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ABSTRACT
it‘is shown that if the spectrum of physical particle rest
massés contains neither.accumulation ?ointé or the zero point, then
tﬁé numbér of differentApositive-a Landau surfaceg'that enter ény

bounded portion of the physical region of any multiple-particle

scattering proééss is finite. This implies that if the physical-

regipn singplarities of scéttering functions.are confined'td the -
closure of ﬁhe set of points lying on positi?é-a Landau surfacés,
then the scattering functions are analytic af almosf'all points

of  the physical region. The proof is made by proving anhequivaleﬂt

property of systems of classical point parficles scattering via

point interactions.
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I. INTRODUCTION

There are a number of reasons for believing that the

physical—région singularities of scattering functions are

'confined to the closure'h&4' of the set of points lying on

positive-Q Landau surfaces. This restriction holds for the
terms of the perturbation expansion in field theory.l It
follqws also directly from a nacroscopic causality condition on
the mass~shell S-matrix.2 And recent works ha&e shown how, in
simple cases, the singuiarities on positive-a Landau surfaces
are preéisely the ones’thaf emerge from the assumption that the

only thsical‘region singularities of scattering functions are

. those generated by the unitarity equations.3

The supposition that the physical-region singularities of
scattering functions afe confined to 3ﬁl+ does not immediately

ensure that the scattering functions are anywhere analytic; the

.conceivable alternative is that the positive-c Laﬁdau surfaces

are/everywhere dense in.the physical region.

"For the simplest case of the scattering of two initial
particles into two final particles, each positive-or Landau surface
is a ﬁofmal threshoid manifold, which is a maﬁifold lying at a
value of the total center-of-mass energy E that equals the sum
of the rest masses of a set of the physical particles{

If the‘spectruﬁ of the physical-particle rest masses does not in-

clude the value'zero and has no accumulation points, then the

’
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number of these mgnifolds entering any bounded portion of_the
physical reéion is finite.  This ensures that the set of points
not lying én the closure of the set of points lying on pdsitive-a
surfaces is everyWhere~dense; almost every physical-region point
has é neighborhood that contains no point lying on any positive-C
Landau surface.
The object of the present work is to show that this

result carries over to reactions of arbitrary numbers of
particies.‘,It will be shown that if tﬁe spectrum of physical-
partiqle feét masses conﬁains neither the value zero nor.
accumulatiéﬁ points, then ﬁﬁeAﬂumber of different positive-
Landéu surfaces entefing'any boﬁndéd portion of the physiéal'region
is finite. Since the complement of the closure of any single

positive-q Landau surface is everywhere dense in the physical

: . 2 : . ' e
. region, the same is true of any finite sum of such surfaces.

Thus the assumption that the physical-region singularities are
donfinéd to the cldéure of the set of péints lying on positive—a
Landag surfaces entéils_that each scatteriﬁg function be ahalytic
at almost every point of the physical region, provided ﬁhe spectrum
of physical-particle rest.masses contains neither zefo.nor
accumulatioh points. |

| Thé result just stated was used in a recent work of -the
author on the crossing properties of the E‘:—rma.trix.LL It has
also beén a tacit assumption in'many other works in anaiytié

S-matrix theory.
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2 have recently emphasized that the set

Coleman and Norton
of physical-region points lying on the positive-x Landau surface
corresponding to a Landau diagram D is precisely the set of
points such that the classical point—partiéle multiple-scattering
pfocess pictured by D is dynamically possible. By definition,'
each point on a positive-o Landau surface of a given process is
a point (in the space of the external energy-moméntum vectors
of this process) such that the Landau equationsl associaﬁed
with a-cqrresponding Landau diagram D afé satisfied. But the
‘Landauxloop equations are precisely the.requirement that the
Landau diagram D can be converted into @ space~time diagram D
- of the same structure by simply replacing each iine 'Li of D

by the. "space time" vector o4 where a; and a; are the
momentum-energy vgctor and parameter & associated with line ”Li
The parameter ai is considered to be a proper fime divided by
the mass of particle 1 , and the positive-u condition corresponds
to the reéuirement that the particles move forward in time.5

The other two Landau equations ensure that the energy-momentum
conservation laws are satisfied at each vertex and that each
partiéle has the correct mass value. The space-time locations
of the classical particles are not restricted, but thoée_of the
external particles are in fact determined by the gradient to

the Landau sur:f'ace.2

By virtue of this ColemanFNorton correspondence,-the

number of Landau surfaces that enter a given portion of the

physical region is the same as the number of classical point-

A%
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payticle multiple-particle scattering processes that are dynamically
possible in this portion of the_physical‘region. However, itvmay
happeﬁ that several differént multiple—scattering proceéses give
Landau surfaces that exactly coincide with one anothef. Such
Landau surfaces are, in our.terminoloéy, are not "different" and need
bé counted only once. |

i.As aﬁ.example, sufpdse the sum of the maéses'of a set
of physical pérticies Sl is.gqual to the sum of the masses ofba.‘
If the particles of the set Sl

2

are all relatively at rest, then this set can convert into the

- set of particles 82 s all relatively at.fest. An unlimited

number of conversions back and forth between these two sets of
relatively-at—rest particles can evidently take place without
affecting the kinematicél situation. This permits an unlimited

number of different'Landau diagrams to be compatible with certain

. fixed points in momentum space. However, the Landau surfaces

corresponding to these diffefent diagrams all lie exactly on

top of oﬁe another, and hencé are not different.  As it is the
number of different Landau surfaces that must be sﬁown finite,
various Landau diagrams (or their corresﬁbnding physicai processes)

that differ only by conversions of this type can be considered

equivalent, and collisions effecting such conversions (called

trivial collisions) can be disregarded. This fact is used

continually, without explicit mention, in the following proofs.
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The possibility of selection rules can be ignored, as
théy would only decrease the number of possible processes. FEach
particle can therefore be identified by its mass alone; an-
iﬁterchange of the identities of particlés of the same mass would

not alter a Landau surface.

II. PROOF FOR A ONE-DIMENSIONAL WORLD

A proof is given first for a world of one space and»one
time dimension. Let the space and time coordinates be called x and
t and consider a plot of the particle trajectorieslon a two-
dimensional x-t diagram. The trajectory iying at the mosf
positive value of x will be called the first trajectory and
its slope wiil be calléd the velocity of the first pérticle. This
trajectory will generally have a number of straight-line segmenﬁs
joined'ét pointsAcalléd the collisions of the first particle. The
trajectory ;yiﬁg’at'the second highest value of x will be called
‘the second trajectory, and its slope will be'calied the velocity
of the éecond,particle. There may of course be éeveral particles
. that tracé out a segment of thé first trajectory. Their veloéitiesv
are all équal to the velocity called the.”velocity of the first
particle”, etc.

At each collision of'the first particle the velocity of
the first particle increases. This fact is obvious in the
coilision center-of-mass frame, and is carried to the general

{rame by a Lorentz transformation.

N
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Let S(E) be the set of all multiple-scattering processes

(of point particles with point interactions) possible with a total

center-of-mass enérgy less than E , and let N(E). be the least

upper bound on the number of collisions of the first particle

2

- for processes in S(E). Our main problem will be to show that

N(E) is finite for finite E; the remainder of the proof is then
easy.

Let m > 0 Dbe the mass of smallest-mass particle. For
2m <E < 3m only two-particle processes are contained in S(E).
In this case we have N(E) = 1; a system consisting of just two
particles can evidently have at most one collision of the first
particle.- Let El be the least upper bound on the values of E
such that N(E) is finite. Then the requirement that. N(E) be
1
be infinite.

. Suppose 'El is finite. Tﬁen fbr any positive integer n
there must be a reaction RN ‘at center-of-mass energy
E < E; + (m/n) with at least N “ 1% collisions of the first
parficle. In this reaction the total éhange in v, , the

velocity of'thevfirst particle, is not more than
N

, EN »
AV =2 EEl + m)2 - hmgj /(El + m), which is the change it would

have if both an initial and final energy of El + m  were divided
between two minimal mass particles. Pick out the n collisions

of the first particlé of RN’ that give the greatest change in
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Vl » Or more geﬁerally)such that the smllest change 6vl in A
these n collisions is not smaller than the largest change v
6vl in the remainipg coliisions. These p collisions divideb

the first trajectory of .RN into n + 1 segments at least
one of which has at least n - 1 collisions. The change Bvl
at each collision of the first particle occurring in the
interior of any of these n + 1 seéments must be less than
&/n, since otherwise the total variation of vy would be more
- than AV . Thus we have shown that for any positive integer
n there is in S[E +@m/n)] a reaction Rnfl with 'n - 1
collisions of the first particle such that the SVi at each of
these collisions is less than & /n

Any given reaction may have a portion in which the
particles can be divided'into groups'such that the particles in
each group collide only with each other. TFor any reaction in
S(El + m) the number of collisions of the first particle in
any such portion must be bounded, since otherwise the least upper
beund E could be lowered. Thus for eufficiently large n it

1

is not possible that the particles of the reaction R Jjust

-1
constructed ' are divided into groups of particles that 1nteract only

among themselves, all the partlcles of R el are connected to _ k/

one another by collisions, for sufficiently large n .

By virtue of the above arguments, if E is finite, there

l .

must be, for every positive integer n » & reaction Rn-l at
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a center of mass energy E < E, + (m/n) having n - 1 collisions
of the first particle)and such that at each of these n -1

collisions the change 6v1 of vl is less than gy/n . In this

reaction R let 61 be the maximum magnitude of the

n-1 "~
difference between the velbcity of the first partiéle and the

velocity bf the,se;ond particle'at the ith éollision of thé first
particle. And Ie£ d Dbe the greateét of the Bi . Becagse Bvi
is less than &/n it follows that & must be less than b &//n ,

where b is (E, + m)/m . This limit comes from the optimal case

1
in which the second particle has the least possible mass, m , and
tbe first particle has mass - El , which is an upper bound.

Between collisions with the first particle the velocity

of the sécond.particle must increase monotonically. It follows

from this that the difference in velocities of the first and

\secondAparticles must always be less than & , and hence also less

)

than DbaV/n.

| In order that the velocity of the éecondfparticle aiways
differ by less than b@N/n from the velocity éf the first
particle, the maximﬁm change of velocity df the §econd particle in
a collisipn with a third particle must be less than Eﬁ ﬁN/ﬁ. ,
This means, in turn, that the vélocity of the third particle

can différ from. that of the second by at most op° & /n. [Ih the

special case where the third and second particles can simultaneously

collide with the first particle, the condition on the velocity

of thé‘third particle is more stringent].
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Reapplication of the same arguments shows that the difference
between the velocities of the third and foprth particles is always
less than bb° &/n, and so on. Since thé total number of particles
.v+.m)/m, it follows that

1
the velocities of all the particles of Rn

in the reaction must be less than b = (E

must, in the center

)b

-1
of mass frame, be less than C &V/n, where C = 1(2b is a
constant‘determined by El/m. From this limit on the center?of—mass
velocities oné obtains as an upper bound on the center-of-mass
kinetic energyvthe‘value6 %(El * m) (C AN/n)z. |

According to the above résult, the kinetic energy of the
particles of Rn—l approaches zerq as n approaches infinity.

‘This requires that E., be equal to the sum of rest masses of

1
some set of physical particles, and that for n larger than some
finite value L, the sum of the rest masses of the particles of
Rn-l be equal to Ei; otherwise the kinetic energy could not
‘approach zero as E . approaches El' The limit L is the greater
of the two values L, and L, defined by [El - E - (m/Ll)] = 0,

where E is the smallest sum of rest masses that is greater than

1

' 2 ~ 1 2 ‘ 2V
E,, and by E(L2 ) - E, = E(El + m) (CAN/LE) , where E  is
the greatest sum of particle rest masses that is less than E

-l"
and E(N) 1is the largest value of E' such that N(E') 4is less

than or equal to N.
Take n greater than L. Then the kinetic energy is
€ = E —'El. But then the total variation of the velocity of the

first particle in Rn- is bounded by the value aAv defined

1
’ 2
oy® dm (av/2)? - e

i
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We now repeat the arguments given before, but with Rn-l =R 5

in place of RN and with Av in place of AV. In placé of the
~ T
. ~" :
earlier bound %(El + m) (C &V/n)° on the kinetic energy; we
now get %(El + m) (CAN/r)g. That is, we have, for n larger
than L ,
' | 2
2 u(El +m) C7€
= m (n - 1)

e < HEm +m) (8D

2b+1.

This gives n - 1 < (2b) , which requires n, and hence N(E),
to be finite for finite E.

Since N(E) is finite, the finite number of collisions
of the first particle divide any reaction into a finite number
of subfeactions. IA each of these subreactions the first trajectory
is.separated frém the other trajectories. Thus the ﬁre&ious
argument can be applied to the subreaction, but with the second
trajectory in place of the firsf, etc. One concludes, then, that
the number of coilisions of the second particle is bounded
by [N(E) + 17°. |

Prpceeding in this way one concludes that the total
number of collisions is bounded, if the center-of-mass eﬁergy E‘
is bounded. Since also the number of different types of particles
that can enter into reactioné in a bounded center-of-mass energy
region is bouﬂded, the total number of different types of reactions

that can. occur in such a region is bounded, in the one-dimensional

case..
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ITI. EXTENSION OF ONE-DIMENSION PROOF
TO THE THREE-DIMENSIONAL CASE

The foregoing proof for the one-dimensional case.éan be
easily generalized to the three-dimeﬁsional cése. To dp this we
consider simultaneously the first x trajectory, the first vy
trajectory, and the first =z 'trajectory. These are the trajectoriés
lyiﬁg at the largest vélues of x, y, and z, respectively.

A "triple" is a sequence of coliisions (in their n;tural
ordef) that includes éé‘iéaé£ one collision of the first. X
particle, at least, one collision of the first y particle, and at
least one collision of the first é particle. A "sequence ‘of
triples" is a sequence of.collisions (inrtheir natural order) that
are sepa?atéd into an ordered set of triples such that the final
collision of‘an&itriple is eérlier thaﬁ the earliest collision of
- the next triple. |

Let N(E) be the ieast upper bound on the number of triples
infsequencés'of triples fo? reactions in S(E). Let E, be the
least ﬁpper bound on fhe values of E such that N(E) is finite.
Suppose (contrary to fact) that E, 1is finite. Then for any
positive integer n there must bg a reactioh R3N in
S[El +<®yh)] with a sequence of at least 3N = Bn? triples.

Pick out those n triples that contain the collisions of_the
first x particle with the ‘n largest values of 5V, - Here o&v, is
the éhangerin-thé X component of velocity of the first x ‘pafticle;

Pick out also “those n triples that contain the n collisions of the
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the first y particle with the largest Sviy' Do the same also

for =z. These:- 3n triples separate the reaction 'R into at
r . . -

N
most 3n + 1 (sub)reactions, at least one of which, called

Rn-l , must contain at least n-1 triples.

In the reaction Rn the maximum possible change of .

-1
6vix at any‘collision of the first x particle is less than
&V/n, for exactly the same reasons as before. This bound holds

also for the changes 6viy and Sviz. Thus thevsame arguments

as in the one-dimensional case now give (3/2) (E1 + m) (ccy/n)g

as an upper bouna on the centerFof-mass kinetic energy of Rn-l’
where C is again (1/2) (Eb)b.

| antinuing as before, one concludes/thaﬁ .Ei' must‘bq equal
to ﬁhe sum'of rest masses of some set of physical partigles, and
that for sufficieﬁtly large n, the sum of the rest masses of the

particles of Rn_l,'must be precisely E Thus the center-of-

1

mass kinetic energy for Rn is again € = E - E for sufficiently

1 17
large n.

If the kinetic energy is € , then the tdtal variation
of v, in R 1 is no more than Aw’IAefined (m/2) (4&/2)2 = €
From this one concludes; by the same afgument as before, that-
N(E) cannot become infinite at finite E.

From the fact that N(E), ﬁhe ma.ximum numbér.of triples in
S(E), is finite;_iﬁ follows that the maximum number of collisions

of reactions in S(E) is finite. To show this we proceed as

follows: For any reaction in S(E) 1let t, be the greatest time
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such that the subreaction consisting of the portion of'fhe
reaction occurring at t<<tl contains no triple.l Then let t2
be the largest time such fhat the portion of the reaction occurring
in the interval tl <t < t2 contains no triple.» Let‘ |
tB’ th".'tn be defined in the analogous way. This sequence of
times must terminate at a time t, with n < N(E), where N(E)
is the maximum number of triples for reactions in S(E).

The times ti divide the original'reaction into a set of
no more than |[N(E) + 1] subreactions each of which contains no
triple. But a égbreaction that contains no triple must have é
first x, y, or é ‘tpajeCtory tﬁét is disjoint from the other
X, ¥, or z trajectories, respectively; This impliesbthat the-
particles of each of the various subreactions must separate into
groups such that the péfticles of each group interact only with_
each other. And at least one of these groups must be confined
to a single x, y, or z frajectory. The number of these in-
dependent groups into.which a subreactionbdivides is evidently no
greatér_than E/m , which is an upper bound on the number of
particles in reactions in S(E). |

The above aﬁalysis takes the original reaction into no more
than (E/m) [N(E) + 1] independent (i.e., self-interacting) new
reactions. The same analysié is next applied to each.of thesg
independént new reactions. ‘For reacﬁions that are confined to a
single x, y, or z trajectory, éne use however "doubles" instead

of "triples". Doubles are the two-dimensional analog of triples;

a7
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one eliminates the X, ¥, or z coordinate if fhe reaction is
confined té an X, y, or z ~trajectory, respectively. The |
number of doubles (ahd aﬁalogousiy, of singles) in reactions in
S(E) are shown to be bounded by essentially the same argument
as was»jusf given for priples. In fact, the bound N(E)
'obtained pfeviously for the number of triples is also a bound
on the number of'doﬁbles (and also on the number of singles).

The original reaction is separated’at the first stage
of the analysis into no more than (E/m) [N(E) + 1] independent
new reactions. Each of these is separéted at the second stage
into no more than (E/m) [N(E) + 1] new independent reactions.
One continues in this way until the stage at which no further
decomposition.is obtained. This must occur after no more than
E/m iterations, since the energy of a part that decomposesf.
at a given stage must have been'reduced at every earlier stage
by éf le;st m , due to the separation into independent parts..
Thus the total number of independént reactions~£hat are picked
out altoéether is.nb mo}e than A(E) = ((E/m) [N(E) + l]}(E/m)
Also, the total number of times t, singled out in the entire
course of the analysis is bounded by A(E) . |

Each (nontrivial) collision of the original reaction
occufs at one of the times ti‘singledmout in the above<anaiysis.
For, on the one hand, the only collisions that are eliminéted ét any
stage of the anélysis‘are‘those occurring at'one of the singled-out
times. On tﬁé other hand, the analysis does not terminate as

long_as any nontrivial collision remains. In the first place
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iany indeﬁendent part that is not confined to a single x, y, or z
trajectofy must contain a triple, since otherwise a trajectory‘
can be seperated out. = Thus the analysis cannot terminate so long
as there are‘still independent parts not confined to an X, ¥, Or 2
trajectory. Similarly, all parts confined to a single x, y, or z
trajectory must be reduced, before the analysis terminates, to
parts lying on at least two trajectories. These parts lying on
two trajectories are confined to one-dimensional subspaces. .
For such parts the analysis proceeds until the first trajectory
becomes the same as the last trajectory, since otherwise the first .
trajectory of an independent part must have a collision. One is
left,‘finally; witﬁ only trivial collisions.
’ t
The eanlusion from the above arguments is that the
leolliéioes of any reaetion in S(E) are confined to a set of
~times t., the number of which is no more than x(E). Furthermore,
the number of different types ef particles. that can participate
in reactions inv S(E) is also finite, due to the‘spectral conditions
en the particle rest masses. (Particles of the same maés can be
identified, as mentiened in the introdﬁctidn). But a . finite number
of differenf particles colliding only at a bounded number of
different times can give only a finite number of different types
of reactions. In particular, if gq(E) is the number of different
kinds of particles with rest energy less than E, then the
number of different pOSSible cellisions at e single given time

t; 1s no more than [Qq(E)]EE/m. Thus the total number of

K
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different typés‘of multiple—scatteriﬁg reactions‘involving
collisions ét no more than x(E) different ingtaﬁts of time

is no more than (2q)2Ek/m . Thié upper bound on ﬁhé number

of different types of collisions possible in the portion of the
physical fegion lying at center-of-mass energy less than E

could behiowered with but little extra effort, should the need

arise.
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