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REGGE POLES AIND UNECUA
s oot i ‘e
Daniel Z. Freedrman and Jiunn-i{ing Wang

Physics.Departmcnt and Lavrence Radiatién'Laboratory

Uniyersitj of Califbrnia, Berkeley, California

Recent experimental and theoretical work indicates that the Regge

pole theory is important in the description of high energy =N backward

scattering.l- However the question of whether the Regge asymptotic form

sa(u) holds in the backward region has never been settled because there is

& cone about the backward direction in which cosGu does not become large with

5,6

sncreasing s. And there seems to be .general uneasiness in applying the

:Regge asymptotic form in this region.

We have studied and resolved this kinematic ambiguity of the Regge

representation, and in this note outline our argument and discuss some very

t
interesting features of the unequal mass scaviering problem and of the Regge

pole thedry in general which our investigations have revealed. In brief we

find that the Regge form‘sa(u) does hold throughout the backward region, bdbut

in order to cancel singuwlarities which would otherwise appear at u = 0, Regge
trajectories must exist in families whose'u = 0 intercepts differ by integers.

We discuss some experimental implication of this idea. Further ve are able fo'

+
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the Air Force Office of Scientific Research, Office of Aerospace Research,
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characterize the behavior of partial wave amplitudes a(u,£) at u = 0 and find
results in contradiction with those commonly bclievcd.7 A more dctailed papexr
on this subject will be published in The Physical Review.

5

o : Usual discussions” of the asymptovic bechavior in the baclwerd rcgion
are based on the application of the Sommerfcld—Watsgn transformation to
expansions of the scattering anmvlitude in vartial waves in the u-channel.

the high energy limit is introduccd through the variable

— 2 2.2 ' S
2(su-(m"-u")") ]
z = ¢cosB = - [l -+ e . (l)
“ " 2 u(n2n.) +(m2-u2)2

This variable is bounded by unity for all s in the backward cone defined by

242 -1 . . . . o
)°s ~, and, since Z4 does not become large with increasing

-

0fudu = (m2~p
s, the conventional Reggc representation (i.c. the Sommerfeld-Watson trans-
formed partial wave expansion) docs not furnish an asymptotic limit in this
4 | D
region. Indeed any representation A(u,s) ='g(u,zu) ¢f the scattering amp;itude
is susbicious at u = O because the transformation of veriables is singular
there.

9

Our!method is based.én viork of Knuri® who shows that Sommerfeld-
Watson transformations and Regge analysis can be applied to representations
other than partial wave expansions.' Starting from a power series in the
momenvum transfer t, we estagblish a representatibn which expiicitly exhibiﬁs
Regge behavior throughout the baékward region. | (

. " In our notation u is always the Regge pole channel. For mathematical. . -
simplicity we treat the case of two spinless partiéles,with masées m and u, |

o _‘ . p < m and assume that the thifd channel spectral funcfion'As(u,s) = 0. The

‘more realistic case A toO is fully trcated in Reference 8. The method can

also be generalized to include spin and definitely applies to aN scattering.
. . . : .
L
3
{
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We assume that the ordinnry partial wave amplitudes a(u, £) are mero-
# .- morphic in the half-plane Ref > ~l/2, so that a Regge representation can be

written for the scabttering amplitude

l .
3 tie P (-7, Py, (u) (7%)

. : ) |
Alu,t) = —;-I] as(24+1)a(u, £) Ty R Zai’(u)(eai(u)ﬂ) -—gm
N . " L
_ y |

3 i
| (2)
where the sua is over the finite nunmber of Regge trajectories to the right

of background.
. ]

The amplitude A(uw,t) is analytic in a disc of radius ty = hpa about
the origin in the t-plane. We can cexpress it as a poﬁef series
' o “co . .
A(u)t) = }: b(u,v)tv o '(3)
' v=0 _ : g
with coefficients
. {2
b(u,v) = ﬁ-lf at At(u,t)t"”l ’ (%)

vhere At(u,t) is the spectral function in the momentum transfer dispersion

relation. Actually the integral defining b(u,v)qcpnverges only fér Rev > N
where N is th; number of subtractioﬁé necessary in the dispersion rclation,
end must be defined by analytic continuation to the left of this line. For

Rev > N,b(u,v) is enalytic in v and has only the physical cut in w.

The Regge representation is wvalid for u % 0, and we use it to

compute At and in this'way’determine the continuﬁtion of b(u,v) to the left
SR A | : . | .
. A (u,8) = D(,8) + Zﬁi(u)(2ai(u)+l)i°ai(u)(l e 0
v i :

N _ '-D(u,t) is the discontinuity of the Regge background integral and is of order

4

O(t-l/e) for u #.0. Its contribution to b{u,v) through (4) is therefore

B

i
L
i
i
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" amalytic in Rev > -1/2,

The contribution of tae Regge pole terms can be found from the

integrals .
fmdt T S G R ' '(6)
% “ou)t 22 L ,
Khuri9 has shown that (6) is regular for Rev > -1/2 except for gimple poles

at v = a(u), a(u)-1,...,a(u)-n vhere 1/2 > Reo(u)-n > -1/2. Thus the image
of a single Regge pole is a principal Khuri pole at v = a(u) plus satellite
poles displaced to the left by intecgers. The residues of the Khuri poles

have been computed in References 8 and 9. We can write for b(u,v) the

representation
. - : n,

b(u,v) = b(u,V) & — Z I‘(a ’i'l) v-a L + o+ X + "‘——’—.‘{:‘-"—'] .
J; i 1 v—a& +1 v-a& +ni

(1)
The function b(u,v) is,reguler in Rev > -1/2, and the argument u of the
trajectory and residue functions has been omitted.” E(u) is the reduced

oci(u)=

Regge residue function defined by £(u) = ¢ a(u) Only the residues of

the prinecipal and first Khuri satellite poles have been written explicitly
| ) ,
in (7). The significant property is that the residue of the jth satellite

pole has a factor of (2q2)a which has poles of order up to j at u = O.

For Rev < N the analyticity of b{u,v) at u = 0 cannot be inferred

rigorously either from the defining integral (4) which diverges or from the

Regge representation since the latter fails to furnish the asymptoﬁic behavior -
of D, (O,u) t seems impossible to avoid this difficulty, which we regard as

a fallure of the Regge rcprescnuau:on rather than as a de;ect of the Xhuri

amplitudes. Therefore we assume that the Khurl amnlltudeSb(u,v) as defined

by (4) can be continued to u = 0, and have no s1nnular1»1es for Rev > -1/2

‘other than those given by the finite number of moving poles’in (7). Although

[



it

g

e

-
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" not proven, such bechavior is suggested by the maximal analyticity concepte

Next we make a Sommerfeld-iatson translormation of the power series

(5) ovtaining

- -+ e R |
aGae) = (207 [17 avlsinen ) oo (1) -’
. ) : L= =jeo

—

w B.IMo.+3/2) . . : -1 o n. C.-n,
i J;“ZP(;iﬂ;simrai [(-6)%-20% (600 (1) (26%) H(-0) *
T | | |
(8)

. O, - s . : g . . .
The background 1ntegraf‘def1nes a function with cut plane analyticity in u

and asymptobic form O(t-l/2). Fach square bracket in (8) gives the contri-
butions of the principadl and satellite Kauri poles coming from a single Regge

pole, and coincides with the first ng {terms of the asymptotic series of

(26%)% (-2). | B

We consider the analyticity properties of the pole terms in Bq. (8)
2t u = 0. It is shown in Reference & that the reduced residues 8(u) have no .

cut in the vicinity of u = 0 but may have péles there because of the unequal

mass kinematics. The contrivution of each principal Khuri pole has the same

analyticity at u = 0 as the reduced residuc of the Regge pole to which it
! “th . e s .

corresponds, and the j satellite contribution has an additional singular
: N . - .

polynomial of order J in u ~.° The sum of the finite number of Xhuri pole

contributions must be analytic at u = 0, and this can occur only if the

singularities of the individual contributions cancel because of cooperation

. _ _
among the Regge trajectories.

Let ao(u) be the leading Regge trajectory near u = O. Its reduced

residue §o(u) must be analytic at u = 0, since a singularity there could not

otherwise be cancelled. The first Xhuri satellite contribution then has a

pole at u = Q0. To cancel this pole there must be another Regge trajectory

-

¥



' Ci(u) satisfying al(O) = aO(O)—l, which we call the first daughter trajectory. .

j .

t5 reducced residue 5l(u) has o polc at w = 0, fixcd so that the singulor part

of its principal Knuri con r;buuwon exactly cencels that of the Tirst Kourid
11

L

e »atcllltc of the lea dln” parenv Regge pole.
In general there will be a series of daughter trajectorics ak(u)'in

the f-plane satisfying

2 (0) = a,(0)-x

K = lyeeeyn 1/2 > Reao(o)—n >'-1/2 . ‘ ‘ (9)

The dorresponding reduced rcsidués ﬁ (u) will have polcs of order k at u = 0,
with everything arranged so that singularities of the individual Khu;i pole
contributions caﬁéel anong themselves upon summation, Such a mechanism for
thq 5ancellation of singuwlaritvies may seom miraéulous, but it i; a rigorous
consequencc o; the assumed analytic behav1or ot b(u,v) at u = 0.

When the speciral funciion AS is included we find that the daughte£
trajectories alternate in signﬁture, the Tirst daughcer havingbsignature
opposite to the parenﬁ. This means that the first daughter traJCCuO£J
tb the Pomerénchuk is unphysical at t = 0 and does not correspond to a zero
mass . scalar meson. :

To obtain addiﬁional support for the daughter uragectorj h/po heols
we have examined Bethg;Salpeter models, and find that the hypotbesis is
sacmsfigd there for any Beéhe—uajpeuer kernel vhlch Reggelzes in the first

“place. The invariance group orf Bethe-Salpeter equations for non-zero tot al
energy is the group 0(3) of three dirmensional rotations leaving the total
B energy momentum four-vector Tixed. For zero tobal energy (i.e., u = 0) this

Y  four-vector vanlshes and the equation becomes invariant to four dlmens1onal

uransLo rmotions of its integration variables. This extra degree of invariance




e e 12 |
at u = O ensures the existence of daughier trajectorics (even for equal

nass kinematics) in much the sams way that the extra degree of inveriance

et

vhich sets'in‘aé the range of a Yukawa potential becoﬁcs infinite ensures
the Coﬁiomb degeneracy of bound cztates. The symmetry pfopcrty is indefcn-
“¢ent of the laddéf approximation and followrs from the Lorentz invariance
of gencral Beﬁhe~8alpcter kernels.v in Reference 8 we show explicitly unat
the reduced residue of the first deushier trejectory has a pole at u = 0
.vith exactly the residue necessary to cancel the sinzularity in the first

Knhuri satellite contribution of the parent Regge traje ectory.
Our work suggests that each of the présently known particle tra-
jectories is the parent trajectory to a family of daughters of the sane
| internal quantun numbers but of alternating signature with zeré CrCY LY

intercepis spaced by integers. Ve discuss Tirst daughter trajectories hcrc,

+

. . . P o
which have the property that ift J° is a physically rcalizable J° state of

- ¥, . . . ‘
e parén e - is a physically realizable state of the dauvghter.
th t, then (J-1 5 hy 1ly 1 le stvate of the daughter.
Baryon daughters would best be detected in high enex rEy vaclarard
meson-baryon scattering. The Kauri representation (8) gives the correct

i N
asympvoltic term vo be used in fivting such experlmenus. The leadlng term

(04 Q8
S (w) is exactly wvhe t vould come from the Legendre Lunctlon of the Reﬂne

e . . ' afu)-L
representcation. lHowever if one wishes to include any terms o; order s 7

one should inciude the contrlbuoion of the first daughter tr JeCuory. A

. ]

Taylor expansion about u ="0 should be used $0 that the cancellation of
. singularities there is made manifest.

The f;rst daughter trajectory of the Pomeranchuk, a?l(t), (6r “he
- P! daughter aP' (t)) has B = Y T =0, G =+l and odd signature. :THEW—SHMN“

\ davghter a (*) has B =Y = O, T = i, ¢ = +1 and even 51gnaturc. Consideration

f ouanuum nambers rev‘als that neither trajectory can couple to the two body

.channels xit, KK or KN and neither_would be observed in common scattering

t
e

'
L
i
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or recaction processes. These trajcctories do couple 4o unegual mass channels

and,could, in principle, be ovserved in double vroduction processes such as
h

T >N T

1/2 1/2

daughter trajectories would be necessary in such processes Lo resolve

in which two T = 1/2 nucleon isobars are produced. The

Kinematic ambiguities in the Re gc reprcesentation similar to those for back-

‘ward scattering.

It is difficult theorctically to predicv the behavior of daughter

trajectories away from zero ener(y, but it is tenpting to consider th

o]

POSSlbllluj that they are roughly parallel with the parents. If so there

would be a physical vector meson of mass between 1.2 and 1.6 Bev on the PL

i trajectory, and a scalar meson of mazss between 700 and 1100 ifev on the pl.

Neither could dccaj into two pscudoscalar mesons. The 1 Pomeranchuk daughter

could decay into KKx with p-wave angular momentum barriers in the configura-
EY — ’

tion K K or d-wave barriers in the configuration (KX)x, but the quantua

. + . - . . — iy .
numoers prohioit the O p daugnter from decaying into Kiw. - Both particles

: - . \ o . 4+,
have bx decay modes, the 1 into the configuration pp and the O into the

configuration gp. Both particles can decay clectromagnetically to zny,. and

this mode may, be dominant for the o The present experimcntal situation,

~although not conclusive’does not seem favorable to the ehlSuOnCO of these

-nesons. This would indicate that the daughter tra3e0uor1es have slopes

more shallowr than the parenbs.

We have used the Khuri represenctation to characterize vhe behavior
X ‘

of partial wave amplitudes a(u,f) ot u = 0 and find

a#(u’z) §;§7l 1(a (0)43/2) | L 2u 2)2 ]a (o) | (10)

r(a“(o)+z+2)

vhere o (0)‘13 the zero energy 1nnerccpt of the leading Regge trajectory of



generally been belicved7’

[, -~ - © et e W e e e e b e - —r i —

-
—t
aon

the same signavure in the direcy channel, and 57(0) is its recduced residuc.

The

[p]

vehavior (10) applies if aifo) > -1, othervise a(u,l) ~ u logz u. The
proof involves o sttaighﬁforward svimate of the integrdls in the Frolissart-~
Gribov definition of a(u,s) and is given in Rcfereﬁcc 8. It is not surprising
that it is the high encrgy bonav*oA in crossed channels wnich dCuufMlnC” {the
behavior of partial wave ampiitudcs at u =0 in thé unequal mass casé, éincc
the intezgral from z = -1 to 2z = -1 which dcfines (physical) partiai wave
emplitudes corresponds . to an nun~raulon of infinite range in the Mandelstan

.

variables at uw = 0. The behavior (lQ) is in contradiction to what has

13 .. . . s . . .
and mey very well have interesting implications

for dynamical caléulations; Ve expect that (lO) characterizes the behavior

of a(u,2) for ]ul'<<'(m2-p2).

Goldberger and Joneslg have eccnt]y vwritten a paocr in which the
same ;uogccU is approached from a different point of view. Different resuli
are found largely because these authors fail %o take into account the mechanism
of cancellation of 51n"ular1uleﬁ by daughter trajectories. They find that the
condition ¢(0) < 1/2 must be catisfied for the consistency of their method.
This condition would seein to be violated by the Pomeranchuk which certainly
couples to unequal mass cnannclg and in Bethe~-Salpeter modclo which have all
the analyticity properties used by Goldberger and Jones. Since the daughter
trajectory hypothesis is definitely satisfied in Bethe- SaLpeucr models ve
fecl thas it is thevcorrect'mechanism by which the ambiguity in the Regge
rcprescnugtlon is resolved.
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