishes as k

2 
or kh becomes infinite, as we believe to be 

10 the case, then the integral (II.~) will vanish identicaLly, since 

the singularities of the integrand in k 2 
2 

(or 2 k4 ) are all 

located. in the lower ·half of the complex plane. The two cancelling 

pieces of ttte amplitude (II. 4) may be readily exhibited. Consider 

the k22 
integration for example; the contour integral along the 

real axis may be split up as shown in Fig. 7; the contribution to 

the amplitude coming from the contour CAFS corresponds to an AFS 

type of approximation, while the integral along the contour C'AFs 

(which encloses all the singularities of R in k
2

2 ) becomes the 

dispersion integral for the function R(a(k
3 

2 ), t; m2; k 4 
2); the two 

contributions mentioned above evidently cancel. If one continues to 

treat the two pieces separately and performs the remaining integrations, 

one finds that a similar cancellation takes place within each of the 

separate pieces; the AFS approximation to (II.l) is obtained by 

consistently ignoring the c'AFS integrations. 

. ~ · . .;'. . 
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III. THE DOUBLE REGGE POLE EXCHANGE DIAGRAM 

1. The AFS Approximation 

In this section we analyze the diagram of Fig. 8; for 

simplicity we consider the exchange of two identical Regge poles; 

the modifications that are required if this condition is relaxed 

are rather obvious and we state them at the end of the section. 

Making the same apprqximations to the Jacobian (II.2, 3) as 

before, we arrive at the following expression for the leading contrj __ 

bution to the amplitude at large t, and s < 0: 

X 
f) 

k "-
2 ' 

1 

[k 2- 2 ] [ 2 2 ] 
2 

m + j_E kh - m + j_E 

where is the triangle function defined in (II.5), and 

where the functions R are the amplitudes associated with the two 

Regge poles. The AFS approximation corresponds, as before, to ignoring 

the singularities of R · k 2 ·and J.n 2 and 

integration contours in the lower half planes, we pick up the following 

contribution coming from the poles of the two propagators: 

2· 
sin :rr:a(k1 ) 

(III.2) 
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where we have substituted (II. 7) for the on-the-mass-shell Regge pole 

amplitudes (throughout this section we shall omit all signature factors 

and signature labels,~· since they are not pertinent to the discussion); 

the coefficients C(~2 ) and C(~2 ) are defined by 

p ( ) (z) . a Y 
~ C(y) za(y) . (III. 3) 
z~ oo 

Except for a trivial change, we treat formula (III.2) by the same 

recipe as was used in dealing with the single Regge pole exchange 

diagram. Let us switch to a new set of integration variables,. x 
. 2 

.and r, which are defined in terms of ~ and k 
2 

by 
3 

X 2 ( /4 ) ( 2 2 )2 ~ - l s kl - s - k3 

and 

In terms of X and r the integral (III.2) becomes 

.0 +oo 

{ 
r(x 2) 

. [A(s,t)]AFS 
2 J dx J 

(r + -Fs/2) 
= - 1( c 

(-x)l/2 
dr 

2 
sin 1fa(x - (r + f:S/2 ) ) -oo -oo 

( 
. 2 

y x - (r - Fs/2) ) 
X ----------------~~~ 

sin 1fa(x - (r - Fs/2 )2) 

""( . )} a(x- (r+ Fs/2 )
2
)+a(x- (r- {:~/2 )2)-1 C x,r,s t , 

· (III.lff.t) 

where 

"" . . 
c(x,r;s) (III. 4b) 



-30-

and. C(y) is defined by (III.3). Consider the analyti.e c;trud:ure l'f 

the integrand of (III. 4) in the r plane; there will be poles arising 

from the vanishing of the sine factors in the denominator, as weJl as 

branch points which a:rise from the normal threshold branch points of 

the Regge. trajectory function, a(u), and reduced residue flmction, 

y(u); the location of the singularities in the r plane is thus given 

by 

r 
n 

= 
1/2 (u - x) , 

n 
(III. 5) 

where u stands for the square of the masses of the bound states n 

and resonances lying on the trajectory a(u), and for the positton 

of the normal threshold branch points of a(u) and ·y(u). If we 

define the ';angular momentmn" variable t 17 
J 

a(x - (r + M/2 /) + a(x - (r - J;i/2 )2) - 1 , (III. 6) 

then the integral (III. 4) may be Wf'i tten in the form 

0 

[A(s,t)]AFS . 2 I - 1( c ' dx dt 
(III. 7) 

-m 

where the contour Ct is shown in Fig. 9, and where B(t,s,x) is 

the quantity .. appearing within braces in (III. 4) expressed i.n terms of 

t and x through relation (III.6). To obtain the contour ct. of 

Fig. 9 we have used :the fact that a(u) is a real analyt:ic function 

of u, and have made the assumption that da/du > 0 for .u < 0 

• 
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(which is true under very general conditions as was emphasized in 

Section II). Notice that the Jacobian for the transformation 

dx dr -+ dx dt is singular at r 0, since (III. 6) is invariant 

under the transformation r -+ -r. This manifests itself in formula 

(II:t. 7) as a singularity of the integrand at t 2a(x + s/4 )-1 

(corresponding to r = 0) which arises from the vanishing of 2lt/dr 

in fact, it follows trivially from (III.6) that at r = 0 

2ltjdr = 0 . (III. 8) 

Thus, for any given. x, the contour Ct of Fig. 9 is the "minimizing" 

contour [since any other contour obtained by distorting Ct must 

pass through a point t
0 

for which Re t
0 

3- 2a(x + s/4) - 1] j the 

asymptotic behavior of the integral over t in (III. 7) will therefore 

be determined by the singularity at = 2a(x + s/4) - 1. 

In order to continue the expression (III.7) to positive values 

of s it is easiest to return to the form (III.4), since we have 

complete knowledge of the singularity structure of the integrand in 

the r plane. As we increase s froiri negative to positive values., 

the complex conjugate pairs of singularities (III.5) move onto the 

imaginary axis, and remain on that axis for s > 0_; for a fixed 

value of x, the r-integration contour of (III. 4) [ eorresponding 

to t
1

he minimizing contour Ct] will then reinain undistorted as long 

as s~ 4(ri- x), where M is the mass of the lowest-lytng bound 

state on the trajectory a(u); if no such state exists, then M ]. " .u 
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to be replaced by the energy corresponding to the lowest normal 

threshold branch point of the Regge pole. We shail assume for the 

present that there exists such a bound state; it then follows that 

for s = 4(NF- x) the r-integration contour will be pinched by 

tl:;le p;tir of singularities located at r -(i/2)s1/ 2 + i(if- x)1/ 2 

and r = + (i/2)s
1

/ 2 - i(MP- x)1/ 2 ; thus for s > 4(MF- x) the 

contour will appear as shown in Fig. 10. 

2. Asymptotic Behavior of the AFS Amplitude, and Location of the 

j-plane Singularities 

The asymptotic behavior of the amplitude (III.4) will be 

determined by the above-mentioned singularities in the r plane, 

and by the upper limit of the x integration (i.e., x = 0); Thus 

for s < 4~ the large t-behavior of (III.7) is controlled by 

the singularity of the integrand at t 2a(x + s/4)-1, and x = 0 

(corresponding to r = x = 0), while for s > 4~ it is controlled 

by the singularity at t = a(~) + a(s + MP- 2s1/ 2 (~- x yl/2) - 1, 

and [corresponding to r + ( '·j:2) 1/2 - . ( 2 )l/2 - 1. s + 1. M-- X ' 

and x = 0]; that the latter singularity will dominate over the 

f 4-2 -:-,2 /:::, 2 . ormer for s > M-, follows from the fact that o f-; ul) > o, where 

iT) = r, and t is defined by (rrr.6). To find the precise form 

for the asymptotic behavior of (III. 4 ), we exp;tnd the various Regge 

trajectory functions around the above mentioned points in the x and· 

r planes keeping only the linear terms, and ignore the variation of 

. all slowly varying functions in the integrar:-d; one readily finds that 

' 
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[A(s,t))AFS t ~ ci; D(s) t 2o:(s/4 )-l/h:i t, for s < l~if. (III. 9a) 

wl,iere 

D(s) = - :n:3C c r(s/
4

) )

2 

C(O,O,s)/2o:'(s/4) 
sin :n:o:(s/4) 

(III. 9b) 

and 

[A ( s' t ) ] AFS t ~ ~ 

where. 

H(s) 

( l/2 2) -f, + 0: ( s - M) -1 I 
H(s) t B /(tn t)1 2 , 

for s > Jwi2 , (III. lOa) 

_2 l 
r(M-) c(O,iM- i s2/2;s) 

( -l) tB M o:i (1i )[ (s172 /M) o:' ( (r31/2 -M)2) ]1/2 

(III.lOb) 

and tB is the spin of the bound state of mass M . Assuming that 

the amplitude (III.4) has a Sommerfeld-Watson representation, we then 

conclude from (III. 9) that the continued partial-wave amplitude 

associated with th~ s reaction must have a logarithmic branch point 

at j 2o:(s/4) - 1 which for s < 4J:.f is the leading singularity 

in the j plane; similarily, one may conclude from (IILlO) that for 

s > Jwi2 the leading singularity is a branch point of the ·.inverse

square-root type located at J = tB + o:((i/
2

- Ml) - 1: since for 
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s < ~.f the 1atter singularity has no effect on the asymptotic 

behavior of the amp1itude (III.4), it must appear on an unphysi.cal 

sheet of the 1ogarithmic branch point. 

One can readi1y generalize the above dJ.scuss:ion to the case 

vThere We exchange bTO different trajectories Ql and The 

analogue of the singularity at j == 2a(s/4) - 1 is stHl determined 

by (III.8) and by the upper limit of the x integration in (III.?). 

The position of the singularity is readi1y found to be 

(III. J1a) 

where u is a solution to 

. . 1 ( .) 1 (< 1/2 1/2 )2) ( 1/2 1/2 )/ 1/2 a u - a s - u s - u u 1 2 . . = 0 . (III.llb) 

Let us suppose, for simplicity, that only one of the trajectory 

functions, pay ~ , passes through a physical bound state of mass m
1 

and spin , t
1 

• In the r plane of the integrand of (III. 4) this gives 

rise to a pair of singularities which for s > 0, and fixed negative 

x, appear on the imaginary axis at r . 1 1/2+ . ( . 2 )1/2 -.1..2 S _ l. ~ -X , 

· lve .are forced to distort the minimizing contour associated. vrith the 

vanishing of ot/Cr ·(where t - al +a -2 1) when .the singularity 

at r = i ! sl/2 - 2 + . ( . 2 
l. ~ -
. . x)l/2 coincides with r ;:: ro J where 

ro is a solution to (III .8); in the t plane this corresponds to 

the coiricidence of the bound-state singularity at 

..... 

,;• .,, 
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t = ~1 + "'2.(s + ml2- .2· ·Sl/2. (ml2- ·x )1/2). - 1 ~ u. . and the singularity 

arising from the vanishing of otfdr in (III.T);. now with. regard 

to the - x integration, the asymptotic behavior of (III. 7) is determined 

by its upper liinit; furthermore, the above-mentioned singularitie:3 in 

the · t plane \vil1 co:;i.ncide at x = 0, when s is a solution to 

· , c 2 ) _ . . , . (c 1!2 _ )2) c 1j2 . ) 1. .0 . a 1 m
1 

a 2 s llJ. s - m1 1 m1 - (III.l2) 

Let s be the critical value of s; it then follows that (except 
c 

for logarithmic factors) the asymptotic behavior of the amplitude vlill 

be of the form t)l.(s), where )l.(s) is given by (III.ll) if s < sc , 

·. 1/2 2 
and by t 1 + a 2 (\s . - riJ..)) - 1, if s > sc (the latter behavior 1.s 

determined by the above-mentioned bound state singularity). The 

general picture in the angular momentum plane which· is 'suggested by 

the analysis of this section is surmrarized below. Finally we wish 

to remark that none of the above singularities will be present in the 

complete amplitude (III.l); the mechanism responsible for their 

cancellation is, of course, of the same type as the one discussed in 

Section II in connection with the single Regge pole exchange diagram. 

3· Concluding Re~arks and Sum~ry 

Let us summarize the situation for the case where the two 

exchanged trajectories are identical. Assuming that the AFS approxima-' 

tion to the diagram of Fig. 8 bas a Sommerfeld-Hat son representation, 

we are led, on the basis of the asymptotic expressions (III.9) and 

·(III.lO ), to the fo1lowtng picture in the angular momentpri1 plane of 
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the s reaction:· if there exists a bound state of mass M lying 

on the trajectory a(u), then for s < 4if (that is beJ.ow tl1e 

threshold corresponding to the two-particle intermediate state formed 

by the bound states of the Regge pole amplitudes) the leading 

singularity in the j plane is located at 

j 2a(s/4) - 1 . (III. 13) 

All other singularities which lie to the right of (III.13) hence must 

appear on an unphysical sheet. As we increase s above 4~, a new 

singularity emerges onto the physical sheet via the branching at 

(III.l3) and controls the asymptotic behavior of the amplitude; Hs 

position is given by the formula 

( 1/2 2) 
j = a (s - M) + tB - 1 , (III.l4) 

where tB is the spin of the bound state; (III.l4) is the analogue 

of the moving singularity j .- a((s1
/

2 - m)2) - 1 found in the 

single Regge pole exchange case. If; on the other hand, a(u) has 

no bound state, then (III.l3) remains the leading singularity for 

s < 16m
2

, that is, below the four-particle production threshold 

(corresponding to two-particle intermediate states for each of the 

Regge pole amplitudes). For 2 s > 16m a new singularHy then 

appears on the. physical j sheet via the branching at (I!I.l3); its 

location is given by 

I 
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j = (III.l~J) 

Now there exists no essentia1 difference between the vartous types <1f 

singularities in the r plane of the integrand of (III. 4); the general 

picture thus suggested by the above analysis is that as we keep 

increasing s through positive values, all the mass-dependent 

singularities (which arise from the bound states and normal thresholds 

of the Regge pole amplitudes) will appear in turn on the physical 

sheet v:La the mass-independent branch point at j 2a(s/4) - 1. 

whenever s has the appropriate value for the coincidence o.f the 

singularities of type (III.ll~) and (III.l~:i) with the ::>lngularity 

(III.l3); for any given s, the rightmost singularity will then 

determine the asymptotic behavior of the amplitude. 

So far we have not specified which of the two s-channel 

partial-wave amplitudes of definite signature carries the above-

mentioned branch points; to answer this question we notice that 

a a a a 
(1/t) ((-t) l + t 1 } ((-t) 2 + t 

2 } . 

It follows that the amplitude (III.4a) is even or odd under the 

transformation t --+ -t depending on whether we exehange two Regge 

poles of opposite or equal signattrres, respectively [the c;ignature 

factors had been omitted in (III. 4a)]. Similar reasoning to that 

in Section II in connection .with the single Regge pole exchange diagram 



then leads us to conclude that the above-mentioned branch points j_n 

the j plane will appear in the even or odd. signature partial-wave 

amplitudes depending on whether the two exchanged trajectories l1ave 

opposite or equal signatures (in that order). 

Concerning the normal tl1reshold singularities of [A(s,t)]AFS 

in s , they are generated in a similar way to those of the single 

Regge pole exchange amplitude; thus, let us suppose that there exist 

two physical bound states of masses and m 
2 

which lie on the 

trajectories and a
0 

, respectively. For s > 0 the pairs of 
c_ 

singularities of the integrand of (III.4a) in the r plane which 

arise from each of the bound state poles of 

[ t'h_eir locations are given by (III. 5) with 

the Regge 

. 2 u --. m 
n 1 

amplitudes 

and 

on the imaginary axis; as we keep increasing s, two of tl1e four 

singularities (one from each pair) will pinch the r-integraUon 

contour when 

l/2 
s - (m 2_ x)l/2 _ (m 2_ x)l/2 

1 2 0 . 

lie 

Performing the x integration then generates an end..;point singvlarity 

This is the two-body'normal threshold branch point corresponding to 

the intermediate state .formed by the bound states of mass and 
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As we keep increasing s above s = the r-integration 

contour will again be pinched between two. of the bound-state sin~ularit1es 

and one from each pair of threshold singularities (which arise .from the 

normal threshold branch points of the Regge pole ampl1 tudes) when either 

or 

[we have assumed that u = 2 4m 

0 

is the lowest normal threshold of 

R(a1 (u),t) and R(a2 (u),t)J. Subsequent inte~ration over x then 

produces the corresponding three-body normal threshold branch points 

at s s 
2 (m

2 
+ 2m) , respectively; the 

generalization of the above results to include higher normal threshold 

singular1ties (which will be complex if they arise from resonances 

lying on the trajectories a
1 

and a2 ) is self-evident. 
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IV. DIAGRAMS THAT HAVE THE MANDELSTAM SINGULARITIES 

So far we have dealt with o. set of Feynma.n graplw whJch j_n 

an AFS type of approximation gave rise to angular momentum l1ranch 

points which are, however, absent in the full amplitude. Nevertheless 

we have studied them-in great detail for two reasons: (a), we wished 

to obtain a clearer understanding of the mechanism responsible for 

the cancellation oft he singulati ties (which presumably is not in 

operation for such diagrams as shown in Figs. 11 and 12); and (b)) we 

expect that the location and nature of the singularities found in an 

AFS type of approximation to the diagrams of Figs. l and 8 i.s the 

same a.s that found for the full amplitudes associated with the 

di~grams of Figs. 11 and 12. It is clear that the complexity of the 

latter diagrams will make it impossible to carry out as carefu1 an 

analysis as was made for their simpler versions, and we w:Ul have 

to sacrifice a certain amount of rigour in favor of simplicity. 

1. The Single Regge Pole Exchange Diagram 

Consider the Feynrnan amplitude corresponding to the diagram 

of Fig. 11 which is expected to have the angular momentum branch 

points that we found in Section II in connection with the AFS 

approximation to the diagram of Fig. 1:
2 

l 4 1 
2 2 

T) - m + iE 1 

IT 
l. --1 [ 1:. 2 2 . ] [" k 2 2 . ] s. -m +lE . -m +le 

l l . 

(IV.J) 

. 
' 
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. h lit d i t d i h tl R ·1 J.S w ere R is the amp u e as soc_ a ;e w t · 1e egge po .e, U 

being the invariant rnoment·nm transfer squared 

Let s' = 
2 

T}2 ' s" 

u = = 

= t' = t" 

(IV.2) 

2 
(~- T}

2
) • The components of the four-vector TJJ may be expressed 

in terms of the invariants s', s", t', and t"; the Jacobian for 

the transformation is given as before by (II.2,3) with the replacements: 

k
1

2
-+ s", ~ 2--. s ', ~ 2--. t', and k

4
2

-+ t"; proceeding as in Section II, 

we shall keep for t -+ oo . and small momentum transfers s only the 

first two terms in the expression for D [see Eq. (II.3)). With 

this approximation the integral (IV.l) becomes 

A(s,t) t ~ ~ - ~ (4.<~) l; J ds' ds" 
-r(s,s',s") 

s"- m
2+ iE 

+oo ] j. dt" F(s',s",t',t";s,t) , 

-oo 

(IV. 3) 

where -r(s,s',s") is the triangle function defined in (II.5), and 

where 

4 
IT 

i:::l 

R(a(s' ),U;~32' ~42'k32'k4~ 
2 2 2 2 

[~i - m + ie][ki - m + ie] 

(Iv.l~) 



Included among the singularities of F there are those pertain1ng to 

the integral (IV. 4) with R replaced by a con3tant; i.e., j_ t has the 

"' singularities of F , where 

F(s',s",t',t";s) = 
c c . 

A (s t'·s' s") A (s t"·s' s") 
. ' ' ' J ·J ' 

here c A (s· t·s' s") . J ' J is the invariant amplitude associated with the 

"cross" in Fig. 11: 

c 
A (s,t';s',s") = 

4 
II 

i=l s 2_ 
i 

1 
2 . 

m + 'l.E 

(IV.5) 

NOW A c ( s J t ' ; s I J s" ) ~ 
has normal threshold branch points at t' = 4m-- iE 

and u' 4m2 - iE , where t' and u' are related 

according to: t' '+ u' + s = 
2 

2m + s' + s". It follows that (IV.4) 

will be singular at 

t' = 4m2 - iE (IV. 6) 

and 

t' s' + s" 
2 iE (IV. 7) = - s - 2m + J 

with an identical set of singularities of F in the variable t" 

which arise from the normal threshold singularities of AC(s,t";s',s"). 

The essential feature to be noticed about the singularities (IV.6,7) is 

that-they appear on opposite sides of the t' integration contour, 

Ct, (the same, of course, applies to the singularities cif F j_n t"); 

the integration contm1rs of (:tV.3) )n the t' and t" pJanes are Lhw; 

' -



(or t") 
. 2 

forced to cross the real axis somewhere between: t I == 4m 

and t' (or t") s '· s" ·-
2 

Nmr from the rand au equatL:ms ::: + s - 2m . 
for the normal threshold singularit:i.es of the two crosses in Fig. Jl 

it follm.;s that when t' = 4m2 
- iE the Sl integration contours 

in (rv.4) cannot be distorted so as to avoid the region vrhere 

= 
. 2 - . s 4 ' and . s2 = s 2 

4 = 
2 

m ; similarily, when t" 2 4m - i€, 

we cannot avoid the integration region where k 
2 = k

4
, and 

k 2 
4 

2 = m from this it folloJls that when t' = t" =-= hm
2

- ic:, 

u t/4, where u is defined by (IV.2). 
I 

Similarily, from the 

landau equations for the u-channel threshold singularities at 

u' 
. 2 . 

= ·ltm· · - i€ and u" = (corresponding to t' 

I II 2 2 i s + s - s - m + · e and t" = s' + s" . .;, s - 2m2 +ie), one 

finds that there exist corresponding unavoidable integration regions 

.ih (rv.4) where = = s 2 
3 

2 
-. m ' and ·~· == .. 

~' 
k 2 2 2 

respectively; - = ~· = m ' once again one may verify 
1 

that at t' = t" = s' + s" - s - 2m2 
+ ie, u = t/4. ·Next 

we notice that the s' and s" integrations in ,(IV.3) include the 

boundary point ,. o, s" s (the boundary of the S I s" integra-s = = ' 
tions being given by 2 ,2 112 - 2ss'- 2ss"- 2s's" 0); s + s + s = 

furthermore, we cannot distort the integration contours so as to 

avoid this point; now at s' -· o, s" s, the singularities of F 

. t" 4m2- t" 
2' 

in t' and are located at t' ·- iE, 4m.,. iE, and 

t I ::: 
. 2 
- 2m + iE, t" = -2m

2+ iE, so that the t' and t" integra-

tion contours are forced to cross the real ax:i.s somewhere between 

t 1 (or t") = -4m2 and t' (or t") = 
2 2m ; thus one m:i.ght exp~-:ct 
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that in this region of the "approximate pinch," 
2 2 2 

~; ~ k rv m ' 
.L i "'-

and U ·~ tjl+ . In order to get an estimate of the contribution 

to the amplitude at large t coming from the angular momentum cut, 

we shall make the (rrbt totally unreasonable) assumption that the 

major contribution to the quantity appearing within brackets in (IV.3) 

comes from the above-mentioned region of the "approximate pinch" 

in the t' and t" planes, and from the integration region of (IV.4) 

· where all four-momenta squared are close to their mass-shell value; 

thus one might attempt to approximate the function .R(cx( s' ), U ; 

2 2 2 
k42) (IV. 4) by its value at t/4. s3 , s4 ' k3 ) appearing in u = 

and s 2 s 2 ~2 k 2 2 
(we certainly cannot consider = = =:: = m 

3 4 .· 4 

the present discussion as rigorous; however, the approximations will 

at least give us some kind of estimate for the strength of the cut); 

with this approximation the integral (IV.3) becomes 

( 
f If) 

't' s, s 's .R(cx(s' )_, t/4) 
s"- m

2 + iE 

(Iv.8) 

. ' x { 1: dt' As, t' ;s'' s") V 
where c A (s,t';s',s") is given by (IV.5). 

Before proceeding with the analysis of (Iv.8) we wish to 

emphasize once more that the existence of the "approximate pinch" 

in the t' and t" planes was essential in deriving the expression; 

this in turn requires that both the right ~left-hand portions of 

the diagram must have a third double spectral function with respect to 

;'. 
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the s reaction; in fact, it has been shown by Wilkin!~ that if eithe..r 

the right or left-hand portion of the diagram does not have a thtrd 

d.ouble spectral function, one can distort the integration contours of 

the J<,eynman amplitude (IV .1) ln sue h a way that the Ht::gge polr~ w J J l 

not assume its characteristic asymptQtic form anywhere along the raths 

of integration. 

We now return to formula (rv.8) and extract from it the leadlng 

term for t -+ oo which comes from the integration regjon s' .:; 0, 

II s :.;: s . Approximating 
c 

A (s.,t';s',s") by A C ( s., t ' ; 0, s ) , and 

. proceeding as in Section II, we obtain, upon substituting (II. 7) 

for R 
. ' 

k (4:2)6 
r(o) 

· [K(s)J
2 c(a) 

ctr(0)-1 
A(s,t) -+ - ~±(a). 4 

sin rra( 0) 

0 
(t)a'(O)s' J ds" J ( ' ") 

/1. ds' '1' s, s 'I:! 
" 2 . s - m + J.E 

-E 

irr ( g )
6 

~ Ib 4rr2 
( ) [ ( )·]2 ( a(0)-1 

7 ° ~ s . c(a) ~+(a) i) /a' (o) tn(t/4) 
sin rra(O) m _ s _ 

for s < 0, 

where c(a) = c(a(o)), ~+(a) 

+oo 

K(s) = f dt' AC(s,t'; o,s). 

-oo 

(IV.9a) 

(IV.gb) 
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Except for the factor 
. 2 

[K(s)) and the replacement t ~ t/4 , 

formula (IV.9a) is identical to that obtained for the AFS approxima-

tion to the single Hegge pole exchange diagram treated :i.n ~:)ection II 

[see (II.l8)]; thus once again we conclude that, for s < 0, the 

leading branch point in the angular momentum plane of the s-channel 

partial-wave amplitude is located at j = a(O) - 1, and that it is 

of the logarithmic type. 

2. The Double Regge Pole Exchange Diagram 

The diagram involving the exchange of two Regge poles 

(see Fig. 12) can be dealt w:i.th in exactly the same way as above; 

for simplicity we shall consider the case of two identical Regge 

po:)._es. Making the same type of approximations as before, one arrives 

at the following expression for the amplitude: 

the leading contribution to (IV.lO) comes from the integration region 

s' ~ s" ~ s/4, so that we may approximate A C (s, t'; s ', s ") by 

A C (s, t 1
; s/4, s/4) in this domain. If we then substitute 

R(a(s ), t/4) = r(s) c(a) s (a)(t/4t)a(s)/sin rra(s) 
+ 

(IV.ll) 

into Eq. (IV.lO) [here t is a reference energy to be specified 

below] and make the change of variables = . s '. + s If} 1) = s'-



we arrive at the following formula for the asymptotic contribution 

to A(s,t): 

~ ( )4 (r(s/4)n(s)c(a)s±(a)) 2 
A(s,t) ~ 3~ ~ 8rr sin rra 

1 ( t__ )2a(s/h)-l-~ o:' 

t l+t. 

9(2s~ 
X 

2 
- s -

2 2 
s - 11 

(IV.l2a) 

Cy.(s/4)H(s)C(a)S+(a) )
2 

( t -fa(s/4)-1 _ _ 
-) /ta' tn(t/4t ), 

sin rra , 4t . · 

where a - a:(s/4 ), a:' a'(s/4L and 

+CXJ 

H(s) = J dt' AC(s,t';s/4, G/4). 

-oo 

From formula (IV.12) we see that for s < 0 the position of the 

(IV.l2b) 

leading singularity in the angular momentum plane of the s reaction 

is a logarithmic branch point located at j = 2a:(s/4) - 1. 

Finally we wish to cast (IV .l2b) into a more convenient form 

for computational purposes. Since we shall be interested j_n the value 

of (IV.l2b) at small momentum transfers s , we will approximate the 

integrand by A C ( s, t'; 0, 0). Now, on account ,of the many approximations 

made in deriving formula (IV.J.O), we can only hope to obtain a very 

rough estlmate of the contributlon to the amplitude corn:Lng· from t'he 

cut. For practical reasons we shall therefore make a further approxi

mation and replace ~C(s,t;O,O) by AC(s,t), where the latter is the 

,., "'. 
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amplitude associated with the "cross" with all external masses 

taken equal to 2 m. Now, c 
A ( s, t) is known to have the spectral 

representation 

p(t 1
, U 1

) 

0 ,, 

( t I- t )[ U I- ( 4m"·- S - t)) 
(IV.13) 

where p(t,u) is the well-known Mandelstam double spectral function 

for the box diagram; 19 the boundary of the region where p(t, u) I 0 

is given by: 
2 2 4 

(t - 4m ·) (u - 4m ) - 4m = 0; from here it follows 

that, for fixed s, {IV.13) defines an analytic function of t in 

the t plane cut from. t ==4m2 
along the positive taxis, and from 

t == - s along the negative axis. The singularities at 
2 

t = 4m 

and t = - s are the ones responsible for the approximate pinch 

discussed previously (where the limit E -+ 0 has been tal~en); the 

contour Ct 1 of the integral (IV .l~2b) extends ,just above and just 

below the right- and left-hand cuts, respectively. Now for fixed s , 
c 0 

A (s, t) vanishes like 1/t""" for large · t ; we therefore may distort 

the contour Ct' around the right-hand cut of c 
A (s,t) 

the integral (IV.l2b) in the form 

()) 

H(s) ~ 2i J dt' Atc(s,t'), 

4m2 

and rewrite 

(IV.l4) 

where C· 
At (s, t) is the t-channel absorptive part of AC(s,t), which, 

in the notation of Ref. 19 is given by 

i ~ 

• 1 j 



.. 

c 
At (s, t) -

where 

and 

-br3 

[K(t,u)]~ 
tn 
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(

a(t, u) + 

· a(t,u) 

('lt/t:)[K(t, u)]: J 
(<lt/t;")[K(t, u)P .t 

K(t,u) = 4tu[tu- 4m2
(t + u) + l2m

4
] , 

a(t,u) 
2 2 4 = tu .- 2m t ·:- lJm u + 6m , 

2 2 
+ t/4, <lt = - m 

u = 4m2 - s - t . 

(IV .J':)a) 

(IV.15b) 

If, in (IV.l2)j a is taken to be the Pomeranchuk tra,jectory, then 

we obtain for s = 0 

4 . 
[A(O,t))cut ::; 1;8 (~3) r(O)[H(0)]

2 
R(a(o),t)/ t a' (o) tn(t/l~t), 

(IV.l6a) 

where 

R(a(o),t) (IV .16b) 

We now wish to obtain a numerical estimate for the right-hand side 

of (IV.l6a). From formulae (IV.l4) and (IV.l5a,b) one finds, after 

some algebra, 
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1 
H(O) = J .. 

e f)) IC:'). 31 ~?. tn[l + z(z + ''·] ~ -.l.n 1r m 

(z + 2) 
1) ,..,,) 

( zr_ -1- i+z ) 

:Next we shall assume that the value of r(o) is approximately given 

by the corresponding residue function associated with the coupling of 

the Pomeranchuk trajectory to the :rr - :rr system; the latter has been 

estimated in Ref. 20; taking into account that the Regge pole ampHtude 

R used in this section ,is related to that of Ref. 20 (call it R' ) by 

R 16:rr R 1 , we find that y ( 0) ~ -l6:rr, if the reference energy t 

in (IV.ll) is chosen to be t = 2 
1.87 (BeV) . Finally, to obtain 

an estimate of the coupling strength g , we take recourse to t.he 

fol,lowing model: consider the amplitude for sea tterj.ng of two sea lar 

particles in the ladder approximation to the Bethe-Salpeter equation 

(all particles involved in the ladder are taken to have mass m); 

in this approximation an estimate of the coupling strength may be 

obtained by requiring that the leading Regge trajectory shall pass 

through unit angular momentum at zero energy. The calculations 

Ref. 21 show that the required V-alue of g is approximately given 

by g = (l6:rr) m (this corresponds to A 16 in Ref. 21). 

Substituting the values for H(O), y(O), and g into formula (IV.l6a), 

we find 

A(O,t)/R(O,.t) ~ -4.7/ t a'(O) trt(t/4t), ' (IV.l7) 

where we have written R(O,t) - R(a(o),t). Now, there are indications 
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that the Pomeranchuk trajectory is rather flat; if we take, for 

example, its slo:p= to be 1/3 that of the pi trajeetory (which we 

shall assume to go through angular momentum 2 at the mass of the r
0 

, 

. and through 1/2 at zero energy), then we find, using formula (IV.17), 

that the ratio becomes unity at an energy around 140 BeV. This 

dominance of the cut over the pole would become even stronger as we 

moved away from the forward direction. Expanding the trajectory 

function a(s/4) appearing in (IV.l2a) around s == 0, one obtains., 

'for the ratio A/R at small momentum transfers s 

A ( s, t ) /R ( s, t ) ~ - 4. 7 exp [ - ~ A. ( t ) ) / t A. ( t ) , (IV.l8a) 

where 

A.(t) = a'(O) ~-n(t/4t). (IV. 181>) 

The above-obtained results should, of course, not be taken 

at their face value, in view of the numerous approximations made in 

the derivation of (IV.l7) and (IV.l8); even if all parameters appearing 

in (IV.l6a) were known, it would not be surprising if the true result 

differed from the one obtained above by an order of magnitude, or 

even more. 
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V. CONCLUSION 
i: 

! 
I' 

The considerations of the preceding section indicate tllat the 

location and nature of the angular momentum branch points associated 

with the diagrams for which the cancellation of the cuts does not 

occur is the same as that for the AFS approximation to their simpler 

versions, considered in detail in Sections II and III. The role of 

the third double spectral function associated with the cross in the 

diagrams of Figs. 11 and 12 thus appears to be essentially that of 

preventing the above-mentioned cancellation from occurring; the latter 

diagrams have been studied in much more detail in Refs. 2 and 5 \lia 

s-channel unitarity, and the results support the above conclusions. 

Concerning our estimate of the contribution to the amplitude coming 

from the Mandelstam singularity associated with the diagam of Fig. 1:~, 

it can, of course, not be taken very seriously; it does, however, 

suggest that at moderate energies, the cut and pole contributions 

might conceivably be of the same order of magnitude. The method used 

in the analysis of Figs. 1 and 8 had been originally adapted to the 
I 

purpose of exposing in as clear a way as possible the cancellation 

mechanism of the Amati, Fubini, Stanghellini cuts; this mechanism has 

been found to be extremely simple. The same method also led toa 

relatively simple analysis of the singularities in the.angular momentum 

plane of the s reaction; we found them to be of two general types: 
- 1 

those that are independent of particle masses, and those whd.ch depend 

on them. Only the former ones rema:i.n on the physical j sheet at 

negative momentum transfers; their.positions 1n the j plane are given 
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by j a( 0) - 1 and j == 2a( s/4) - 1 for the single and double 

Regge pole exchange diagrams, respectively~ It is interesting to note 

that both these singularities are of the logarithmic type and are a 

consequence of the singular nature of the mapping of the k 
z 

plane 

·into the complex t plane, where t is the angular momentum in the 

' s channel obtained by coupling the (complex) spins of the exchanged 

systems to a reJ.ative orbital angular momentum L - .l The 

analogue of the singularity at j == 
J/2 C) 

a((s· - m)'-)- 1 for the sJng.l e 

Regge pole exchange diagram is the singularity at j = 

+ tB - l associated with the diagram involving the exchange of two 

identical Regge poles; these singularities appear on the physical 

j sheet via the particle-mass independent branch points for 2 
s > m 

and s > 4.Mf, respectively; furthermore, both are of the inverse-

square-root type. The similarity between the amplitudes (IV.8) and 

(II.6),. and, (IV.lO) and (III.2), suggests t.hat the above picture in 

the j plane remains the same for the diagrams of Figs 11 and 12. 

In conclusion, the analysis presented in this paper indicates 

that everything we wish to know'regarding the location and nature of 

the angular momentum branch points associated with the diagrams in 

which the singularities are not cancelled, can be learned by investigating 

the corresponding simpler versions of these diagrams in an AFS type 

of approximation; thus it appears that the additional complexity of 

the former diagrams, aside from modifying the strength of the singularitles, 

merely serves to prevent the cancellation of the cuts from occurring. 
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FIGURE CAPI'IONS 

Fig. 1. Box diagram in ~hich.one of the elementary Hnes has been 

Fig. 2a. 

Fig. 2b. 

Fig. ). 

Fig. 4. 

·replaced by a Regge pole (denoted by the wiggly line). 

The new integration cont01..IT of (IL8 ). in the k plane as it z 

appears when 2 
s >m- x, for the case where ( -s )1/ 2 has been 

continued to s > 0 1/2 ··. 1/2 ... 
according to ( -s ). . - ~ s . , . . only 

the singularities at k+ ~ i s
1

/
2 ± i(m

2
- x)

1
/

2 
are shown; 

the shaded portions on the imaginary axis are cuts associated 

with the branch points that arise from the normal threshold 

singularities in k 2 
3 

of the Regge pole amplitude (they.extend 

to ± i oo ). 

Saiile as.in Fig. 2a, except that ( )
1/2 · .. 

-s has been contined to 

0 :(·-· .s )1/2 . s > according to = . 1/:2 
- i s . 

The contour c of the integral (II .lOa); only the singularity 
u 

of' c (u, s) at u = 0 is shown. 

The contour ct of the integral (ILlod); only the singularity 

of b( t, s) .· at t = a(o) - 1 is shown. 

Fig. 5 ~ Faths of continuation leading from the point u
0 

+ iE, located 

on the contour C , to the possible singular points of I (u,s) 
u 

at u - (m ± i Fs )2 ~ 

Fig. 6~ The complex u plane, shovring the paths along which the di scon-

tinuities of. I(u,s) across u = 

evaluated. 

Fig. 7. ·The integration contour of (II.4) 

u. and u 
+ 

in the k 2 
2 

u are 

plane split 

up into two pieces, CAF'S and C' AFs·; where the 1atter contL)m· 

endrcles all the singu.Jarities in 1<
2

2 
of the Rcgge pole 

amplitude (these singularities are symbolically denoted by the 

cross). 

, 



. • 

. -59-

. Fig. 8. Box diagram in "Hhich two of the elementary lines bave been 

replaced by Regge poles. 

Fig. 9. The complex t plane showing the contour Ct of the integral 

(III. 7) for the case where we exchange two Regge poles, together 

with the singulari!y_of the integrand at t = 2 a(x + s/4) - 1.. 

Fig. 10. The new integration contour of (III. 4a) in the complex r plane 

as it appears for s > 4(~- x); rB' r 'B' rB' and riB give 

"the position of the singularities arising from a bound state 

of mass uB1/ 2 lying on the trajectory a(u); they are given 

. 1 1/2 ( )1/2 "' i ! 1/2 i( )1/2 by: rB = ~- 2' s + i ~ - X , rB = 2 s - ~ - X , 

r. ' 1 1/2 ( )1/:2 and N . _ i _1 51/2 _ B = - i 2 s + i ~- x , r'B = 2 

1('13 - x) 1/:2 

Fig. 11. Single Regge pole exchange diagram which has singularities of 

the AFS type. 

Fig. 12. Double Regge pole exchange diagram which has. singularities of 

the AFS type. 
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