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ABSTRACT 

It is shown that if the spectrum of physical particle rest 

masses contains n-either accumu1ation points or the zero point, then 

the number of different. positive-a Landau surfaces 'that enter any 

bounded portion of the physical region of any multiple-particle 

scattering process is finite. This implies that if the physical-

region singularities of scattering functions are confined to the - 

closur.e of the set of points lying on positive-a Landau surfaces, 

then the scattering functions are analytic at almost all points 

of the physical regidn.. The proof'.is made by proving an equivalent 

property of systems of classical point particles, scattering via ' 

point interactions.  

'.1. 
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I. INTRODUCTION 

There are a number of reasons for believing that the 

physical-region singularities of scattering functions are 

confined to the closure W?.. 4  of the set of points lying on 

positive-a Landau surfaces. This restriction holds for the 

terms of the perturbation expansion in field theory. 1  It 

follows also directly from a macroscopic causality condition on 

the mass-shell S-matrix. 2  Andrecent works have shown how, in 

simple cases, the singularities on positive-a Landau surfaces 

are precisely the ones that emerge from the assumption that the 

only physical region singularities of scattering functions are 

those generated by the unitarity equations. 

The supposition that the physical-region singularities of 

scattering functions are confined to 	does riot immediately 

ensure that the scattering functions are anywhere analytic; the 

conceivable alternative is that the positive-a Landau surfaces 

are everywhere dense in the physical region. 

• 	 For the simplest case of the scattering of two initial 

• 	particles into two final particles, each positive-a Landau surface 

is a normal threshold manifold, which is a manifold lying at a 

value of the total center-of-mass energy E that equals the sum 

of the rest masses of a set of the physical particles. 

If the spectrum of the physical-particle rest masses does not in-

dude the value zero and has no accumulation points, then the 
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number of these manifolds entering any bounded portion of the 

physical region is finite. This ensures that the set of points 

not lying on the closure of the set of points lying on positive-a 

surfaces is everywhere dense; almost every physical-region point 

has a neighborhood that contains no point lying on any positive-a 

Landau surface. 

The object of the present work is to show that this 

result carries over to reactions of arbitrary numbers of 

particles. It will be shown that if the s:pectrum  of physical-

particle rest masses contains neither the value zero nor,  

accumulation points, then the number of different positive-a 

Landau surfaces entering any baunded portion of the physical region 

is finite. Since the complementof the closure of any single 

positive-a Landau surface is everywhere dense in the physical 

• 	 region,2 the same is true of any finite sum of such surfaces. 

Thus the assumption that the physical-region sinu1arities are 

confined to the closure of the set of points lying on positive-a 

Landau surfaces entails that each scattering function be ahalytic 

at almost every point of the physical region, provided the spectrum 

• 	- 	of physical-particle rest masses contains neither zero• nor 

accumulation points. 

The result just stated was used in a rcent work of the 

author on the crossing properties of the S-matrix! It has 

also been a tacit assumption in mny other works in analytic 

S-matrix theory. 	 • 
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Coleman and Norton5  have recently emphasized that the set 

of physical-region points lying on the positive-a Landau surface 

corresponding to a Landau diagram D is precisely the set of 

points such that the classical point-particle multiple-scattering 

process pictured by D is dynamically possible. By definition, 

each point on a positive-a Landau surface of a given process is 

a point (in the space of the external energy-momentum vectors 

of this process) such that the Landau equations' associated 

with a corresponding LandAu diagram D are satisfied. But the 

•La.ndau loop equations are precisely the requirement that the 

Landau diagram D can be converted into a space-time diagram D 

of the same structure by simply replacing each line L. of D 

by the. "space time" vector aq. , where q, and a. are the  

momentum-energy vector and parameter a associated with line L. 

The parameter a. is considered to be a proper time divided by 

the mass of particle i , and the positive-a condition corresponds 

to the requirement that the particles move forward in time. 5  

The other two Landau equations ensure that the energy-momentum 

conservation laws are satisfied at each vertex and that each 

particle has the correct mass value. The space-time locations 

of the classical particles are not restricted, but those of the 

external particles are in fact determined by the gradient to 

the Landau surface. 2  

By virtue of this Coleman-Norton correspondence, the 

number of Landau surfaces that enter a given portion of the 

physical region is the same as the number of classical point- 
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particle multiple-particle scattering processes that are dynamically 

possible in this portion of the physical region. However, it may 

happen that several different multiple-scattering processes give 

Landau surfaces that exactly coincide with one another. Such 

Landau surfaces are, in our terminology, are not differentt and need 

be counted only once. 

As an example, suppose the sum of the masses of a set 

• 	of physical particles S1  is.equal to the sum of the masses of a 

set of physical particles S 2  . If the particles of the set S 

are allrelatively at rest, then this set can convert into the 

set of particles S 2  , all relatively at. rest. An unlimited 

number of conversions back and forth between these two sets of 

relatively-at-rest particles can evidently take place without 

affecting.the kinematical situation. This permits an unlimited 

number of different Landau diagrams to be compatible with certain 

fixed points in momentum space. However, the Landau surfaces 

corresponding to these different diagrams all lie exactly on 

top of one another, and hence are not different. As it is the 

number of different Landau surfaces that must be shown finite, 

various Landau diagrams (or their corresponding physical processes) 

that differ only by conversions of this type can be considered 

equivalent, and collisions effecting such conversions (called 

trivial collisions) can be disregarded. This fact is used 

continually, without explicit mention, in the following proofs. 
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The possibility of selection rules can be ignored, as 

they would only decrease the number of possible processes. Each 

particle can therefore be identified by its mass alone; an 

interchange of the identities of particles of the same mass would 

not alter a Landau surface. 

II. PROOF FOR AONE-DIMENSIONAL WORLD 

A proof is given first for a world of one space and one 

time dimension. Let the space and time coordinates be called x and 

t and consider a plot of the particle trajectories on a two-

dimensional x-t diagram. The trajectory lying at the most 

positive value of x will be called the first trajectory and 

its slope will be called the velocity of the first particle. This 

trajectory will generally have a number of straight-line segments 

joined at points called the collisions of the first particle. The 

trajectory lying at the second highest value of x will be called 

the second trajectory, and its slope will be called the velocity 

of the second particle. There may of course be several particles 

that trace out a segment of the first trajectory. Their velocities 

are all equal to the velocity called the ' Tvelocity of the first 

particle', etc. 

At each collision of the first particle the velocity of 

the first particle increases. This fact is obvious in the 

collision center-of-mass frame, and is carried to the general 

framt by a Lorantz, transformation. 
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Let 5(E) be the set of all multiple-scattering processes 

(of point particles with point interactions) possible with a total 

center-of-mass energy less than E ., and let N(E) be the least 

upper bound on the number of collisions of the first particle 

for processes in S(E). Our main problem will be to show that 

N(E) is finite for finite E; the remainder of the proof is then 

easy. 

•Let m > 0 be the mass of smallest-mass particle. For 

2m < E < 3m only two-particle processes are contained in S(E). 

In this case we have N(E) 1; a system consisting of just two 

particles can evidently have at most one collision of the first 

particle. Let E1  be the least upper bound on the values of E 

such that N(E) is finite. Then the requirement that N(E) be 

finite for finite E is equivalent to the requirement that 

be infinite. 

Suppose E1  is finite. Then for any positive integer n 

there must be a reaction 	at center-of-mass energy 

E <E1  + (m/n) with at least N n2  collisions of the first 

particle. In this reaction the total change in v 1  , the 

velocity of the first particle, is not more than 

LW = 2 [(E 1 + m) 2  - 4m2j /(E1  ± m), which is the change it would 

have if both an initial and final energy of E 1  + m were divided 

between two minimal mass particles. Pick out the n collisions 

of the first particle of RN  that give the greatest change in 



UCRL-17219 

v1  , ormore enerany, such that the smallest change 5v 1  in 	 I" 

these n collisions is not smaller than the largest change 

in the remaining collisions. These n Collisions dfvide 

the first trajectory of RN into n + 1 segments at least 

one of which has at least n - 1 collisions. The change 

at each collision of the first particle occurring in the 

interior of any of these n ± 1 segments must be less than 

£V/n, since otherwise .the total variation of V1  would be more 

than AV . Thus we have shown that for any positive integer 

n there is in S[E1  +(m/n)] a reaction R 	 with n - 1 

collisions of the first particle such that the 5v1  at each of 

these collisions is less than V/n 

Any given reaction may have a portion in which the 

particles can be divided into groups such that the particles in 

each group collide only with each other. For any reaction in 

S(E + m) the number of collisions of the first particle in 

any such portion must be bounded, since otherwise the least upper 

bound E1  could be lowered. Thus for sufficiently large n it 

is not possible that the particles of the reaction R 	just 1   

constructed are divided into groups of particles that interact only 

among themselves; all the particles of R. 1  are connected to 

one another by collisions, for sufficiently large n 

By virtue of the above argui-nents, if E1  is finite, there 

must be, for every positive integer n , a reaction R 	at 1 
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a center of mass energy E < E 1  + (rn/n) having n - 1 collisions 

of the first particleand such that at each of these n - 1 

collisions the change 6v1  of v1  is less than 	T/n 	In this 

reac.tion R, let 6. be the maximum magnitude of the 
n-i 	i 

difference between the velocity of the first particle and the 

velocity of the second particle at the ith collision of the first 

particle. 	And let 6 be the greatest of the 6 . Because 

is less than V/ñ it follows that 6 must be less than b /V/n , 

where b is (E1  + m)/m . This limit comes from the optimal case 

in which the second particle has the least possible mass, in , and 

the first particle has mass El , which is an upper bound. 

• 	 Between collisions with the first particle the velocity 

• 	of the secondparticle must increase monotonically. It follows 

from this that the difference in velocities of the first and 

second particles must always be less than 6 , and hence also less 

than bV/n. 

In order that the velocity of the second particle always 

differ by less than bV/n from the velocity of the first 

particle, the maximum change of velocity of the second particle in 

a collision with a third particle must be less than 2b V/n. 

This means, in turn, that the velocity of the third particle 

can differ from that of the second by at most 2b2  T/n. [In the 

special case where the third and seáond particles can simultaneously 

collide with the first particle, the condition on the velocity 

of the third particle is more stringent]. 
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Reapplication of the same arguments shows that the difference 

between the velocities of the third and fourth particles is always 

less than 4b 3 
 V/n, and so on. Since the total number of particles 

in the reaction must be less than b = (E 1  + m)/m, it follows that 

the velocities of all the particles of R 1  must, in the center 

of mass frame, be less than C V/n, where C = 1 (2b) b  is a 

constant determined by E1/m. From this limit on the center..of-rnass 

• 	velocities one obtains as an upper bound on the center-of-mass 

• 	kinetic energy. the value 6 	(E1  + m) (C S/n)?. 

According to the above result, the kinetic energy of the 

particles of R 1  approaches zero as n approaches infinity. 

This requires that E be equal to the sum of rest masses of 

some set of physical particles, and that for n larger than some 

finite value L, the sum of the rest masses of the particles of 

be equal t E1 ; otherwise the kinetic energy could not 

approach zero as E approaches E 1 . The limit L is the greater 

of the two values L1  and L2  defined by [E1  - E1  - (m/L1 )J 0, 

where E1  is the smallest sum of rest masses that is greater than 

E 	 2 	' 	 2 1, and by E(L2  ) - 	= 	+ m) (Cv/L2 ) , where E1  • is 

the greatest sum of particle rest masses that is less than E1  

and E(N) is the largest value of B' such that N(E') is less 

than or equal to N. 

Take n greater than L. Then the kinetic energy is 

€ = E - E1 . But then the total variation of the velocity of the 

first particle in Rn_i is bounded by the value Ly defined 

6 	 2 by 	5m (Av/2) = 
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We now repeat the arguments given before, but with R 	= R 
ni 	r 

in place of RN  and with Ly in place of LXV. In place of the 

earlier bound 	+ m) (C AV/n) 2  on the kinetic energy; we 

now get+ m) (Cv/r). . That is, we have, for n larger 

than L, 

2 	(E +m)C2 € 
€ < 	+ m) (CLV ) 	

,1 
1 	r 	 m 	(n-i) 

2b+i 
This gives n - 1 < (2b) 	, which requires n, and hence N(E), 

to be finite for finite E. 

Since N(E) is finite, the finite number of collisions 

of the first particle divide any reaction into.afinite number 

of subreactions. In each of these subreactions the first trjectory 

is separated from the other trajectories. Thus the previous 

argument can be applied to the subreaction, butwith the second 

trajectory in place of the first, etc. One concludes, then, that 

the number of collisions of the second particle is bounded 

by [N(E) + 11 2. 

Proceeding in this way one concludes that the total 

number of collisions is bounded, if the center-of-mass energy E 

is bounded. Since also the number of different types of particles 

that can enter into reactions in a bounded center-of-mass energy 

region is bounded, the total number of different types of reactions 

that can occur in such a region is bounded, in the one-dimensional 

case.. 
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III. EXTENSION OF ONE-DIMENSION PROOF 

TO THE ThREE-DIMESIONAL CASE 

The foregoing proof for the one-dimensional case can be 

easily generalized to the three-dimensional case. To do this we 

consider simultaneously the first x trajectory, the first y 

trajectory, and the first z trajectory. These are the trajectories 

lying at the largest values of x, y, and z, respectively. 

A "triple" is a sequence of collisions (in their natural 

order) that includes at least one collision of the first x 

particle, at least, one collision of the first y particle, and at 

least one colljsion of the first z particle. A "sequence of 

triples" is a sequence of collisions (in their natural order) that 

are separated into an ordered set of triples such that the final 

collision of any triple is earlier than the earliest collision of 

the next triple. 

Let N(E) be the least upper bound on the number of triples 

in sequences of triples for reactions in S(E). Let E 1  be the 

least upper bound on the values of E such that N(E) is finite. 

Suppose (contrary to fact) that E1  is finite. Then for any 

positive integer n there must be a reaction RN in 

S[E1  +.(m/n)] with a sequence of at least 3N = 3n2  triples. 

Pick out those n triples that contain the collisions of the 

first x particle with the n largest values of 6v. . Here 8v is 

the change in the x component of velocity of the first x particle. 

Pick out also those n trip1e that contain the n collisions of the 
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• 	 the first y particle with the largest nv.. Do the same also ly 

for z. These 3n triples separate the reaction R3N into at 

most 3n + 1 (.sub)reactions, at least one of which, called 

Rni 	must contain at least n-i triples. 	 - 

In the reaction Rn_i the maximum possible change of 

v. 	at any collision of the first x particle is less than 

S/n, for exactly the same reasons as before. This bound holds 

also for the changes 5v. 	and 5v.. Thus the same arguments 

as in the one-dimensional case now give (3/2) (E 1  ± in) (CS/n) 2  

as an upper bound on the center-of-mass kinetic energy of R 1 , 

where C is again (1/2) (2b)'. 

Continuing as before, one concludes -that E1  must b equal 

to the sum of rest masses of some set of physical particles, and 

that for sufficiently large n, the sum of the rest masses of the 

particles of R 1 , must be precisely E1 . Thus the center-of- 

mass kinetic energy for R 1  is again € = E - E1 , for sufficiently 

large n. 	 . 

If the kinetic energy is € , then the total variation 

2 of V. 	in R 1  is no more than v defined (m/2) (v/2) 	E . 

From this one concludes, by the same argument as before, that-

N(E) cannot become infinite at finite E. 

From the fact that N(E), the maximum nuiber of triples in 

S(E), is finite, it follows that the maximum number of collisions 

of reactions in S(E) is finite. To show this we proceed as 

follows: For any reaction in S(E) let t1  be the greatest time 
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such that the subreaction consisting of the portion of the 

reaction occurring at t<t1  contains no triple. Then let t 2 . 

be the largest time such that the portion of the reaction occurring 

in the interval t1  < t < t2  contains no triple. Let 

t3 , t, 	t be defined in the analogous way. This sequence of 

times must terminate at a time t with n < N(E), where N(E) 

is the maximum number of triples for reactions in S(E). 

The times t. divide the original reaction into a s,et of 

no more than [N(E) + 1] suljreactions each of which contains no 

triple. But a subreaction that contains no triple must have a 

first x, y, or z trajectory tt is disjoint from the other 

x, y, or z trajectories, respectively. This implies that the 

particles of each of the various subreactions must separate into 

groups such that the particles of each group interact only with 

each other. And at least one of these groups must be confined 

to a single x, y, or z trajectory. The number of these in- 

dependent groups into which a subreaction divides is evidently no 

greater than E/m , which is an upper bound on the number of 

particles in reactions in S(E). 

The above analysis takes the original reaction into no more 

than (E/m) [N(E) + 1] independent (i.e., self-interacting) new 

reactions. The same analysis is next applied to each, of these 

independent new reactions. For reactions that are confined to a 

single x, y, or z trajectory, one use however Udoubies? instead 

of "triples". Doubles are the two-dimensional analog of triples; 
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one eliminates the x, y, or z coordinate if the reaction is 

confined to an x, y, or z trajectory, respectively. The 

number of doubles (and analogously, of singles) in reactionc in 

S(E) are shown to be bounded by essentially the same argument 

as was-just given for triples. In fact, the bound N(E) 

obtained previously for the number of triples is also a bound 

on the number of doubles (and also on the number of singles). 

The original reaction is separated at the first stage 

of the analysis into no more than (E/m) fN(E) + 1 independent 

new reactions. Each of these is separated at the second stage 

into no more than (E/m) EN(E) + 11 new independent reactions. 

One continues in this way until the stage at, which no further 

decomposition is obtained. This must occur after no more than 

E/m iterations, since the energy of a part that decomposes 

at a given stage must have been reduced at every earlier stage 

by at least m , due to the separation into independent parts. 

Thus the total number of independent reactions that are picked 

out altogether is no more than 	(E) 	L(E/m) [N(E) + 1]j (E/m) + 1 

Also, the total number of times t. singled out in the entire 

course of the analysis is bounded by 	(E) . 

Each (nontrivial) collision of the original reaction 

occurs at one of the tirnes t. 'singled-out in the aboveanalysis. 

For, on the one hand, the only collisions that are eliminated at any 

stage of the analysis arethose occurring at one of the singled-out 

times. On the other hand, the analysis does not terminate as 

long as any nontrivial collision remains. In the first place 
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any independent part that is not confined to a single x, y, or z 

trajectory must contain a triple, since otherwise a trajectory 

can be separated out. Thus the analysis cannot terminate so long 

as there are still independent parts not confined to an x, y, or z 

trajectory. Similarly, all parts confined to a single •x, y, or z 

trajectory must be reduced, before the analysis terminates, to 

parts lying on at least two trajectories. These parts lying on 

two trajectories are confined to one-dimensional subspaces. 

For such parts the analysis proceeds until the first trajectory 

becomes the same as the last trajectory, since otherwise the first 

trajectory of an independent part must have a collision. One is 

left, finally, with only trivial collisions. 

The conclusion from the above arguments is that the 

collisions of any reaction in S(E) are confined to a set of 

times t., the number of which is no more than ?.(E). Furthermore, 

the number of different types of particles, that can participate 

in reactions in S(E) is also finite, due to the spectral conditions 

on the particle rest masses. (Particles of the same mass can be 

identified, as mentioned in the introduction). But a.finite number 

of different particles colliding only at a bounded number of 

different times can' give only a finite number of different types 

of reactions. Th particular, if q(E) is the number of different 

kinds of particles with rest energy less than E, then the 

number of different possible collisions at a single given time 

2  m t 	is no more than [2q(E)]. Thus the total number of 

I 
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different types of multiple-scattering reactions involving 

collisions at no more than 	(E) different instants of time 

2EX/m 
is no more than (2q). 	• This upper bound on the number 

of different types of collisions possible in the portion of the 

physical region lying at center-of-mass energy less than E 

could be lowered with but little extra effort, should the need 

arise. 

L 
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