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EQUILIBRIUH PROPERTIES OF BOSON SYSTEHS AT LOW TEMPERATURES 

Victor Ker.neth Wong 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

· September 28, 1966 

ABSTRACT 

A study of the equilibrium properties of boson systems at low 

temperatures with particular.emphasis on the Bose-Einstein transition 

and restricted geometry .is undertaken both from the microscopic and 

the macroscopic viewpoints. 

Use of the Green's function formulation enables the systematic 

study of essentially all microscopic mode~s in the 1i terature. In 

particular the zeroth-order approximation is the Ideal Bose gas, which 

1s applied to the problem of restricted geometry. The first-order. 

approximations include the Bogoli ubov /Ideal, Hartree, Bogoli ubov/ 

Hartree, HartreeDFock, and Bogoliubov/Hartree-Fock approximations. 

'With the sole exception of the Hartree, the first-order approximations 

display a double-valued behavior in the number density and other 

thermodynamic functions. Application to restricted .geometry results 

in the same problem as with the Ideal Bose gas, namely that the 

macroscopic occupation, i.e. the Bose-Einstein condensation, does not 

strictly appear in restricted geometry. The second~order approximations 
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include the Bellaev/Hartree-Fock, Born-Collision, Bogoliubov/Born-

Collision, Bellaev/Bom-Collision approximations. We concentrate on the 

Born-Collision approximation and show that it gives a logarithmic 

singularity to the specific heat in the Very Dense State limit. The 

Born-Collision approximation ls applied to restricted geometries by a 

variational technique. 

From the macroscopic viewpoint, we show that the Ginzburg-

Pltaevskii theory can yield only second-order transitions in film 

geometries as well as in bulk systems. Based on symmetry considera-

tlons, w~ propose a new, modified theory in which the order function 

is Identified with the "anomalous" self-energy, which we motivate by 

a microscopic argument. The new theory is shown to agree with the 

experimental behavior of the superfluid mass density and the jump 

in the specific heat, to satisfy the exponent scaling laws, to give 

a third .. order transition in fllm while giving a second-order in bulk, 
I 

and to yield shifts in the transition temperature in agreement with 

experimental observations. 
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I. INTRODUCTION 

It l's well-known that the ideal Bose gas at rest undergoes a 

Bose-Einstein condensation into· the zero momentum state at a temperature 

which is dependent on the mass and density of the gas. In 1938, 

1 2 London ' advanced the hypothesis that the Bose-Einstein condensation 

is the cause of the A.- trans! tion3 of liquid hell um-4, wl th due 

allowance for the presence of interaction and the liquid state. 

The London hypothesis is made plausible by the experimental fact 

that helium-4 displays the i\.-transltion whUe hellum-3 does not. 

Apart from a difference in mass, the difference between these two 

substances is that hellum-4 atoms are bosons, whereas helium-3 atoms 

are fermlons. Furthermore, estimates4 show that there ~ a Bose-Einstein 

condensation in liquid hellum-4. Finally the ideal Bose gas with the 

same mass ~nd density of liquid hellum-4 undergoes a,Bose-Elnstein 

condensation at ' To = .3.1'4- 01<, . whl ch 1 s the same order of magnitude 

as the i\.- trans! tion, ~::. Z..l?e~l<.. 

To include the interactions of liquid hellum-4 into a suitable 

model, there are two general approaches. One approach is to treat liquid 

' 
helium-4 as a broken-down solid in which the binding forces are too 

weak to localize the atoms near the lattice points. 5 It is important 

that the solid is broken-down; for otherwise the wave functions of the 

individual atoms would not overlap, the symmetry of the total wave 

function would not have any important consequences, and the Bose-

Einstein condensation would be completely irrelevant •. , 

I 
t 

I 
I 
( 

' 
t 
l 
i 

t 
r 



The other approach is to treat liquid helium-4 as a very 

nonideal Bose gas in which the interatomic forces play an important 

role. The justification for treating liquid heli urn like a gas is 
. 2 

that the zero point motion has an unusually large effect on the 

structure, inflating the volume of the liquid to a value almost three 

times as large as would correspond to the "classical" van der Waals 

volume •. In this .dissertation, we follow this latter approach. 

After a short introduction to some properties of liQ!uid hell um-4 

and the macroscopic thermodynamics, we consider the microscopic theory 

in the equilibrium Green's function formulation (Chap. II). Above 

the /l-transition (no Bose-Einstein condensation), we discuss the 

conserving self-energy approximations expanded in terms of the 

interparticle potential \1' and a variational technique for calculating 

the self-energy. Below the 7\.-transl tlon (wl th Bose-Einstein conden-

sation), we consider only uniform condensates, resulting in the 

Bogoli ubov replacement of annihilation and creation operators for the 

. zero momentum state by C -numbers. The structure of conserving and 

gapless self-energy approximations is reviewed, and a simple manner to 

classify approximations above and below the A. -trans! tion is proposed. 

The general formulation is followed by three successive 

approximations of the self-energy in terms of the interparticle 

potential: the zeroth-order (Chap. III), first-order (Chap. IV), 

and second-order (Chap. V) approximations. In these approximations, 

ve find the formulation quite amenable to a compact discussion of 

other works and approximations. In particular, ve find that all 
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approximations used thus far ln the literature are essentially 

contained in the first two orders of the self-energy approximation. 

We consider these approximations and restricted geometry in an attempt 

to understand the behavior of the equilibrium properties of the 

Helium fUm. 

Finally we consider the macroscopic theory of Ginzburg-Pltaevskll 

(Chap. VI) and a suitably modified theory. These are applied to 

several cases of restricted geometries. 

A, Liquid Hell u!n-4 

The discovery of the anomaly which gave the A- transi tlon its 

7 8 
name was by Keesom and Clusius ' in 1932, who measured a singularity 

of the specific heat curve at saturated pressure whose profile 

resembled the shape of the letter /l . Recent measurements by 
9 . 

Fairbank, Buckingham, and Kellers of the specific heat at saturated 

pressure Cscat has shown that as the temperature ..,-_. r)\; ( T" 

ls the temperature of the transition), C.sAt __.,. ~ as the logarithm 

of the temperature interval /LIT! :a jr-r"l to within· lo-4~ 0 1<. ol T". 

From 10-t. •J< ~ I AT I ~ 102 0/~, the specific heat. satisfies the 

empirical equation 

(1.1) 

where f= 0 for T<.. /71. , and i'= I for 
T > '"' • We 

•,,· .. ·:·.,. 
note that>ther~ is a )titnp ·tn the ·specfrlt. h~at ,r 

. ( 1 ~2) 



The saturated pressure specific heat is related to the specific heat 

at constant pressure Cp by 

where V is the volume, ~p is the isobaric coefficient of 

expansion, and ('iJp/'aT'J.sa-t is the slope of the saturated vapor 

pressure curve. Below 2. 5°K, the difference between Csat and Cp 

is less than one per cent; therefore within experimental error, the two 

quanti ties, C.st:tt and Cp , can be used interchangeably. Other 

measurements along the saturated pressure curve include a measurement 

of «p by Atkl":s and Edwards
10 

who show that o<p~ D<J logarithmically 

for • 
11 12 

has been measured ' near the 

e·xperimental error was fotmd to be 

Recently the superfluid density ~s 

A_ -transition and wl thin 

• We note in 

passing that the temperature of the onset of superfluldi ty coincides 

with the specific heat anomaly T"- • 

Before measuring the specific heat, Keesom and Cluslus
13 

also 

determined the way in which the trans! tion temperature changes wl th 

Increasing pressure and found an almost vertical "--curve connecting 

the mel tlng curve with the saturated vapor curve. The p-T diagram is 

qualitatively shown in Fig. le 
14 

Recently Lounasmaa, working at 

elevated pressure near the ·~-curve in the vicinity of the point 

pal3.04 atm, ~ •24.20 cm!/mole, Tc2.023°K, measured the lsochoric 

pressure coefficient /!>v- s: ('dp/1JT)v- and the isothermal 

compress I bill ty l<r • He found that /Jv-~ Ot' logarithmically for 
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with a jump and ~<r,.., Ap with 

thermodynamic behavior of liquid Hell um-4 near the A. -curve has been 
. . 15 

discussed by Lounasmaa. 

The above experiments were done with rather large samples of 

helium at pressures equal or greater than the saturated pressure. We 

now turn to small or thin samples of helium at pressures less than 

-the saturated pressure. 16 

17 Frederlkse measured the specific heat along a given unsaturated 

pressure curve for an unsaturated film adsorbed onto a jeweler's rouge. 

He found that the specific heat slngularl ty at saturated pressure has 

been smoothed over and its maximum shifted to lower temperatures 

from ~- as the pressure is decreased. Mastrangelo and Aston18 

re-examined the problem using T~O~ and found sJmilar behavior ln 

the specific heat. RecP.ntly Brewer, Sym~nds, and Thomson19 reported 

that tbe specific heat maximum for hell urn in partially-filled vycor 

pores agrees with those of Frederikse. 

Other works concern the measurement of the onset of 

20-24 
superfluidity, which indicate that the superfluld temperature 

decreases from as the pressure is decreased below saturated 

pressure. However there is a systematic difference between the superfluid 

ten1peratures for an t•nsaturated film19- 22 and the superfluld 

temperatures for an unsaturated pore. 23 , 24 

In both film and .pores, the superflutd temperature is generally 

lower than the temperature of the specific heat maximum. It has been 
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suggested that additional surface excitations19 may be the cause of 

this disparity. To further complicate the situation, a phase 

transition which coincides with the 1\. -transition at saturated 

. 25 
pressure has been found in an unsaturated film at temperatures above 

T7\ , increasing as the pressure is decreased below saturated pressure. 

B. 
i 

26 Thermodynamics 

The thermodynamic potential which arises naturally in using the 

grand canonical ensemble of statistical mechanics is what we call the 

26 I 
Massteu potential W ((.JJ t.1; o<) , where (?; .= (RaT)- 1 o<.s.-J3r 

wl th T denoting the temperature, ?/ the volume, /A- the chemical 

potential, and ~8 Boltzmann's constant. The Massleu potential 

W(fJ;Vjt;C) ls the double Legendre transform26 in [U~fi] and [N)c::<.] 

of the (dimensionless) entropy S((.)J v:; N) , i.e. 

(1.3) 

where we have used the Euler equation in the entropy representation 

S = (JU-+ ~pv- + c:< 1\1 • 

The entropic fundamental relation is 

.. 
Therefore 

dW = - f..lcJP -+ j3 pt?t'U-- Ndoi.. (1.4) 
• 
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Equation (1.4) leads to the following relations 

N = 

(~;')/JJo{ 
- (-aw) 

"8o<. ~~ v-
and the entropy ls calculated from eq. (1.3) · 

• 

We can consider W as a function of ( 13 1 v; ;<-<-) instead of 

( (h 1 tlj o<. ) • Then 

and 

It is customary, however, to work ln the energy representation; 

and the thermodynamic potential relevant ls the grand potential 

fL( ~ t.l; ,lA- ), which is the double Legendre transform of the 

energy, i.e. 

Hence the connection between the Massleu potential and the grand 

potential is 

• 

(1. Sa) 

(1. Sb) 

(1. Sc) 

(1.6) 

(1.7) 

(1.8) 

(1. 9) 

(1.10) 



The Ehrenfest classification of phase transitions is based on 

the Gibbs potential. 

(1.11) 

h th namely that a phase transi tlon shall be called nb. order if the n-

partial derivative of G(l; p) !s discontinuous at the transition, 

whereas all lower derivatives are equal. The first derivatives of 

G(l)p) yield the volume and the entropy: 

7/"= (~) 
'?; -p 'T 

-A" S = - (~~)v 
• 

The second derivatives are the isobaric coefficient of thermal 

expansion 

the isobaric heat capacity 

c 5 ~ T--/'dS_) 
- '!> f) ~'a -r Jp 

and the isothermal compressibility 

=_L v-

, 

• 

(1.12a) 

(l.l2b) 

(1.13a) 

(1.13b) 

(1.13c) 



ti. MICROSCOPIC THEORIES .... GREEN'S FUNCTION FORNULATION 

The Green's furictlon formulation27• 30 of quantum statistical 

31 physics has enabled the unification of several diverse approaches 

and approximations to the many-body problem. In the case of 

interacting bosons, this formulation can be adapted to include the 

. . 32 33 
macroscopic occupation of a single state ' and used to discuss the 

various approximations34 and liquid helium35 below the 

"- -trans! tlon. 

We limit ourselves to equilibrium systems and, belo1i the 

i\ -transition. to systems with a uniform condensate. We begin with 

some basic definitions for t~e normal system above.the 7\ -transition, 

and we review the formal procedures of conserving approximations 

and variational calculations of the self-energy. We next consider 

the anomalous system below the "- .. transition, and we review the 

formal structure of the gapless approximations and the conserving 

approximations. We end this section with some terminology for 

approximations above and below the 'A, -transi tlon, and a treatment 

of the Bose-Einstein condensation and the Very Dense State lim! to 

Ao Above The 1\. -Trans! ti on. (Normal Systems) 

1. Basic Definitions 

We wish to examine the low-temperature equilibrium properties of a 

many-particle system of spinless bosons of mass m with a two-body 

interaction, whose Hamiltonian in second quantized form is given by 
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(setting n = I ) 

H(t,) = - f,;, jci1r, y.l(l) V, 2 'f1(1) 
. ~ . 

-f J air, j~ cy-~>(1) cfo~{z.) V{12.) C/J{z) ~{I) 
(2.1) 

,.. 0 

where are 

respectively the annihilation and creation operators in the 

Heisenberg picture for a boson at position r 1 and time t 1 obeying 

the usual commutation relations, and 

V( 12) 5 V('i-l'i) 1'(1;1 -tz.) (2.2) 

is the two-body potential such that G(~) satisfies 

along the imaginary time axis, and the notation 

(2.4) 

wlth ~ being the volume of the system. 

As the Hamiltonian does not change the number of. particles, 

AI (-1:) , l.e. 

[H(-t-), N(-t.)) = 0 

where 

Nt-6,) :s. j ~'li tp+(,) '/J (I) (2. 5) 

"tr 
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it 1s convenient to work with a modified Hamiltonian 

Jo/f~): J-l{t) -?Nf~) '(2. 6) 

where ~ , a c-number, is to be identified as the chemical potential. 

The corresponding Heisenberg picture is modified so that for any 

operator Y(t) 

d 
l~ Yft-) -- (2. 7) 

or 

Yf-t) i :14 t - l.Jr:/. t: = e Yfo) e 

For a system in thermodynamic equilibrium at temperature T, 

the expectation value for any operator may be computed using the. 

grand canonical ensemble of statistical mechanics, viz. for any 

operator Y(t), the expectation value < Y(t) > 
Sp [ -e-fJ:Jol. Yt-t-)] 

Sf1 [ e-!J.:N-] 

· ls 

(2.8) 

where (!; .s. ( -1;6 7) - 1 > denotes the Boltzmann constant 

and Sp denotes the spur operation which is to sum ~he diagonal 

elements of the operators In the bracket, sununing over all possl ble 

states of the system with a given number of particles and over all 

possl ble nUlllber .of particles. 



The thermodynamic, causal, imaginary time n-particle Green's 

function can be defined as 

G, (12···2.n) s (-i)"<Tt {Rf'{l) ~(2) ••• f/.'(n) ll. 

:t t.f"'"(zn) · ·· 'f+(n-12.) r.f'"1{n+1)} > 
where Tt denotes the Wick time-ordering operation, which is to 

arrange the ensuing operators in chronological order along the 

(2. 9) 

Imaginary time axis from 0 t-:" -if!;; w1 th the earlier .(closer to 

the origin) time on the right and the later (farther from the origin) 

time on the left. 

These Green's functions ob~y the time boundary condition 

G11 (tj = -ij3) ::: Gn ('tj = o) (2.,10) 

with the other times fixed in the time interval ( 0, -t.{J) . 

This quasi-periodic boundary condition permits the Introduction of 

a Fourier series expansion for Gn~ For'the one-particle Green's 

function, the Fourier series ls 

(2.llb) 
• 

The momentum Fourier series is introduced in the usual way 

G1 (r) (2.12) 
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so that the complete :Fourier series is 

(2.13a) 

with the inversion 

(2.13b) 

The spectral function A{p,W) may be introduced for imaginary 

}'v by the Cauchy Integral 

,. 
G(PJJv) = 4 ~;: (2e 14) 

36 which implies that the analytic continued G(p, r ) ls analytic 

in the vhole t -plane.mlnus the support, i.e. nonzero values, of 

A(p,.W ) for a given momentum, and that A(p, W) Is given by the 

37 1' discontinuity across the real axis ( Q __..,. 0 +) 

(2.15) 

Because of the analytl cl ty of G(p, ~ ) , it is sometimes called the 

analytic propagator. 38 For bosons, the spectral function must ln 

general satisfy 

~ 0 """">0 
A(~w) (2.16) 

= 0 w=o 

~ 0 l.AJ < 0 



(. 

,I 
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for a given momentum. Therefore G(p, }- ) must be continuous across 

the ~ real axis at the origin, and G(p,O) may be represented by 

(2.17) 

where the Cauchy principal value operation is under~tood. 39 

The Green's function are determined by their equation of motion 

together with the aforementioned boundary conditions. The equation 

of motion for G1 can be written as 

-t/3 
~ «2 G0-

1
(1z.) G(z.l? - t/'[11') + 

-(/9 
+ lf d2 V(IZ.) {;z.(IZI~z+) 

0 . 

(2.18) 

where the operator Is defined as 

.. 

G;'(,z) - ( i ~~ + i;, ~ -z. ~) l(12.) (2.19) 

If ve define an inverse Green's function by 

t(ll') = 
-i{J . 

_£ etz. G-
1 
(12..) G(Zl') 

-¥J - . 
= j ct2 G-(12) G 1(zl') 

0 

(2.20) 
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and the total self-energy as 

, (2.21) 

then the equation of motion (2.18) reads 

. -~ t: t-. . 
f az ~ 0 

{12.) G{zt') = 
0 . 

. -cf.3 . . 

t j az. V(tz) Gz. (12.1/z+) 
0 ' . . . 

(2.22) 

Hence we have formally reduced the problem of calculating G1 to 

that of calculating the total self-energy x..,t:ot: through the 

equation of motion (2.22). 

The total self-energy can be separated into two parts: 

(2.23) 

where 
0 
~ (r, t) ls defined as the sum of all self-energy 

contributions which are proportional to ~(t), which gives a 

constant terni in the conjugate variable. Therefore 2:.0 is the 

subtraction term, and ~ satisfies the same boundary conditions 

as for the Green's functions, eq. (2.10). Hence we. may introduce the 

analogous Fourier series' eq. (2.13). Also a spectral function 

/:' (p, w ) can .be Introduced such that for irnaginaey pl/ 

(2.24) 

and 

• (2 .25) 



Hence ~ ls sometimes called the analytic self-energy. 38 The 

same comments which app_ly to G and A apply to ~ and C" • 

["' (p, W ) Is also called the imaginary part of the ··self-anergy 

since ~(p, )=W:t.lo) = 6(p,w) +:ifr(p,w) where 

the real part b (p, w) l s related to the imaginary part by 

,. 
=!~ 27( 
-~ 

r'(p,w') 
w-w' • 

(2.26) 

Now we express G in terms of 2: . If we Fourier analyze 

eqs. (2.19)(2.21) and ~se (2.25), we can write 

(2.27) G(PJ'Sv) -
I 

where fE (p) ls the single-particle energy 

(2.28a) 

-~=~ -r - z..,.,., • (2.28b) 

Hence when the analytic self-energy vanishes, ,. G{p, J- ) is analytic 

ln the· whole 1 -plane except for a pole at 1 • ~ (p) -;!A- , 

which follows from the fact that A(p.~) is a delta function with 

point support_at }• E(p)·~· Ingeneral, A(p,I-V)·is 

giv~n by,· using ·eqs., . (2.15)(2.24)(2.25)(2.26) (2.27), 

( 

. i. 

i 
I ,, 
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Afp,w) :: 

i 
I. 

( 2. 29) 

Hence a suitable approximation for ~ 't:!Ot or A(p, W) wi 11 

determine the Green's function. 
/ 

The chemical potential /A' Is detet111lned by the equation for 

the particle density 

(2.30a) 

which reduces to, using eqs. (2.l3a)(2.14), 

(2.30b) 

where we use the convenient rule for any function g( }1/ ) 

(2.3la) 

(2.3lb) 

where C Is the contour that encircles the poles of g(2r) in the 

positive direction, which holds only lf the poles of g(}) do not 

coincidew!th those of f(j-) and Jf(J-)g(~)--t"O as IJI--')oo • 
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2. Conserving Self-Energy Approximations 

We.now consider the problem of ascertaining a suitable approxi

mation for . ~"tert • We use as our guideline to a sui table 

approximation the fact that the approximation must be conserving40 

so as to yield consistent thermodynamics. 41 

' 
It is convenient to introduce an external scalar disturbance41 

·coupled to the "density", so as to add to the Hamiltonian (2.1) the 

term 

(2.32) 

where uext(l2) is the arbitrary external disturbance nonlocal in 

time and space. We can define a functional, W, of Uext by 

w [ u~)l~ J E k. Sp { e(J>f. T.e ( s) } (2.33a) 

where S ls the imaginary time S-matrlx In the interaction picture 

for a potential uext, 

(2.33b) 
• 

'the one-particle Green's function can be defined as the functional 

derivative of W with respect to uext, I.e. 

tw[ue)t~J 

Ju~ttt:(t'J) 

. :: _, < 7t: l.s ~ (I) cp+(l')} > 
<Tt {sJ / • 

(2 .34) 
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The n-partlcle Green's function is defined by n functional 

derivatives. or 

(2.35). 

• 'f-~o-(zn) ··· ~+(ntz) tp+(n<~-1) J ) . 

The introduction of Uext ext is a fonnal device, and we set U ... 0 at 

the end of allcalculations. ext If we set U 8 0 above• we recover 

the Green's functions defined previously. However, note the necessity 

of using an external potential nonlocal in space and time. The cyclic 

invariance of thetrace that defines the expectation values in 

· Gn(Uext) implies that the same quasi-periodic boundary conditions. 

ext eq. (2ol0), holds for Gn(U ). Hence the Fourier series, eq. (2ol3) 1 

· . ( ext) also apply to Gn U • 

The equation of motion for G1(uext) is different from eq. (2.18) 11 

.· -VJ . . 
+1(11') +~1 oiZ V(IZ) (7&(12.1

12+) (2.36) 
) 

0 

where the Green's functions are all understood to be functionals. of 

Uext. If we insert the ftinctional derivative, 

t!'G(n'L 
IU<Jtt (z'z) 

- c~ (rzl'z.') - G(o') cr(zz') (2. 37) 
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Into the equation of motion, and define the total self-energy as 

·-

1:t:ot ( tl') = G:~/1') - G-1
( II') - uey.t {u ')) 

then eq. · (2.36) becomes 
-lji 

!:,.,-tot-{11 1
) = 'I dZ V(IZ.) (7(2 2.+) • a( 11 1

) .,. 
() 

-t(J /G(13) 
.J. j dZci3 V(IZ) .----
. o tu<xt(z.+z) 

Using ~ G • G .. 1 + G • S c·1 • 0 , we f.ind the ldenti ty 

Hence the equation of motion takes the form 

·..-,p 

(2.38) 

(2.39) 

= t J'(o')~ o/2. V{tZ) 6-(z"J..+) + t: V( II'} G-(11 ') + 

-(,{J 
+lf cl2d3 V{tz)(j{t3) 

() 

o'J1t:ot(.31') 
·--tfo ~"'t (z.+:z.) 

(2.41) 

• 

Thus far 11 we have considered · W and ~ as functionals ·of 

ext . ext U • However, the natural variable is not U but its conjugate 

c1 • ·we may then change to G1 as our independent functional variable, 

which ls equivalent to making a Legendre transformation from 

.. 

' . 



) 
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W (uext) to W (c1) • The functional derivative in eq. (2.41) becomes 

I' l:,..t:•f:(31') -cp o4~(.31') i'G(41t~-) = 1ct4-t:At~--'· ----liJ<lJtt:(z.fz) o · ci'G-(#) J'ut)Ct:(z.+z) 

= J~..fa41 
'-' (.31-1'4) L (-1-'242+) D . ~ . 

where ve define the two-partfcle effective interaction 

s (1234) :e 

and 

L (12.3 4) -

d ~ 'f;o'f: ( 13 ) 

oG(42.) 

J'G(1.3) 

tf veJ(t ( 4 2.) 

I 

(2.42) 

(2.43) 

(2.44) 

which is the density correlation function vhen we take 3 ... 1+ and 

4 .. 2+ .. By functional differentiating eq. (2.38) vlth respect to uext, 

we find that L satisfies the equation 

L(IZ/12.') = G(JZ')G(ZI') + 

-l;j 
+ f D/3d4otSd~ G(1.3) G (41') • 

0 

or 

tf' r _, ... , r'"T ] 
..J~d2ciZ.1 LGuz?G (zl? ~ w (1z~'z') L(~'.Jz3? = 

0'(1.5'; 0(.31') 

(2.45a) 

(2.45b) 

• 



For later reference, we define the inverse function L -l by 

so that 

_, -1 _, t-1 ( L (13.112.~) = G (IZ. 1
) c; (2.1') - ..:.., 12.112.

1
) 

0 

• (2.46b) 

Substituting eq. (2.42) into eq. (2.41), we finally have the 

equation of motion in the desired form: 

·-lj6 
L,f:if)f:(ll') ::: il'(o/f ell. V(IZ)G{zz.+) + lV(IIQ G(ll')+ 

(} 

_,i' 
+ ifazd.3eJt4-dS Y(lz)G(13) c(34-l(s) L (.S2.4Z+) 

§ • 

(2.47) 

We note that ~~ot in eq. (2.47) is a functional of Gt• By 

iterating eq. (2.47) with eqs. (2.43) (2.4Sa), we obtain an expansion 

of · .£tot' In successive powers of V as a functional of c1• 

This is done by taking the lowest order in V in eq. (2.45a) for L, 

so that 

(2.48) . 
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and treat as the small terme This iterative procedure leads 

to the Hartree·-Fock approximation to first-order in V : 

-t~ 
· ~P(II')= itf'(n?/oJz V(IZ)G(zz.+) + l V(11 1)G(n') 

0 • 
(2.49) 

Th.e second-order term in V comes from approximating 

f£ lO'(n')J'(z3) V(t2) + 'd'{t3)d'(zl') V(12.) 

which yields the Born-Collision approximation; 

-qJ 
~ac: (II') ::.. 1.. 2j dld3 V(IZ) V(31') )t 

c 
(2. 50) 

,. [ G(n?G{32.) G(23) + G(t3)G(.32)G(zl') J 
0 

The third-order term is obtained by taking which 

has six terms; and so on. The n!h order term is 

(2. 51) 

... 

These terms correspond to the irreducible diagrams for ~e.t and are 

sho~n in Fig. 2. From the topological nature of these diagrams, we 

note that the Hartree-Fock terms are the entire subtraction term ~0 • 
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We now show that each order approximation in the expansion of 

~-tot: [. c1 ) in powers of V is a conservlng40 approximation, so 

that we are guaranteed consistent thermodynamics. 41 All that needs to 

be demonstrated is the existence of a functional ~ [ Gl ) such that 

the self-energy is given by 

(2.52) 

~e prove the existence of ~ [c 1) by explicitly exhibiting lt. 

Consider the obvious candidate42 for the n!h order approximation 

We need to show that 

~~(n)[G;1 

cflG(.sr) 

• 

(2 e 53) 

(2. 54) 

for an arbitrary G(sr) in g?l">[c1J o This is' obviously true, 

If we assume that the (n-t)!h order is conserving so that 

(2.55) 
• 

However,. it 1 s well-known40 , 41 that the ft rst-order approximation~ the 

Hartree-Fock, is conserving. Hence by induction, we have proven 

I 
{ 

I 
-{ 



I 
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eq~ (2.54) for all n's and the proposition that each order approximation 

is conserving. th The n-- order self-energy diagram and sP ·diagram 

are shown In Fig. 3. 

3. Variational Calculations of the Self-Energy 

A useful calculational procedure is to utilize the stationary 

property of the grand partition function of the system under 

variations of some one-body function31 as the density. This 

variational property was first established by Lee and Yang,43 who 

constructed ·a stationary functional of the average occupation number 

multiplied by the fugacity. Stationary functional forms of the same 

general character have been established in other cases, as a functional 

of the average occupation number in a form which tends to the virlal 

expansion ln the classical llmit,44 and as a functional of 

distribution functions for "quasi-partlcles".45 Lutt!nger and Ward46 

established a stationar; functional f~rm of the self-energy in the 

Green's function formulation. 41 

We shall follow the Green:' s function formulation of the 

variational functional in terms of the self-energy, which, in the 

llght of a more general variational forn1ulation ln terms of one-body 

47 and two-body functions, can be viewed as a singly stationary or a 

. 48 
partially reciprocal formulation. 

For formal mani~ulations, it is convenient to introduce the 

notation -c"(J 
= J al X(ll"') 

0 ' 
(2.56a) 
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+rXY 
~ . 

= -1-r ( X(tl.) Y(zJ')] =Jot 1 a 2. X(tz) Y(z.J+) (2. 56 b) 
t> 

where X and Y are arbitrary one-particle functions. In this 

W [uext] as notation, we can express the variation of the functional 

(2.57) 

and the variation of the functional 

• 

Now we want to change from uext to its. conjugate c1 as the 

independent functional variable of . We This is accomplished by the 

Legendre transformation 

Using eqs .. (2. 57)(2. 58) and the definition of nto" ( Uext J , 
eq. (2.38), we obtain the variation of W [c1) as 

• 

(2.59) 

(2.60) 

Apart from a term independent of c1, we see that W _[c1] is given by, 

ln the limit of uext ~ 0, 
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= ~[G,] + +r (~t-•t[G,J G,) + +r b-tfG,) 
• (2.61) 

It is straightforward to show that eq. (2.61) for W (e1) is the 

. 41 46 [ logarithm of the grand partition function, ' I.e. W e1) is 

equal to the Massleu potential W( fl 1 t1; « ) . 
Because of the ldenti

1
ty of W [.e1 J with a thermodynamic 

potential, we expect that W [e1 J will display variational properties. 

However, tn that we would llke to vary W [e1 ] with respect to 

the self-energy E-,t'Ot' which~~ neither a thermodynamic quantity or 

even real, the variational propert.ies are not so obvious. In fact, we 

wlll show that in general we cannot say anything about the sign of the 

second variation to determine a maximal or minimal property. 

Because r,_'to'C is defined by eq. (2. 38), we can consider the 

change in W [e1J due to a small change in ~ t'ot. W [e1l depends 

on ~-t:·~ in two ways: first, through lts explicit dependence on 

1 and second through its dependence through el• Therefore 

the fl rst variation may be written 

(2.62) 

The vanishing of the first variation yields the Euler functional 

equation 

(2.63) 

which is just the condition for a conserving approximation. Since the 



·:-' · ... 

approximation ls conserving, eq. (2o 58), we may calculate W [ Gl] 

ln any method desirable., But eq. (2.63) tells us that not only must 

the approximation be conserving, bu~ also the variations in 

must preserve the conserving .condition in order that W is stationary 

under variations in ~-tot • 

The second variation of W [c1) is 

cta.W[G.) = -h-( ~~~ tf61 - tFZ.t:oi:) C'Gj -+ 
I 

• +r ( :£ ~ ~-t:bt) J,.G-1 

(2.64) 

which when evaluated at the point 

tu.W[G.,]- +._. (tf2.4J J'cr.- c:C.f:"t:) J'G 
C1 - '/""' <f"~ '&. I . . I 

-~ (2.65) :. f €Jil/dl 1dzaz. 1 tfG(t'l) J'G(z'z.) • 
" ' 

A ( J"iff§ [G, J _, I -1 I' 
IY;{t'l)~(z.'z)- G (tz') G (2.1') J 

From eqs. (2 .. 43)(2.46b)(2. 52), we note that ct I. W can be wrl tten as 

(2.,66) 
• 

of 
. Eq., (2.66) gives the general connection!Unear respon.se to disturbances 

and thermodynamic stabillty. 49 In general, we cannot say anything about 

the sign of g-z. W o Hence W [G1 J is stationary with respect to 

variations in ~to~ o We also note that the indeterminacy of the 
' .. 

sign of follows from our use of a nonlocal in time external 

...... 
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potential uext, which Is needed to define time-dependent Green's 

functions. . 43-45 Thus other formulations, namely time-independent ones, 

will not share this feature, and W would have a maximal property. 

Hence for "time-independent" approximations, i.e. - d'(-1:) ' 

or A(w) ,...., S' -fn, or G(p, }-) is analytic everywhere in '} -plane 

except for a simple pole on the real axis (no cuts), we might expect 

the maximal property of W to hold. 

B, Below the · ~ -transl tion (Anomalous System) 

1. Baste Definitions 

Below the ~-transition, the condensate must be taken into 

account. To do so, it is convenient to use a matrix representation50 

for the quantized fields '-/1 and c.JI + . We define the spinor 

(2.61) 

and its adjoint 

cJ/ ( 'i, t, ) l5 !P+ (I) " ( ~:~~) (2.68) 

to contain both the annihilation and creation operators. We shall 

follow the convention that when two operators are multiplied together 

at equal times, the. '/I+ •s·are always to the left.of the cjl •s 

regardless of their order ln the matrix product. Also we follow the 

convention of summing over repeated Indices (the index 1 is construed 

to Include r 1, t1, and the matrix index). Thus the number operator 
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is given by 

N(c,) = i fa"r, ~+(1) <£{1) 
v 

(2.69) .. 

The modified Hamiltonian, eqs. (2s6)(2.1), can be written in 

the form 

(2., 70) 

where V(l2) 1s defined as in eq. (2.2) .and h not a matrixo 

To include the condensate, we introduce not only an external 

disturbance uext coupled to the "density" but also an external source 

'»''ext coupled to the quantum field, so as 'to add to the Hamiltonian, 

eq. (2. 70), the. terms 

e~~ -'~ rl (-t,) = f j gfJ'i j fP!I.Z ':£ -'(1) U~~et{IZ) !(p(Z) + 
~ D . 

+ fa.:Jt; ':£+(t) 'le"1: (t) 
v 

(2.71) 

where Uext(12) Is an external 2x2 matrix potential, .nonlocal in 

space and time, coupled to the "densityu and the pair operators 

¥' (1) • c.# (2) and . tf+ (1) • CJI+ (2), and where ,., ext{l) is an 

external spinor source 

coupled to the splnor ~..f.( I) • 

j 
; 

': 

! 
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We Introduce t;he functional· W (uext, "lext], analogous to 

eq. (2.33), by 

(2. 72a) 

where i s ls the imaginary time s-matrlx in the interaction picture for 

a potential Uext and a source ? ext: 

-lfl . 
S[uc"; -,e)(tJ = e;cp{-&[~aldZ -f.CJ!+(t)U~)(t-(12.)fP(z..) + 

(2. 72b) 

• 

Then we can define the following Green's functions 

(2. 73a) 

G; (n? E ..z (IW[u(t;'le~-~:~. \ = -1. < ~{s !:f{l)fP+(1')J)<2. 73b) 

. . tfuf?.,~-t: ( 1 '' > )'1e~t~ <T.t: (.:s) / · 

' 

and the. cumulant 

,..,., 
G

1 
(11') .s. G, (11 1)- G~ (1) G,;(l') 

c: ~ ( saw [uCJC,t: "le>tt:] ) . 
_, ;'?e.xt(J') J'"?~'t(~it(l) u~)f.t 

(2.73c) 

• 
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We note that the separation of the one-particle Green's function 

+ ~ 
into G~G~ and G1 is the· time-dependent generalizadon of the 

splitting of the one-particle density matrix into an off-diagonal 

long-range order (ODLRO) part and a regular part 9 as introduced by· 

. Penrose and Onsager51 and generalized by Yang. 52 'We shall refer to 

"' G~ as the condensate wave function and G1 as the propagator. 

The equation of motion for the quantum field and • ts adjoint may 

be written 

. -c'"(J 
+ 1/-i. f ]dz vt12) 

() 

<T.t {st£(1) !E+{z)!£(z.) J) 
<"H(.S)~ 

where the operator c;1 ls defined 

where 

Paull matrices 

• 

7(J) = (' t> .) • 
0 -1 I 

(2.74) 

(2. 75) 

(2. 76) 
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The matrix U is given ln terms of uext and l ts transpose (Uext) T 

We now introduce the notation 

, 

and the equation of motion reads 

·-tfJ 
~ Cl(2 G;'(tz) Gf;. (z.) • H ~'h (1) + V-r. .,t~~t (1) + 

. -ljl . 
+ 1 d z f) (IZ) G!/4(2.) • 

0 

Note that if ~V&(l) ls approximated by 

• -l(J . + 
t/-t. 4v&C') = -}~ ot2. V(12)(5Vz(t) G~J.{z) G~~z(2.) • 

(2. 77) 

(2.78) 

(2.79) 

i 
eq. (2.78) ls identical to the equation investigated by Gross, 53- 55 

P1taevskii, 56 and Fetter57 for nonuniform condensate wave functions. 

Ve consider only uniform condensates at .equilibrium ln whlch 

(2.80a) 

and 

(2.80b) 
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where n
0 

is the number density of the condensate. Note that 

eq. (2.80) is just the Bogollubov replacement, in which the quantum 

fields are replaced by a c•number proportion to ..r-;;: • The equation 
0 

of motion for Glz , eq. (2.78), then becomes a relation between the 

chemical potential ~ and the number density of the condensate 

I [ 0) cz.) ] 
~ - - k~~ + "L.., ... - zvn; .... .. 

or 

ln tho above approximation, eq. (2.79), we have 

where 
-~fJ 

V0 :. f dZ. V{IZ.) 
0 • 

(2.8la) 

• (2.8lb) 

The other equation relating I" and n
0 

is the equation for the 

number density 

• • 
n.:. f- G(ll+) = · "" + f Go { 11+) 

• (2.82) 

\ 

j 
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2. Self-Energy and Gapless Approximations 

The equation of motion for c
1 

can be obtained from the equation 

of motion for G\ , eq. (2., 78), by functional differentiating (2. 78) 

with respect to "1 ext at constant Uext. We get 

J'tz cf,' (1 z) ~ ( 21') 
0 

-cfJ . 
= 1 dZ. U(12.) G(Z./ 1

) + 
() 

( 
G~11z.(t) ) 

d"]~t:(t') uell-t:. 
+ t(n') + 

.. 
~-t,ot" We define the total self-energy ~ by the usual Dyson 

equation (matrix version) 

""' .. 1 and the inverse propagator G by 

. -

Then the equation of motion (2.83) reads 

• 

We have been considering ~~~~ as a functional of 

L Uext
11 

ext) , '1 • The natural variables are their conjugates 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

[ 
· + ) · ext · + · c1 , G~ • We now change from '1 to its conjugate G~ 
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as the independent functional variable. This is equivalent to a 

[ U
ext _ 

Legendre-transformation of W • ., ext) [ ext +) to V U , G1_z 

which 1 s physically equivalent to the renormaUzation of the condensate 

wave functton. 58 Then the functional derivative becomes 

(2.87) 

where we used eq. (2.73). Hence the equation of motion (2.86) becomes 

(2.88) 

Hence, given an approximation for ~~~~, eq. (2.88) gives us the 

corresponding approximation for ~r;~ . We shall show later that 

such approximations are gapless. 

Because the Green's functions satisfy the same 

boundary condition as the normal Green's function, eq. (2.10), we may 

introduce the Fourier series (2.13). The Fourier analysis of 

eqs. (2.84)(2.75) are 

(2. 84
1

) 

and 



where ve have taken the limit Uext~ 0 • We separate the total 

self-energy into the subtraction term plus the analytic self-energy 

(2.89a) 

vi th 

(2.89b) 

and 

(2. 89c) 

such that 

(2.89d) 

(2.89e) 

since the Hamiltonian is symmetric in ~ and operators and 

hence invariant under time reversal. Because of space lnvariance, all 

quantities depend on the magnitude of the momentum. Therefore we have, 
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after liwertlng the matrix G'- 1 
1 

-Jv- E (p)-~11 (-,c;-}-.~) F(p)+ k1z.(~,.,) 

F{p)+~,a (f1Jt~) J'V-E(p) -4~1 (~J.) 

where D • det(G'"'1) or 

D ~ - { [Jv+ E(p) + ~~,1~ .. 1,..)] [1v-E(p)- 4 11 (p.,).,)] + 

_,. [F(p) + ~tz (?JI..,)J a. J 

with 

-E.(p> - E(p) - r 

• 

(2.90a) 

(2. 90b) 

(2.9la) 

(2.9lb) 

and we drop the superscript o on F(p). We can introduce a spectral 

,.., -function A(p, W) for the propagator G(p, }-v ) such that for 

i magi nary )'II 

(2.92) , 
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which satisfies the sum rule, for a given momentum, 

"' J ~: A (f, w) == [(J) 
-?t . .. • 

(2. 93) 

We now show that eq. (2.88) leads to gapless approximations. 

35 We follow Hohenberg and Martin and apply a gauge transformation onto 

the source Y!ext, i.e. "'lext(l) ~exp[i7(3)c<] · tjext(l) 

where of... ls a constant. For an inflni teslmal l"ol.. , we have 

(2. 94) 

• 

The corresponding changes in G% and -.;-' 
""""' l.i are 

(2. 95a) 

.. (2.95b) 

The crux of the matter is that Uext does not change for a constant 

o(. .. Therefore we can write 

which becomes, using eqs. (2.95)(2o88) • 

• ~(J) ~ t) "-~ _ -'- r'/3 ~D-e , , ·'. 
" , ttf....I.IJl. .' o"' - v=r J()C(Z, zl (IZ.) ''", Gi (z> to~.. 

• 
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As t!ol~- 0 

(2. 96) 

Recalling eq. (2.81) for the chemical potential, we_have 

(2. 97) 

• 

+ -
As G% • G% are _constants for a uniform system, the integration picks 

out the p • 0 , } )I - 0 component of "£.!()f: • Therefore 

33 
eq. (2.97) reduces to the Hugenholtz-Pines form 

- (2. 98) 

= [E"(o) ~P~(o)] + [~11 {oJo)- 2:1~(oJo)] 
• 

If we assume that 
~"t:ot: 
~ Is well-behaved near p • 0 , ~v· 0 , we 

have_ from eq. (2.90b) 

- - ~ 2 
Z>= [r-E"<p)-~,(a;o)] - [.F 0(o)-r~1z.(o.,o)]- <2 .99) 

) 

which vanishes with the insertion of eq.' (2.98), indicating the 

presence of exci tatlons for arbitrary small p and 'jy , or no 

energy gap. 

!-



I 
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The sufficient (but perhaps not necessary) condition that an 

approximation be gapless is that the self-energy be derivable from the 

functional ~ 'Jz. [ Uext, Glz J by eq. (2. 88). The sufficiency of 

(2.88) is guaranteed by the constancy of uext under a gauge trans-

formation of the first kind on the source ?'f ext. 

3., Self-Energy and Conserving Approximations 

In the normal system, we found a conserving expansion of 

~. -tot [. 0ext ) "' in tetms of V and c1 by utilizing the properties 

of the . Uext dependence and then considering r._'l:ot not as a 

functional of uext but its conjugate c
1 

, l.e. 

This procedure ls equivalent mathematically to a Legendre transformation 

of W [ uext) 'to W [ c1) or, more picturesquely, to a propagator 

renormallzation:. 

In the anomalous case, we can do the same. In the previous 

sectio:1., we have already Legendre tral\sformed W ( uext, '1 ext] 

We can now complete the transformation to 

This has been done in a more general context, and we 

shall not repeat it here. The generalized expressions for 

and are found ln 

eqs. (1.45)(1.46) respectively of reference 58. Furthermore, a 

functional 9? [ c1 , G, +) can be constructed such that 

(2el00) 
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(2.101) 

as demonstrated by eqs. (II .25) (II .30) respectively of reference 58. 

Existence of such a functional ~ [ c1 , G~+] , as ln the normal 

case, guarantees the conservation laws and consistent thermodynamics. 

i ~ depends on G~ + in two vayst first, through the expllcl t 

dependence and second thr~ugh the G~+ dependence of G1 • Therefore 

and 

so that 

(2.102a) 

\ 
\ 

\ 

I 

\ 
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where 

(2.102b) 

• 

From the equation for the chemical potential (2.81), we see that 

(2.103a) 

where 

• (2.10Jb) 

But for a uniform system, G% and G%+ are constants from eq. (2.80); 

and the integration in eq. (2.103a) evaluates ~"f:t>t at the values 

p • 1aJ • 0 , while the matrix summation adds up the 11 and 12 components 

of ~'t:ot to gl ve 

(2.104) 
• 

To interpret this equation, we consider the poles of (r1 . for small 

tt>f:: . ) p and . )v assuming the good behavior of ~ (p~. J v . Then 

D , eq. , ( 2. 90b)
1 

becomes 
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D =- { }~ - [ E
0
(o) + ~~~(~o) -r ]"'-+ 

-+ [1= 0 (0) -t2:1z.(o.,o)]"1 J (2.105) 

, 
and the vanishing of D .gives the limit as p~ o of the energy 

spectrum. Fromeq. (2.105) 9 .we find that D vanishes with l~c ep 
where 

• (2.106) 

This shows that, ln general, a conserving approximation leads to an 

i'"* 
energy gap in the spectrum of c1 • The source of the energy gap lies 

in the fact that the condensate, by its very nature, does not have 

any exchange properties; therefore diagrams with overcount, 

The necessitating subtracting diagrams explicitly with G~•s. 

no-exchange property of the condensate. is a reflection of the long-

range order present in the condensate, which in turn ls a consequence 

of a broken symmetry. The symmetry group in thls case is the gauge 

group ·- a group of gauge transformations of the first kind -· which ·Is 

broken by the presence of 
+ ,..,, 

G~ , Gt s , etc • In a conserving 

. approximation, we consider the Green's function c
1 

which 1s 

invariant under the gauge group, which is no longer the proper symmetry 

group ln our formulation~ This disparity makes it increasingly 

difficult for excitations to "propagate" as c1 , leading to the 
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energy gap. The proper symmetry in our formulation is attained by 

N 
considering c1 as the··.propagator, which leads. to the. clo.sing of the 

enerty gap and the gapless approximations. We also note that the 

energy gap to each .order/ approximation in V progresses as the mnnber 

~enslty of the condensate raised to the order ccnsidered. 

Cl} (&.) 
· order, we have fA-t- - O(n0); second order,· f"j· _, O(n~ ) ; 

(") ( n) ( n) ""' . _ _, 0 n0 • Therefore the energy ·gap ls - 0 n0 

To first~ 

th n--,order, 

in the n!.h 

order in V • Hence as we approach the A -transition, the energy 

gap ln the conserving approximation .vanishes as expected. At. the 

7\. ·· -transi ~ion, we have a ·gapless spectrum and in general. zyo 

solutions to D • 0 , vlz. 

(2. 107) 

We see that the + sign corresponds 'to the conserving approximation 

and the sign to the gapless approximations. 

C. Approxhnations Bel0\-1 and Above the i\ -transition 

1.. Nomenclature 

We have seen thct there is one physically interesting app.roximatlon· 

above the "' -trans! tlon, and that is a conserving approximation. 

Below the ~-transition, we have two choices, either a conserving 

approximation or a gapless approximation. Hence there are two 

combinations which may be sui table on both sides of the /\. -trans! tton:. 
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a liholly conserving approxhnation below and above, or a gapless/ 

conserving approximation •• conserving above and analytic continued 

below to be combined wl th a gapless approximation. Note that while 

the order of the conserving approximation above and b~low must be the 

same, it need not be so for the gapless/coriservlng approximations 

since the gapless approximations singles out the role of the condensate 

from the rest of the system and hence can assume a different order. 

A word should be said concerning the manner in which we name the 

approximations. For the conserving approximations, we use only generic 

names (e.g. Hartree-Fock) without any reference to the particular 
/ 

originator of the approximation as applied to the boson system. 

However since the gapless approximations are characteristic to the 

boson system, we shall name them after the originator ~t the 

approximation regardless of the temperature at which the approximation 

was first used. 
th . 

Finally we classify an approximation as n-- order 

where n is the higher of the order belowand above. 

2. Bose-Einstein Condensation and the VerY Dense State Limit 

Consider the system above the i\ -transition and approaching the 

transition from above. We wish to give a criteria for the Bose-

Einstein trans! tion. Consider a quantum state characte.rlzed by 

momentum p • Let us·define Np as the number of particles in 

state p and np c Np f't.,J'- ,as the number dens! ty of state p • Now 

vhen we take our N/ v- llmi t (i.e. N _. 00 1 t)-9.,., J "'= N/v<o-), 

we characterize a sparse state, dense st!!lte, ·!2IJ. dense state, and a 
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macroscopi e state by the various lnequaU tles and llmi ts: 

sparse 0~ Np ~ 1 np ~ 0 

dense 1 <. N, . 
p np- 0 

very dense 1 <.<. N p np-- o-

macroscopic NP~oo n ~ np >- 0 • 

The Bose-Einstein transition ls characterized by the appearance 

of a macroscopic state. For a system at rest, which ls the only system 

we consider, the macroscopic state has p • 0 • 

In our formulation, the number of particles in the p state is 

CIO 

Np = _{o ~~ A(i>JW) -f-(w) , (2.108) 

and A(p,(A)) can be written from eq. (2.28) 

(2.109) . 

, 
where 

(2.110) 

and 

(2.llla) 

• (2.lllb) 

.. 
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It ls easy to see that eq. (2.108) is well-behaved for large w•s, so 

that any divergence hi N
0 

must come from small ~·s. Recalling the 

general property of A , eq. (2.16), we shall assunie that A(p, w) 

ls suitably smooth near ~ • 0 , such that the divergence in N0 will 

have 1 ts origin in the pole of the statistical factor f( W). This is 

a physically reasonable assumption as the ~ qua ~ of the Bose-

Einstein transition is the Bose statistics. Even when the spectral 

function ls as singular as a d" .;function 

so that eq. (2.108) reads 

N
0 

has a divergence at .)A-= Eo which is a reflection of the pole 

ln f(W ). Therefore, for very dense states, we can approximate N . p 

by expanding f( W) about W = 0 , l.e. 

A(~w) • 
) 

This approximation is called the Very Dense State 

eqso (2.14)(2.26), we rewrl te eq. (2.112) as 

I --Np 
/J [e 1(p)+ Ll'(?JO)+?J 1 

\ 
I 
\ 

. 
J 

• (2.112) 

llml t. Using 

Np~'?/ (2.113) .. 
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Hence the Bose-Einstein trans! tion · . (N
0 
__. ~ ) occurs at 

(2.114) 
• 

This equation relating J.A. ·and ~ along with the equation for 

the pressure will determine a transition line on the (pT) plane. 

In order that eq. (2.112) ts valid, the main contribution to the 

integral must come from ·w•s such that fJ W <<. 1. Hence the width 

of the spectral function must be contained in the small ~ interval, 

i.e. for w • s sati sfylng fJ ~ <<-1 1 ~r(p,w) <<- 1. 

Furthet~ore, the peak of the spectral function must be tn this range, 

i.e. for fow<..<. 1 , tJ [ e'tp > + JJ'fp, w> + '? J << 1 • 

From these two conditions, we see that our initial assumption of a 

suitably smooth A(p, W ) about w = 0 is transferred to an assumption 

on the continuity of the self-energy about the 

point } = o .. We know that E.,~D't'(p.,)-) is continuous across the 

origin along the imaginary axis, and the added assumption concerns the 

entire neighborhood of the origin excluding the cuts on the real axis. 

In a sense, this assumption ls analogous to the assumption of 

continuity of 'i£:..'{;0~(P1J) about the Fermi surface h\ order that the 

Landau fermi-liquid theory is valid. Indeed, one can interpret the 

above assumption as defining the normal boson system. 

We note that the Very Dense State Uml t, eq. (2. 112), can be 

rewritten as 

(2.115) 
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This limit should not be confused with the quasi-particle approximation, 

viz. 

• (2.116) 

If however we apply the Very Dense State limit to the final expression 

in eq. (2.116), we do get eq. (2.115). This merely asserts the 

commutlvity of the two limiting cases 9 not their equality, and the fact · 

that the Very Dense State limit is trivial lf the quasi-particle 

approximation ls valid. Hence the main utility of the Very Dense State 

llmlt is ln dispersive systems, i.e., the second and higher-order 

approximations. 

Let us rewrite eq. (2.110) in terms of the analytic self-energy 

(2.117) 
• 

We note that '1? 0 above the trans! tion and vanishes on the trans! tlon. 

It would be convenient then to analytic continue eq. (2.117) below the 

trans l tlon, I.e. 

(2.118) 

where 
. ,..,. 

the 11 element of the matrix ~"t~ , Is the ·analytic 

continuation of ~~Dt defined above. By analytic continuation, we -~~~ean continuing the propagator G1 above to the propagator Gu below. 

Since r._~ot above is a functional of G1 , this operation defines 

• In general, below the transition • 



III. ZEROTH-ORDER APPROXIMATION 

The zeroth-order approximation is merely our classification of the 

ideal Bose gas, which was first studied for a non-massive system. 59 

For t.he massive system, ve note that the approximation is trivially 

conserving -- since the Interaction V . is zero, the function ~ 

is independent of G
1 

vanish. 

+ . 
and Glj , and both 

We consider first the bulk limit for the ideal Bose gas and show 

that the trans! tlon l s first .;.order. We apply the ideal Bose gas to 

restricted geometry, first writing down the thermodynamics for an 

ideal Bose gas in an arbitrary rectangular box. For concreteness, 

we specialize to a film geometry and study first the zero temperature 

limit. We find that the ground state is not macroscopically occupied 

until T • 0 and that cp diverges as T -+ 0 indicating a film 

analogue of the first-order trans! tl on at T "> 0 - in the bulk limit. 
0 

occurlng at t • o. At arbitrary nonzero temperatures, we reduce the 

thermodynamic quantities to~expresslons involving six functions of 

f and c{ , which are tabulated. We then discuss the equation 

for density holding ground state occupancy constant and varying L , 

and the equation for energy holding L fixed and varying T. In each 

case we find three distinct regions. For the constant ground state 

occupancy ease, we find classical, quantum diffraction, and quantum 

statistical effects easily discernable. In the constant film 

thickness case, we find regions of two-dimensional Bose gas, 
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three-dimensional Bose gas, and three-dimensional Boltzmann gas 

behavior. Finally because of the reduction to functi~ns of f. and 

~ , we write down scaling laws enabling easy calculation of 

thermodynamic quantities of any film system once one film system has 

been solved completelye 

A1 The Bulk Limit 

Above the critical temperature T0 , the equation of motion (2.26) 

(2.27) yields the usual fip::p"/Zn? sp~ctrum for c1 ~ The 

chemical potential ~ is determined by eq. (2.30) 

(3.1) 

.We now take the bulk llmi t, letting the volume t/' and the total 

number get arbitrarily large keeping the number density, 17 =~/~, 

at a given finite value. Then the sum over momentum is converted to 

an integral by the usual prescription 

where we have inserted the. '1i • s in explicl tly. Eq. (3. 1) becomes 

,., /,~ = F.3Jz. (of.) (3.2) 

where· e<. = -;Sr and /\T is the thermal wavelength at temperature 

T 

t. 2.1rnz.A ht. 
;\T = = (3.3) rn Z7rnr/r6 I 

'i 



,. 

and F cr ( o( ) is the 
' 60 a- th order Bose-Einstein Functions 

\' 

I 
,. 

00 J "'-'t:4~ ' -nc< 
~ (c() = r(rr) - ~ e -o e-r."tJI.,-1 ,:: I nrr • 

(3.4) 

The crl tical temperature T
0 

· is given by 

(3.5) 

and is a function of density n and mass m • For values suitable for 

helium-4, ve find that T0 cc 3.14~, vhich 1s to be compared with the 

A -transl tion temperature, T).. ::. 0 2.17 K. 

Below T0 , the Bose-Einstein condensation sets in, and the chemical 

potential, eq. (2.81), vanishes and the equation of mQtion (2.90) yields 

the G
0 

.p 
,-J 

spectrum for G1 • Gl.i or n0 is determined by eq. (2.82) 

. 
, = ..!:... G ( n+' ~. I ./ 

I ~· . I = "~ ~ -~--..... --v f e~G-p -I (3.6) 
• 

. In th~ bulk Umi t, we get 

I' . 3 
\.n-n") ~T = (3. 7) 

The thermo.dynamic quantities can bs easily calculated in the 
2 ' . . 

bulk liml t. The specific heat at constant volume ls continuous wl th 

a discontinuous slope at T0 • This has led some to denote the 

transition as a third-order transition. But if we follow Ehrenfest•s 

lead in classifying t:ransltions, we should determine the order from 
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the Gibbs 'potential in fT plane. Hence we calculate the Massieu 

potential W , which ts related to the pressure by eq. (1.3) and is 

given microscopically by eq~ (2.61). For the ideal gas, we have 

above T0 

W = - +r ~ (- 6;-') 

= ~~(1-r--l(irp)) 
p 

= V ?tf F5/z (ci.) 

(3.8) 

where the bulk limit is taken and the integral was integrated by parts.; 

The pressure p as a function of ( /J~ o(. ) is given by 

e 
(3.9) 

. . 61 
For small Dt •s, we can invert eq. (3.9) by the expansion 

to obtain an expllci t form for the chemical potential .)A- as a 

function of (T, p), which is just the Glbbs potential per particle, 

eq~ (1.11). Holding the pressure fixed ,at P , we ftnd 

(3.11) 
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where T
0

( P) ls defined by 

(3.12) 

an.d 

(3.13) 

c, 5 
~ ';t(Sfz.) --':1(3/z.) ~ (3.14a) . 

Cz. S 
r{-3/z.) c '31-2. 

';'(J/z.) I 
• (3.14b) 

Below the transition~ we have 

~(T<T.) = 0 (3.15) 

Hence the transition is first-order, with the Clausius-Clapeyron 

equation 

(3.16) 

Note that from the. ( A t)3k term ln eq. (3.11), the specific heat at 

constant pressure diverges as AT__, 0 + as 

(3.17) 

• 
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Below T0 , the pressure is fixed by the temperature alone, and Cp 

is not defined. The divergence of cp is a reflection of the 

thermodynamic instability that sets in at the transition. 

B. Restricted Geometry 

The Ideal Bose gas confined to a finite (in any dimensions) 

geometry has been of considerable interest. The geometries investigated 

62-66 . 67,68 
has been the film geometry and narrow channels. Moreover the 

geometry may have infinite extent in some dimenslons64, 65 or be 

. 63,66-68 
strictly finite. 

We first write down the general thermodynamic expressions for the 

ldeal Bose gas confined to any rectangular box. We next specialized 

the geometry to the fUm geometry as defined below and investigate the 

T ~ 0 limit. The general equations are written down and discussed. 

Finally, we derive some general scaling laws. 

1. General Thermodynamics 

Let us first consider the Ideal Bose gas confined to a rectangular 

box of dimensions (L 1,L2,L3), where we impose the boundary condition 

that the wave function vanishes on the box. Thus the energy levels 

are :liven by 

(3.18) 

where ls the_quantum number associated with the dimensions Lz 0 

The Massieu potential W ls given by 

I 
'·· 
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. . 011 

w(;J,-v; «) = - '2:. .tn [1- el'p{-foE(L,.t.L,)- eJ..) J 
. .,L,.t, '-' 

(3 .19) 

=-I • 

Therefore, from eqs. (1. 5) , we f h\d 

(3.20a) 

00 

v( ji1 Vj el..) = .· 2:_ ~,.lz. .t.J E {~,.tz. .i.s) 
~:.t~t, . (3.20b) .. , 

Go 

-p ({?., v, el..) = L N,t,~.L3 [-lv E(M.L,) J 
,tl.t,t, 

(3.20c) 

' lf:t 

·where N;~,,~,.t3 
< ..L,, .lz, J,3 > 

ts the mean number of particles in state 

(3.21) 

• 
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The pressure is dependent upon the geometry of th~ system. We 

shall consider three geometries below. The first geometry of interest 

is the bulk geometry where all three dimensions can be varied. We set 

and obtain 

and 

"'!!:S(·At ,,..JJ: ~.U.('AIV.,ot) r 1.,, v 1 A. tJ I' 
(3.22b) 

where ""'- = V/1./ is the e~ergy density. The second ease of 

interest is that of a film geometry in which one dimensions, say L3 , 

ls considered rigidly fixed. Then 

and 

(3.23b) 

• 

i 
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The third case of interest is the pore geometry in which two dimensions. 

say.L
2 

and L3 , are considered rigidly fixed. Then 

and 

(3.24b) 

• 

Finally, the total (mean) entropy of the system is given by the 

Legendre transformation back to the extensive parameters, eq. (1.6). 

Using eqs. (3.20ab), we find the usual expression 

. :J (3.25) 

• 

2. Film Geometry 

Now we consider the fUm geometry ln more detail. Let us define 

the dimensionless parameters 

) ) 
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No physical system is infinite in extent, but the temperature needed 

for size effects for a typical length of one millmeter is of the 

order of 1012 °K for helium, which is clearly too low for our present 

technology. Therefore we can take some of the lengths to be effectively 

lnflni te in extent. For the film geometry, we take the liml t lj --to 0 , 

. as we apply the summation formulas in Appendix A to 

eqs. (3.20ab)(3.23b) to obtain the equations,valid for nonzero 

temperatures • 

(3. 26a) 

(3.26b) 

(3.26c) 

where 

t)o 

¢Jx ( fJ o<) = '$ zk+l J::. !=.,·( ~ f.,n,. + o() n 2 k 
. · n=t 

(3.27a) 

or 

~. 

~·I< (iJ c1..) = j 2
k+l ~ 7 (~ f,.(n"-1) +c:l/) n 2* (3.27b) 

n:: I 

'i 
\ 
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where we used. 

(3.28) 

and 

t= T.3 ) 
L = L.3 • 

(3.29) 

In Appendix A, we prove ~he following· asymptotic limits for 4j·Jt.. : 

Jc. I 

<1]1<. ( 'f1 c£) y.=; (-fy) (zk-t)!! IJ+k+~ {ot.) (3.30) 

.;... dk.o f I~ (o() 

J 

(3.31) 
• 

I 

Therefore as.the bulk limit is approached, $~ 0 , eqs.(3.26) 

becomes 

.J ..Ll-. ni\7 = F.;~z,(Dl.)- a.~ F,(c<) (3.32a) 

(3.32b) 

o .. 32c) 

..:··. 
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and the other thennodynamic quanti ties are easily derived from 

these equations. 

The opposite lh1lt, J~oo, ls the zero-temperature limit for a· 

fixed film thickness L , in which the temperature is so low that 

f-. 00 but yet high enough so that t, -9 0 1 Ia.~ 0. Using the 

asymptotic Uml t of ~ik. , eq. (3,.31), we obtain 

Let us consider this Umi t in more detail. 

ae Zero-Temperature Limit ( f-tt()a) 
' ' 

• 

(3.33a) 

(3.33b) 

(3o33c) 

To interpret eqs. (3.33), we consider the following thermodynamic 

'th' ' 
quantities due to the .1,.- band 

(3.34a) 

(3.34b) 

(3. 34c) 
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where 

We get in the limit of i' ~ 00 the following expressions 

(3. 36a) 

(3.36b) 

(3.36c) 
tl 

We see that the terms from the excited bands, i.e. t?~> LA,£> 7'~ 

for ~ > 1, all vanish exponentially as T ~ o. Hence as 

T ~ 0 , all the particles squeeze into the first band, and we find 

a strictly two-dimensional behavior. Therefore eqs. (3.33) are just 

equal to the first-band contributions from eq. (3.36). We call 

this limit the first-band approximation. 

The ground state occupancy Nu, l!1 [e-<'- I J-1 
can be 

I 
obtained in this limit by studying the behavior of ~ as T __. 0 • 

From eq. (3.33a) we see that 
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where we have expanded, fQr small o( 1 

F, (o<') = -~ (I - f:,-o<.') =:!~d. 1 
• 

Therefore as T ~ 0 , we have 

.. 

-n7trL _..L 
D< ~ =· e "' e ' 

and the ground state occupancy is 

N,, ,~-a.rL 
=e -'

AJ e r , 

(3.37) 

(3.38) 

so that macroscopic occupation does not strictly appear until T • 0 , 

which ts·· well-known. 

In order to discuss the specific heat, the energy density may be 

written 

(3.39a) 

and the enthalpy density is 

= z.n ~ T ~ («') 
lJ 1=, (o<.') 

(3.39b) 
• 

The specific heats are found by differentiating eqs. (3.39) to get 
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C (T) = n~ [ F~,.(c<') 
v 8 ,::; ( cl..') + 

+Tfgc<.'J (f=_(d.?f:o(ot.')- .)]· 
. ~fTJv J!1Z(ol.') I 

From eq. (3.33a) we find 

T(~)·. 
fJT tr 

From eq. (3. 33c) we find 

- Fi (~') 
Ft~ (cJ.') 

Fz.(o!.') 

F, (cl.') 

• 

II 

Inserting eqs. (3.41) into (3.40), we have 

n (~'J ·] 
Fe (d.') 

(3.40a) 

(3.40b) 

(3.4la) 

(3.4lb) 

(3.42a) 
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(3.42b) 

which has the limits, as T ...-~>' 0 , 

Cu(T) = I'VT (3.43a) 

(3.43b) 

The diverges of Cp does not violate Nernst•s postulate as the entropy 

denst ty ls 

(3.44) 

and vanishes at zero temperature.' We note that there is a thermo-

dynamic instability at T • 0 , as 

vanishes exponentially as T ~ 0 , and the usual consequences of 

Nernst's postulate does not all hold, namely for . cp •. This curious 

situation occurs because the analogue' of the first-order transition at 

I 



• 

-67-

T0 for the bulk limit takes place at T • 0 in the film geometrye 

In the pore geometry, 67 it has been shown that a finite system 

ean behave as a one-dimensional system. In our infinite system, just 

as we have demonstrated the strict two.dimensional behavior of a film 

geometry, we can likewise do the same for the pore geometry. The 

equations analogous to eqs. (3.33) are 

. A ~~ .~r3 = ..L r'- I:!:' (-l') + :a. r 4- ~ ( , , ,., ~ ~ z > r;.Jjz """', 4- ~ rvz o( J 

where we have taken the system with 

) 

and 

b. Nonzero Temperatures 

Now we return to the general equations (3.26) and calculate the 

thermodynamics for arbitrary temperatures. 

In order to calculate the specific heat, we write the energy 

density as 



-68-

and the enthalpy density as 

We need the various derivatives of ci:J·k. , viz. 

. 4"11*- (iJot) = 2 t+' ~It ((,.t.) - ·. 

-fi ~·-, J k.;-t (il o() 

; 

and from eqs. (3.26a)(3e26c), we obtain respectively 

rta~) 
\:lJTp 

--

ciJD(fJ«) + ~ ¢>DI ( tJo/.) 

cPDD(FJ o{) 

2 cPzo(iJcl.) + * c:P,J ( l"> f){) 
cfJo(£ cl...) 

(3.45a) 

(3.46a) • 
(3.46b) 

(3.47a) 

(3.47b) 



) 

The specific heats are then calculated by· the equations 

(3.48a) 

(3.48b) 

which result in 9 using eqs. (3.45)(3.46)(3.47) 

(3.49a) 

and 

(3.49b) 

-i:J Z 1; D 41o - !t'- 4;, ~Z. + 71 ~~ ~<> + -f ¢,., ¢,,)] I 

By the use of eqs. (3.30)(3.31), one can easily verify that eqs. (3.49) 

reduce to the first-band approximation, eqs. (3.40), as T ~ 0 and to the 

usual expressions in the bulk limit. 
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Equations (3.26)(3.49) contains much of the thermodynamic properties 

of the film geometry at: arbl tracy temperature. Note that the thermo

dynamics are dependent on 6 functions ¢>06 , c/>,tJ, ~D.> ¢a1 J c:;A,, ¢o~ 

These functions have been computed and are tabulated in Tables 1-6. 

Also are plotted in Flgse 4, 5, 6. 

Figure 4 and the equation for n , eq. (3.26a), give us directly a 

relation for the density n(T) for a given occupation of the ground 

I 

eo<'-! 

and a given film thickness L o However lt is more interesting to hold 

the density fixed and to compare the temperature of the film with the 

corresponding bulk system for a given occupation of the ground state. 

Mathematically, we need the ln:verse ratio of eq. (3.26a) with the 

corresponding equation for the bulk system, i.e. 

with 

T -h b 
(3.50a) 

(3. 50b) 

where Tb is the bulk temperature for a given ground state occupancy 

No::: (eoCIP_,]- 1 , as defined by 

e 

\ ., 

I 
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Eq. (3.50) is plotted in Fig. 7, where instead of T/Tb versus il 

we have defined 

-- • 

The interesting feature of Fig. 7 is that T ~ Tb for a region of 

small F b ; i.e. as we "slice" the bulk system, decreasing L and 

keeping n fixed, we find that the temperature must first increase and 

then decrease ln order to maintain the same occupation of the ground 

state. The T ~ Tb region can be viewed ~s a region in which 

"classical" effects dominate. To see this, let us consider the point 

where T • Tb , i.e. we look for solutions to the equation 

(3.52) 

f.or a given • One sol uti on ls fb .:: 0 , which is trivial and 

corresponds to the bulk system itself. A nontrivial solution does 

exist in general as evidenced by Figs. 4 and 7. As we increase t 

~ becomes larger and larger. Finally in the classical limit of 

large ; and there is no finite nontrivial 

solution to eq. (3.52) as shown in Appendix B. Hence the region 

is a classical region. The physical effect is that 

as we "slice" the system decreasing L and keeping n constant, we 

drastically reduce the number of available energy levels lncl uding the 

ground state. Therefore to maintain the same ground state occupation, 
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we must increase the temperatureo However, as we continue to "slice" 

the system, the ground state energy increases making it increasingly 

difficult to occupy the ground state, and the temperature must be 

decreased to maintain constant occupation of the ground state. This 

latter effect is clearly a quantum diffraction effect which takes 

hold when the deBroglie wave length is comparable to the film 

thl ckness ( ~ ~ I ) 9 generating the first-band approximationo 

in addition to the "classical" effect for small ~ and the 

quantum diffraction effect for large ' , there is a quantum 

statistical effect in the region of very small c(b or large 

occupation of the ground state. If db<<<. I 9 say ~ 10·8 , 

then 

and 

(3.53) 

Using eq. (3.53), we can explicitly solve eq. (3.52) to get 

(3. 54) 

Note that the approximation which led to eq. (3.53) ls not the same as 

the fi rst .. band approximation which is val,id for large J for all 

, r·._ 
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•s, while the above approximation is valid for small f and 

is dependent on the divergences of F 1 ( o(b ) as olb __.. 0 • 

The physical interpretation of this approximation is that the ground 

state is so densely occupied due to the quantum statistics that it 

dominates all the other states in the system. Because of statistical 

correlation, the effective length for quantum effects may be much 

larger than the deBroglie wave length, the measure of quantum diffraction 

effects. This effective length due to statistical correlation is 

obviously dependent on the range of o(b in which we are interested. 

If, for instance, we were interested in comparing some macroscopic 

behavior of a bulk system and a film within%~ of the bulk critical 

_, 10-2 ' temperature, T0 , which corresponds to a maximum ~0 of 

0 
the effective length according to eq. (3.54) is of the order of 15 A • 

However D(b ~ 10•
2 is stretching the validity of eq .• (3. 54); and 

if we solve eq. (3.52) by Fig. 4, we find an effective length of the 

0 
order of 35 A • Hence we can define a "small" system as one with 

L ~ 35 i in which the ground state ts densely occupied and dominates 

the system, and a "large" system as one with L ~ 35 X in which 

"classical" effects are prevalent so that all states need to be summed. 

According to this estimate, the diffraction effects which begins at 

L - 10 X iS completely pre-empted by the statistical effects which 

begins at a much larger L - 35 g o This estimate gives a microscopic 

understanding to the "large" and "small" systems introduced by 

Goble and Tralnor66 on the basts of .the specific heat. behavior within 

t.°K f T '"2 0 0 • They also suggested a correlation length of the order of 
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Let us now consider the energy of the system;as.a function of 

temperature, which can be determined directly from eqs. (3.26) and! 

Figs. 4, 5, and 6. Eqs. (3.26b)(3.26a) can be written as, respectively, 

e(i) (3.55a) 

(3.55b) 

where t • t/T
0 

, ~ 0 • ?l,T
0

/L , and e • u/(nk8T0 ) arc all dimensionless. 

Let us fix L and vary T • We find that eq. (3.55) reduces to 

el~) -6<< I 

-t.>> I • 

It turns out for L • 100 i 'that the function ~0 + ~ ¢, 

Is almost constant in ( ~ , o( ) , so that eq. (3.55) becomes 

• 

. ·:.·I,.,,.,·. 

(3.56) 

(3.57) 

(3.58) 

.............. 
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H.ence we can identify three regions: 

(a) for T > "'> T0 , 

Boltzmann gas, so that 

(b) for T ,.., T0 , 

with e ,_ tSfg ; 

(e) for T ..c:<. t 0 , 

gas with 2 e ,._, t • 

1 , we have a threeedimensional 

e- T; 

D<.<<. 1 , ve have a three-dimensional Bose gas 

c< <c: <. l, we have a two•dimenslonal Bose 

In Fig. 8, we plot e. (t) for L .,. 10 X and L • 100 i . 

We note from eqs. (3.56) (3.57) (3.58) that the specific heat at 

constant volume, Cv - Ca~,Jar) , starts off near t • 0 

proportional to (T/L), then goes over to a T '5h.. dependence, reaches 

a max!mum,.and descends at large T to the classical value. From 

eq. (3.57), we see that the rate of descent to the classical value at 

large T becomes larger and larger as the film thickness decreases. 

This implies that the specific heat maximum has increased or shifted to 

higher temperatures or both. Goble and Trainor has plotted the specific 

heat at constant volume showing that the maximum moves to higher 

temperatures and is broadened as the fUm thickness ls decreased. 

3G Sealing Laws 

We now turn to some general scaling laws. The basis for these laws 

ls in the reduction of thermodynamic quantities to expressions involving 

functions. Hence if we transform (or scale) 

the system keeping j' . and tJ(. invariant, then we have laws relating 

the thermodynamic quantities for the two systems. Let the systems be 

primed and U..'"lpri med. ' 1 f !' is to be invariant, the lengths are 
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ls to be invariant, the denslties69 are related by 

(3.59) 

(3.60} 

Then the thermodynamic quanti ties in the unprimed system with density 

n and film thickness L at t~mpera~ure T are related to the primed 

system with density n° and film thickness L' at temperature 

T
1 

b:f 

p "' ::.-
tA,' 

(3.61) -P' 

(3.62) 
• 

The utility of these scaling laws in principle is that it permits the 

calculation of any film system once one film system, i.e. one fixed 

value of L , has been solved for all densities and temperatures. 

\ 
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IV. FIRST-ORDER APPROXIMATIONS 

Almost all interacting boson systems studied in the 1i terature fall 

into this group of approximations. The reasons for this proclivity 

can be said to be twofold. First. the first-order approximation is 

clearly the simplest way to include interactions lnto the system. 

Second, the first-order approximation has no dispersive character for 

the self-energy; and hence all first-order theories may be characterized 

by a gas of suitably defined quasi-particles. 

We begin by constructing the general microscopic theory for any 

first-order approximation. In doing so. we also derived .the total 

energy of the system good for any orders. We then consider in succession 

the following approximations: Bogoli ubov/Ideal, Hartree, Bogoll ubov/ 

Hartree, Hartree-Fock, and Bogoliubov/Hartree-Fock apprJximatlons. 

Finally the application of these theories to the restricted geometry 

ls considered. 

A. General Theory 

The general theorY of the first-order approximation above the 

~ -transition is straightforward and will not be presented here. 

We consider the general theory below the ;'\., -transi tlon. The general 

first-order total self-energy is 

'1:,-tot: = ~Cp) --
0 E. (p) 

FO(p) ) (4.1) 
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where all frequency dependence is absent. The propagator, eq. (2.90), 

becomes 

with 

F=(p) 

J-r~-E(P) 

{ 
'1. ,_z. } D = - },. - E (p) + F"(p) 

where 

and 

F(p)::: F;, • 

The excitation spectrum of c1 · is. given. by D • 0 • or 

1v = :t E.(p) 

where 

• 

(4.2a) 

(4.2b) 

(4.3a) 

(4.3b) 

(4.4a) 

(4.4b) 

We can interpret these poles of c1 as a double spectrum, which to 

thls order agrees with the double spectrum of Mohling.70 The two 

·~...., . 
; 
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poles may be displayed explicitly by writing eq. (4.2a) as 

I -~11>) 
. ·Up ... Jv+~(p) 

where 

. "' .L [ 'iffp> ·] lA-p = 2. . ££p) +I 

-v;p"' = ..L [ E(p) -I ]•. 
:r. E.fp) 

.L 
2. 

F(p) 

e. (p) 

and the spectral function for c1 ls 

A (fi ~) = 2." t'( w- E(p)) (Up~ 
-~~ 

( ~ - 1-71 tf(W+ G(p)) '*· -Upvp 

. 
J 

-t,.<p_V'p) 
-v;'2. 

p 

-"1-:) 
Up 

(4. 5) 

(4.6a) 

(4.6b) 

(4.6c) 

(4. 7) 

We note that the Up and ~ are just the coherence coefflcients 

usually introduced by a canonical transformation, ln which t..ljP measures 
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the admi~ture of the new creation operator in the old creation 

operator and measures the admixture of the new annihilation 

operator in the old creation operator., Also note that this ':\(p, W) 

satisfies the sum rule, eq. (2.,93}., 

The first-order theory predicts in general _a depletion of the 

ground state. At temperature T 1 the number density ls given by 

(4.8) 

vhere 

-f(w) = I 
--~-
e/JW-1 (4 .. 9) 

and we have written E-(p) .. As T ......, 0 , we have the 

depletion 

• (4~ 10) 

1. The Total EnerBI 

Now we write down some general expressions for the energy that is 

not restrl cted to first-order theory.. The general expressions are then 

specialized to the general fl rst'-order theory by the use of the spectral 

function eq. (4 .. 7). 
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/ The total energy of the system ls just the expectation value ·of the 

Hamiltonian. Below the A., -transition. we can take the expectation 

value of the modified Hamiltonian, eq. (2.6), and put it int;o the form 

< ~ (-i:,)) s: u-/"'"' 

= fje~-:sr, [7rs>,~ 
V I 

2. ] (4.11) 

& -r G(n') I ~ . I 
. r, ... r; 

t:,'-.t, 
• 

,.., 
Recalling the definition of c1 0 eq. (2.73c) and lts Fourier series 

eq. (2.13), we reduce the matrix eq. (4.11) to_an ordinary equation 

) 
(4.12) 

where we wrote 

and t,.e.. = V/V ls the energy density. In~roducting the spectral 

function, we write eq. (4.12) as 

~ . 

U7"h = ~ ~~ c:~ f(w+6;) A,, (Rw) .f(w) .-
(4.13) 

-fnr 
• 
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If we divide the Hamiltonian into two parts 
' 

where H
0
(t) ls just the kinetic energy. we can define an interaction 

energy as 

(4.14) 

• 

Going through the identical steps which led from eq. (4.11) to (4.13), 

we find 

tO 

u1~t: =- :{;. .!:.J ~1Tw t(w-Gl) A,1 (P,tAJ) -f(w) + 
'p~ 

Finally eq. (4.13) can be written as 

(4.15) 

• 0 

(4. 16) 

,. 



Above the 'A. •transition, the procedure is the ·same. We have 

(4.17) 

(4.18) 

2. ] Vt . 
.,.. 21?'1 + ~ . G ( ll') I 
. . '1'-'PJ; 

. . t:/ .... 1:, 

and 

(4.19a) 

. .. . 

= 'b "f .£_"1:/, i;(w+ ,:)Mp,w)-if w) - i:nr (4.19b) 

(4.19c) 

i . 

(. 
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where 

,. 
u,nt; = :/; f 4 ';_~ f(w- ~) A(p,w) -flw) -r 

+fJ?;-< 
(4.20) 

• 

We note the formal similarity between these equations for the 

energy above wl th those below. However the stmUarl ty disappears once 

we Introduce expltcl t spectral functions since A has two poles. Note 

also that eqs. (4.16) (4.19c) are generalizations of the Koopman's 

theorem in solid state physics. Now we lnsert the expllcl t first-order 

spectral functions to demonstrate these remarks. 

The first-order spectral function above ls 

A(p,w) = 2.11 d'{w- ep) (4.2la) 

where-

, (4. 2lb) 

.end the f1 rst-order spectral function below is from eq. (4. 7) 

(4.22) 
• 
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The energy above ts, inserting eq. (4.21) into (4.19)(4.20) • 

(4. 23a) 

(4.23b) 
• 

The energy below is, Inserting eq. (4.22) into (4.15)(4.16), 

(4.24a) 

u,,fi = i~ L [Ep- ~(up+ "Z?'I.)] ,C (£p) 
p . 

-tv~ v;"' (ep -1-7·) T fnr 
p • 

(4.24b). 

2. The Massleu Potential 

From eq. (1.3), we see that the Massieu potential is given by 

W/v = 4 - fJ ( u-/A'n) = AP (4.25) 

Because of the G' -function ln A(p, VI ) , eq. (4.21), the entropy 

of the normal system above ls 
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.Se. :Lt. [(1+~(6p)~ (1~1!(~>)- -1-(ep)k...-f(ij,)] 
. p 

= L":[p~ rCep) +~(,-ff(Ep>)] 
p . • 

(4.26a) 

Below the transition, we note that superfluid component do not 

contribute to the entropy. 71 The normal (quasi-particle) component has 
,...,. 

a spectral function Ul<e eq. (4.21) except ep--" E.p • Therefore 

the entropy is below 

Combining eqs. (4.26) with those for the energy, eqs.· (4.23)(4.24), 

ve get the Massleu potential .above 

k!f._ -v 

and below 

i;-~ ~ (I+ -1 (ep)) 
p 

+ ~· L:. t ~e>(f) .f- ( €;) 
p . 

(4.27a) 



l I 

where we write 

(4.27c) 
• 

Then by eq. (4~25), we immediately have the pressure for first-order 

approximations. 

Summarizing the thermodynamics abovet we write 

. I . . . 

n=v2:r(~) 
p .. 

(4.28a) 

(4.28b) 

(4.28c) 



where 

and 

. -f s. ~ - A8 7--4. 

-,ls u..+ 'P 

• 

(4.28d) 

(4.28e) 

(4. 28f) 

(4.28g) 

(4e28h) 

/ 
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. Summarizing the thermodynamics below, we write 

(4. 29a) 

(4.29b) 

(4. 29c) 

j 

-f= - -;f;;.L._~(I+-1-{£,)) - =f;. 'L..EpV,-a.-
'"" p . . p r (4.29d) 

- e,t,,~ + ~ n 

(4.29e) 

. I · · I 

h, = ;$v r,t..,(I+-I(Ep)) + V fEpf(~) +f'A'n (4.29f) 

(4.29g) 
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where 

f.A~;;IJ = ftj.. ~ [ E.p- e-; ( u;..,. t.p") J .; ( £p) 

·- ..L." lh'l (~ + (1;0
) + -fn.IA. av j:- 'f 'P ~ - , 

which can be written 

= ·tv L: [ Gp- ~~0 (Up.,.+ f'l~.._)) f(Ep) -
p 

-z.t. f '1'1( t;.+ ~) + -f-n.,r 
• 

(4.29h) 

(4 .. 29i) 

Thus to be able to do thermodynamics, we need the energy spectrum 

tip and the chemical potential f'A- above, the energy spectrum 

~J> with the energy parameters E(p), F(p) and .the chemical potential 

/A- below. These quantities are all specified once the self-energy 

!s known., 

B. Bogoliubov/Ideal Approximation 

The Bogoliubov/Ideal approximation ls the natural extension to 

nonzero temperatures above and below the transition of the system first 

72 studied by Bogollubov at zero temperatures. We emphasize that the 

extension is natural because, unlike other gapless/conservlng 
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'\ 

approximations, the Bogollubov/Ideal involves no analytic continuation. 

The Bogollubov approximation at T • 0 has been extended to strong 

73 potentials ln a dilute gas by the use. of a pseudopotentlal and a 

simultaneous expansion of the potential ln powers of the two-body 

74 scattering amplitude. Furthermore, the Bogollubov approximation has 

been extended to nonzero. temperatures below the trans! tlon using an 

. 75 76 
extended grand canonical formulation and Green's function. 

The approximation ls defln~d below by the funct~onal £-\(uext, G% +] 
in the form eq. (2. 79) which leads to the chemical potential 

p = l"fo v.- = - '1 (4.30) 

and the self-energy by eq. (2.88) 

(4.31a) 

) 

whlch reduces to, for a uniform condensate 

In momentum space, we can write the self-energy as 

(4.32) 



where · 

. , 

and we can easily see that the Hugenhol tz-Plnes form ls explicitly 

satisfied by eqs. (4.29) (4.32). From eqo (4.,4), we. see that the 

spectrum ts the usual Bogollubov one: 

(4.,33) 

with 

(4.34a) 

(4.34b) 

(4.34c) 

With the energy spectrum eqs. (4a33)(4.34) and the chemical 

potential eq. (4.,30), we can insert them into eqs. (4.29) to obtain 

the thermodynamics. The integrals involving the Bogoliubov energy · 

spectrum needed for thermodynamics are summarized in Appendix C for 

small values of (tzne> Vo ) e We note that among the seven 

thermodynamic functions Sltli!Ir.arlzed in eqs. (4.29), only two of them, 

the number density and the entropy dens1 ty, are not dependent upon the 

chemical potential /A-'.. explicl tlye The Import of this observation 
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is that conclusions reached concerning n and s at constant volume 

are valid for all approximations with the same spectrum. 

77 In particular, let us consider the number densl ty 11 

which can b~ written as, up to order n
0 

, 

vhere 

• 

(4. 35a) 

(4.35b) 

(4. 35c) 

Holding the number N and the volume ~ of the system fixed 11 

we defined the trans! tlon temperature T
0 

(n) by setting '7 = 0 

In eq. (4. 35a) 

(4.36) 
• 

We note that for very small D( 11 there is no s.>ludon to eq. (4.35a) 

If AT .£ (T - T
0

) < 0 • However a solution does exist lf we 

allov 6 T > 0 o The post tlve ~ term in (4.35a) would then 

turn the solution baek into th~ AT <. 0 regiono To see this 11 

we rewrite eq. (4.35a) as 
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\ 

a.?.l1f. + '::/ [ 2 ("'"--,)a. - c ~·~~.] -+ (,!'~1)7..: 0 (4.37) . 

where 

(4.38a) 

c = z.n 1 «t(~) (4. 38b) 

(4. 38c) 

and ~ CE T/T
0 

are dimensionless parameters. The 

solutions to eq~ (4o37) are 

(4.39) 

± ia_ .. [Cc Vr. ~·f- 4a.c Vr., 1:1 (x31!.t)] 
112 

• 

For small 6 T, we take the minus sign to obtain 

(4.40) 



The solution begins to turn back w-hen the discriminant of (4.39) 

vanishes, defining 

(4.41) 

which yields for small ~1.0 

(4.42) . . 
For smaU values of G T •(T- Tc)< 0 , we find from eqo (4.39) 

using the positive sign 
I 

(4.43) 

where 

-- (4.44) 

which has the limit (11/2.) ( "f(J/a.))-1 Vr0 fo'r small Vr0 • 

Such behavior of n0 /n was pointed out recently by Luban and Grohman 78 

for two specific models.but we see Its generality, oecuring whenever 

a Bogollubov energy spectrum exists. To complete the analysis, we 

note that 

(4.45) --
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and 

(4.46) 

' 
This behavior of n

0
(T) is summarized ln Fig. 9. 

We see from the above analysis that there are two temperatures 

in the system~ T
0 

and Tc • In order to determine where the 

transition occurs, we must calculate the thermodynamics. Lubnn and 

Grobman78 went ahead and calculated the specific heat at constant 

volume, assuming that Tc ls the trans! tion temperature. From eq. (4.43), 

they found C.~ ,.., (- G'T)-1/2.. We shall show that this is not 

the case when the interaction is more general than \lo • When 

, the thermodynamics appear to be llledefined •.. Finally, 

we note that our equation for the energy, eqs. (4.29b)(4.29h), reduces 

75 
to the form used by GKW t f we set U lnt • ~o,IA- • The other 

terms of t,4.. int do not appear in GKW as they ignored the interaction 

term in the aamiltonlan. These interaction terms are very important 

near the transition. 

The the!JOOdynamlcs can be o.btahied from the Massieu potential or 

the pressure, from which the Gibbs potential at constant pressure may 

be calculated.· We shall be contented with the first two .terms of the 

expansion of about p m 0 • i.e. 

(4.47) 

! • 
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The crucial terms are the interaction terms 

(4.48) 

where the 0( tA) terms come from the first term of eq. (4.291). 

If we ignore these terms as in GKW, we get 

'P .. ~ :r )"(.f) - r( ~> t( -~- .:tm o<
3
h. .,. o co~.~) 1 (4.49) 

T i • 

Holding the pressure fixed and expanding the temperature about 

T0 (P) defined by s~tting ?J • 0 in eq. (4.49) 9 we see that there 

ts no solution to eq. (4.49) for 

values of • 

~ T < 0 and 

If we allow 

., <. 0 for small 1 

AT-'> 0 , we 

find a Gibbs potential per particle which is double-valued as a function 

of temperature, which is certainly difficult to interpret. If we 

include ~lnt , the term linear ln c< cancels out, and we 

flnd p"" (-A "T)1t./Jl which leads to a divergent entropy. However 

lf we keep the V1 term in the expansion (4.47), we flnd to fl rst-

order in • 

(4. 50) 

.i 

•t"' ·, 
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which yield the Gibbs potential per particle at constant pressure 

P • k8T~ ~ :o 'J (5/2) 

(4.51) 

The analogous equation above is that for the ideal gas, eq. (3.11) 

(4.52) 

Hence the transition occurs at T
0 

and appears to be first-order with 

a change in entropy per particle 

(4. 53) 

From the ( 6 T)3/a terms ln eqs. (4. 52)(4.53), Jle see that cp 

diverges on· both sides of the trans! tion as I AT J •lz • Since the 

change in entropy per particle must satisfy 

\ 
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0~ ~(~) .:s S' ':f(Siz.) -'.2. 'f{3/2) ) 

we see from eq. (4. 53) that J1>o and that 

v~ .s 3 ~(¥/2) 
~ 0.1 z - - (4. 54) v, 411 '.fi.JI~) -

• 

Hence the Bogoliubov/ldeal approximation is strictly a weak potential 

system. If the potential 1s too strong, the system finds 1 t more 

favorable to remain in the ideal phase, as we can see from the free 

energy below the transition 

• 

The specific at constant volume may be obtained from the free energy, 

or more easily from the energy 



u= *~ [f~(.f) +(t, ~y(£) -!f(·l:))c~. + o(o<:IJ.)]-+ 

• 

From eq. (4.35), we see that ~ satisfy· the equation 

where 

'· 

vl th solutions 

A«-BV« +C=O 

A= [~(t) .... V-i' J I ~Ci:) 

~ { B/A - C/e. 
c.; a 

Therefore, taking the plus sign 

(4. 56) 

(4.57) 

(4.58) 

(4.59) 

... 

(4.60) 

I 

; 
i 
i 
i 
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and 

(4.61) 

The specific heat at constant volume is from eq. (4 •• 56) 

Therefore C~ is finite at T
0 

and has a finite discontinuity 

across the transition. 

Finally we note that the isotherms in the 'PV plane do not 

have a finite interval with zero slope, but rather an instability at 

the transition, i.e. 
. \ 

(3 *P/8 V) ~ 0 as '1~0 • 

Despite the fact that , we have A tJ"'.::: t:J ; therefore 

we cannot write down a Clausius-Claperyon equation for the tran~ition. 

Hence we conclude that the phase transition is a vertical line in the 

PT plane and of zero extent in the "P V plane. Furthermore we 

interpret the transition as a first-order one, despite the above 

characteristics, because of the presence of the .. latent heat. 
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C, Hartree ~proxi~~tion 

The Hartree approximation is the simplest conserving approximation, 

in vhich only the direct flrst ... order term ls included in the self-energy. 

For bosons, one usually includes the exchange term, as the exchange term 

is of the same order as the direct term for short-range potentials. 

However thls model has some desirable features: it is soluble and 

l t is uniquely ga,pless as well as conserving. 

Let us consider the Hartree approximation above. We have 

Therefore 

w 

. -ifl . . 
= f: j r.ll dt. G(n) V(IZ) G(z z) 

0 

-~i' 
= i. t'(n') J otZ 

0 

= Q'(n') n Vo 

V( 12) (;-(2.2..) 

• 

(4.63) 

(4.64) 

(4.65) 

(4.66) 

( 

.J 
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• (4.68) 

Taking the N/.,;- Umit, we have the following thermodynamic 

expressions 

' 

(4.69a) 

(4.69b) 

' 
(4 .. 69c) 

where 

(4.70) 
• 

We note the importance of the interaction term (4.67), for the entire 

effect of the interaction is wrapped up here& 

Now we go belowe We have 

(4. 71) 
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J 

= J'(ll') n Vo (4. 72) 

(4. 73) 

• (4. 74) 

Eq. (4.74) tells us that the spectrum is gapless. In fact, from 

ti'(p): 
(4.75) 

and eq. (4.73) gives 

(4. 76a) 

'7 = -!" +n"Vo = - n~ ~ • 
J 

(4. 76b) . 
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so that 

• (4.77) 

The Massieu potential is 

(4. 78) 

Taking the N/ "tr llmi t, we have the thermodynamic expressions 

(4. 79a) 

(4. 79b) 

.. (4. 79c) 

If we calculate the chemical potential J'"(T,P) at constant P 

for linear deviations, Ia T ... T .... T
0 

, from T0 (P) defined by 

setting '1"" 0 ln eq. (4.69c) or (4. 79c) , i.e. 

(4.80) 

, 

we find that the first-order transition of the Ideal gas ls absent. 
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To demonstrate this assertion, we note that above the transition we have 

(4.8la) 

(4.8lb) 
) 

which yields upon the elimination of '1 for P fixed by eq. (4.80) 

(4.82) . 

• 

Below the transition, we have 

(4.83a) 

(4.83b) , 
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which gives 

( · ) _ '"1..;.3 J(.!) 5 y(sfz.) (~ r) · r T<. 7iJ - K, ''h; a. - Z - f<a To - + • .. 
: Q . ':1(-'lz.} 7; (4.84) 

• 

Eqs. (4e83)(4.,84) demonstrate that the first-order transition ls 

absent. ·In its place, we have a tht rd-order transl tion. 

To demonstrate the third-order transition, we calculate the 

speci flc heats explicl tly. The enth,"lpy per particle above is 

(4.85) , 

. and 

..Ee. - -'- (:a ~) 
n*a - *" ~-;:; p 

.3 ' +L F.s;,_ - -z Vr 15;z. + - 2. ,c_,lz (4.86) 

vlth 

T~= 
.r 3 '2. 
2."" &h. + 2 Vr 15.h. 

(4.,87) 

r=.:vz -r v,.. ~~ 1='/z 
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where 

(4.88) 

Therefore. substi tutlng eqo (4.87) into (4.86), we get 

(4. 89) 

• 

Below we have 

h.- nl/D + s 'fooT )(-i) -n- .z I? A• T 
(4.90) 

and 

_cp(T<.~) IS Y(Giz.) +g 'f2(Siz) 
a: - Vr(nA~)3 nfite 4- I? 713 4 

7 • 
(4. 91) 

From eqs. (4.89)(4.91), we see that as "7-"'0 we have 

; : 

(4.92) 

• 
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Note that ep ls defined on both sides of T
0

(P) and is finite at T • 
. 0 

If we substitute into eq. (4.92) VT • 0.73 (the appropriate number for 
.o 

bellum at T~ ), we get 

which ls comparable to the classical Umlt of 2.5 .rue, • In mass units, 

we have 

--
' 

which is the value of c88t(T) for bellum at about IT .. TA \ .. 0.1% • 

To finish our demonstration that Rartree gives a third-order 

transition, we need to show .that the slope of cp(T) ls discontinuous 

at T0 • This can be done explicitly by differentiating eqs. (4.89) 

(4. 91). Instead, we note that cp satisfies the following relation 

-r 
Cp= Cv- V 

z 
(~PlaT),; 
('OP/()V)T 

(4~ 93) 
• 

From the form of the energy equations (4.49b)(4.59b), we see that 

Cv = C~ideal 

and from eqs. (4.69c)(4.79c), we can write eq. (4.93) as 

Cp.= C 'V") ideal 

. ]-1 ' z. (4.94) 
- :::r. [(lE) .:.,.,'&~if' ·. (~) . 

tr 'all' T ideal "aT V: ideal 
I . ) . 

• 
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Since c V,ideal has a d1scontll.nuity in slope and 

and ("a "f/ 3 V )T~ldeal do not 9 we conclude that 

2 
( () P/ t) T)1/",1deal 

cp has a 

discontinuity in its slope~ Also eq. (4o74) shows how the interaction 

term quenehes the divergence tn the ideal Bose gas at T0 • 

London2 in his smooth potential model for a Bose-Einstein liquid 

arrived at a Hartree approximation by an intuitive approach attempting 

to take into account the volume characteristics of a liquid. The 

mathematics of his model is identical to the Hartree approximation, 

thus leading to the same results. 

D. Bogoliubov/Hartree ~~roximatio~ 

Below the transition, we consider the following selfeenergy matrix 

) (4.95) 

which !s just the Bogol 1 ubov self-energy, eq. (4. 32), plus the analytic 

continuation of the Hartree self-energy. ·The chemical potential is 

(4. 96) 

• (4 .. 97) 

~e see that ·~ satisfies the Hugenholtz-Pines form so that the energy 

spectrum ls gapless. In fact 
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~(p) = t!p+ n~~~ 
,: (p) ::. n"' Vp 

(t0(p) = e; - n Vo • 

(4.99a) 

(4.99b) 

(4.99c) 

Note that the energy spectrum remains that of Bogoll ubov and hence 

leads to the double-value behavior of n
0
(T). The haslc difference 

between Bogoll ubov/Ideal and Bogoliubov/Hartree is in the chemical 

potential, eqs. (~.96)(4.97), whlch affects the thermodynamics through 

the interaction term ~n2V0 • 

The effect of the interaction term ~2v0 1s not trivial near 

the transition. We note that 

& -~ "(2) [ :zViii f"7• ( ) J n =llr y a 1- 1(3k)v~ +O o< (4.100a) 

wt,ere 

j (4.100b) 

and the thermodynamic quanti ties, eq. (4. 29), are 111·-defined for small 

values of D( :> 0 and ~ T 5 T - TQ < · 0 • This demonstrates the 

subtle nature of the transition and the need for careful analysis ln 

creating appt~xlmations for the transition. 

Above the transition, of course, everything ls well-defined as we 

have just the Hartree approximation. 
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One can generalize the above equations to include the Hartree-

Fock term above the transition but only as an additive constant term 

to the Hartree one, I.e., we take Vp ~ V
0 

and write 

{

,!-"= 11~~ +.an'V" = 2..nVo -n.,Vo 

"'7 : -~ + z.n'Vo =- - noVo 

{ 

E-(p). = ./6; (Gp + 2-no Vo )
1 

·s(p) = e; +nDVo 

. F(p):: n" Vo 

(4.101) 

(4.102) 

(4.103) 

The system defined by eqs. (4.101-103) ls just the system studied 

perturbatively by Lee and Yang79•80who replaced V
0 

·by the -Fermi 

pseudopotential, and more recently by Popov81 who replaced V
0 

by the 

t•matrix. Because the analysts was perturbat:lve, neither Lee and Yang 

nor Popov had problems wt th double-valued functions n'ear -the transition. 

One should note that the effect of the interaction term above the 

transition was ignored by Popov, who found that the thermodynamics above 

~a~ exactly that of the ideal gas, not like the Hartree 'wtth a third-

order transition and specifically a finite c • 
p 

As a crude approximation to eq. (4.101), one can neglect the 

_off-diagonal terms as they are small near the transition. This leads to 

the theory of Huang, Yang, and Luttinger ~- " 

.:.f -
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~t:J ) (.a: Vt> 
4(p = -

{ 
~ = 2n Vo -ntJ Vo 

"'7 =: - "" Vo 

{ 

e(p) = E.(p) = ep + n~ V41t 

F(p) = 0 

(4.105) ' 

(4.'106) 

' 
which ts ~ the Hartree approximation, eqs. (4.75-77), off by a \ 

factor of 2 because of the fundamental difference tn the chemical 

pote:nttal. 
78 

Recently Luban and Grohman arrived at the same theory 

although starting from the Hartree-Fock approximation. Eq. (4.106) 

leads to the following equation for the nwnber density 

n -no (4.107) 

which leads to the same double-value behavior as from the Bogoll ubov 

case, ~q. (4.35). The pressure is given by eq. (4.29d) 

(4.108) 

82 
· Eqs. (4.107)(4.108) duplicate eqs. (39) of H'lL. Working at constant 

temperature, HYL argue that the double-valued functions (actually 

triple-valued including the function above T
0 

) ~ho~ld be regularized 

by the Maxwell construction, yielding a "fl rst-order trans l tl on." 

One can apply the same treatment to the more general Bogolt ubov/Hartree 

approximation. 
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E, Hartree-Fock Approximation 

The Hartree-Fock approximation is the first-order conserving 

approximation In which the exchange term as ~ell as the direct term 

have been taken Into account. The Hartree-Fock approximation was 
. . 83 

first studied at .T • 0 by Girardeau and Arnowltt, who found an 

energy gap in the energy spectrumo Frlor to this calculation, the 

. . 84 85 
Hartree-Fock at nonzero temperatures was studied by several others, ' 

but no energy gap was found because of the several approximations 

1 . 86 d . F l used, To machev examine the Hartree- ock equat ons at nonzero 

temperatures in greater detail and reported an energy gap. The 

Hartree-Fock equations were solved iteratively by Luban87 who found 

an energy gap in the second iteration. 

We first consider the Hartree-Fock above the tran~ition and 

Investigate the question of a ~hift ln the transition temperature. 

Ve next go below the transition and show that there is an energy gap 

when the Hartree-Fock equation ls solved self-consistently, thus. 

justifying the iterative solution. 

34 As Hohenberg has emphasized, the existence of the energy gap in 

! tself is not an unphysical result, since there is no !! priori reason -that the ex~itations of G1 should be of the sound-wave type. However 

the thermodynamics, for the iterative solution, does exhibit near the 

transition the double-value behavior of the other approximations. 
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1. Above the Transition 

Let us begin wl th a brief resume of.. the microscopic theory. 

We have 

(4.109) 

'-l!J 
'£...t;of:l11') .: l d'(u') f al. V(tz)G(z.-z.) + l V(lt') 6(11'). (4.1LO) 

0 -

Therefore 

(4 .. 111) 

! where 

(4.112) 

satisfies the integral equation 

The transition is given by the vanishing of 

(4. 114) 

and the thermodynamics by the Massieu potential 

W= ~~(1+~(6p)) +:fn11 ~j3Ir+ 
(4.115) 

. +-f:/2' i; 2:V(p-t) /(~) -f.(t!'9r) 
p,~ . • 
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For a very short-range potential, V • V , we see that we get the 
p 0 

Hartree approximation, eqs. (4.63-70), with V0 -> 2V
0 

• Hence the 

specific heats are finite. We also note that ln the limit of very 

short-range potential, the transition temperature T
0 

is not shifted 

75 
from that of the ideal Bose gas. GKW (in their·Appendix B) found 

in the short-range 11ml t a temperature shift, which is entirely spurious 

and is due to their use of free-particle statistical factors rather 

than self-consistent statistical factors. We present a very 

pedestrian treatment of the above idea in Appendix D. 

To obtain a shift in the transition temperature, one has to 

Include the momentum dependence of Vp • The easiest procedure is to 

expand vp 

?.2. 
~ '= Vo + V, .!(jfo p~ + .. ' • , (4.116) 

so that eq. (4.111) can be written 

(4.117a) 

where 

• (4.117b) , 

and eq. (4.112) can be written 

= _Ji!:_ 
z.w." 

(4.118) 
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where the effective mass m* ls defined 

(4.119) 
• 

As the spectrum (4.118) is just the free-particle spectrum, we get 

immediately the shift ln the transition temperature from that for the 

ideal Bose gas 

= 471 (4. l20a) 

-- , (4.120b) 

since from (4.116) and the definition of vp 

(4.120c) 

and we defined T • T 1 , where T
0

1 
0 0 

is the transition 

temperature for the ideal Bose gas •. Note that the shift depends on 

the weighted radial integral of the potential. For bellum, the 

cutoff for V(r) at small r is not well·known and plays an important 

role in ascertaining 

To develop the theory further, let us take into account the 

strength of the interaction and replace the potential (direct and 

exchange) in eq. (4olll) by the two-body scattering matrix 

< pq I T .( pq ')' so that 
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) (4.121) 

where T satisfies the operator equation T • V + VGGT. We 

approximate the general 88 T-matrix by the "freelt reaction matrix 

for a nondegenerate Bose gas 

.. La_ (2.t+1) ~ (i;, l ~-~I) 
,e. 

even -

(4.122) 

where is the phase shift of a wave of angular momentum ;(. • 

We define a "total" phase shift ~ (k) where k is the wave number 

(p - -n k) 

(4.123a) 

and expand it about small k' s. 

L:l(k.) = (4.123b) 

• 

We restrict ourselves to the case where a
0 

• 0 1 or d(O) .. 0 

~hlch prevents the o~curence of a real or virtual bound state. When· 

& (0) ::;! 0 , we. see that ~0(p) diverges at p • 0 • There 

are Indications that a virtual bound state exists for two helium 

89 A 
atoms, as the .4 - 0 phase shift approaches "'f /2 as p ---+ 0 • 

' I 
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However the effect of statistics. which as been neglected except to 

select even .l. 's betWeen the two particles ln evaluating eq. (4.122), 

would probably remove this virtual bound state. Thus we have, 

substituting eqs. (4.122)(4.123) into (4.121), 

(4.124) 

Since 0 C) ~· (p) • + ~ (-p), we expand ~0(p) about small p 

(4.125a) 

where 

(4.125b) 

• 

In particular, we see that 

(4.126) 

and 

(4.127) 

• 
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Using the same- argument that led to eq. (4.120), we see that to 

first-order 

A To = 471 c, Crt/) 7;l 

and to the same order, cl (T) ls glven by in the N/V llml t 

where m* ls glven by 

and by 

(4.128) 

(4.129) 

(4.t:)Oa) 

• . (4.130b) 

Eqs. (4.128)(4.129) (4.130) gives in principle the shift in T
0 

once 

the phase shifts for two particles are known. To s~e how this works, 

let us consider a weakly interacting gas such that the phase shifts 

may be calculated by the Born approximation, i.e. 

(4.131) 
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where J l+% is the Bessel function. One can easily show that the 

"total'' phase shift is 

eo 
.A(k) = -~k/v(r)r2dr zn o · 

PO 

-;;~.. J V(r)su1(2/t1-) rdr 
0 

Expanding the sine function; we find the following 

with eq. (4.123b). 

t:lzn = o 

(4.132) 

a • s upon comparl son 
n 

(4.133) 

where n • 1,2,3, • • • • taking just the first term of eq. (4.129), 

ve see that 

Z'IT -.J j (4.134) 

and l)T0 , eqo (4.128), becomes identical to eq. (4.120). Hance 

ln the Born approximatlon1 we recover our previous analysis in terms 

of the potential directlyo Note the feature that all even 4 's n 

vanishes, which in the Born approximation can be traced directly to 

the fact that the "total" phase shl ft A ls ju~t k times the sum 
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of the forward and backward ampll tude f( & ) which are even in k • 

The utility of this reaction matrix approach is that it allows us 

to go beyond the Born approximation. 

For example, a bard core of radius r
0 

has phase shifts which 

satisfies 

1.4 ( kro) 
~ ('kr.) • 

where j~ and !!£ are spherical Bessel functions wl th the 

following expansions 

(4.135) 

• 

Expanding the phase shifts for small kr
0 

, we find that the "total" 

phase shift l~ given by 

Note again that all even Q • s vanishes; moreover 
n 

.. 

Therefore taking the first nonvanlshing term in eq. (4.129), we find that 

(4.136) 

• 

I 
,( 

• ~ i 
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We note thet the shift is upwards in the case of only hard cores and 

that the shift appears in the a5 expansion coefficient of the "total" 

phase shift. 

· For.our second example, let us consider the case of a hard core 

potential with an additional weak potential outside of the hard core. 

Ve assume that the ~eak potential,' s phase shift are well approximated 

by the Born approximation. The hard core can then be separated out 

of the problem by including l tS effect entirely within the boundary 

conditions for the wavefunction. The resulting problem with the 

weak potential with hard core boundary conditions, we solve in the 

Born approximation. We flnd that the phase shifts are given by 

$1?1 ({£- cfl'c) =- L!{ [c~.s(arc~~J~,.. 1".& (f~ro) J] " 
, . '14 (f~~) 

IC. [ i;~ (~r) v1':; ~(lrr)rdr -+ 
'0 

I 

(4.137) 

where r 0 ts the radius of the hard core, the superscripts HC and 

WP refer to the hard core and weak potential respectively, and 

~(r) is the exact radial wavefunction. 

we approximate u,L(r) by 

VP 
Since V (r) is so weak, 

(4.138) 

' 
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so that eq. (4.137) can be written 

One can verify that as r ~ 0, we recover eq. (4.131), recalling 
0 • ·' 

.the definition of the spherical Bessel function 

. ~ 

1,~;(-x,) =: vzx. --?f+Y.z (iG) • 

p f\ HC J\ WP 
Since the phase shifts separate into O_L • O_L + ~ , 

1 1 a
3 

• () _ HC + WP h ve can 1 kewi se wr te -;s a
3 

• But we know t at 

BC 
(2 3 • 0 • Hence to the first approximation, the effect of the 

f' WP 
hard core Is impllcl t, acting through O;i.. • To c~lculate the 

dtotal" phase shift, we expand for small r
0 

to get 

. . 00 . 

.6M(~ = - 271/J?i-; r fk £ v"'1rJ .-•a,.. + 
() 

c>o 
1 J w~ .,_ .\ . ++ · V (r)..sJn(z..Rr;rdr + 

t;, . ,., 
+rD J ywpt,.) .. tun(z~,..)dr + 

'C . 
110 

+ :k~1~ V~p(r) t:.#;$ (z(;u .. ) ol"] 

(4.140) 
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00 

+ +JD] vw'f,..J r 3otr 
'0 

Combining eqs. (4.128)(4.129)(4.141), we see 
/-

=-
(4.142) 

• 

Therefore lf the weak potential is of one sign, the effect of the 

hard core ls.to enhance the shift due to the weak potential alone, 

i.e. eq. (4.120). 
.• 

For our third and last example, we consider the problem of a 

soft core, which we approximate by the square repulsive potential. 

We assume a potential given by 

m = {yo7.. u(~) = 1ii vt,.> 
r<.R 

r>R 

The s-wave phase shift satisfies the equation 

• 

~+un(liR)~nh (R.Jr"-t<i) + /'1.,.-f<"-"' 

-hanh ( Rv'r '1:.. k 'i.) - i;.l i'l:- tit"' hn C Iii R J 

(4.143) 

(4.144) 

, 
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which can be expanded for small l<'s as 

wlth 

and 

A = R(l - +anh ('t'R. ))· £ R a 
.. · rR 

• 

For small k' s, l ;.e. kR ~c. J. , we have that the phase shift 

(4.145) 

(4.146a) 

(4.146b) 

t1(k) ,.._ k 2 t+l Th f f h ...,. l ffl l o~ • . ere ore, or t e ""J expans on coe c ent 

of the "total" phase shift, we need only the s-wave phase shift. 

Expanding eq. (4.145), we (lnd 

:: -k R.Af [1 + zr.3
- 3%.

2
- jz (YR):-2] • 

(4.147) 

Combining (4.128)(4.129)(4.147), we see that 

(4.148) 

• 

90 
"Finally, w~ ta!<e note of the work of Brout · on the nature of the 

transition based on the Hartree-Fock approximation above the ~-transl-

tlon. Brout uses the same type of expansion as GKW, viz. in terms of 
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the free statistical factors, to show a change in the order of the 

transition. W'e have pointed out that the shift in the transition 

temperature must be calculated using self-consistent statistical factor, 

since the ~ g_ua ~ of the transition is the statistics. Likewise, 

consistent thermodynamics is generated only by conserving approximation 

which implies self-consistent statistical factors. In particular, 
, . . 

for a very short-range potential, Brout•s demonstration fails, while 
. ~:.· 

the Hartree-Fock exhibl.ts a third-order transition if only diagonal 
' 

elements of the self-energy are retained below (a Hartree-llke 

approximation). This brings us to the final comment that the nature 

of the transition is amenable to discussion only as the approximations 

above and below are well-defined. 

2. Below the Transition 

The Hartree-Fock approximation may be. represented below th~ 

transition by the functlonals 

-ijJ ' 
~[G,,G~]::: i£ G{II)II{IZ)(j(z.2.)4Tild2. + 

.. _,i3 
-rf-! e:ll d 2. G-(12.) V(n .. ) G(2.1) -

• -t."(J 
--I~ dldZ G9z(I)GV:(2.) Vlrz.) Gv,_(2) G;j"(1) 

. z. 

(4.149) 

+ 

+E V(u') G(u') (4.150) 
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-~ 
S~(1) = -:t.Z GVa.(t).J o£2. G;f;_(z.) V(Jz.) Gv~(z) . 

= -4-n() Vo GVz( 1) .. 
In momentum space, we write 

where we defined 

, ~ + nD ~ +In (p) n~ ~ + fj1~,(p) 

"~~ + j,a(P) n Ve>+n6V,+1JnfP) 

(4.151) 

(4.152) 

(4.153a) 

(4.153b) 

From eqs. (2., 103) (2.104), we calculate the chemical· potential )'A- as 

(4.154a) 

wlth . 

(4.154b) 

\ I_-
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The energy parameters are 

il'(p) =- e; + no~ + IJ,,(p)- g,,(o) - fJ,z.fo) 

F(p} = no Vp + fJ,z {p) · 

with an energy spectrum 

which has an energy gap, using eqs~ (2.106)(4.154b)(4.155b) 

,t;n, E(p) = - 4-n" Vo i}1;t. (o) • 
p_.o 

Using these energy parameters, we rewrite eqs. (4.153) as 

(4.15Sa) 

(4.15Sb) 

(4.156a). 

(4.156b) 

where up'~ are defined by (4.6)(4.155)o Thus below the transitionp 

we have two integral equations, (4.157ab), for the two parameters 

gll, g12 , instead of the one equation above the transition. This is a 

reflection of the two external· potential introduced below the transl tlon, 

U
ext d ext 

an Tt , versus 
ext . 

U above, and the concomitant double and 

single Legendre transformation, respectively, needed for a conserving 

approximation. 
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If we iterate eqs. (4.157) or (4.153) in some fashion rather than 

solving them consistently, we can reproduce several works in the 

U terature., These l teration schemes will yield a gapless spectrum 

until the iteration is sufficiently far along to yield a nonzero 

g12(0) (see eqo (4al26b)). 

ao Iteration in Vp 

In this scheme, we begin by setting V • 0 ·on the right hand side 
P. 

of eqse (4.153) and iterating. The zeroth iteration yields the ideal 

gas. The first l teratlon ls obtained by setting the spectral function 

equal to that of the ideal gas 

IV(/) 

A1~ = o 

to get 

{ 

9;~)(p) = 'f:;. fV{p-'j) .f(<Jj,o) 

(1) 3rz. (p) .~ 0 
(4.158) 

Hence the self-energy matrix is 

. (I) 

(~Cp>) = 
( 

. Y) 
n V0 +nVp +f), (p) 

. n,~ . 
(4.159) 

'.1 

r 
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vl th an energy spectrum · 

(4.160) 

which has no gap. This ~alculatlon was first done by Zubarev and 

. 84 
Tserkovnlkovo 

The second iteration is obtained by substituting lnto eq. (4.153) 

the spectral function based on 
(2) 

[ ~ <' ](1) ~ (p) • Eq. (4.159) yields a 

nonzero A12 (p, W); hence E,}.2> (p) has an energy gap. 

b. Iteration in n
0 

In tbls scheme, we begin by setting n
0 

• 0 on the right hand 

slde of eqs. (4.157) and iterating. The zeroth iteration, solved 

self·conslstently, yields the analytic continuatlon,belnw of the 

Rartree-Fock approximation above the transition: 

where 

n V0 + g,~0>(p) 

0 

ett>> = E'(Q)r" > ,. "" 
Fco> (~) .: o 

./-'<Co)= n Vo + tJ;,o)(()) 

(4.161) 

. (4.162) 

(4.163) 

• 
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The f-irst iteration is obtained by substituting lnto eqs. (4.153) 

the spectrum function based on the self-energy (4.161) 9 which yields 

(4.164) 

and 

which ls gapless. 

The second iteration yields 

·~ (I) 
"o"'P + D12. (p) 

(4.166) 

n ~ +"~'~ + g,~J(p) 

where 

(4.167a) 

(4.167b) 
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and the spectrum Is 

~lz>/p) = eo n ~ + 0 (1}, ) {t) (t) 
~ l, . p + " p eru lP - Ou (o) - fhz (C?) 

(1) ·. 

+ /}1& (p) 

87 
This Iteration scheme vas used by Luban. 

.. 

(4.168a) 

(4.168b) 

(4.168c) 

Other Iteration schemes of the same structure may be concocted 

as needed. For instance, we can have an iteration tn g11 and g12 , 

ln which we ft rst set g11 • g12 .. 0 and obtain the Bogollubov/Hartree 

approximation for the zeroth iteration. The first iteration would 

have an energy gap. 
I 

Finally lf we Iterate only in s12 , the zeroth 

l terat:lon is the Bogo11 ubov/Hartree-Fock approximation which we shall 

discuss ln the next section. The above comments are just concrete 

examples of the fact that the Hartree-Fock approximation 1nchJdes 

all the terms to first order in V 11 and hence contains all other 

first-order approximations. 

In discussing the thermodynamics of -the Hartree·Fock approximation, 

we follow Luban ln hls t terated solution for g11 and g12 and point 

91 
out a trivial sign difference which leads to double-valued functions. 

·In particular, let us consider the number density, eq. (4.29a), which 

.\ 
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can be written 

-I ~ (=(pJ . I "'[E{p) ] n = n" + V: ~ e(p) -f(.!p) + 2U ~ erpj _, 
p p 

(4.169) 

where the superscript (2) has been deleted (see eq. (4.168)). For 

very small n
0 
° s, eq. (4.169) may be expanded as, keeping the, lowest 

order term~ 

(4.170) .. 

Eq. (4.170) has ~o solution for small A T and· ,., • -n V < 0 -, 0 0 

for AT • T-T < 0 • 
0 

In fact, the solution of eq. (4.170) for 

small AT>O ls 

- ·(~)4-, 70 
(4.171). 

) 

which is to be compared with eq. (4.40) for the Bogoliubov spectrum. 

Thus the analogous expression to eq. (4.37) must be ~ quartic equation. · 

More important 1s the fact that eq. (4.170) through the interaction 

terms &<int lead to thermodynamic functions which are double-valued 

and thus ill-defined. There is, hovever, an open question on whether . 

the self-consistent Hartree-Focl< would display such a behavior or not. 

- ' . 
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F. Bogoli ubov/Hartree-F£lck Approximation 

The Bogoliubov/Hartree-Fock approximation is the final first-

order approximation which we consider. As mentioned before, this 

approximation, like the others, may be obtained as a special case of 

the Hartree-Fock approximation. The BogoHubov/Hartree-Fock approxl• 

' 92 
mation was first studied by Shohno who derived lt by a normal-mode 

. analysis •.. We give now the Green's function derivation of it. 

Above the transition, we have just the Hartree-Fock approximation, 

eqs. (4.109-115).. It Is convenient to define a function 

(4.172a) 

-so. that f!p is given by 

(4.172b) 

Below the transition, we consider the following self-energy matrix 

where 
,.., 
g(p) 

nVo +nbVp+?jCp) 

I?D~ 

is the analytic continuation of 

(4.173) 

g(p), i.e. 

(4.174) 



-136-

and the chemical potential 

p, = /"'o + /A'Ht= = n Vo + '§ (o) • (4~ 175) 

Note that eq. (4.175) satisfies the Hugenholtz-Pines form and hence 

leads to a gapless energy spectrum, viz. 

(4.176a) ·· 

(4.176b) 

J=(p) = n~ Vp (4.176c) 

where we defined 

Cp = - ~ f} (p)- 9 (o) •. (4.176d) 

Eqs. (4•176) give the spectrum derived by Shohno. Since Shohno does 

not Include the interaction term, z,.(.lnt , Into the thermodynamics, 
I 

the double-value behavior of the thermodynamic functions does not appear. 

Nevertheless the double-value behavior of the number d~nslty is 

lmpllci tly wrapped up ln Shohno• s eq. (3. 31). 

·.··"· 
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G, Restricted Geometry 

One of the ,major objections· in using the ideal Bose gas as 

· a model for liquid hell um-4 co~fined to some restricted geometry where 

a length is definitely finite ls that the Bose-Einstein condensation 

no longer occurs in the strict sense at nonzero temperatures •. This 

feature is general since the Bose-Einstein condensation 1s a phase-

space phenomenon. This feature is explicitly exhibited in the absence 

of any macroscopic occupation of the ground state in the film geometry 

until T ~ 0 1 as shown .in Chapter II I. 

Unfortunatelyp the first-order approximations do not help the 

situation at all. The Bose-Einstein condensation is still largely a 

phase-space phenomenon, and any change in the phase-space like to 

a two-dimensional geometry would change the phenomena and obliterate 

the Bose-Einstein condensatione To demonstrate this assertion, let us 

consider the number density above the transition and work downwards; 

from eq. (4.28a), we have 

(4.177) 

where 

(4~ 178) 

Since the expansion of ~ 0 (p) about p ,.. 0 is 

) 
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E ,...., p2 for small momenta. Hence 
p 

proceeding from the above, one finds the identical phase-space effect 

occuring as in the ideal gas case to force a condensate in the 

bulk limit and to give no condensate for restricted geometries. 

In particular in the bulk limit, eq. (4~177) yields at 

and further decrease in the temperature for fixed n yields the 

condensation. In restricted geometry, say the film geometry, 

which at low temperatures AT ">., L' becomes the fi rst·band 

approximation and 

.. 
\ 

Therefore we have no condensate until T • 0 • 

Therefore' we conclude that the first-order approximations do not 

include enough of the effect of interactions on the ~ose-Einstein 

condensation to change it from being a phase-space phenomenon. In 

this spirit, we now turn to investigate the next order, namely the 

second-order approximations. 

;:. 
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V. SECOND-ORDER APPROXIMATIONS 

To second-order in the potential V, we have the gapless 

approximation first studied by Beliaev32 at zero temperature and 

extended to nonzero temperatures by Hohenberg34 and by Tserkovnikov,93 

and the conserving approximation known as the Born-Collision approximation. 

Th~ gapless approximation used by Bellaev when extended above the 

A, -transl tion leads naturally to the conserving Hartree .. Fock 

approximation. Hence the gapless/conserving approximation thus generated 

is the Beliaev/Hartree-Fock approximation. · The Beliaev work can be 

extended further to the BeU.aev/Born-Collislon approximation so that 

we have second-order on both sides of the i\. -transition. Finally 

we can have first-order below and second-order above, or the 

Bogollubov/Born-Collision approximation. 

Of the four possible second-order approximations, we shall pay 

particular attention to the conserving one, the Born-Collision 

approximation. We show that the Born-Collision approximation above the 

~-transition contains the essential features of the more complex 

94 
theory of Patashlnskll and Pokrovskllo 

A. Beliaev/Hartree-Fock Approximation 

The Beliae,v/Hartree-Fock approximation is given above the transi tJon 

by the Hartree .. Fock equations, eqs. (4.109-115). Below the transition, 

the equations are qUite different. 

' Recall that the Bogollubov approximation was obtained from the 

functional :Z:%[uext, G%+] ln the form, eq. (2.79), which yielded 
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·the self-energy via eq. (2.88). For the Beliaev approximation, we 

consider the functional £, [uext, G'Js+] which includes all flrst• 

. 95 
order diagrams, i.e • 

.f=r !.v. C•) = f G,,/1) [~z ~(IZ) [G,I&('-)6v'!'(z) -+ G(zz.)] + 

-c-p . (5.1) 

+;, f .lZ V(1z.) Gv,(z) G(IZ) 
0 . 

The self-energy is calculated by eq. (2.88) which can be written 

Recalling the identity 

we rewrite eq. (5o2) as 

(5.2) 

, 

+ 
(5.3) 

S'z;.~t(4.5} -

oGv~t•') c;.(s3) .• 

. . ' .· 
•, 

( .. 

. I 
' 



_) 
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To obtain the desired order of approximation. we iterate eq. (5.3) with 

respect to S ~tot/ f G.; • Applying eq. (5.3) to the functional 

(5.1), we see that the first term of (5.3) gives the Hartree-Fock terms 

and that. the second term with. the Hartree-Fock terms inserted lnto 

r ~tot r o ~ I 0 G.; gives the Bellaev second-order terms. Thus the 

. total self-energy is 

. -'IJ . . . , 
= f J(u') £ c/1. V(lz.) [Gv.r.{t) G,~(z) + G(zz)) + 

+;, V(ll') [ Gv~(l) G,11(1) + 'G-C11')) + 
, . 

-~ 
+ i.! 'G-(u') f az.a3 V(12.)V(31') x .. z 0 .·. 

,. [ G (32)GIJ&(Z) cr;(s) + G~(3)Gt(z) G(':z.3)) .... 

·a . 1-ljJ 
+ ~- G-,~(1) G,t(l') ~> aza3 V(lz) V(31') G(z3) ~(32) + 

-ljl 
+ c:z. f d'l.CilJ V(t2.) V(31') (/.(13) x 

(1 . 

~ [ G(3z.) GIJ~(z) G~(1 1) + G,~(~) G,t(z) G(21')] + 
I 

-~ . 

+ ia{c;~za3 V(rz)V(3J')G~t;/')G;(3)6-(3Z) G(::J') 
• 

(5.4) 
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B, Born-Collision Approximation (Self-Consistent Calculation) 

We now consider the BornaCollision approximation, the second-order 

conserving approximation, above the transition. This approximation 

can be defined by the functional i> [ G1 ] as 

. -c:d 
~(~) = f{ctl dZ V(12) [ G(II)G(Z2.) + G(!:Z.)G{zl) J + 

·z -c(J 
+ ~ £ dld2ci.3a4- V(IZ.) V(34) ~ (5.5) 

'· 

& [ G{IJJ)G(31) G-(2'1-)G(4Z) + G{t4)G(4Z)G{z.;;)G(J-1)] 

The total self-energy is obtained by eq. (2~52) 

-lrl 
~'t~t:(ll') = l. J'(ll')f /xz V(rz)G(2"1.) + l V(u') G(o') + 

. () . 

-c(J .· 
+izJ dZ~3 V(rz.)V{31 1

) )r 
D 

(5.6) 

~ [ G(ll') G(32) G(z3) + G(13) G-(32.) G(21') J 
• 

• 

We recognize the first term of eq. (5.6) as the Hartree-Fock terms, 

which is the entire subtraction term ~0 • In most of the analysis, 

we are interested in the dispersive part of the total self-energy 

-lfJ . 
4(11') = i. 2 j cl2.ot3V(rJ.)V{311

) • 
0 

(5. 7) 

A [~(II') G(32.) G(Z3) + G(13) 6(.32) G(z./ 1
) J . 

. . 



-143-

which we shall refer to simply as the self-energy. 

\le.now Fourier transform eq. (5.7) to obtain the analytic self-

energy ln the form 

,. A (p'w') A(p w) A(p' w') .. 

. • [f(w,l(wJ .f+(W') - -f+(..,').f(c;) I(,..') J 

where the integrals over the w' s go from -()0 to t>o , and 

t•( W) • f(w) ) f+(W) • 1 + f(W) • 'We first note that as 

} ---. 0 ln eq. (5.8), we get the real part of the self-energy 

' 

A (p-,0) since ~ (p,) ) is continuous across the real axis 

at the origin& Furthermore the imaginary part can be easily obtained 

from eqs. (2.24)(5.8), viz. 

1 
• I \ 3 

rlp,w) = v~l: (JnJ;) J'(p+p'-p-p') j; [vtp-p)+ Vfp-p';]"'. ,,,, . ' 

(5.9) 

~~o A(p'w') A(p w) A(jJ1 w') ,. 

~ [.f -( l-)~ -r +c w) f +c w'J - f+(t..>'J .;.-( c;) f -c ~')] 
• 

. .. ~-·------·..._________ --
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· Eqs. (5.8)(5.9) are very complicated nonli-near integral equations 

which are practically intractable as they stand. 

One reduction which we-can make depends on the fact that we are 

dealing with a homogeneous system in space. Therefore the spectral 

function A(p 9 IAJ) and the self-energy ~(p1 71 ) are functions 

only of the magnitude of the momentum. If we write the momentum 

C' ·function as 

3 . r tr- (p+p1-t;-p-')/1i' 
(mfi) d(p+p'-p-p') = J«'r e " _ 

v . ' 
we can do the angular integrations In eq. (5.8)· to obtain, in the 

N/ tT limit, 

and ~ (pp'ppJ' ; r ) 1 s def'lned as 

. . ' z ' 
~ :::. f [v(p-p) + V(f>-p'J] f~ _t_ J~'J.a!:ijatw' 

- 2.11 J - w z. ·n z n ;;-;r " 

(5.11) 

• 
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A similar reduction can be performed on the imaginary part (5.9). 

In order to proceed further in the reduction of the self-energy 

to I a more tractable form, we make two approximations. Flrst of all 

and more significant, we take the Very Dense State llmlt not only for 

the lni tlal and final states but for all intermediate states of 

eq. (5.11). This means mathematically that we expand the statistical 

factors as 

(5.12) 

and apply the eqs. (2.108)(2.113) 

(5.13) 

with 

(5.14) 

to eq. (5.10-11) after taking ) ~ 0. Physically, thls means that 

we consider the system to be very close to the transition so that all 

significant contribution to the self-energy comes (rom the states which 

are very densely occupied, viz. the low momentum states. Hence we 

incorporate into the system explicitly the high degree of correlation 

among the low momentum states as they etanticl pate'' the macroscopic 

occupation of the zero momentum state. Second, we restrict the 

p9tentlal to a very short-ranged potential, so that 

~ ~ v., = J a1r Vt,.) 
·v • 

(5.15) 
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This assumption reduces the Hartree-Fock terms to a constant 

which changes the transition to a third-order one but in no way .affect 

the energy spectrum which remains a free-particle one. Therefore 

e'<P> • and 

(5.16) ' 

77 = -/A-+ Zn V0 + t4(~1 o) • (5.17) 

Applying the approximations (5.12-15) to eqs. (5.10)(5.11), we 

find that the real part of the self-energy (as J-~ 0) satisfies the 

equation 

(5.18) 

) (5.19) 

where we defined A' • A • (p,O) • .t - A and W by 
~ P ~ ~P Uo q 

eqs. (5.16-17). Note that eqs. (5.18-19) is a nonlinear homogeneous 

integral equation for ~·p • Note also that any reference to the 

imaginary part has been· eliminated, eqs. (5.18-19) is independent of 

r (p, W). Finally we note that lf ~~ )' 0 in ~(p, } ) , 

we cannot effect the reduction to an equation slmllar to eq. (5.18-19). 
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1. Real Part of Self-Energy at ' • 0 

We now solve the integral equations for b.' p , eqs. (5.18)(5.19) 

. I 

for the Hml tlng case '1 _. 0 and the gene_~al case of '1 '> 0 • 
I 

The limit '1--90 leads to the divergence of N
0

, the number in the 

zero momentum state, and corresponds to moving onto the transition from 

above. On the other hand, when '7 7 0 , _ N
0 

ls flnl t- corresponding 

to the region above the transition. 

Because of the Very Dense State llmi t, the range of momentum in 

vhlch the integral equation (5.18,19) ls valid ls restricted. If we 

define a momentum p2 by ~ Wp
2 

.., 1 , we can expect the integral 

equation to be valid only for p <<. p2 • This restriction applies 

also to the dummy variable q ln the integral for D(r), since the 

Vecy Dense State limit was taken also for intermediate states •. 

therefore lf the integral for D(r) has some nonnegllglble contribution 

f-rom momenta near p2 11 this signals the breakdown of the integral 

~quatlon. However, when the contributions all come from the low· · 

momenta states p ~<. Pz and the "integral D(r) converges for large 

q 1 s, the upper limit of D(r) can be effectively extended to lnfinltyc 

a. On the Transition 

Eq .. (5 .. 19) can be written, in the limit '7....,. · 0 , as 

D{r) ' (5.20) 

Let us define a momentum p
0 

such that 
0 

A' ,. E .. From 
~Po Po 

physical grounds, we expect the self-energy to dominate the kinetic 
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energy at low momenta because of the high correlation. In fact, in the 

region p ~<. p
0 

, 6 ° can be neglected ln ( 5. 20). To see this, 
q 

we consider the ease for the slowest convergence of the r~integratlon 

of (5.18) which occurs when ~· iS neglected in (5.20). The . q 

resulting Integrand for the r-integratlon 

has a peak at r el -p./p but also yields a logarithmically divergent 

integral. 
I 

This divergence we ignore as we expect A' q to dominate 

and as we are merely interested ln the peak of the Integrand. Now we 

estimate the contri buttons to D( 14 /p): 

(5.21) 

Note that the second integral is proportional to Sl(p2/p) - Sl(p0 /p), 

which vanishes tor p << Po'P2 • Hence we neglect 60 in the integral 
q 

D(r). 
96 

if A' -A ~~0 oto ~ 1 (so that for Furthermore and . q 0 

the integral (5.20) converges as q ...... oo.) and D(o <. 2 (so .that 

the ir.tegral (5.17) converges as r -tc:J ) , we can extend the integral 

over q to Infinity. Summarizing, we have 

(5.22) 

which is valid for 0 ~ p << p
0 

and 1 <. ~0 . < 2 • 
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The estimation of the two terms for D(r) can be made more precise 

A I 3/2 
if we utilize the solution . ~ p - A

0
p and the asymptotic 

expansion for. Si(x) 

Si.(~) = .J!. _ CD$" 

2 "' 
+ ... 

so that97 

in the limit of p
0 
,~ p and. 

11! • -es" a 4i Z;:. (?) ::! Rt Je(tfp) 6 .;r 
~ 2.,.,.p& i~ GIYS{pjp) - Ft &.#'$ (p~ /p)] 

ln the llmi t of p "'< p
0

,p
2 

o The worse ease is when eos(p0 /p) • + 1 , 

cos(p2/p) • -1 ; therefore 

and the ratio of the two terms is 

whteh is very small in the llml t p -'< p
0 

• 

To solve the nonlinear integral equation, (5 .• 18)(5.22), we assume 

the form 

(5.23) 
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Substituting (5.23) into (5.18)(5.22), we get 

where we have put " • rq/~ ' y "" rp/1? 

The integrals wl thin the braces are numbers independent of p , so the 

exponent o( is determined by the equation 
0 

c:( • 6 - 3 0( or 
0 0 

C( 
0 

• 3/2. Furthermore, A
0 

ls given by
98 

(5.24) 
• 

Therefore the solution for 0 ~ p << p
0 

(5.25) 

• 

Ve note that the p'3/2.- spectrum is wholly dependent upon the presence 

or lnteract.ions. 

'the relative magnitudes of p
0 

and p
2 

Is of some interest as 

they give an estimate of the strength of the interaction allowable for 

our system. There are three distinct eases; (a) p~ '>'> p2 ; 

(b) (c) The first ease we do not know 

anything about since our equation is not valid for p 'V p
2 

• The 

next two cases are amenable to our analysis, and are considered below 

vlthln an expanded context. 

( 

i 

i 
I 
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Note that our system is characterized by five quantities: 

(a) the number density, · n ; (b) the integral or strength of the 

potential, V
0 

"". J V(r)d
3

r ; (c) the range of the potential, rf ; 

(d) the mass of the particle, m ; (e) the temperature of the system, T • 

From these five quantities, four lengths can be formed: 

- range of the potential rf 
-1/3 n • average interparticle distance 

a
8 

• scattering length 

~T · • thermal wavelength 

From the offset, 

1/3 
we have assumed that the potential ls short· 

· ranged, i.e. rfn , 
-1 

i\.T <:,<. 1 • Note that the 

transition temperature for the ideal Bose gas is given by 

i .,._ 2 2/3 1/3 i ~ 
t<8T

0 
• 3. 31 n n /m , so that ?\ n ~ ( T /T ) - 1 • · T

0 
. . o o 

The only ratio that has not been estimated is n113a
8 

, and lt will .be 

determined by the relative magnitude of and 

To see this, we note that p may be approximated by 
0 
·o 

(j
0 

E.p
2 

• 1 • Therefore the relations A
0

p
0

312 • E 0 
and by 

. Po p2 

Po- P2 and p
0 

<.<. p
2 

can be translated to 

A E 0 .(. <. 1 respectively. But 
I" o Po 

. () 3 4 16 
1-Ji) 6~ = li 1'1? Pl .. AD = ,7if 3 

t 
where we approximated /J

0
"' ~0 

is equivalent to n1 /3as*" .\; and 

and 

Therefore the above calculation is good for weakly-coupled or low 
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density systems up to 

1/3 n a8 ~ 0.7, thus p
0

-

l/3 
n a - .\; • For liquid hell um-4, we have s 

X -1 
p2 - 11 (2 ) • 

It would seem that f9r a very weakly~coupled or low-density system, 

the region p
0 

tfl...tl.. p <"<. p
2 

would be amenable to our analysis. We show 

now that this thought ls incorrect. Consider again the function 

D(~p) , eq. (5.21). In the region p
0 

<< p <~ p
2 

, the first integral 

of (5.21) is negligible, while the second integral approaches 71/2. 

However the second integral is the contributions from q- p
2 

which 

is unacceptable since it lS in clear contradiction with our initial 

assumption in making the Very Dense State limit. Furthermore, if we 

went ahead with D(r) approximated by the second integral in (5.21), 

then the r-lntegration of eq. (5.18) does not converge. Thus for only 

p .c.< p
0 

, can we say that the main contribution to the self-energy ts 

from intermediate states which are very dense. Otherwise contributions 

come from intermediate states of all occupations. 

bG Above the Transition 

We begin by defining some momenta. First, we define p
0 

by 

formally the same equation as for ,_,.o, i.e. ~'Po • 4S;
0

, 

where A' satisfies the integral equation (5.18,19) with "''> 0 • p 

Second, we define by • '7 • 
With these defini~ions, we now attempt to reduce eqs. (5.18,19) 

as ~ueh as possible for the various regions in momentum space. First, 

for p <:.c p
0 

, the E 0 term in D(r) can be neglected as before, so 
q 

that eq. (5.19) can be written 

[)(1-) =lj~(~' '12~~ 
o n I Az+'? 
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In the subregion p"'J <.<.. p <.<. p
0 

which exists for very small '1 , we 

further reduce eq. (5.26) to 

1)0 

O(r) =i "13D(fj) ~ (5.27) 
• 

This is justi fled by estimating D( -;:; /p) 

) 

and the fl rst integral is very small for p ,., p? .. The solution to 

(5.18, 27) is just the p3/a - spectrum, b' • A p3/2 
p 0 

, where Ao ls 

given by eq. (5.,24) wl th /Jo __, (J • 

In the supregion. 0 ~ p ..C.<. p'1 , we must consider eq. (5.26) 

as l t stands, for although the YJ term is larger than J::a' q , but 

~· · ls needed for convergen~e. However, eq. (5.26) has an exponenq 

tial decay ln r for large values of r • To see this, we note the 

evenness of the integrand, so that eq. (5.26) can be written 

0(1") (5.28) , 

where we wrote " • rq/ 11 and J.m denotes the imagin~ry part. In 

general ~•(y) ~ yn, and a branch point appears at ~- 0 with 

/ 
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poles off the real axls since '7 ')' 0 • Closing the contour in the 

upper half plane, we pte~. up the poles in the upper half plane 

satisfying 
n 

c( '->'1,..) + .,.., • 0 • Therefore 

(5.29) 

Eq. (5.29) is in mark contrast with the asymptotic behavior of D(r) 

for 71 .. 0 s in which we find 

. I . 
D(l-) 'V T~ (5.30) 

Iq .. (5.30) is another manifestation of the macroscopic occupation ot 

the zero JnOmentum state which leads to an infinite-ranged correlation 

ln position space, while eq. (5.29) testifies towards the absence of 

such correlation. Because of the exponential behavior of D(r) for 

large r, we can obtain the solution to the integral equation (5.18,26) 

in the subregion p cC< p'1 by expanding In eq. (5.18) 

..... 

to obtain 

..... 
I 

which has.the solution 

(5.31) 

I 
\ 
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(5.32) 
• 

Therefore for "I"] > 0 1 the energy spectrum begins with a 2 
p - spectrum 

. which goes over to a pS/1._ spectrum at p, . The p~/a_ spectrum 

subsists up to p
0 

as ln the 'l • 0 case. Thus as '1 is increased, 

or as we get further away from the transltlon,the pJ/~-spectrum is 

"squeezed out" from the low momenta side until there t s no pl/2. left. 

The vanishing of the p'J/2.. spectrum occurs when p"' ~ p
0 

• Approximating 

p'l by Alp"1 2 • , , we find the p3h._ spectrum vanishing when 

11 - 9 (n'/las)2kBTo • 

}. Imaginary Part of Self-Energy 

Although the imaginacy part r (p, W) cannot be reduced in the 

Very Dense State limit into a form as tractable as eqs. (5.18,19) for 

the real part l)'{p,O), we nevertheless can make some interesting 

observations concerning r (p,k.l ) • First of all, we show that for 

sma 11 CAl' s, r- (p,W ) ,..., W ln the Very Dense State Uml t wl th 

7J > 0 • Second, we calculate r- (p, w ) for small p' s and 

sma 11 W • s wl th '1 • 0 • 

~. Above the Transl~lon 

We begin with eq. (5. 9) for r (p, W) which can be wrl tten as 

J·:· 
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• A(p'~') A(pw) A(p'w') f(w').f(iJ)rlw') 'a\ 

-. [-'-- + _L_ - I ] 
-f((;)) -1-(&J') -1-(w') 

{5.33) 

where we have neglected a term linear ln f( w ) ln anticipation 

of taking the Very Dense State Urnit and where 

A(pp'y;p') ::. f [ Vfp -p) + V(p., i7l) J, ,. 

<.:;_n'Fi)3 d'(p+p'-P -?') 
{5.34) 

• 

We now take the Very Dense State limit, expanding the statistical 

factors as in (5.,12). Also we assume that for small values of W , 

' 100 
the spectral function has the following behavior · 

• (5.35) 

As (5.35) is obviously only valid for small w•s, we introduce 

cutoffs. In the ~ -integration. Then eqe (5.33) becomes 
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where 

trivially integrated to give 

r(p,(..)) = Yp w (5.37) 

where is independent of ~ • This linear relation (5.37) 

should be compared wt th the quadratic relation, r (p, w) ,..., J ' 
for normal fermi systems near zero temperatures, as first shown by 

101 
Luttlnger and Ward. . The above proof can be. easily extended to 

include the renormalized vertex part V(p,~) in place of the 

instantaneous potential V p • The added assumption needed is that 

V(p, w ) be regular about V(p,O) • 

From eq. (2.29), we express the spectral function lntenns of 

the Imaginary part r 
' 

[w-e;-Llp.-- ?J] 2+i [r(~w)]2 
(5.38) 

From eqs. (5.37)(5.38), we see that eq. (5.35) holds·f~r all 

llomenta as long as '7 ? 0 • Therefore ve conclude that eq. (5.37) 

is valid above the transition. Hovever there is a singularity in 

(5.38) as p _..0 !ill! '1 ~ 0 , which ls due to the macroscopic 

occupation of the zero 111omenta state. We now consider the Umi ting 

ease '>'J _.. 0 in more detail. 

\ 
\ 
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b. On the Transition 

A self-consistent calculation as ~ __. 0 for r (p,"'-' > 

involves a formidable integral equation (5.33), which ls much too 

· complex. Therefore we settle for a non self-consistent calculation 

generated by assuming a quasi-particle spectral function, 

(5.39) 

, 4 . . 
A p + ep t on the right hand side of (5.33). Taking 

the Very Dense State limit and doing the angular integrations in 

momentum space, ~e rewrite eq. (5.33) as 

·~ 2 ._, . 
r ' ~\ - ro j 2 • { Ji"D . a?J ~ - . 6 . 9 i'2. a w . otr r 00 ~) ,. 71 ,; l'""fl 0 . 7; 

(5.40) 

The r-tntegratlon In eq. (5.40) can be explicitly performed, 

resulting in 

&» • .. 

fr~olr J~(!jf-) a~ (~)if) (~)J~(C/1) : 

= 'Pitf. E. z.. (5.41) 

pp'pp' 1- -;:; 
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- -for p ~ p > p' > p' and p + p' <. · p + p' • However in the integration 

over p , p', p' , there are 24 terms due to the 41 permutations of· 

the inequality. Fortunately, only 6 out of the 24 terms need to be 

eonsidered, the rest being negligible. The 6 terms are those with p 

as the largest momenta: 

·. (1) p > p > p' .,. 'P· } (2) . p )'> P' '> P "P 
-p' 

p + p' < p' + p 

(3) p ·~ p' > "P•.,. p } -(4) p > p' > p' > p 
p + p < p' + p' 

(5) - -p > p',. p > p' } (6) p > p ~ p';, p' 
p + p' <. p + p' 

Pictorially, these six lnequali ties define the slx tetrahedrons which 

compose the solid cube of length p ln the (p', p , p') space. 

See Fig. 10. Hence when we integrate over these six regions, we are 

integrating over those values of (p' p p1 ) which yield the major 
- . 

eontribution in the Very Dense State limit. Further simplification 

can be had if we notice the symmetry between p and p' ln the 

integrand. Pictorially, this means that the integrand on the cube 

ln (p' p p') space is symmetrical about the plane defined by the 

main diagonal and the diagonal on the p p0 face. Also we neglect 

In WP to.obtaln 

r(p,w) 
_ Vo.,_ 

- 2114n~!J~>2 
w -p 

.. 
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To do the cr ·function integration, we change variables to 

~p • A p'a/'2.. , l.eo for an arbitrary function f(p) 
0 

J p2e:(p . 2 J 1 

--,--- .f(p) = :;Ai aAp -f.(p) 
llp ~ 

• 

Note that the limitation to the cube ln (p' pp') is consistent 

with the setting of .o,'p equal to A
0

pJ/2. • The C ~function ls 

trivially integrated, and the resulting three integrals are equal. 

Therefore in the small ~ region 

which gives 

=IS~ 
p 

r(~w) = ': (4 -71) w <s.43) 

which is valid for p <~ p
0 

• Therefore as '11--.., 0 , we find 

15 
)' p • 2 ( 4 - 7T' ) , independent of p for p ..::;:<. p

0 
• 

• 



\ 
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~. Spectrpl Function and Green's Function 

From eqs. (5.38)(5.37), we may explicitly write down the spectral 

function for /JW <.<.1 , i.e. 

where 

IS' . 
Yp = ~ (4--11) eas. "}-to . 

First we show that the low frequencies exhaust the identity 

We 
1
have 

00 
j !!.!:!!. A (~ w) = 
-~;_71 pw 

I --/3Wp 

(5.44) 

(5.45) 

Eqe (5.39) demonstrate the consistency of the Very Dense State limit. 

To demonstrate the vaUdt'ty of the Very Dense State llmi t, we note 

that for jl W<<.l 
1 

~['(p, W) << 11 so that the width of the 

spectral function is contained in the small t.c.> interval. The 
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condition on the peak of the spectral function ls always satisfied 

if p0 ~ pl • Hence the "continuity" conditions are satisfiedo 

Nov we show that the low frequencies do ~ exhaust the sum rule 

(5.47) 

We write 

where we is introduced as a cutoff for the logarl thmic singular! ty 

at infinity.. As we want to include as much as possible of the peak 

(5.48) 

2 
In the particular case "? ~ 0 , 1/(1 + :t Yp ) ~ 0.1 • 

Therefore the sum rule is far from being exhaustedo 

Eq. (5o48) can ~lso be obtained from the analytic Green's function 

102 103 and Rerglotz Theorem. . Herglotz)Theor~m states that lf, in the 

' 
upper half plane ( 1-rn} ')> 0), G( }' ) is analytic, ~ G( )' ) ~ 0 , 

/ 
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.t,;,., [ )- G( } ) ] • C0 (a real constant), then 
J ... 4o'l 

and 
')0 

J ~ A(w) =c., 
-~ 2:1T 

In our ease, the analytic Green• s function can be wrl tten, for 

I fo ) I < <. I , as 

. , 
• 

(5.49) 

Eq. (5.48) is then obtained from (5.49) by applying Herglotz Theorem 
. 2 

to (5.49) and noting that c
0 

• 1/(1 + ~ l(p) • 

Note that in the normal fermion case where r- lA)'& the sum 

rule is satisfied near zero temperature if we ignore the w dependence 

of the real part. Furthermore for the fermions, the imaginary part 

ls small with respectto the real part, i.e. for a pole,at 

, the time development ls l•W+lf' 

l(w+lr)t 
e = tw-t (1 + l r/w) 

e , 

and the attenuation ( r/w) ,...,., LAJ ls small. These considerations 

led to the naming of the excitations ln fermi systems near zero 

temperatures as quasi-particles. In the case of bosons, since r- w I 

no quasi-particle interpretation is warranted. Following Patashtnskil 

and Pokrovskii ,
94 

we call these excitations with ,-,.., W and A- p3)a 
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mQ 
as low-frequency, low=jffientum slngle-partlcle fluctuations. 

Mathematically, these excitations are represented by a pole of the 

single-particle analytic Green's function on the unphysical z-plane 

near the origin. For p ~ 0 , the pole is on the unphysical sheet 

ln the first quadrant. As p ~ 0 the pole approaches the cut on the 

real axis at ~:: "7 ; then as '1 ~ 0 , the pole approaches the origin 

and goes onto the physical sheet, which ls the mathematical representation 

of the macroscopic occupation of the zero momentum state. Physically 

the excitations are fluctuations in the low-lying states as they 

anticipate the macroscopic occupation of the zero momentum state. 

4. Macroscopic ProperS!!! 

We turn from our microscopic analysts and consider its macroscopic 

consequences. As a beginning, we collect some thermodynamic relations 

for-the three second-derivatives of the Gibbs {>Otentlal. The 

isothermal compresslbllity K; .Is 

..L (atr) ~<.., 5 - V 1fP 1j N = (5.50) 

where we wrote in shorthand Arr = (a-,.._n_/~}4-'L)'T V • 

The Isobaric coefficient of thermal expansion ~ p is 

The is6barlc specific heat c ls 
p 

(5. 51) . ! 
I 

! 
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. I 

(5.52a) 

where the Isometric specific heat c'V ls 

'V 2 :!(~) = .Z. [ft.!r .-fl.·. J. 
V 'aT/VN U. +r TT • 

(5.52b) 

Note the common occurence of the .factor ...11.~~ in eqs. (5.50,51 ,52) • 

The macroscopic properties may be obtained from the mlcroscop:c 

analysts by eq. (2.61) for the Massieu potential, which can be wrl tten 

/Jfi. = - i!'-+. +r(~G,) + +;- ~(-G') (5.53) 

where ~ is the Grand potential expressed as a function of 

(T' 1/'1 "? ) ' 
%' ~ 
~ does ~ include the Hartree-Fock terms which 

have been absorbed into the free particle Green's function 

-1 . 

(G,0(P,J,)) = )~ - 6
1
{P) + ·'7 

') 

where '1 and 

respectively and 

e 1(p) are defined by eqs. (2.110)(2.llla) 

(5.54) 

(5,.55) 
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/sP(~J I 

6G,(pJ)v) • 

We flrst take the derivative of (5.53) with respect to 17 

where we have used the fact that 

From eq. (5.55), we see that 

' 
and eq. (5.57) becomes simply 

e • 

Taking one more derivative vlth respect to "? , ve have from 

(5.58)(5.59) 

• 

/ 

(5.56) 

(5. 57) 

(5.58) 

(5.59) 

(5.60) 
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The general equations are now specialized to the v·ery Dense State 

limit, which is most convent ently taken ln the (p, }-.1 ) representation 

by setting )21 • 0 • Ve have ln thl s manner 

- ~[G(p.,o)J -+ ~A(PJo) G(~t>) -+ 
p 

+ ~ ~ (-G-1
(p1 o)) 

) 

(5.61) 

(5.62) 

(5.,63) 

where functionals of c1 (p, 'tl ) are replaced by the same functional 

of c1(p,O) •. It should be emphasized agaln.that eqs. (5.61-63) are 

not the equations for a quasi-particle description of the system, 

although the imaginary part of the self-energy do not play an important 

role. The.dlscusslon of ~qs. (2.115,116) applies here to eq. (5.62)o 

The Green's ftmction ln the Very Dense State 1 imi t ~an be wrl tten, 

from .(5.49), as 

I 
(5.64) 

• 

We wrl te the real part of the self-energy at J • 0 as 
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:A~ = A,p&H(p,-p) + A0 p31
z, H(p-p,) H(~~p) + 

-+G; e-71/J. e"tp-p.,) H (p- PD) I 

where H(p) is the Heavislde functlQn 

H (p) ::. { -r I 
0 

p'>O 

p<o , 

(5.65a) 

(5.,65b) 

A 1 s an arb! trary constant introduced to preserve the conti nul ty of 

A 1 and will be taken as very large; and p
1

, p
0 

are defined 

p 2 3/2 0 3/2 
by A

1
p 1 .. A

0
p

1 
· and EPo • A0 p

0 
respectively. Using eqs.(5.64) 

(5.65), we can evaluate .fl.'?'? of (5.63). We vri te 

(5.66) 

and find 

(5.67a) 

/.' 
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tr .! [~ I p~/a + -,; Ao I -+ 
= 2.71.,'A3A! .3 p,~ll2. +?I Ao 

+ ~ ( fbJ/z.~?JIA, ~ ~J/:.~ '7/A,) ] (5.67b) 

In the limit "7-"' 0 , we note that 

leading term ls logarithmically divergent 

] 
(5.68) 

whl ch comes from the integration over the plJz._ spectrum eq. (5.67b). 

To complete the calculation, we note that 

, 

where the exponential term 1s negllgi ble as .i\ __., 00 and 



As 

have 

where the prime indicates just the divergent term.. Using the 

definitions of p
0 

~ Pt and A (5o24), we rewrite eq. (5c70) as 
0 . 

(5o 71) 

.. 

To make contact wl th the macroscopic relations (5. 50 .. 52), we 

need to go from (T 9 V, '?'} ) to ('r, V ,r). Ve do this for small . 

~ only 9 expanding '1 as 

(5.,72) 

where a and b are constants. Then 

.. 



' • 

-171-

Therefore eqs. (5.50-52) reduces .to 

(5~ 74) 

..,. ... 
(5. 75) 

+ ~-. 
(5. 76) 

where we retained only the logarithmically divergent term. Thus we 

conclude that the logarithmic singularity appears in all three of the 

quantities ~ 9 D(. , c · , but not 1 n c V • p p 

The ratio -b/a can be.expressed as the change in~ divided 

by the change ln T when '1 • 0 • In other words 

(5. 77) 

after the usual thermodynamic manipulations. Using eq. (5.77) ln . 

(5.74-76), we see that 

........ = __ v ...,,.. ,.,; + 
r<fb•, JVI. - -' '?? ... (5. 78) 

(5. 79) 

(5.80) 
• 

. . 
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In liquid helium-4, ("aP/ ~ T).,.:o ~ -130 atm/~ at T"- .. 2.18%, 

which is a large number compared with nk8 :=. 3 atm/~ • Therefore 

one would expect the logarithm singularity to be most accessible in 
even 

cp , less so in ()( p , and"less so in 1Cr • To make a reasonable 

estimate of this, one has to include the relative magnltude.of the 

' 104 
nondlvergent terms. We note that the ratio of the logarithm term 

of to D<p is given by 'I( '3 PI ?J T)'! •O • Using the 

measured value for cp , eq. (1.1). and C(P' 

J 

we find that (ep/t.Xp)log!::! -298 atm. This is to be compared with 

the above prediction of T" ·( C> P/'a T) 
0

. ~ - 284 atm • 
..., .. 

A crude estimate of the width of the logarithm can be made by 

i 3/2 3/2 
noting its dependence on the p -spectrum. The p -spectrum 

.,, 2 
vanishes when '?""" 9(n a 5 ) k

8
T

0 
., Therefore t.he width of the logarithm 

is glven by 

.. 

Ot course the width depends on the relative magnitude of the nondlvergent 

termso 

-To determine the shift in the transition temperature, we go. back 

to eq. (5.62) 

(5.81) 

• 

·- ------------'--------~-_..:....._........_ _______ ::1_ ___________ - _J.___~-~-------- .1' 
-------------------------- ----------- ......... - ... ----
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As "7 __, O, we have 

• (5.82) 

Appr~ximating p
0 

by (2mA
0

)
2 

and using (5.24), we get 

.. [ . c. 
.70=7(, 1- (5.83) 

• 

where T
0

1 is the transition temperature for the ideal Bose gas. 

Treating the term involving V as small, we write (5.83) as 
0 

= o. 838 

Hence the presence of the repulsive potential V
0 

raises the 

transition temperature. Recalling eq. (4.120), we see that a 

(5.84) 

repulsive potential contributes both to a lowering term through the 

effective mass .and to a raising term in the very short-ranged limlto 

the sign of eq. (5.84) ts consistent wl~ the hard core example, 

eq. (4.136). 



C, Sorn-Collision Approximation ... (Variational Calculation) 

We continue our investigation of the Born-Collision approximation 

above the transition by considering variational techniques. In . 

Chapter II, we noted that in general the variation of the Massieu 

potential w with respect f"o the total selfGenergy • r/ot does not 

have a maximal property but a stationary one~ However for a special 

class of variations, we can show that the variation of ~ does 

indeed·have a maximal property, We first show that the Born-Collision 

approximation in the Very Dense State limit is stable under arbitrary 

variations of a special class of self-energleso We then apply the 

variational techniques to the bulk limit to recover some of the 

results of the previous section, and finally we apply the same 

techniques to restricted geometry. 

lo Stability in the Very Dense State Limit 

We begin by recalllng the general equations fo~ first and second 

variations of the Massleu potential, eqso (2.62}(2.65) respectively, 

and rewrite them in terms of the Grand potential .fl. 

I' "' 2 ) [ . f:('Ji: ~ [6} l ] . 1: t /J r/12. = LAG (t'J),; 4 (P!rv)- "r-( ) /£ 0 (P>,;) (5.85) 
R~ · ~~n~ 

- ,· ,..., ___ , ___ ....:,....o.;.._ _____ ~~------:__:__:_. _____ --~-----~----·-------£.:_...: _______ .:..:_ ______ ~ __ : _________ ~----·--··-·--·--···..,._. ___________ ·-· 
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where the second variation ls evaluated at the point 

t:.~:tot (p ,.11) = 
6~[C7,] 

.t'G-(p t.-.~) • 

(5.87) 

From eqs. (5.85-87), it can be shown that lf we restrict ourselves 

to arbitrary variations in r.t:t:rt which are frequency independent, 

"'~tot(p) • r ~o ( ) l.e. 0 ~ o ~ p , the Ideal, Hartree, and Hartree• 

Fock approximations are all stable, i.e. 6z.....a_ ~ 0 • This result 

is to be compared with the fact that even the Ideal approximation 

lOS · tot 
is not stable under arb1 trary variations of '2:, (p, } v ) • 

For the Born-Collision approximation, we find that .n.. is stable in 

the Very Dense State limit under arbitrary variations in ~p. 

- To demonstrate this assertioll for the Born-Collision approximation, 

we find l t convenient to absorb the Hartree-Fock terms into the free 

particle Green's functions, not unlike eqs. (5.53-56), viz. 

_, 
[G,"(~ }-v)] = Jv - t:'(p) - '7 (5.88) 

(5.89) 

(5.90) 



(5. 91) 

) 

where >"/ and e'(p) are defined by eqs., (2$lf0)(2.llla) respectively 

and if> does ~ include the Hartree-Fock termse Then eqs. (5.85) 

(5.,86) become 

where 

( t~[G,) )'-= 
l'G{p!f-v) 

From· eq. (5.5), we see that the Born.:Collision part of ~ 

can be. written in the symmetric form 

(5. 92) 

(5.94) 

~-··· 

i 
i 
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. (5.95a) 

where 

} . (5. 95b) 

.. 

We now take the Very Dense State limit by setting all the )1/ • 0 • 

perform the angular integration in momentum space, and assume a 

very short-ranged potential to reduce (5.95) to 

(5.96) 



Therefore 

and 
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2.Vo'-Ja.'r [i~(~)-1]" 
(J v 

.. [ "ir ~ G(p'o) J: (*)] 3 
(5.97) 

(5. 98) 

Hence from eqs. (5o92)(5.,97), we see that the vanishing of the first 

variation of ..ll. with respect to 
I 

f .:C, (p,O) • tt: p 

leads directly to eq. (5.18)., Substituting eq. (5.,98) into (5o93)~ 

we see that the second variations can be written as 

(5.99) 

'.; ., 

• 

,; 
------------------------------- ---------·-·-- ._____...______________ -- -·----- --- --· -----·- ~---·· .... --~----" -- , _____ -----·-- . ____ :._ _________ , ____ _ -- -·-- -- ----------------------------·-··· 
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--. 

Since the p·integratlons, are over small p' s, the integrations are all 

positive. Therefore cS a...a. '> 0 and .f2.. ts minimized at the 

vanishing of the fl rst variations Wlder arbl trary variations of 

Since the variations are arbitrary, the second fWlctional derivative 

is given by 

1 

.: G'(po) T ~.~ G.~(fO) • 

)lfct'r [1-J~(-if)) io(~) Jt 
v (5 .. 100) 

- [ :f; f,G(p'o) ~~ ( t;{-J J~. 

2, The Bulk Limit 

In order to gain some confidence and insight lnto the variational 

technique, ve now apply it to a case for which we have the solution, 

the bulk ll.mlt. We assume a trial self·energy of the form (5.65) 

~p = A1 p2 HCp,-p) + A,l/z.J-I(p-P,) H(f'e>-p) + 

+ c=; e'ICp L-;\j2., <:"(P-Po)] MCP-Po) 
(5.101) 

where p
1 

and 

A p 2 .., A p 3/2.. 
1 l 0 1 . 

p are defined so that 
0 

t Aopo3/2 • e~o • 
A

, 
ls continuous, t.e. 

p 

Instead of an arbitrary 

Yarlatlon, which as we have seen recovers the self-consistent integral 

equation (5.18), we assume the form (5.101) and vary A
0 

and 'A1 • 
•, 
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I . 

The first variation then gives us two alg~braic equations for A
0 

and 

A1 • However, because of the explicit variational form of (5sl0l), 

we run into some spurious results which we now examine in detail. 

Inserting eq., (5.101) into (5o92), we obtain the first variation 

(5.102) 

I 

where the exponential term has been neglected. Inserting eq. (5.101) 

lnto (5.97), we find 

(5.103) 

with 

(5.104) 

·-- ···-·---··-·. ·-·------'-----·-·--·--------L __ ·-·~- -- ----------- -........... 
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where we used the similar arguments as In the self-consistent case 

to reduce D(r). The second variation is obtained from (5.93} 

with 

1.6~, ILl; = p' 2pL }/ (P,-p') 1-/(fi-p) (fA1)z + 

+ (p''J)t. H(f'-p,) H(fo-f') H(?,-p) + 

-+p312 H(F-?J) H(f()-p) H(p,-p')] J'A 0 6Ar (5.106) 

+ IJh.1lh· H(p'--PJ) H(R,-p') H(p-~,)I-I(Fo-P) (d'Ao)2 ) 

and from eqe (5.98} 

where D(r) is gl ven by (5.104) o The rest of this section will be 

spent in approximating D(r) for special cases of momentum range. 



We begin by considering the limit "Y/~_, 0 • which results in 

l A
1 

- 0 • Therefore the vanishing of the first 

varl~tion (5.102) yields 

(5.108) 

'We estimate D( r) at r ~ "t;; /p : 

In the interval 0 <. p < p , , we see that D( "'1; /p) goes from 
0 

to 

Numerical estl.mate of the integrals in the bracket shows their value 

to be !'.::! 0.008 and therefore negligl ble. Hence D(r) is given by 

0 

(5.109) 

.. 
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Substl tutlng (5.109) back into (5.103), we find 

, 
-~~1.!4C. (5.110) 

d'G(po) ) 

which, when inserted into (5.108), yields eq. (5.24) 

(5 .. 111) 
• 

The second variation (5 .. 105) can be likewise calculated, and we find 

(5.112) 

which vanishes at p
0 

= 0 o 

We consider now the case '1 ':P 0 • The vanishing of the first 

variation (5.102) now leads to two equations 9 one for A
0 

(5.108) 

and another for A1 

(5.113) 

We treat first the eq,uatlon for A
0 

., In the region pl < P < P
0 

, 

we add to our previous expression for D(r) i!l 0 <. p <. p
0 

, 

eq. (5.109), correction• for the presence of p1 ? 0, so that 
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(5.114) 

where p.., ts defined by A1p~2 ., "'I , which is a little smaller 

than p
1 

, and we assume Numerical estimate of the 

two integrals ln (5.114) show that tne first integral dominates the 

second one. Therefore we approximate (5.114), just to get qualitative 

behavior 11 by 

where the cutoff in 

Is good only for 

(5.115) 

r is introduced since the expansion of .· j (,C.)~ l 
0 

% < 1. Treating the constant term as a 

perturbation, we substitute (5.115) into (5.103) to obtain 

(Jt~lJG )/: 
tG(fO) 

(5. 116) 
) 

where we have neglected a slowly varying logarithmic term ln p and 

have defined 

(5.117) 
• 
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l:q. (5.l08) finally g~v~;s 

r • 

(5.118) 

where ttC p 3 1-z. > 0 Is defined by 

• 

Thus in the Umi t pl <:: < p
0 

, we find from (5.119) that (5.118) is 

(5.120) 
• , 

and we see that the self-consistent solution is approached for 

p1 < < p < <. p 1 and the 
0 . 

'?-., 0 solution for p
1 

_.... 0 • 

Now let us consider the equation for A (5.113). 1 . In the region 

0 < p < pl 1 we write eq. (5.114) as 

(5.121) 

. ' 

-f 
:. 

' ' •' 

/ 



Recall that we have shown that asymptotically D(r) ....., e·r as 

r ~ ~ ~ This asymptotic behavior ls important ln the region 

. 2 
0 < p < p

1 
for it !s necessary for the p - spectrum to occur. The 

other two terms !n eq~ (5.121) do not have an exponential behavior 
' 2 2 

at large r•s , but a 1/r dependencee This 1/r. dependence arises 

. 105 
because of the Heaviside functions in our variational form (5.101). 

In other words, the'exact L{ ls smooth and yields an exponential 
p 

cutoff in D(r), while (5.101) is not smooth leading to l/r2 

asymptotic behavior of D(r). Because of the importance of· the 

exponential cutoff, we demand that the special variation satisfies it 

alsoo Therefore ve neglect the two integrals in (5e121) which lead 

to the spurious asymptotic behavior. 

From eq. (5.103),~we obtain 

) (5.122) 

where 

00 

:Co(P) = £ ~~ [l~ql~(~p/p'?)] e- 3 
__ '1-

::< .#4.(-~/[1-jo(~t~···] . 
(5.123) 

l 
) . 

-------------'------------ ------------------- ______ _.L_- __ :: ___ . ________ ,_ __ - ---------------- -----·-
;,_ 
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Substituting eqs. (5.122)(5.123) into (5.113), we obtain to firstQorder 
( 

(5.124) 

The second variation may now be calculated from eqs. (5.105-107). 
, 

For 0 < . p 1 p < p1 1 ve have 

· G r· G ~ec )' _ 
tci{p'O) fG(pO) -

which leads to 

I 
d' ( ~~8C) 

l'ri(p'o) /6(po) 

J( 

(5.126) 
I 

(5.127) 

vhlch leads to elementary integrals and the. explicit second variation 

(5.128) 

-. 

f. 



which vanishes when p
0 

__. pl and reduces to (5.112) for p
1 

--P 0 • 

Finally we have the two mixed regions: for 0 < p < p
1 

< p' < p
0 

, 

we have (5 .. 125); for 0 4! p8 <. p1 <. p < p 
0 

, we have (5.128). Then 

only the range of the integration changes, and we conclude that 

(5.129) 

wlth the equal sign when 

3. The Fllm Geomet£! 

Wl t:h the insight gal ned in the bulle limit, we apply the variational 

techniques to the film geometry. We orient the film to be tn the 

xy-plane, of infinite extent, with the thickness L along the J-axise 

-Ve assume the same variational form for the self~energy as in 

ecte (5.101) with 

2 
p 

the stipulation that the momenta are to be given by 

2 2 2 
p ~ p + p o Because of the variational 

11 X ·Y ·· 

form (5.101), a sum ever momenta can be thought of as a total of 

three sums in momentum space over (1) a sphere up to p
1 

, (2) a 

spherical shell from p1 to p
0 

,. (3) a spherical shell from p
0 

to 

p
2 

ft For any function f(p) where p Is the magnitude ~f the momenta, 

we have the limit 

(5.130) 

J d.f I' -f!(f) 0 

.. 

'. _,.. 
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As usual, ve assume box quantization 

Thus for finite L , eq. (5.130) becomes 

I 
. 'D - '1T'1i .I 
r/ - -;:-A;. I 

• 

·~ 

+ !!?i~,j -+ 
'-·p, 

] etp p -l(p) 

) 

. (5.131) 

(5.132) 

) 

(5.133) 

where the equal sign is taken to mean taking the nearest integer. 

Eq. (5.130) can be recovered from (5.132) by the usual limit 

(5.134) 
• 

With these pre~iminaries out of the way, we consider the physical 

situation .. 

We shall consider the model in which the fllm ls in- contact 

(thermal and material) with the bulk system. In the bulk system, 

?7 is given by (5o 17) 



·-
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(5.135) .. 

In a film geometry, we have 

(5.136) 

where E
0 

Is the additional ground state energy due to finite L .• 

We consider the bulk system to be on the transition, ioe. ,.., -o . ( bttlk (l 

Therefore since the chemical potentials are equal, we have for the 

film geometry · 

YJ = E~ > o (5 .. 137) 

This means that at T , the transition temperature of the bulk system, 
0 

the film has not yet reached l ts trans! tlon temperature because 

of the additional ground state energy.. Hence as L decreases from 

its bulk value, the transition temperature decreases from T
0 

., For a 

crude· estimate of thl s dependence, we extrapolate (5.136 .. 137) to 

'7 • 0 , which corresponds to 

2 
lto Q' Al ( 7f n /L) II we have 

"11 .., - E • b(T - T ) • 
lbulk o o 

Since 

(5.138) 

where Tf Is the film transition temperature. This 1/L2 dependence 

agrees well with experimental observations (see next chapter for more 

dlscussion)o However since our Born-Collision approximation has only 

·_IS 

---- ~~~· ------------ ---------·------ ~--- ________ ·_:·::__ _ _:_ ___ --·-- -- -··-----~----=--~------~-------------
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been investigated for ,., ·. ~ 0 , we consider the film geometcy. 
- •1, bulk 1 \. 

only for 'J ~ E
0 

• . I 

We now proceed with the variational calculation. As we use the 

same variational form (5.101) as in the bulk limit, we get the same 

equations as the bulk limit, eqs. (5.102-103)(5.105-107), with 

D(r) given by 

O(r) 

As in the bulk limit, the last two terms of eq. (5.139) which Integrates 

over the spherical shell from p0 to p
2 

may be neglected. Eq. (5.139) 

can be further reduced ~o, in the region Pt < P< p
0

, 

.J, 'R 
0(1"') = ..,-;:, "" 1 ~ *i. (!::i-) + T L-\ A <t"+n fJD. -#' 

J.=-1 '!!5../. I 0 I 
~ 

+ 7Tt; ,e. rPo ~ '1. 1~) + (5.140) 
-;::- I . J P, AD z 3/Z.. "" l" ~ 

J; ..4e j:P.-~ .. 
+ Z"£Z ~ :!lb .d o:J/z. ~~ ( ';!-) 

,I •.i,+l L '.t. ~ {} 
2 

Note that for '? "" E
0 

• A1 ( 7T t:; /J.) , p "? • 1T I; /L , and 

'?. can be neglected also from the first integral wl thout consequences. 

Furthermore since Pt 0: p'l , we can neglect the flrst term and 
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approximate the second integral by 

(5.141) 

• 

As L ---? ~. 1 eqo (5 .. 141) reduces to (5.109) e Note also that D(r) 

is independent of '7 ; hence A as a result of eqs. (5.102-103) 
0 

1s Independent of ?} , so that the L dependence of A
0 

appears 

only through the sum over the discrete· quantum states. 

Ue take the firsteorder correction to eq. (5.109) from (5.141) 

by letting L _. t>C but retaining the first-order term. 'We note that 

p
1 
~ p"l , hence ve take p1 ... ( 77 $; /L) .l.1 with .1.

1 
J!., 1 • 

The sum over ~ h approximated by the Euler-Maclaurfn series to 

get (see Appendix E) 

(5.142) 

-f!: "v'iii (.t,.;. f) ·+ o{f;~z.) . 

therefore eq. (Sel41) becomes 

(5.143) 
• 

.. _.: ·-·----...:....'..--~-----J ... -1. •• -:... 
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Treating the 1/L term as a perturbation, we substitute (5.143) into 

(5.103) to· obtain 

The vanishing of the. first variations (5.108) then leads to 

where < p ')> is defined 
0 

J.$71h 1 
2.1.. <p ">o 

(5.144) 

(5.145) 

(5.146) 

Thus in the p
1 

<.<. p
0 

limit, we have from (5.146) that (5.145) is 

·A4- ...L 
0 - 1.5113 .. 

(5.147) 
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Note that for liquid hell um-4, eq .. (5.147) predicts size effects to 

occur at· L ~ 35 ;¢; /p
0 
~ 70 R , which i.s of the order of magnl tude 

of experimental observations~ We note also that (5.147) predicts 

a narrowing of the logarithmic singularity in the specific heat. 

This prediction is neither proved or disproved by the experimental 

17 data as·Freder1kse9 data shows a broadening but only when the bump 

is almost gone., 

The second variation (5.,105-107) g!ves 

(5. 148) 

Hence at T , we see that the p 3/Z._ spectrum can become unstable, 
0 . 

2 
l .e.. G1...n./ &'A .. 0 , when L decreases to some critical L 

0 . 

as determined by the equation (5.148). A crude estimate of this L 

dependence can be obtained by performing all the sums in (5.148) in 

the bulk Hmi t. This procedure yields the estimate 

(5., 149) 
) 

. . .. ---- -- --·- .. _: ___ ;_.t __ -------- ----'-------~- ·-·-----•----------- ------- ... ------- - --------------- _._ __ ------ _._ .... -------------'------·---- ~--------
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which gives the same order of magnitude for L as from (5.147). 

In fact. if we can extrapolate (5.149) beyond its region of validity• 

(5.149) predicts that the logarithmic behavior disappears at. L ~ 35 R • 

Now we consider the ease ?7 ~ E
0 

or T "7_
1
T0 • The analysis. 

! . 
for A

0 
rema'ins essentially the same vi th the exception of a 

p
1
/p

0 
< <.. 1 correction term as in the bulk case. We consider in 

detai 1 the calculation of A
1 

• In the region 0 < p < p1 • we have 

to remove the spurious asymptotic behavior In D(:i:') to preserve the 

2 
p - spectrum for ~P,· Therefore we have 

Df,..) 

Application of the Euler-Maclaurin series to (5.150) leads to 

where Ei(y) Is the exponential integral 

"" 
Ei(CJ) = f %-1 e~ « Jt, 

. -~ 

(5.150) 
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Substituting (5.151) into (5.103) and expanding in terms of small 

P' s, p <.<. pl , .we have 

. I 

(G~sc) _ 
l'G(pO) -

(5.153a) 

~ . 

z, -=~013- t:l e.-2~ [e~E,(-~) -e~Et:(~)] (5,153b) 
• 

Examination of the Integrand of 1
2 

shows that· 1
2 

ls positive. 

Therefore the vanishing of the f1 rst variation (5.113) gives 

(5.154) 

where c • 27 (1 1 + %I 2) ls a positive number. From eqs. (5.147) 

(5.154), we can draw the follo~lng conclusion about p
0 

• (2mA0 )
2 

and 

2 
p

1 
"'" (Ac/A1) • As L decreases from l ts bulk value, ~e find that 

both p0 and · p
1 

decrease'· but whether p
0 

• p
1 

decreases or not 

depends on the relative magnitudes of the coefficients. 

'••••·--• ----- --------- ---L--------------~--~ ----

( 

.\ 

. ,~ 
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V.I. MACROSCOPIC THEORIES 

Thus far, we have centered our attention on microscopic theories, 

t.eo theories which begin with the dynamical descriptions of the 

elemental particles of the system. Now we turn to the complementary 

picture of macroscopic theories, i ..-e. theories which do not begin wl th 

the elemental particles of the sys.tem but with some gross, overall 

features of the entire system.. Once again we shall use the variational 

approach. Instead of varying the grand potential .fl. with respect to 

the self-energy · ~ , ve shall vary the Gibbs potential per ~olume, 

g • with respect to some gross order function ~ 0 In order that 

such a variational approach be productive, we consider only the region 

where the order function ts small so that some particular expansion 

of the functional g ( ~] can be made. 

The general features of the theory are as follows. We first 

. characterize the system by some order function ~ • Next; the 

functional g l '2 J is constructed. Then we minimize g [ ~] with 

respect to ~ , and the resulting Euler equation ls used to 

determine. the order function -£ • The main problem ~f this procedure 

ts finding suitable order functiof\ .']; and functional form · ,['1']. 
. 107 108 

Historically, Landau 11 was the originator of the general 

theory in 1937. In 1950, he and Ginzburg applied the theory to the 

109 
superconductor transition wtth great success. Eight years later, 

Ginzburg and Pitaevskll applied the. same theory to the superfluld 

110 transition, but without the magnitude of success as in the super-

conductor case. 



-198-

We begin by reviewing the Ginzburg-Pi taevskll (GP) version of 

the general Landau theory and applying it to the film geometry. We show 

explicitly that the functional f9rm g [~) assumed by GP leads to 

a second-order trans! tion for the film, which is contrary to 

experimental observations. We next consider a· modified theory which 

circumvents some of the difficulties of the GP theory. 

A. Glnzburg-Pltaevskil Theory 

The f1 rst assumption of the GP theory is that the order function 

~ (r) corresponds to an "effective wave function" of the superflow 

component. It should be noted that this order function ~ (r) 

is~ assumed to be the condensate.wavefunction, which is quite 

different from that of the superflow component. Nevertheless, the 

order function '1? (r) is related to the condensate wavefunctlon ln 

that the superfluld component exists only if there exists some 

long-range order which Is a characteristic of ~he condensate. As 

~ (r) is a complex wavefunctlon, we can wrl te 1 t as 

thus defining the real functions >'(r) and 

correspondence to the superfluid mass density 

superfluld velocity v-S (r) is given by 

. z & (,-) .:: n? ~ (r) 

~(~) = !, VC{J{r) 
• 

'f (r) whose 

J's (r) and the 

(6.1) 

(6.2a) 

(6.2b) 

,--
1 
_I 

j 

. ! 
... ----------······"·------····"·•-· . ·---'~--· . :.__~:.::_~-· __ .:.__· •. ~.C..-~.:=.. . ...2:..J 



) 
I 

\ 

-199• 

The second assumption involves the functional "form of the Gibbs 

potential per volume g ( '1'1 • We consider the system with its 

normal component at rest and at a temperature below but very close to 

the A -transition., Then 

powers ot ~ , since 

g ( ~J is assumed to be expandable in 

108 
is small. As Landau has emphasized 

for the general theory, this analytlclty assumption l~ the basis of 

the theory, and Its, validity is not at aU obvious.! erlorl. Keeping 

only the first nonvantshing terms, we have for a homogeneous system 

(6.3) 

where o( and {3 are expansion coefficients which are functions of 

111 pressure and temperature. Any inhomogeneity can then be incorporated 

by retaining the fl rst term in the expansion in terms of fl ~ • The 

final GP functional form of g [~J is 

(6.4) 
• 

The structure of eq. (6.4) is quite evident. The first term on 

the right is the Gibbs potential for the normal component. The next 

two terms are the "potential energy" contribution from the -superfluid 

component. The last term is the "kinetic energy" contribution from 

the superfluld component.-

Now we vary g (c.:)? J with respect to ~ in order to determine 

~ from the resul tlng Euler equation, which can be written 
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• 
. (6.5) 

This equation, analogous to the Ginzburg-Landau equation for super-

conductors, is the Ginzburg-Pltaevskil (G~) equation. 

The third assumption concerns the pressure and temperature 

dependence of
1 

the two paramet~rs OC. (P.T) and {3<P,T). Since the 

transition is characterized by the s~lution ~ s 0 above and 

tJ! =#-- 0 below, O((P,T) must vanish on the transition. For the 

transition to be stable, ~ (P, T) .must be positive on the transition. 

We have then a transition line in the PT plane defined by 0(. (P II T) Ill 0. 

Holding pressure constant, GP assumes that ~(T) can be expanded 

Unearly about the transition, 

DC(T) = o<' CTo-T) =:;- ()( 1 ~T • (6.6) 

There ls also no ~ priori reason why this expansion is valid. This 
I 

assumption immediately leads to the temperature dependence of J'~ , . ' 

as for a homogeneous system at equilibrium 

(6.7) 

and from eq. (6.2) 
I 

fl - Mol'i 41T~ 0 (6.8) (3 ~jT ... - J • 

. . . . . : (. 
---:..:_ _ _:_ ___ ~-_ __:__ _______ ~----· ---'------ --~------L- ---- ---------
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Hence ln the bulk limit, the Gibbs potential per volume ls 

j (6.9) 
• 

From (6 .. 9) 11 we see that we have a second-order ttansition for the 

bulk limit. 

Now we consider the film geometry and show that the GP theory 

yields a second-order transition as a direct consequence of the assumed 

functional form of g l ~ J . We begin by introducing two 

dimenSionless parameters 

(6.10a) 

(6.l0b) 

and (x1 x
2 

x3) are the cartesian coordinates., Eq. (6.4) assumes 

the form 

(6.11) 

and the resulting Euler equation is 

(6.12) 
.. 

As eq. (6.12) ls a homogeneous equation, the first Integral yields 

(_6.13) 

/ 
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where C Is a constant of integration to be determined by some 

boundary conditions. Substituting (6.13) into (6.11), we get 

• 
(6.14) 

: We consider a film of thickness L in the J direction and 

inflni te extent in the xy-plane •. The boundary conditions are taken to 

be those of an impenetrable wall, viz. 

) (6.15) 

where f • t 
3 

• }/ ,l. • The formal solution of eq. (6.13) wl th 

boundary conditions (6.15) can be expressed ln terms of.an elliptic 

Integral of the first kind112 

) 

which can be solved explicitly in terms of the Jacobian elliptic 

113 
function of the first kind, sn( t4. ;k) 

where the modulus k is given by 

, 

.~· 

(6.16) 

(6.17) 

(6.18) 

( 

' ' : 
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and K(k) is the complete elliptic function of the first kind. 112 

The constant C ls expressed in terms of k as 

(6.19) 
• 

The average Gibbs potential per volume for the entire film is 

f c :lz )4- [ 2.(Z.+f,2.) k~(l~) 

-4 (t+k-z.) J<3(1~)E(k)] 
(6.20) 

112 
where E(k). ls the complete elliptic integral of the second kind. 

The transition is determined by the vanishing of the order 

function !P (r), which occurs when k • 0 • Then eq. (6.18) reads 

· L/..L = n (6.21) 

which defines a film transition temperature Tf which is shifted 

from the bulk transition temperature To by the amQunt 

A Tf .. Tf - T 0 
given by 

AT-1 7Tzti 'l. (1&) -- z;,., g/. I 7;, (6.22~ 

' To • 

u (6 2 ) l/L2 ( ) we note that eq. • 2 has the same dependence as eq. 5.138 

which was based not on the disappearance of the superfluid component 

but was concerned with the effect of the ground state energy. 
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Mathematically we expect this coincidence, as the kinetic energy term 

for the superfluid component in (6.4) is of the same form as the 

2' 
A1p for small p' s assumed for the ground state energy effects in 

(5.138) 0 

To investigate the film transition further, we expand eqs. (6.20) 

(6.18) for small k 1 s, respectively 

(6.23) 

.. 

Substituting (6.24) into (6.23), we get 

Since k ~ 0 , we are slightly below Tf • Therefore we define 

S' T .., T • T 9 so that 
f: ..6 T"" .6 Tf + t T .. Then eq. (6.25) 

can be rewritten as 

(6.26) 
) 

and we conclude that the transition at Tf is a second-order one. 

Actually we do not have to use the fact that o(. ,_ f:J. T, eq. (6.6) .. 

As long as C((T) is analytic about the point 

--~-------_:__ __________ . _____________ .... __ : ________________ ~~---··---·--·...:.·"'-··--···--·--

( 
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of the transition is second-order. Since OC,.. (T) is assumed to have a 

singularity only at T
0 

, the conclusion of a second-order transition 

· at Tf is general, and follows solely from .the functional form of 

g [ ~ J which was assumed. 

We note that very near the trans l tion the order. f\.Ulctlon ~(r) 

has a spatial dependence like the ground state wavefunction for.an 

Ideal gas. To.see this we need only to recall the asymptotic forms 

for· the Jacobian elliptic function sn( U ;k), vlz. 

- { Vi f< .$11'1 r 
- L -~:~,;, ( r1rzJ 

(6.27a) 

• (6.27b) 

Therefore, the order function (6.17) becomes 

(6.28a) 

k--.1 • (6.28b) 

From eq. (6.28a) we see that very near the transition ~T .E. 0
1 

1fT I <<(rr-z.Y.'L/2.moi.'L~) , the order function behaves as a sine 

function with an amplitude proportional to .J- ~T The sine 

behavior ls a direct consequence of the kinetic energy term which always 

dominates very near the transition. 

However ln the oppost te 11mi t, not so close to the transi tton, 

I&'TI >)(7J&'J; 1"/&mD(1J..Z.), eq. (6.28b) is applicable and the order 

55 
function displays a "healing length" behavior as expounded by Gross 

for the gro\.Uld state wavefunction. 

•·.· 
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B, Modified Theorx 

There are at least.three reasons why the GP version of the 

general Landau theory should be modified. The first ls that the GP 

theory gives a second~order transition114 in the bulk llml t, while 

9 measurements have shown a logarithmic behavior in c within 
p 

;"\.-point., The second is· that the GP 

theory gives also a second-order transition in a film geometry, while 

. 17 1.8 measurements of the specific heat ' has resulted in a very smooth 

curve at the superflow transl tion, indicating a high-order transi tlon. 

Finally recent measurements of the superfluid component have demonstrated 

n, 12 C )"'/J . -to., that )\ obeys the relation fl """' -AT within 10 -l\. to 

10 .. 
4~ of the 'X -point~.~ while the GP version has F$ going as 

(-AT) .. 

Let us first dismiss one obvious way to incorporate the logarithmic 

behavior of cp near T~ , which is to retain the same functional 

form for g r g:; J , eq~ (6.,4)' and change the temperature dependence 

of the coefficients ct and (J accordingly. This scheme was applied 

U5 
by Mattis . to the Ising model in two dimensions, with the following 

choices ( /J,T•T .. t) 
0 

(6.29) 

(6.30) ' 

so that 

(6.31) 

\' 

/.~ .. •. 
I . 
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where M Is the magnetization. For helium, all we have to change is 

the identification (6.30) of the order function. But such a theory 

gives no shift in the transition temperature for a film, because the 

11klnetic energy" term ls proportional to ( AT) 2 and is·negllgible 

as AT~ 0 . compared with the "potential energy" term 

- ( A T) 2 ln(- AT) •. Fur.thermot'e even 1f. thiS is overlooked, 

the theoey is unstable without the addition of a positive l~l~ 
. 116 . 

term •. Kadanoff · has recently written down equations similar to (6.31) 

for the Ising model, and the above comments are also applicable to 

its extension to helium. 

In our microscopic calculations of th~ Born-Collision approximation, 

it was seen how the logarithmic behavior of cp came about not because 

of the long-range order .due to the condensate itself, but because of 

the anticipation by single-particle fluctuations of such an order 

setting in as exemplified by the applicability of the Very Dense State 

llmi t. 
117 .. 119 

Such observations concerning fluctuations are not new 

and in fact predates any microscopic calculations. In order that such 

an anticipatory action be included into the macroscopic theory, a new 

ordet' parameter which must be related to the number of particles in 

the low momenta states can be introduced. Unlike the order function 

~ (r) which characterizes the long-range order of the system, 

this new parameter characterizes the fluctuations and must be nonzero 

for a neighborhood about T" and vanish outside. We shall not 

119 
introduce s~ch a parameter nor take into account any fluctuations 

\ ln any way. Hence we shall be satisfied with the attainment of a 
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second-order transition without the logarithmic singularity from the 

general Landau theory. 

The basis of the Land.au theory is the symmetry of the system near· 

the transition. Based on our knowledge of the symmetries of helium 

which we review below, we argue for a new» modified theory. 

In Fig., ·l, lYe have reproduced schematically the phases of hell um. 

The ')\ -curve [ 1+.-tT J is characterized by the on,set in hell um II of an 

off-diagonal long-range order (ODLRO) of the reduced one-particle 

52 
density matrix in the coordinate space representation. This ODLRO 

120 121 is connected with a broken symmetry, • namely the phase. symmetry 

that leads to the conservation of particle number. This symmetry is 

realized by the gauge group operating on the quantized field operators 

a continuous, one-parameter Abelian group. The vapor curve (o - '>. .. K] 

Is characterized by the appearance in the liquid phase of the diagonal 

short-range order in the reduced one-particle density matrix, as 

exhibited by the radial distributions from X-ray and neutron diffraction 

experiments. The spatial structure which gives rise to the observed 

diffraction patterns is quite elusi~e, although Keesom and Taconis122 

has suggested the space group Of course, liquid helium-4 

does not have a crystalline structure, and the space group td2 should 

be viewed only as a model. 

The above consid~rations of symmetries suggest that we make the 

following proposal. Consider an order fur.ction (to be identified 

later) which characterizes the ODLRO, and construct the functional 

g [.~] as 

' -·-~--- -----··-----------~-~------·--------------'----~---·-~----. ----·-·----~------··---- ---~---·· --·---~-- - --
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~[~) = ~:zr(~] 

• ~:r: +Af~I'2.+BJ*J 3 +cf~i 4 -+ £ lv!f'J 1 (6.32) 

• 

We assume that the spatial structure of the liquid is such· that the 

third-order term vanishes identically, l.e. B • 0 • The ~ -curve 

is then given lly 

.. (6.33) 

At the 1\ -point, however, the diagonal short-range order of the 

llquid disappears. Therefore we have the following two equations to 

define the A •point. 

(6.34) 

and the vapor curve. near the ?\ -point ls given by 

• (6.35) 

Therefore along the vapor curve at the " -point, the theory has' the 

same form as for the rest of the "·curve. Since the vapor curve is 

al:mo~t at constantpressure, c:Sat = cp, and Cp does not 

quaU tatl vely change as ,one moves to higher pressure on the A -curve. 

Now we consider the identification of the order function ~ (r). 

We consider the ftmctlonal g [ ~] given by eq. ( 6.32) and vary l t 

with respect to ~ to yield the following Euler equation 
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which ls used to determine J/t (r) given suitable boundary conditions6 

To make the identification of ~ ~ we appeal to a microscopic 

argument. We consider the derivation of (6c36) from the equation of 

-motion for the one•particle propagator G1 b~low the transition, 

following the lead of Gorkov123 who derived the Ginzburg-Landau 

equationse From eqso (2.83)(2$86), we have the matrix equation of 

motion 

(6.37) 

It ls convenient to single out the 11 component and the 12 component 

respectively of eqe (6.37) 

(6.38a) 

' \ 
I 

-·-------· -- - - --- ------- . ---~ - . - -
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(6. 38b) 

; i 

- -+ - ,.,. 
where we have used the fact that c21 • c12 and ,c22 • c11 • Now 

124 . ( ) we define the "normal" one-particle Green• s function Gn 12 which 

obeys the equations 

(6.39a) 

and we note that G (12) 
n is a propagator wl th no "anomalous" self-

energy effects from ~tot • The operator G
0 
-l may then be 

12 
eliminated from eqs. (6.38) by folding (6.38) vith Jd3 Gn(ll) 

and using eq. (6.39b) to get the following coupled integral equations 

(6.40a) 
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....._, 
G1&. (II') (6.40b) 

( 

Eqs. (6.40) are precisely the integral equations from which Gorkov 

derived the Ginzburg-Landau equation. Gorkov inserted (6.40a) into 

(6.40b), expanded the resulting integral equation in powers of ,:C tot 
12 

ztot as the system is near the superconducting transition and 

is small, and obtained an equation with terms involving 
12 . 

~tot 

12 
to the first power and a term with £tot 

12 
to the third power 

leading immediately to the Ginzburg-Landau equation and the identifica-

t!on of '2 with 

Gorkov•s derivation that 

;& tot • 
12 

Gn(l2) 

We note that it is essential ln 

be unchanged as we pass through the 

transition and that the only small quantity as we approach the 

transition from below is 

heUum-4, this is not so .. In 

~tot 
12 

• Unfortunately for 1 iquid 

addition to the small quantity ~tot 

12 ' 
we note that the boson system also has the condensate entering into 

diagrams for the selfaenergy ~tot 
~ whose contribution vanishes 

11 
at the transition. If we write 

(6.41) 

-tot 
where .£.11 is the total self-energy due to particles not in the 

condensate only and 

. . 

"tot· 

~11 is the total self•energy due to the 

I.'.· -- -----------·------·-···--------·-···-'------- ···----·--------~---· ··-------------- __ ,. ____ _ -------------·""·-- .. --
··.,: 

---~- --------·---- ---"-": . .: .. 
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condensate, we see that in the boson system we have two small 

quantities near the transition: 
c::" tot 
"" 12 and 

A tot 
C"\ · • We 
"'"'u 

. 124 
can then go back and define the nonnal one-particle propagator 

- ,.., tot ~tot 
Gn(l2) involving ~ Instead of '-' 

~11 11 

-6/J -J «z. r;;'(11.) G,.,(21') ::. lln') + 
0 .· 

and obtain in place of eqs. (6.40ab) 

~ I\ G
11 

(II./ 

(6.43b) 

As there is no reason to do otherwise, we treat 
A tot 
~11 and 

~tot (6 3 ) (6 43 ) 
4 on the same footing~ Inserting eq. .4 a into • b 

12 · ,.. tot ~tot 
and expanding in terms of · ~ and "-' • we obtain 

~11 12 
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\:;: 

where ve have used matrix notation for the integration and suppressed the 

superscript tot on the total self-energies. We note that if 

vanishes, then eq. (6.44) would y!eld Gorkov's derivation of the 

Ginzburg-Landau equation. For liquid heUum-4, 
;'\ 

~11 is of the 

same order as £.12. near the transition as was shown by 
94 

~~ Patashinskii and Pokrovslcii; in fact for 0 

(6.45) 
• 

Thus eq. (6.44) has the same dependence with ~ as eq. (6.32) has 

with ~ • We conclude then that the identification of ~ should be 

.. (6.46) 

To first-order in V , ve find that 

That the order function is proportional to the "anomalous" 

self-energy is most interesting. First of all, ~ vanishes for the 

noninteractlng bose gas, even though ther~ is ODLRO and n is nonzero. 
0 

This fact underscores the importance of interaction on the transition; 

for without interaction, the transition is first-order; with interaction, 



-215-

the transition is second-order as we:wlll show. Furthermore, we 

recall that the "anomalous" self-energy represent the interaction 

~nergy between condensate particles and the rest of the particles. 

We wlll see that it is just this interaction energy that makes the. 

condensateenergettcally possible. Hence in an interacting boson 

system, the transition is not totally a phase-space phenomena as 

ln the ideal gas or the first-order ..approximations. Finally, we note 

that should be Interpreted neither as the wavefunction of.the 

condensate nor of the superfluid component, but as the wavefunctlon 

of a palr of bosons (with respect to its center of mass) scattering 

Into, out of, or by the condensat~. Hence the appropriate mass is 

the reduced mass \m. 

We consider the system very close to the A -curve so that we 

can take ~ "'J n0 • Sh\ce the condensate number density n0 has 

not been measured, we shall normalize ~ ln terms of the measured 

superfluld nW:nber densl ty n
8 

• f 
5
m .. 1 • Let us first note that the 

94 microscopic theory yields the result that near the 'A-curve 

'J ~ 0 • This fact can be easily verified ln the· 

Born-Collision approximation applying the Very Dense State llmi t 

(6.47) 
• 

Now we consider the ~otal momentum dens! ty -p in the Very Dense State 

limit below the transition 
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(6.48) 

which clearly vanishes for a homogeneous system. We imagine that the 

"gas of elementary excitations" which appear once ?"/ ~ 0 moves 

relative to the liquid at an infini teslmal velocl cy ~V • Then we 

- w·l ~ can consider 1 G ~ - with W __,. W - p • o-cr ., 
i . p . p p 

Expanding "in terms of 4'~ , taking care in subtracting out the 

excitations at "l • 0 , and setting f • mn
8 

G-1..)* , we find 

Therefore near the transition, ve can·estimate (6.49) by 

(6.50) 

• 

Therefore from (6.47) (6.50), we conclude that near T~ 

(6. 51) 
• 

With the above considerations, we normalize the order function 

!f (r) as 

, (6. 52) 

. -·- ----~----- ---- - --------------------------------
..... __ j 
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where 1t T is the usual thermal w~velength which is introduced for 

dimensional reasons. 

We note that eq. (6. 52) is quite different from the relations 

~~ 125 between n5 and ~ proposed recently by Josephson based on 

the identification fl2 - ~ '/J) ~ Vne/ • Nevertheless we will 

126 show that the exponent sealing laws. for the critical exponents 

of various physical quantities as At__.. 0 are still valid since 

they are independent of the identification of the order parameter. 

1. The Bulk Limit 

In ths bulk llml t, the Gl bbs potential per volume is 

= flz + ACPT) I ':WI-..+ 8 1~1 3 + 

+C(PT) 1'-21 4 (6.53) 

, 

where for a given value of pressure P we assume the following 

relations, as there is no reason to do otherwise, 

(6.54a) 

(6.54b) 

C(~T)>o (6.54c) 

AT~ T-70 < 0. (6.54d) 



We center our attention on the A.-point where gil[~) is 

minimized by 

.. (6.,55) 

Staying on the satura_ted vapor curve where B a 0 1 we find 

(6. 56) .. 

Substituting (6 .. 56) back into (6.53), we find 

(6 .. 57) 

Eqs. (6.,56) and (6~52) immediately tell us that the superfluld number 

. density is proportional to (-A r)¥3 , in agreement with recent 

11,12 
experiments. Also eq. (6.,57) tells us that the transition is 

second-order with a jump ln the specific heat given by 

Let us determine the coefficients AT and C numerically from 

11,1"2 
comparing eqs. (6 .. 52)(6.56)(6 .. 58) with the experimental values · 

n
8 

• 1 .. 43 n(T
0

) (-~T)'IL/3 and
9 

Acp ... 0.759. x 107 
erg/CV. cm3 .. 

We find 

\. 

~-·< i 

' 

. : .... ! ... ··-·- --·~· -- ---·- --··-. ·~ - ··-.. ----... ---- .. --..-·-· 
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(6.59a) 

c= (6. 59b) 

• 

. 110 . 
In the GP theory, Ginzburg and Pitaevskil found for the analogous 

. 17 -40 I 3 constants AT • 4.5 x to• ergi9K and c • 2 x 10 erg em • The 

agreement ls strictly fortuitous. GP assumed the value 

3 
m ( '"3 n/ & T)T • o. 7 gmlcy_ em ln order to evaluate A.r and c • 

0 

But from the experimental data, we see that 

,..., (-A T) • 1 /3 --P oo • 

m( '3 n I tJ T) T - · . s 0 

N 1 1 h 11 1 
126 

ow et us cons der t e exponent sea ng aw. The relation 

between n
5 

and n0 was derived using the results from the Born

Collision approximation. We shall do the same here. Consider the 

equal·time correlation function C(r) 

C(,.) .=: f < ( 'flr)t.p+(o) + ~+(o) C/l(r)) :> 
• 

(6.60) 

As C(r) iS at equal time, lt is equivalent to an instantaneous 

propagator. But in the Very Dense State limit we have 

G(r,t m 0) ~ G(r,z • 0) • Theretore in the Very Dense State limit 

C(r) ~ D(r) where D(r) Is defined by eq. (5.19). The exponent 

scaling laws make use of the large asymptotic behavior of C(r) on 
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the transition. From eq. (5o30), we see that on the transition 

127 
or defining 

C{r) rv :..S/L 

( ) -1-, by C r ~ r -, · , we have 

If we define the critical exponents by the relations 

some coherence length } _, (-A T)'ll' , cp -

(6.61) 

'1 .. % • 

l ~I """ (-A T)/J , 

(-AT)« 
1 

, 

.?.s ~ (-A T)t 
I . I 

, we can wrl te the sealing law as V = !f = 2.fo- '7'11 

or 

(6,62) 

We have '7 .. fJ • % , therefore "1'
1 

• ~ .. 2/3 • Furthermore 

d. 1 
• 2 - 3 f;f ; and using ~ • 2/3, we see that « 1 

• 0. which 

is the closest we wi 11 get to the logarithm •. One may of course proceed 

backwards, beginning with the experimentally found r and the 

Jnlcroscopically calculated "7 to deduce the value /J • % from 

eq. (6,62). 

2, Restricted Geometries 

We apply our theory now to two restricted geometries, the unsaturated 
I 

-128 
fllms and the vycor pores. . In both of these cases, the Gibbs 

potential per volume is 

1ai~J = 6z +A l~lca-+ al ~13 + cl~l 4 -r 

+ -A" vz. 1£ ,., 
(6.63) 

, 

··-~ ·- ·--·· ·-•--·-····- ·---·---·.:.._ ___________ . ____ . ___ ·_ 

/--\ 
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where the coefficients A, B, C have the properties (6.54). We note 

that the mass in the kinetic energy term of (6.54) is ~m by previous 

argUJilents. 

We consider first the unsaturated film, oriented such that the 

thickness L ls along the } -direction from (0, L) and the film 

plane is in the xy-plane. We consider the boundary condl tlons 

~ ( ]! ;. 0) • 0 a.t the bottom of the film and (d eli /dz) z•L .. 0 

at the free surface on the top of the fllm. In the GP theory, we 

have shown that near the transition, the order function behaves as the 

Ideal gas wavefunctton. ·In the Interest of a simplified analysis, 

we assume such a form for the order function. 
I 

) (6.64) 

so that the functional g [ ~J becomes a function g( cp) of the order 

parameter f/> • Substi tutlng (6.64) into (6.63), we have 

'I.JI(cp) - 1-.r +A ¢)".sln1J' + B t?3 .s1n 3 i + 

+ c¢>4-..sln•t + 

. vhlc:h when averaged across the film becomes 

(6.65) 
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j 

f}tr{¢) = f}z + p'-(4 + .,z;;3. ) 
-t ,,,'-" 

_,_ cp· 1r I] a t:p4s_ 
(6.66) 

+ 
2 

Eq. (6.66) is minimlz~d by 

(6.67) 
• 

The transition is char~cterized by ¢> vanishing, which occurs 

2 .f!2 2 
when A + ( 71 n /4niL ) vanishes, for then 

z, /z. ' ' "'" &. . tP::: - ~ . ·(A+ :!!!.!.!... ) 
'VZ 8 4-lnl-z. 

(6.68) 

yielding the transl tion at Tf ... 't0 + ( AT) f wl th 

(6.69) 
. , 

which is to be compared with the corresponding equation from the 

GP theory 

I (6. 70) 



J 

'19 
and the experimental fl t 

(Ar),c. 
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(6. 71) •. 

The agreement of (6.69) with the experimental (6. 71) ls almost too 

' good to be true. We also note that the difference of a factor of two 

betWeen the GP (6.70) and ours (6.69) is due to the ldentlflcation of 

the order function wl th the "anomalous" self-energy. Finally l t must 

be said that eqs. (6.69-71) are valid only for thick films L >.,. 3 R , 

since ln 'the opposite region our bulk evaluations of AT and C are 

dubious and the interaction of the wall which heretofore has been 

Ignored must be included. 

The order of the transition may be obtained by 1110vlng away from 

Tf slightly and evaluating the Gibbs potential per volume. Define 

S T by 

therefore eq. (6.68) becomes 

¢=- JL q_ ~ or 
~ vz: e 1 

and the Gibbs potential per volume (6.66) is 

lr~o· .J 

l'r.s o • 

(6. 72) 

(6. 73) 
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Therefore ve conclude from e<l• (6. 73) that we have a third-order 

trans! tlon in the unsaturated film at Tf • T
0 

+ ( b T) f.. We note 

that the coefficient B is a constant in this case as 1 t is evaluated 

at Tf • The specific heat for temperatures S't <.< T is 
0 

and as expected there iS no jump. The theory does predict a 

discontinuity in the slope of ep(T) , viz. 

acpz J 
ar ·~ ) 

(6.74) 

(6. 75) 

but its magnitude is not known as B has not been evaluated numerically • 

. Now we consider the second case of restricted geometry, namely 

that of an impenetrable pore of radius L
0 

and infinite in length. 

As the walls are lmpenetrabl'e, the boundary conditions are 

if! (r ., L
0

) • 0 where we construct a cylindrical set of coordinates 

with ) along the (infinite) length of the pore. 

Again in the Interest of simplicity we assume a variational form 

for the order parameter -2 (r), viz. 

) 

where J
0

( t ) is the zeroth-order Bessel function of the first kind 

with the first root at J
0

(a) • 0 where a • 2~405. Going through the 

same procedure as for the film geometry, we find that g(~ ) ts 

·:.···· 
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minimized with respect to order parameter tP by 

· 1 ( / 'I a ( 'li-z a 'l ) 1 tf> = - -38K.J + . 98 K.J -J~CI<f A+ P~L.,. . 
8CK4 . 

(6. 76) 

where the Kn • s are constants obtained from averaging over the pore 

( 6. 77) 

The transition therefore occurs at Tpo. re • T
0 

+ (.AT) with 
pore 

(6.78) 

Hence the difference between the film geometry and the pore geometry 

Is found ln the first zeros of the cos.lne function versus the zeroth· 

order Bessel function, vlz. 7T /2 and 2.405 respectively. This 

result agrees well with experiments and are compare~ with the experimental 

observations in Flg. 11. 

Now we consider a partially filled pore of radius L2 , filled in 

to radius L1 • We take as our boundary conditions 

ot Sf(r) 
dr =o 

at: r= l..z. (wall) 

r-= &., ( -?ree. .s~,--fact!!) 

(6.79a) 

(6. 79b) 
• 
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Our lntul tion for the form of c:f in this case 1 s not so good, so we 
. -

derive the solution. Varying g [ ~ J wl th respect to SJ! we get the 

Euler equation 

(6.80) 

From this general equation, it can be veri fled that the general solution 

for ':E in the film geometry ls in terms of elliptic functions, which 

become sine functions as the transition ls approached. As we have seen, 

for ~ restricted geometry the dominant role ls played by the kinetic 

energy term, shifting the transition below that of bulk system. Hence 

near the transition, we work with the linearized equation 

(6.81) 
• 

In the film geometry, eq. (6.81) obviously has sine function 

solutions. In cylindrical geometry we may write (6.81) as 

(6.82) 

If we introduce a new length ~ (T) 

.,L(T) s 
-p,1. --'"A 

=-
(6.83) 

and a dimensionless parameter t • r/,..l.. , we can cast (6.81) into 

·-· . 

.... - ! 
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standard form 

(6.84) 

which has general solutions of the form 

~(t) = c, :TO (f)+ ell~{)") (6.85) 

where c1 , c2 are. constants and Y0 { f' ) is the zeroth-order 

Weber's Bessel function of the second kind. The boundary conditions 
I 

(6.79ab) become respectively 

(6.86a) 

(6.86b) 

which result in, after eliminating one of the constants, 

tJ( ii) t~) = \T, ( ~) • Yo (Ji) - Y,(i;) . .10 (1:~.) = 0 . (6.-87) 
• 

Note that if we took as our boundary conditions ~(Ji) : ~()",.): 0 
. J 

we would get, instead of (6.87), 

(6 .. 88) 

We define the annular radius L as L • L2 - L 1 and . 0 . 0 

. fD • L
0
/,.L • We also define the ratio k • L 2/L1 > 1 which 

determines the percentage of the pore filled 

% flll ed • 1 - 1/k 
2 

• (6.89) 
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Therefore given the percentage filled, we can calculate, on the basis 

of (6.87) or (6.88) depending on the boundary conditions, the lowest 

root of r D which will tflen give Us the shift in the transition 

temperature. The roots of a cross product of Bessel fUnctions is most 

129 130 . ~ 
easily solved for by a graphical method ' ln which U( s 1 )f&) • 0 

and S ( 1, 1 fz. ) • 0 are plotted as a function of ,C1 and /'1. , 

and the roots are given by the intersection with the h • k } 1 · 

line. Such a plot is reproduced in Fig. 12. The results thus attained 

for the partially-filled pore and the previous calculations for the film 

and pore are summarized in Table 7. 

To sum up this section, we note that the new, modified theory, 

based on a fundamentally different Identification of the order function 

~ and the assumed symmetry of the liquid phase, agrees with the 

experimental behavior of ~ .and ~ cp 11 satisfies the exponent 

scaling laws. gives a seeondnorder transition for the bulk system and 

a third-order. one for the film, and yields shifts. in the transition 

temperature in agreement with experimental observations. 
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VII. CONCLUSION 

As a result of this study, we can come to the following conclusions 

from the microscopic viewpQint: 

(a) the present state of microscopic models for liquid hellum~4 

is extremely primitive • (Chap. III - V) 

(b) the Green's function formulation is both convenient and powerful 

for the discussion of various approximations (Chap. II - V) 

(c) no microscopic explanation for the A ·transition can be found 

in a simple quasi•partlcle picture, like the BCS model for supercor-

ductivi ty (Chap. IV) 

(d) no microscopic explanation for the onset of Bose-Einstein 

condensation is restricted geometry can be found ln a zeroth or first-

order theory (Chap. III, IV) 

(e) the Born-Collision approximation in the Very Dense State limit 

offers a simple model for the A-transition.(Chap. V). 

From the macroscopic viewpoint, we make these concluding remarks: 

(a) the Ginzburg-Pitaevskii theory, unlike the Ginzburg-Lzndau theory 

for supercondt:ctors, has major difficulties in describing the transition 

in helium in particular for films (Chap VI) 

(b) the new, modified theory has major qualitative and quantitative 
. I . 

agreement vi th experimental observations .of the trans! tlon in hell um, 
! 

ln particular for restric~ed geometries (Chap. VI). 
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On the basis of these conclusions, we can formulate the following 

conjectures: 

(a) the microscopic explanation of the onset of Bose-Einstein 

condensation in restricted geometry can be found in second-order theory, 

in particular the Born-Collision approximation. (A preliminary 

discussion of this point is contained in Appendix F) 

(b) the microscopic' explanation of the specific heat anomaly in 

helium films can be found in the Born-Collision approximation. (A 

preliminary indication of the "smoothing over" of the logarithm 

foUild in the bulk limit is discussed ln..Chap. V, section C) 

(c) the microscopic explanation for the new, modified theory from 

the macroscopic viewpoint ~an be found in the Born-Collision 

·approximation. (A partial microscopic derivation is presente.d in 
. , I 

Chap. IV, sectlrin B). 

Finally we have the following open questions: 

(a) What would be1the suitable extension below the transition of the 

BornmCollision appro~imatlon which does not exhibit double-valued 

thermodynamic functions? 

(b) Is the double~value behavior connected to some general microscopic 
( 

properties of the approximation? 

(c) How can be logarithmic behavior b~ consistently incorporated into 

th~·macroscopic theory? 

(d) Why is the temperature of the onset of superflow in hell urn films 

and pores lower than the temperature of the specific heat maximum? 

),'• 

--- --------------·--------··-··-----·--·---~--- __ J.._ ---· .. ---·· ··-···- __ ... :.. .. ~ -··-·- --~---

. i 
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(e) What are the effects of attractive forces on the A. -transi tlon? 

It is hoped that this dissertation would be the beginning point 

towards the solution of these problems. 
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APPENDICES 

A, Asymptotic Series for an Infinite Sum of Bose-Einstein Functions 

131 
We utilize the Mellin transform technique to obtain our 

asymptotic forms. Co.nslder a function f(x) • Its Mellin transform 

is defined 
810 

~ (s) z. f -HX-) ~.s-le:l ~, 
0 . 

(A.la) 

and its inverse transform ls 

(A.lb) 

where s so. u + i V' Is complex with W. and V real, and the 

limits and ~2 define a vertical strip in the complex 

s-plane in which the integral for 3!- (s) is convergent. Now replace 

f(x) by f(n + a) , where n can assume integer values. Ye sum over 

n from 0 to ()0 , and interchange the order of summation and 
I 

integration to get 

U-t-lOO I 

:: ...1...: j ots ':l(sJa.) j. (3) ; 
Z,7f4. " _, 00 

(A.2) 

where ~ (s,a) is the generalized zeta function 

• 



•' I'' 

The added restriction that . U.. ,. 1 arises from the interchange of the 

summation and integration, which is valid only when the summation (in 

our case y (s~a)) converges uniformly. Now we specialize to a m 1 , 

so that ~ (s,a) • ~ (s) 9 the Riemann zeta t'unetion 11 and 

M U#il!ID 

~f.(n) g l.~l j cts Y(s) 3ls); 
17=-1 u-loo 

(A.,3) 

• 

The procedure ts: given a summand f(x)\) calculate its Mellin transform 

:f (s)!) and look for poles of ar(s) ·':f (s) e The sum is then given by 

the sum of the residues of the poles plus the contrlbuti'on of the arc 

which closes the contouro 

We apply this general theory to the. summand 

I 

where F j l s the Bose-Etns.te!n functions. The Mellin transform can be 

easily calculated to be 

The poles of .:J- (s) ':J (s) are the poles of r (~ .+ k ) y (s) II 

s.ince F j..,. lf-+Siz (b) 
132 

is analytic in the entire s"'plane except for 

a singular! ty at s • 2(1 • j - k ) when b ... 0 o (This pole corresponds 

to the BoseDElnstetn'condensation). To find the poles of 

r <i + ll > 'f <s> , ve note that
133 

l 

\ 
..... _ .... __ ....... ·--.. --.-~ .~ .. :..._:_. __ , .... ---~----... ~· .. ~-· ~[~---· .Lc, .. -··-· ......... -~········--·'···' .... · ....... -- - --· ·• ····- · ............ -·--· 
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,. 

(A.4) 

where 

(A.5) 

and the integral term ls analytic ln the entlre a-plane.· From the 

functional equation tor r ( 1) 

we can wrlte eq. (A.4) as 

~ (A.6) 

+ j ( y,L~l. 1" y.S/z.) ~bf.) a)!J 
I % . 

• 

and for f~ • 0 , there ls an additiondl pole at s • 0 with residue 

• 

The sum of the resldue(s) at the pole(s) gives only an asymptotic series 
. 

because the contrl button from the· contour at lnflni ty which closes around 



the .poles does not vanish ln general, although l t approaches zero as 

a ~0+. Hence the asymptotic series is 

(A. 7) 

• 

In terms of the ~~ functions defined by 

' 00 ' ' 

.. ~(t:o<) = r2-k+l ZnzkF. .. (fi1.n"'+«) 
JJ. . ) . n::.., J 

we rewrl te eq. (A .. 7) as 

(A.8) 

We note that the above asymptotic series may also be obtained by the 

Fourier cosine .transform technique which l s embodied in ,the Pol sson1 s 

formula. Using Poisson's formula, ve find for the special case 

00 -Ji ~(an .. +b) = fi.!J:P:J+0.(b) -il=j(b) + 
(A.9) 

- ~ -l'nh 
-+ /!: ~ e J+'lz. "t..r(!4) 

m=t m 0 

. ~ ,,,_;· .. ~~-':. ... ___ ~··~- ....... ·~--- ·----- ...•. -~----· 
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We can easily see from !'lq• (A.5) that 

• 

Therefore as a ~ 0+ • the last term of eq. (A.9) is bounded by 

j h>o. 

Hence eq. (A.9) ts a special case of eq. (A.7). The other cases can 

be likewise obtained. 

I 

B. Absence of Nontrivial Solution in Classical Limit 

We verify here the assertion that there is no nontrivial solution 

to (3. 52), i.e. 
j . I):) 

'5~z.(Dlb) =Jb ~F,(~"j;(n"~-,)+d.b) 
n=, 

(B.l) 

In the classical llmit of large C(b where eq. (8.1) becomes 

I= I ie-ff.Z.Cn'"-1) = i: w(-LE_z.) e~fb"4 (8.2) 
· 'b n::.t b + b . 

where the "ZC.."(x) function ls defined in (A.5). Recall that (x) 

satisfies the following equation 
133 

(B.,3) 

and hence has the following limit as 

(B.4) 

Using eq. (B.4), we verify that eq. (B.2) admits the trivial solution 
I 

f b • 0 • But we also note t~at 2x~ 'W(x)e- 7T x monotonic decreases 

from the value 1 at x • 0 to zero at infinity. Hence there is no 
\ 

nontrivial solution to eq. (B.2) in the C(b o~ classical limit. 
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Co Integrals Involving the Bogoli ubov Energy Spectrum 

For ease of reference• we Ust here the various integrals involving 

the Bogoliubov energy spectrum in the N/~ !irnlte We consider the 

following energy parameters 

and the followtns substitutions 

"t; a: /.!; 1"'1 D V Q 

'JI,a =. ;3 Ep :::: 't ( V;Ja+/ -I) 

'tl;f =(J£(p) = ~ [lt::.+2.t:1 
) 

so that for an arbitrary function f in the N/ ~ limit 
0 

I -
v~-fo 

p -- -

(C.,2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

(Co 7) 

• 

Ve list also the asymptotic series for the integrals in the limit of 

small t o We have 

$b.L~(I+f(ep)) 
p - - -

(C .8) 

(C.9) 

-----~-------~---~--------.:.------~-"'--_._..:. . .:. .. _ -··-··"·"-"'---~------'-·"·..._:.. ..... -............. ...:. __ .. :...._. ______ -----· -------·· 
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':/;-"'i: (u,l+v,l)~(e?) = ~ B3 {-t) 
p • T 

(C .10) 

it,. f. ( Ep - ~ C<tJ"+T.?~) J.; ( EJ>) " z;A'} 84-(-t) (C .11) 

:f;_ f -1-(Ep) = iJ B.s (-t:) (C.l2) 

"{; ~'. -t, -I_(Ep) = ~~ 81> (-t:) l 
(C .13) 

' 
where the functions Bn(t) are defined 

(C.l4) 

(C.lS) 

(C .16) 

(C.l7) 
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- j 

(C .19) 

• 

For small values of t ~ we have 

(C.2l) 

Fi. ~ . 
ss(-:J =- !(~)- •vn t _, 'f(f.)t -.··- <c.24) 

• 

--------------~-------~-----··--~~--- .:~----"'--~-"-·-·~ -~----- - -- -~---- ___ .,·.~----· ----~ ··- "·-· .. ----· ----- ......... -~---- ---- ~- --· ----- -------~-- ----- -------- -------·"-·---- ________ , ___ _:,..~_._ __ ___,_ ________ .:::_~~.;"'"-··· 
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D. Self-Consistent Statistical Factors and 

Shift in Transition Temperature 

We present a very elementary example in which self-consistent 

statistical factors are essential to evaluating the correct shift ln 

the transition temperature. The example is the constant energy shift 

modet' in which the effect of the interaction l s to shift all the energy 

levels so that tl:\e number densl ty 1s given by 

(D .. l) 

where 

(D.2) 

./ 

and W is a constant. This is in fact the case in the Hartree-Fock 

approximation for a very short-range potential. We note that eq. (D.l) 

can be expressed in terms of the non-interacting statistical factor 

f( fit ) ' where a-; = e; -r ' as 

n = f;-2:.,.-i(fi'/~) [1+(1+-f(?J) W;Z ]-! 
p . 

QlJ 

= :i;-~H~") [1+ ~(-fow)"(t+He'p))"] 
(D.3) 

• 

Eq. (D~ 3)· is an expllcl t expansion of the number density n in terms 

of the energy shift W • In the N/V limit, we can write eq. (0.3) 

as 
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I 

where o( = -/';-c. >,. 0 • Then for small energy shifts such that 

1J W << 1, we neglect all terms with n ~ 2 in eq. (D.4) to. get 

(D.5) 

If we take the Hartree-Fock approximation with a very short-range 

potential 

.. 
I (D.6) 

. 75 
and eq. (D.5) ls exactly eq. {B.6) in GKW. . Also eq. {D.5) with W a 

constant or given by eq. (0.,6) gives an -upward shift in the transition 

temperature for W :iJ' 0 , which ls entirely unexpected for a constant· 

energy shift model. The mistake lies in the truncating of the infinite 

series in (D.4) to get {D.5). What we have done ls to ,expand a function 

into an infinite series about a singular point and to truncate the 

series, obliterating the ori'ginal singular! ty in the process. The proper 

way to treat eq. (D.,l) in the N/V limit is to simply write 

It~~ a F.Jiz. ( «') {D. 7) 

'7 • -p + W; and eq. (D. 7) predicts no shift in 

the transition temperature, which is the correct-result. 

------ ----------- -----..... -~~-~·--'-- -~ --'• ~- -·- ---· ----
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The above considerations may be formalized by appealing to the 

. . 45 
time-independent formulation of Balian and DeDomlnics, in which 

self-consistent statistical factors are used along with unperturbed 

· energy dinominators. Then the above example with W given by eq. (D.6) 

ls the first-order approximation in V • 

E. Application of the Euler-Haclaurln Series 

The Euler-Maclaurln series for a sum can be written 

_, 

where 

(E.2) 

ls the th l-- Bernoulli number. Let us apply the Euler-

. Maclaurin series (E.l) to the sum 

(E.3) 

where 

(E.4) 
• 
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The first two terms of eqo (Eel) leads to 

(E.5) 

which leads to. eq. (5.143) since 

:f)( F) : ..L l'E£)Yz S 
Ao~ • (E.6) 

The next term in the Euler-Maclaurin series (E.l) has a t/L312 

dependence. To see this, we note that 

so that the remainder term 

,. ,., 
n- -~ (6p) 8· [.;.(l)(-' - fCl)(:£!.6.) J 
"' - ~ I ~+l)l 4+1 WJ L. (E.9) 

~1:4\.: 

ts, using eqs. (E.7,8) in (Ec9) 

(E.lO) 

• 

The ratio of the remainder over the term (E.5) is ( ft r/L)\ • Since 

D(r) is integrated over r vi th a peal< at r ~ 1; /p, the ratio is 

( 7rn /pL)%. Finally the smallest Jfl()mentum of interest is 

. 1 
,..,1;·(0.1) X .. ; hence the expansion (E.5) is good for L ,'>.30 go 

=--------__ --;,--- ·- ::::::::::.:.:::::_·:.:::.::.:_~------------:.:...--' -----~-----·- '~ . .'• ---- --- .. - . 
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F. Bose-Einstein Condensation in Restricted Geometries 

In Chap. IV, sec. G, we saw hov the fi.rst-order approximations 

vere unable to change essentially the phase-spacenature of the Bose-

Einstein condensation as lt occurs ln the ideal gas. Now we consider 

the Born-Collision ap~roximation as developed in Chap. V and present 

a tentative argument that Bose-Einstein condensation does occur in 

restricted geometries. We cannot demonstrate this assertion directly; 

therefore ve proceed in a more circuitous manner. If we have a film 

geometry, then for low enough temperatures we are in the two-dimensional 

limit. If .macroscopic occupation occurs in the two-dimensional limit, 

then we may deduce that Bose-Einstein condensation occurred at some 

higher temperature as there is obviously no macroscopic occupation in 

the high temperature or classical limit. If we have a pore geometry, 

then the low temperature limit ls the one-dimensional limit. 

We note that the structure of the self-energy for the Born-Collision 

. .approximation in the Very Dense State liml t on the transition ls 

(F .1) 

if we write , then by counting powers we have ot - 6-3 Cl( 
0 0 

since each summation over p brings in a 3 p factor. Thus we have the 

p3' 2-spectrum. Now if we were in the two-dimensional limit, then each 

summation over p 
2 

brings in a p factor, and we have C(o • 4-3 o( o. • 

Therefore in the two-dimensional limit, we have a p-spectrum. Likewise, 



ln the one-dimensional limit, we find a p~-spectrum. 

Above the transition, we have 

*· .:, ~ ~·. ( &"Cp+p'- P -p'J - d'(p'- P -p'))" 
·- p'-p-' .. p 

(F .2) 

and fQr very small p 0 s because of the convergence due to , , we can 

expand the / .. function 

fftp +p'-p-?'J = O"(p'- F -p') -+ 

..,. , .. ~{~ ... t(p+p'-p -p')) -t •.• 
'f . . . p=-o 

(F .,3) 

to obtain a p2-spectrum, which is independent of the dimensionality 

of the system., 

Now we calculate the number density 

(F.4) 

. with G(p,O) given by 

G(p,~O) = 
I 

(F.5) 
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and 

I 2 ) Dlt, . 
jjp = A,p H(p,-p ~ AoP H(p-p,) H(fo-p) + 

(F.6) 

To evaluate eq. (F.4), we utilize (5.132) to write, for the film 

geometry ( Dl • 1) '~ 
0 

-L 
tr 4G(PJO) = 

p 

(F.7) 

where we neglected the last.two terms of (5.132) as in the bulk Umlt 

. and p1 • A
0

/A1 , p
0 

• 2mA
0 

• Now we consider the two·dimensional 

limit of eq. (F.7), which is to retain terms with ..i. • 1 

(F .8) . 

i 
which yields, upon evaluating the integrals, 



X. 

n= 
_2_[, 
)!aiL 

-248-

(F .9) 

• 

Writing A
1 

• C '7 -l/3 
9 p1 • A

0 
"'t"J 113/c,. we find the -, ~ 0 lhni t .. 

of eq. (F. 9) as 

..t..-J n '':~ ). J 
'Zn?C , 

(F .10) 

which is finlt~ as ,--.o. Hence Bose-Einstein condensation occurs 
; 

for this film system of density n at temperatures lower than the 

transition temperature T
0 

giyen by ?7 • 0 o One can likewise 

demonstrate that in the pore system. Bose-Einstein condensation occurs. 

!t should be emphasized that this calculation shows that the 

onset of Bose-Einstein condensation in an interacting system is not 

a phase-space phenomena, btit is a result of the correlations at low 

momenta due to lnterac.tions, anq hence ls not determined only by the 

dimensionality of the system. 

··---· _---~-~··· -· -~-----:~~~---------~---·----- , _______ : _____ --~---~--------·-···· ·- ·---~---:---·--·-----------·-- ______ , ___ ,.:, _______________________ . 
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Filg. 4., The , cf iLO Function. 
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Fig. 11. Comparison of Experimental Data and Theoretical 

Calculations. 
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Fig. 12. Graphical Determination of the Smallest Root 

'for a Cross•Product of Bessel Functions 
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TABLE 1. the tp OO Function 

to•8 to-4 10'"'2 0.1 1.0 10.0 

0.1 o .. 1oo 0.101 0.165 . 0.388 0.,482 0.435 

0.2 0 .. 200 0.200 0.231 0.391 0.468 0.422 

0 .. 4 0.400 0.400 0.,410 0.474 0.463 0.412 

0.6 0.600 0.600 0.602 0.616 0.489 0.422 

o.a o.soo o.aoo · o. 798 . 0.782 0.542 0.,450 

leO 1.000 1.000 .0.996 0.,960 0.619 0.498 

1.2 1.200 1.200 1.194 1.145 o. 713 0.563 
- \\ 

1.4 1.,400 1.400 1.393 1.,332 0.820 0.642 

1.6 1.600 1.600 1.592 1.522 0.933 0.728 

1.8 1.800 1.800 1.791 1. 712 1.048 0.818 

2.,0 2.000 2.000 1.990 1.902 1.164 0.908 

2 .. 2 2.200 2.200 2.189 2.092 1•280 0.999 

2.4 2.,400 2.400 2.388 2.282 1.397 1.090 

2.6 2.600 2.,600 2.587 2.,472 1.513 1.180 

2.8 2.800 2.800 2 .. 786, 2.662 1.630 1.271 

3.0 J.ooo · J.ooo 2.985 2.852 1.746 1.362 

X 108 
X 104 X 102 X 101 X 1 X 10 .. 4 
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II I I 

cf:> Function 
. 10 

TABLE 2., The 

1o·8 1o·4 10-2 o.t 1.0 10.0 

-~~:· o.t 0.360 0.268 2.148 1.548 4.093 4.347 

0.2 0.499 0.314 2.190 1.512 3.970 4.216 

0.4 o.81l 0.442 2.570 1.572 3.901 4.118 

0.6 1.146 0.594 3.172 ,. 1. 773 4.049 4.,217 

0.8 1.495 0.758 3.901 2.074 4.403 4.503 

1.0 1.852 0.931 4.,711 2.444 4.949 4.979 
r 
' 

1.2 2.,215 1.109 5.573 2.860 5.654 . 5.632 
1 •• 

1.4 2.580 1.291 6.468 3.306 6.472 6.419 

1.6 2.948 le474 7.380 3.767 7.353 7.282 

1.8 3.316 1.658 8.300 4.235 8.259 8.176 

2 .. 0 3 .. 684 1.842 9.220 4.704 9.174 9.081 

2.2 4.053 2.026 10.14 5.175 10.09 9.988 

2 .. 4 4.421 2.210 11 .. 07 5.645 11.01 10.90 

2.6 4.790 2.,395 11.99 6.116 11.93 n.8o 

2.8 5.158 2.,579 12.91 6o586 12.84 12.71 

3.0 5.,526 2.763 13.83 7.057 13.76 13.62 

x ·1o1 X '101 
X 1 x·f x 1o·1 X 10•5 

... 
I ' 

} 
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TABLE 3., The 1:> 
20 

Function 

K ~ 10 .. 8 to-4 10 ... 2 

0 .. 1 1.277 1.2'77 1.255 

0.2 1.245 1.244 1.,221 

0.4 1.256 1.,255 1.226 

0.6 1 .. 352 1.351 1.314 

0 .. 8 L519 1.,518 1.472 

1.,0 1 .. 744 1.743 1.687 

1.2 2.015 2.014 1.947 

1.4 2.317 2.315 2.238 

1.6 2.636 2.,634 2.546 

1.8 2.962 2.960 2 .. 861 

.2.0 3o290 3.,288 3.178 

2.2 3.,619 3.617 3.,496 

2.4 3.948 3.945 3.813 

2.,6 4.277 4.,274 4.131 

2,8 4.606 4.603 4t/J449 

3.,0 4 .. 935 4.932 4.,.767 
' 

X 1 X 1 X 1 

I 

i 

\ 
- - \ ··-··-···- -- ·--- ______ j ________ ~=-:_·-~- .. 

. o.t 1.0 

1.094 0.,378 

1.062 0.,367 

1.054 0.360 

1 .,114 0.370 

1.232 0.399 

1;,401 0.445 

1.611 0.505 

1.850 0.577 

2.103 0.655 

2.,363 0.736 

2 .. 624 0.818 

2.,887 0,.900 

3.149 0.981 

3.412 1.063 

3.674 1.144 

3.936 1.226 

X 1 X 1 

10.,0 

4.347 

4.216 

4.118 

4.216 

4.503 

4.979 

5.,632 

6.419 

7.282 

8 .. 176 

9.,081 

9.988 

10.90 

11.80 

12.71 

13.62 

X 10•5 

/ 

··' ./ 

/~ I 

·' ' I 

___________ .... ______ ----'---
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TABLE 4. The """' . Functl on r 01 

10-8 10"'4 10 
-2 

0.1. 0.0010 o.oo12 . 0.016 

0 .. 2 o.ooso 0~0081 0.022 

0.4 0.064 0.064 0.075 

0.6 0.216 0.216 0.224 

0.8 o.5i2 0.512 0.516 

1.0 1.000 1.000 0.999 

1.2 1. 728 1.728 1.722 

1.4 2.744 2. 744 2.731 

1.6 4.096 4 .. 096 4.076 

1.8 5.832 5.832 5.803 

2.0 8~000 8.ooo 7.960 

2.2 10.65 10.65 10o59 

2.4 13.82 13 .. 82 13.76 

2.6 17.58 17.58 17.49 

2.8 21.95 21.95 21.84 

3.0 27.00 27.00 26.87 

X 108 
X 104 

X 102 

··! 

0.1 1.0 10.0 

0.106 0.275 0.291 

0 .. 114 0.283 Oe298 

0.158 0.311 0.328 

0.285 0.385 0.383 

0.546 0.512 0.478 

0.990 0.733 0.634 

1.665 1.093 0 .. 891 

2.619 1.607 1.295 

3.898 2.398 1.878. 

5.546 3 .. 398 2.653 

7.607 4.657 3.633 

10.12 6.197 4.835 

13.14 8.045 6.276 

16. 7l 10 .. 23 7.980 

20.87 12.78 9.967 

25.67 15.72 12.26 

X 101 x 1 X 10"'4 



TABLE 5. The <P ll Function 

. 10-s 10 .. 4 10-2 0.,1 1 .. 0 10.0 

0.1 o.os8 0.,087 0.085 o. 739 0.254 0.291 

0•2 0.,102 0.094 0.089 0.765 0 .. 261 0.298 

0.,4 0.202 0.144 O.,ll3 0.888 0.289 0.328 

0.6 0.'473 0.274 0.174 1.175 0.344 0.,383 
'-

o.s 1.003 0.532 0.295 1.741 0.441 0.478 

1.0 1.884 0.963 0.,502 2.,726 0.607 0.,634 

1.2 3.,207 1.615 0.820 4.280 0.,879 0.891 

1.4 5.066 2 .. 538 1.276 6.553 1.299 1.295 ) 
,_/ 

1 .. 6 7.,549 3 .. 777 1.,892 9.670 1.893 1.877 

1.8 10.74 5.373 2.690 13.73 2.679 2.653 

2.0 14.74 7.369 3.688 18.82 3.,670 3.633 

2.2 19.61 9 .. 807 4.909 25.05 4.884 4.835 

2.4 25.4~ 12.73 6.,373 32.52 "6.341 6.276 

.2.6 32.38 16.19 8.103 41.34 8.062 7.,980 

2e8 40.44 20.,22 10.12 51.63 10.07 9.966 

3.0 49.74 24.87 12.45 63.,51 12.38 12.,26 

X 101 
X 101 

X 101 X 1 X 1 X 10-4 

I 

J ' 

\ \ 
--·--·------------· ---~-------- \ c_ _ _ _ __ _ _ L 
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TABLE 7., Superflqw Transition for·Varlous Geometries and 

Boundary Conditions 

G~ornetry % fUled Wall Boundaries One Free Surface Boundary 
~=o 9;.~=0 

r--· .. - -
fUm 1 .... ,- ... 3.14 ~ .. !!.. ... 1.571 

(L ., thickness) 
..... 

L ,(, 2 

pore L .. 2 .. 405 No free surface - (L • radius) full J 

(Lo 
pore 

Lo Lo ... annular 99% z liB .2.,98 - Iiiii 2.20 
radius) ..,( . .. / 

et 96% 
Lo 

3.05 
Lo _ .. I • 2e08 

~ 

Ill 89% Lo -- 3.,09 Lo 
Ill 1.,94 

.A. :z 
• 75% 

Lo 3.12 Lc -- - ... 1.80 
,t .:L.. 

~;.. 3.,13 
-L 

ell 60 % ...2 ... 1.75 
..L .l . 

" 50 1. 
Lo 

3.14 
Lo 

1.7 -- _ .. 
.4,. _.(,. 

Ill 30% Lo - ... 3.14 
Lo _ .. 

1.6 

" J. 

..... ';( ... "/.?.. 

'/ 

. -- ··--·------"~-------··--·· ·-·---~--·--··---\··---·--··--------·--·------·-~---··--~~---·-······--"'··--· ·-··- . 
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