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Department of Phy51cs and Iawrence Radiation Laboratory
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November 10, 1966

ABSTRACT OF PART I

Measurements of space-time correlationé in_the intensity of
a beam of scattereq particles yield information about thé scatterer.
Goldberger and Watson have developed a thedry of such.méasurements
appropriaté to the case of nearly elastic scattering; in this paper
we extend théir theory to the case of ineléstic scaﬁtéringl The main
result of our work is that under certain experimental conditions the
correlated counting rate in an inelastié_scattering-experiment is of
a form eqﬁivalenf to the correlated counting rate for an incoherent
beam of particles emitted by a source. This result applies, in

particular, to Raman or Brillouin scattéring of light by phonons in

" an ‘extended target. ‘waever, estimates of the signal to noise ratio

' forfthis case-indicate_that it may not be possible to observe intensity‘

correlations in Raman or Brillouin lines using presently available

light sources.




ABSTRACT OF PART II

The coherent excitation of several atomic status by inelastic
electron scattering and their subsequent'radiative decay is considered.
General expressions for the photon counting rate in a qpéntuh beat
experiment, and the total number of photohsvcounted in a level crossing
experiment are derived. The general results are used to calculate the
phase of the oscillatory paft of the photon counting rate in the

Hadeishi-Nierenberg guantum beat experiment.

A slightly different version of this work has been published

previously. R. L. Kelly, Phys. Rev. 147, 376 (1966).
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PART I
I. INTRODUCTION
A quantum mechaﬂical‘theory of intensity éorrelation expefi—
ments hgs recently been developed oy Goldberger, Lewis, and Watson.l_5
The expérimentskconsidered by these authérsvinvolve the detection of
correlations betwéen measurementS'of‘the intensity'of a beam of

particles made at two different space-time points. Intensity correla-

tion measurements on a beam. of scattered particles give information

about the target. Goldberger and Watson3 (hereafter referred to as

GW) have developed a theory of such experiments appropriate to the

case of nearly elastic scattering. In this paper we consider correla-

tions in the intensity of a beam which has been inélastically

scattered by a many-particle target.

The_results of GW er.intensity correlations iﬁ a beam,which'
is emitted by a radiating source can be reproduced by the.following'
heuristic "derivation." Fér definiteness we consider thé case of a
beam of photons. The amplitude for emission of a photon with wave

vector k at a point 51 .in the source at time tl and subsegquent

detection at a point ga. at time ta is,

exp{i[klza —-§ll -c k(ta— tl)]}

a

VA“"%"H? Lot,) = Ak :

. - 5

The amplitude for emission of two photons of wave vector - kX -at points

S and s at times tl

at times t and t. is then
) a.‘ b

and t2 and their subsequent detection at

b

e
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A(k;f’_l; Ul"EQ’tE; _é a8’ X*bJ b) N
= A(k,sj,_tl; Y , t )A(k,sg,tz,gb., zb) ;
+ Alk, s oroi X st )A(k 7815 1’ Yb, b)f'
" where we have symmetrized the amplitude in accordance with Bose-E_in‘stein
statistics. The probability of such a double measurement is, .
P(k’il’tl’-s—E’tQ; X_a; ta) :I-b’ tb)
= |a(x,s.,t.,s t-Y'tY t)le
,)""l’ 11_2} 23“_7?;} 'bJ
L .
EXC IR
_2,._2____5+ A(kstl,Y,t)A(ksl,l,Yb, t. )
Y*=X 4
a b . -
% . - couplex
A <k =Y 2’ Yb’ ) A(k S2” o’ Y ’ta> conjugate
where we have puu [Y - El = Y~ and [’_x:.b - _sJ = bR in the
-denom;nauor. The total p“obablllty of o'bse"'vlnc two photons of wave
vector k at Xa’, t;a and Xb’ tb is obtained by in_tegr_ating. El_,%‘
‘and Ss over the source volufne, VS . ' )

PRI S .



and A(k,gg, ty5 L t) where

P(kiza} taJ zb: t-5 )

, _djs_.L d552 ' o -
= (COl’lSt.) B ————— P( , ,S 2 t K Y , t Y 3 t )
- v _V2 l 2 ="
' s 3
S, éA(k)[h. " | FEN
= (const.) 5 : 1+ -
2 ‘ v
o Y Y v s
o a b . -8

L ‘ 2
.gxp {i[k(!_y‘_b- _S_l - I-Y—a- .Sli -c k (tb - ta)]}s

Finally, the'probability of making such a measurement on a photon of
arbltrary energy is obtalned by 1ntegrat1ng over the emlssion spectrum

2
A",
P(:f_a) ta: Kb’tb) = jdk p(k). P(k3_¥_a; ta; X’b’ t-b)

where.‘p(k) is an appropriate speetral weight function.

- Two important points must be mentioned about this result.

. Intensity correlation effects are seen to arise from interference

between the amplitude Ak, s,%; Y st ) and A(K, 65 Y. v 5 ) .

We have squared the amplitude A(k,s te, Yot XYoot )

105780 a
before ini“,egra’t,ing-oveI‘ki_S__l and 'EE rather than 1ntegrat1ng first

and then squaring the total ampiitude to find P(k;ga, ’ta,gb, tb) .

For this reason there is no interference between A(k’El’ti; Y, t)
=N # P This 1s a valid procedurev

if the source is large compared to any characteristic correlation
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= lengths in lt’ g0 that dlfferent Parts of the source radlate 1ncohe“ently;efﬁ” :

pr Slmllarly, there is no 1nterference between amplitude for emlss1on of
"~ photong of dlfferent wave vector. This is valld if the beam is
'sff'temporally 1ncoherent, i. 2 the emission spe”trum is time 1ndependent.{ ;11:

| The prlmary result of the present paper is that when double
fé.measurements are. made on a beam of scattered light (or massive partlcles)f

Ll:the form of P(Y o t " Yb 3 t ) is entlrely 51m11ar to the above

L~.f; express1on ‘for the case of emltted light (or the approprlate expression ‘ -,t Zi;fii

'~udvfor massive particles)a' The only difference is that the source volumed?l:’frf;uii%’

‘5;’:is replaced byvthe targetkvolume and that blA(k)lg represents the o

;fij}%f;;ifi*-scattered spectrum at a certaln scatterlng angle rather than an '

T v‘em1551on spectrum. There are two important reStTiCblonS on the.types Epf_uivf_viféé

‘1Aof targets we consider. The {irst is that the target is:small enough. o

”'5fﬁ‘3so that multiple scattering may be neglected; The second is that a p;e;‘d‘.;*‘pi ;;

W-h-particnlar form of the‘impulse-approximation is valid. . We wrlte our"ﬁ”i”:“‘
?results‘in‘e‘way,vhioh allows"the uSuel kind of impnlse'approximation

vti;fd;:(neglect of" the binding of partlcles in the tarﬁet) to be applled, but vl
"‘il_no use is made of this except when we compare our results with those

U o o The quite wnrestrictive form of the impulse anproximation that

“ 18 used may be descr ibed as follcws. It is assured that there exists hf}ﬂ'"

“;fa correlation length, ﬂé ’ such that two narus of the target separated

'”‘by a distance much larger than_ ﬂ scatter incoherently. The target

'i‘jis then imagined to be partltloned into a number of volume elements ?-':"'

fheach of Whlch is large compared to ﬁ 5 but small enough to satlsfy

“ipthe condltlons for . Fraunhofer .scautering (qu. (39) and (51)) It 1s_ff”
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then assumed that the impulse‘approximation may be applied to each
of these volume eleménts, i.e., the binding of a particular volume

element to the rest of the target is neglected when calculating the

“scattered intensity arising from that volume element. This is pointed

out in the remarks following Eq. (30) and in the paragraph preceeding
Eq. (5k4).

There are certain experimental conditions that must be ful-
filled in order for éur result-to be valid. The most important of

these is thet the angular scparation of Xa and Y, must satisfy

b
a certain criterion of smallness. Unlike light from an isotropically
radiating source, scattefed light will in general have an energy
spectrum which depends on the angle of observation. We will require

the angle between th and Y. to be small enough so that both are

b
characterized by the same energy spectrum. We do not investigate the
potentially interesting case of wide angleVintensity correlatiohs in
which Y ~ and Y, do not satisfy fhis criterion. '

In Section II we giﬁe a preliminary description of the ﬁype
of scattering experiment under consideration. The characteristics of
the soufce of incident particles, the incident beam, and the tafget.

are discussed. The scattering cross-section of the target is written

in a form which is useful for later applications. In Section III . we

‘derive the correlated counting rate for a beam of inelasticaily

scattered particles, and compare it with the result of GW for the case

of almost elastic scattering. Abplicationé to Raman and Brillouin

‘scattering are briefly considered.
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the main body of this paper we do not always give credit
we use their techniques; this would require too many
HoweVer, our work is, to a large extent, based on that

much of what is said here is also contained in their

attempt to stick to their notation as closely as possible.
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. II. PRELTMINARY DESCRIPTION OF EXPRRIMENT

We~considef.e'scattering‘experiment'in which aﬁ incoherenﬁ¢ g

'1nc1dent beam 1s directed onto a many partlcle target. The wave_ AR

: functlon of the beam at points between the target and the source 1s,

- - '_ o - ﬁ , }‘* e ;':‘”} R »-y v-v ;>‘ -
**.winé.gyj -il e @

‘dHere'gy is the projection»opefatof-onio'symmetriied'or ant'i-symm‘e'triz"ed'j
:>states, and N is the total number of partlcles emltted by the source
e'during the experlment. The wave functlons of the ind1v1dual partlcleo_

‘are taken to be of- the form (ﬁ = 1),

i

" .

ey

S expmqlx - g,]5 @) - 5)D) .
qua Q) - . — s>ty
gl *

" where

i”:é(q)' q /ém : (non-reiatiVistic ﬁarticles)

":é(Q)“ e"q” + m" (reletiylstlcvpart;cles)o

Il

,fandrlﬁi(si)‘5is the spin wave function. The dependence of ﬁ (xi,t)

“on, s, 'Willvbe left implicits ﬁ (x s &> t ) is normalized £o unlty,

. i"



i hiiuleaving the . source. jﬂ.

' . "’8" .

7 and wave functionsawithrdifferent'indices.are assumed orthogonal,

\ '*"fhrﬁiy describes<a particle which is emitted in an'outgoing sswave

Ae-wave packet at the t1me ty and 1ocationhdi « These parameters,v“,

'}_ti, and d& , are introduced phenomenologlcally in order to represent '

A‘*,;jthenincoherenCe of the’ beam._ Thelr phy31cal 1nterpretation depends

on the type of source under consideratlon.; For a thermal source of -

'h7massive particles, for example, they . should be interpreted as the }::i

r‘AV‘ﬂhtlme and place of the last c011151on suffered by a partlcle before

l'
1

: The emlssion times lie within the range,'i,h'

T.<t”<Tl¥T t_e‘ S mwy

'That is, the source is turned on at time T, and turned off at time

"sTl +vTO' To is a macroscopic time (the duration of the exPeriment)y

" “In order to take collimation of the source into account we restrict

.';ijhdi to lie in that.part»of the source that can "see" the target through =

the colllmatlon apparatus, From now on when we speak of the "target"

"At:hwe will mean that part of the actual target which is intercepted by the
k:iliactual incident beam. Thus the pert of ¢ (x t) which lies outside B
C the incident beam does not interact with the "target" and 1 not
"‘;‘jhscattered 50 we need not take erllcit account of the fact tha his

Lf,part of ﬁg is removed by the collimatlns apparatus.. Energy resolutlon'_h

'f'ein the incident beam will be accounted for by definlng an energy

N spectrum in uerms - of the ane pacxet amp1ltudes 'a (q) dechH':'“m

© TR 4 ok o = e P

R

< i, R 0 AP
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gl ' We will choose an origin of coordinates which lies in the
. ‘. ‘ target and assume that the average density of the incident beam is

uniform over the target. This average denéity is,

. (%‘ f¢i(o,t)|2> ! . B

where Tl <t < Tl + TO

_ ai(q), 91; and ti are to be taken. We will assume that the

and the brackets indicate -that averages over

characteristics ai(q), ui(s), éi’ and ti of each wave packet are
“statistically independent of each other and of the characteristics
of other wave prackets. Further, we assume that tﬁé magnitudef‘di and

o . .
the direction div of 91 -are statistically independent. Finally, we

-assume all incident wave packets to be statistically equivalent.

Substituting Eq. (2) into Eq. (5_) we obtain, -
| | RN e(q)-e(a) 15t N

) RS . e’ : i .

n = N Jdp dg .(ai(P) ai(Q)><~"c‘1‘i—2‘—‘—*> (e - > (6) _

where

(&% (p)e (a))

o [ileaa\ Coalew,
- S R _ e . y e n — o (8)
o 4. /0 a ' - c

Lo ke | -
= £g£ ai(p) ai(q) B A | (7)

2
[
.H
,_,Mz

-
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-ife(q)-e(p)1(t-t,) 1 X -ile(q)-e(p)I(t-t,)
e = Y e ot - t.) (9)
i=1 X
1, t. <t
o(t - ty) = o . (10)
: 0, t; >t

The step function in Eg. (9) takes account of the fact that ¢i(§i,t)
vanishes if t. < ti . If the distribution of emission times is

uniform (9) may be replaced by,

é-l[E(q)-e(p):!(t-ti)> _ f dt' e-i[e(q)-e(p)](t-t') . (11)

T

S

Durihg most of the experiment t - Tl will be much larger than any
other relevant quantity with the dimensions of time. We utilize this

fact by taking the average of Eq. (11) in the limit that t - T, > .

é-mq)-‘e(pn(t-ti)) PR ftdt' o-ile(@)-e()1(s-4)

TO t-T> @ T _
1 . (12)
oz 1 P
- T 8le(q) - e(p)] + T, T - <@

For p # g ﬁhe quantity a;(p) ai(q) will have a non-zero pﬁése,

and this phase will havé a random dependence onr i ; Thus we expect -
(a;(p) éi(q)) to vanish fdr p # q so that the principle part in . "_  .g
(12) may bé neglected. This will be done here and in the future.

n now becomes,
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n = ﬁR<l§>qu (Ja(a)]?) R B (15)‘
1 _

- v(q)
where )
v(a) = dzéq) | | | (14)
and
—_— N
R = T (15)

is the average rate at which particles are emitted from the source.

In a similar way the incident current at the target is found to be

A 1 2 g : .
¥ - ncd (2 fas e (16)
= \¢ -

We now turn our attention to the average‘energy and momentum

of the beam particles. The average energy is,

= <lmde'dp dq a’i‘(p)éi(q)e(q) exp {i[(q - p)x'- _[e_(q)-E(pv)'](‘.é - ti)]}

where Ki is the Hamiltonian of the ith “beam particle and
x' = |§i - gil . The integral over x' yields,

(0]

| .[ axt AP s iy e SRl L (18)
A . o o ‘ . o} - P : - -
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The contribution to (e) of the principal part in (18) vanishes,

l+rrifdlp dq <|5(q)|2> e(a) — {— 8le(p) - e(a)] = 0

a-p T,

S0

(e)

Ale(a)-c(p)] (-5, )
<1mgfdp dg 25(p) a;(a) e(a) &(p --q) e : .p 1

2 ‘ 2"
bt qu (la(@)|®) e(q) .
Similarly the average momentum and the normalization integral are,

(@) = lme‘[dq (la(@)]?) q

<(¢ (x,,%) lyf ,t))> dq Ja@I®) .

. We note that Egs. (13), (16), and (22) may be combined to give,

R(-4 l)
S?L- _< ) <{hnd2

I 2

2
) = lm2 dq <'a(‘l), )
‘[ - v(a) |

where

(

< |+

(19)

(20)

(1)

(22)

(23)
(o)

- (25)

It is convenient to define a normalized energy spectrum for

the‘beamvas,

¥
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gle(a)] ae(q) = b (Ja()[®) aq (26)

then ‘ » . |
(e) = fae glc) ac @D
() = _ fde(q)- gle(a)l a . . (28)

We are now ready to_coﬁsider scattering of the incident
particles. We begin by considering the scattering of a single‘
‘particle in the wave packet state ﬁl(gi, t). The target Hamiltonian
will be denoted by h, and its-eigenstates and eigenvalues by &,

and Wn, respectively.

heg = W g - i - (29)
'We will assume that the impulse approximation is wvalid éo-thatlthe
Tmatrix for the particle-target interaction may be written as

T - § T - '.(30)

where Qal is the T-matrix for the interaction of the ihcident
Iarﬁicle and the oth particle in the target. We allow the

"particles”" to which the impulse appfoximafibn applies to be composite,

[va

eig., qal vmight.refer to the oth atom in a gas or the oth ‘unit
¥ o < eell in a molecﬁlar crystal,viActually) there is no loss of-generality
in using (30) because we can always consider the target itself to be

.,-a‘single composite particle in which case (30) becomes simply Tl = Til’.jt
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It will be convenient to relocate the time origin by defining,

t' = t -t

c
(31)
f = -
t 1 = tl tc
where t, 1s a time at which ¢l(§1’t) overlaps the target. We
take the initial target state to be g, SO that the wave function
prior to scattering is,
. ' -iW & . ie(g)t’
__~iht _ mec | 1, '
(32)
ei[qlzc_l a,|-e(a)t"] 30 ¢
X ! = . ’
in(t") w(s) e g, - (33)
Izl = g‘_l, .

The complete solution of the Schroedinger equationvcorresponding to

the initial wave function @l(t) is obtained by replacing Xin in

Eq. (32) by,6
X(e') = X (t7) + X (67) | (34)
‘where | |
. | e-;[e'(_q)}wm]t' _Y
Xse (1) = R S— X, (0) o 069)
_ e-i[e(q)fwm]t' 2 .
n
1 . iqlx, -4, 1 a
*n W, +ela) + 0 - W - K § T E‘,;:EJ u (sy) fe,

LS
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We will assume that the distance from‘thebsource to the target is

- large compared to the size of the target so that we‘may put, -

1 T
e el & » | (36)
S ]

The exponent in Eg. (35) may be expanded as,

| -
alx, -4l = aa; +a-x + 0 /) | (37)
where
N
Q2 = - qg:l (38)

and Ec is a typical linear dimension of the target (qal f(§1)

vanishes unless X is in the.targeﬁ). It will be assumed that

() /302

<1 ' (39)
(d>_ ; -

and the last term in qu (37) will be dropped. This is a rather |

restrictive approximation, and we will have to qualify it»later.
In order to evaluate *Xsc(t') we Fourier analyze g = Wwith -
respect to the center-of-mass position vector of the oth target

particle.

#&J.E

R :
e f e e g )
m (21f)3 2 m -
E (40)
d31" , -11«;_@-'50‘ o

‘gm(-lsoz) = 3072 © ®n
4 (ex)/= : :
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Using Eq. (40) and the approximations (36) and (39) we may write,

elq,x (s . f ry Hax kg zy)
T s,) g = - T . e
ol Y B85 &y 3 (x)/? o
x u(s))e (k) : (k1)
19, 20k g @k (g ex. 4k -r )
- = f = e T (grxl T | @k )
dl (gﬂ)3/2 , == ol F~o
% u (o)) g, (k)
where
d3$< Or -i(q'.x +k’ o ) i(qex,+k v )
al k! -IT | x ) = 1" "« 5%y Iy T E RS R
(’q' ’=a al 9=’—-Ot - (21’() € ol e -
(k2)
— o 1 - - !
= Blg+ k- a-ky) (kI laky)
and Talo 16 the momentum shell sub-matrix of T - Equation (41)
may now be formally evaluated as,
T T i | - )
l .
eiq.dl i(_l_'za dska qux 5-9_.,"(51.'20[) . - l .
_ & e e (a'k +4q-a'lT lsa;-_
dl » (2ﬂ)572 | 0] al a’
| e I,

H

. 1 ig__-r . ' ig'.(x - ) ' v - B
e . -— .
‘ e —afdjg" e o (q ,-iV +a-q' |T lg;-‘iva)ul(sl)gm

S
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> : where (g - v, + q-q' I‘I‘ l| q, - 1V ) 1is the same function of
. -1V, that (gk +g-ga' T l| o k, ) is of k-
Putting (43) into (55) we obtain,
. - -i[e(q)+W I d, ig-r,
. 1 . € e
. '.Xsc(t_ ) = o z ,Z '
. " (x 'Ea) (k)
o = AR A ), )
. - | W+ e(a) +.i'q - Wn- e(q") | ‘
 The integral_ in Eq. (4k4) is of a familiar form and its asjrmptotic value -
T is | '
. o ig (x -r ) | '
.[d}q' e @ (g iV + g g | | g- 1v)
i Wm+e(q)‘+ i:ann-G(q_) o
o r | (hS)
- :lqnm -r |-
Y qnm e Lo
| | N ,"(2“) v(qnn:) lx . l (Snm’ -iv +S-.'9nm' 1'9;4‘7 )’e(q‘n.m)>o
x 3 ¢ =l =
I)il--gozil.—> © 1o ; e(q_nm) <0
| ~ Where | . | 4 )
oy f o eley) s )+ - Wn.'l N T

It will be assumed here that the target to detector distance is large

enough S0 that {/théi following approximations may be made in (1),
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- A
Lm T Ym M (4) -
1 L1
i lx -r | ig x -1 T '
Approximation (50) requires that a condition analogous to (39) be
>satisfied,
(o) 2°
_EEE;__E; <« 1l . (51)
(ﬁl)
Where (qnm) is a typical final momentum and. (xl) is a typical
target to detector distance.
Using (44), (45), and our subsequent approximations the
scattered wave function at the detector(s) may now be written as,
-iW t ie(q)t!
_ m c 1 '
R = ¢ 2° fag aya)e Xo(t)
-iht ' 1 .
= e ]dq a,(a) %: SN exp{llqdl U COLT (52)

ta . X - e(qnm)t]} (gnlAl(gnm,g)l gm) | Y

<

, ‘ A .
where the sum z: includes only those states for which e(qnm) is
.n : ' -

positive and,



Y

ol

-i(k-q)-r
B N 2 k - = =
Al(}\:Cl) = -(on) TTVK § e N
(53)
0 .
e -1V, +a-k 1,0 a- 1) wls)
o 4n 0 o
We recall that .(E,Ea +q-k ]qall q, EQf) does not operate on x,

or Ty’ but that it is Stiil an operator on the incident particle's

spin and on the internal degrees of freedom of the Oth target
. . ' 0 . ' ; .
partlcle.v (5,—f21 +g -k lTal' q, - rql) also operates on r ., of
course.
_Wé,digress for a moment to consider the. conditions (39) and (51).

These are actually too restrictive, and ECV may be thought of as an

‘appropriate correlation 1ength in the target rather than the size of

the target. The target may then be thought of as being made up-of a

number of essentially independent parts each of volume £ > -where

t
' 2 2 ' .
gt >> 8 and 2% << (d)/(q), 2o < (xl)/(q }. The scattering from
one of these parts will be incoherent with the sCatteriﬁg from any

other part, and the scattered intensities (rather than amplitudes):

 from the different parts may be added to find the total intensity. The 

calculations given ‘here are appropriate to the part located at the

(arbitrarily chosen) origin; knowing the scattered intensity from this

v.part_one may find the total intensity by the methods'of gedmétrical'

optics.

Tt is useful to write (52) in the form,

L etht

- ?1(t) 5 C ‘Wl(il’t)'gm H._ o (5&).
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where wl(§1,t) is an operator whose matrix elements are given by o

(52), » | -

vy (xp5t) = ]dq a;(a) ¥, (g, x,t)

(gnl'wl(%gl,t)lgm) = Xlldl exp {i'[qdl +e(a) ¢y (55)

ta X - E(Qm)t]} (gnlAl(%m,g)lgm)s elq ) >0 = 0; e(qg )<o0.

We shall deal here with the case of a low density incident beam. The
density is assumed to be low enough so that the excitatiohs of the
target due to one incident particle do not appreciably affect the
properties‘of the target "seen" by énother incident parficle. In
this case the wave function for the scattered particles and the target

may be written as,
T (6) = e of m v (x,t) g (56)
i

where the Wi(gi,t) are to be treated as commuting operators. Only
wave packets for which t, < t are to be kept in the product in (56).

gb is the initial tafget state, and it must be averaged over an

<

ensemble after expectation values have been taken.

To close this preliminary section we will use expression (52)

s

to calculate the scattering cross-section of the target. The average

current of scattered particlés far from the target 1is,



(Ve

_§‘ | 21.2 V(q‘no)gl exp {i[(q -a') 4 + [e(q) - e(q')t

2] -

%sc z <Re (ﬁl(t )Iox, - x) _llﬂzl(t))>

(57)

<Refd X, Z ,‘lfl+(§l:t) 5(51 r) v, v (xl,t)|g0)>

where vy is the velocity operator of the incident particle. Inserting

a complete set.of target states and writing out the matrix elements of

: \Vl explicitly we obtain,

‘ VSC(E) = N (Refd3xl 8‘()_(_1- E.) ZS: jdq7 dq a,l*(qlv) al(g)
' 1 _ .

e \ (-9)
+ (a0 - bq"nO) %y - [elayy) - €(q'no)]t]}
X (gO|A1+(g’nO: g” )lgn) (g;lIAl(qno) ‘_—]._),go)> .
We carry out the average over emission times,
Jile( )-e( ")t o ' o -
<e e 1> - & sle(a) - e(@)) (59)

and use (23) to obtain,

A

%Sc . ”—5— . Z _‘V(th l(g ,A (an r,q)'go), > (60)“

51
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In Eq. (60) the brackets include an average over the incident beam

spectrum,

(£(a)) =fae(q> ale(@)] £(a) . (&)

The differential scattering cross-section is,

r l(‘y ()] <an | 5
B T z z l(gnlAl(qm r,q) lgo)l
(&) -

® de _QEEL
dQ de
0

> <<1‘> ole - e(a,0)) |, 1y (o g)lgo)F)- (63)

Here k 1s defined by,

(62)

where

e(x) . | (64)

If the 8&-function in (63) is written as,

€

i[e-e(q)—wo + wn]t

dt : :
8le - e(q )] = [ 5 e , (65)
i(wn-wo)t,
and the factor e : 1s used to form a Heisenberg operator,

we may write the energy-dependent cross-section as,

A
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- 2 ) Ve e _
| (rg d) s [ 1 teselelle X (g0|A11<k?,g>Al<k3,g,t>|gO)>
) | . - » (66)
Where
Al(k ?,9__,’0) = bt A, (k ?,g) e 10t _"‘(67)

Expressions of this general type for (dgcr/aﬂ de) are familiar in
7,8

the theory of scattering by many-particle systems. To obtain

useful results it is usually necessary (and quite valid) to make a

'numﬁer of approximations in Tal . For éxample, Van Hove's7

expression for the neutron séattering cross-section of a many-particle
target may be obtained from (66) by putting T, equal to the Fermi

pseudo~potential,

2n
T = 71 2a. 6(51 - E'-oz) )
. : 0 . 2 '
-1V, +a-k T, lg -1 Va) = a,/@)" n

ol

nucleus in the target and m. is the neutron mass.

where is the spin;dependeﬁt scattering length of the QEE
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I1I. INTENSITY CORRELATIONS

In order to describe intensity correlations we will use the
GW counting operators. We first consider the case of observaticns °
made at a single detector called detector a . It will be represented

by the operator,

N .
Ja = igl ja,i. (69)
by - ] Ox, ] ae, 7,(x, ) 8(x, - x,) 8(e, - X,) - (70)
a8 a ,

The integrals in ja,i extend over the active volume of counter a
and over the range of scattered particle energies accepted by counter
& . This operator is slightly different from the GW operator in that
we include the possibility of a finite range of acceptable final
energies. (The range of final energies will usually be determined by
some sort of energy filter in front of the actual detector.)

7a(§a’ ea) depends on the sensitivity and calibration of the detector.

For thevsake of simplicity we will take 7& to be a constant,

Ja,i =7 ] d?x&. dea 6(-}5-8. - 5:l.) S(Ea - Ki) ‘ (1) |

Except for a numerical factor Ja' represents the numbgr of

=

particles.in counter a at a given instant. In an actual measurement
this number can not be observed because of the finite resolving time

of electromic apparatus. Thus, if



X
R

'Miis the average (averaged over a (q), u (s), i,';i, and - go)

expectatlon value of J . at time t only the quantity

(G (T)) j dt L (T - t) (J (t)) (7&) o

" can bebobserved Here L is the response function of the electronic ”

"recordingfapparatus.. It is convenient to define a frequency character-

istic for the recording apparatus as,'

B (cn) ! at L ('r) em’_’,r ;'(75)‘

: ..:.If the intensity of scattered particles is steady (so that (J (t))

";does not depend on - t) (G ) becomes, ;if“f'

o _'We will take the detector to. 'be 0. calibrated thet ‘I‘ (J ) is the DRI

total number.of particles detected at a during the experiment

: '_(J ) may then be interpreted as the average counting rate at a and R

1(G ) as. an amplified countlng rate.,ft':

- If there is never ‘more than one particle at & time in the

detector EQ- (73) for (J (t)) reduces to,.?i;iitﬁiﬂiiif
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@, = ¥ (s, TuE) . ()

The evaluation of (Ja(t)) is similar to the evaluation gkc(r)
v sc =
L 3 g
given in the previous section. It is found that <Ja(t)> is independ-

ent of t and is given by,

. 3 . ’
d x 2
] 1 d )
<Ja) = %’ya I x Qa I déa V(ka) <d§2a gea> (78)
a a a o

where e(ka) = € dﬂa is an element of solid angle in the direction

of 2;: and the cross-section is defined by Eq. (66). In (78) we will

put,

Xa: )
[2 [ -
a .

a a

where Wa is a mean depth of penetration of scattered particles into

the counter. <Ja) then becomes,

{Ja) =‘§/7a v, ca/va ~ (8o)

where dé is the cross-section for scattering into a and vy is
an average value of v(ka).x-If the counter were 100% efficient the
counting rate at a would be Just g?’ﬁa . Thus our calibration

requirements reduce to,

v

. _
Vg = ;;_ n, | (81)



"*ff;; where n ' ie the'connter”efficiencfﬁff.v
We next consider the case of observatlons made at two detectors,.ve

iiffe éndf=b .e mhe output of detector a is sent through a delay llne

,5;v'v;[’n;fff}‘ and then multiplled w1th the output of detector b " The output of

,i;g the multipler‘ie,

e - [ nne )
" vhere 1, s the delay bime ama . oo
Gt = ()l ) 6

[ 2

B AUR
- Td'=-t§‘; . a. _f'vdl--n‘f .f -j“_  :ﬁvi. in;£: 7 (85) -

'741.?;?f}"1t”is assumed that TO is large compared to electronic response times

.:‘t so that T is always positive. ‘Kij 1s the Hamiltonian of the ith '
beam particle and Jb g is defined analogously to e 1‘}_ The

- correlated counting rate is defined as :




;,L_;% Equatlons (82) (86) also apply to the ‘case in which a and b are .

V'hgcactually a 51nale detector. The use of the time dependent operator o

’»,{uTJ (T)'J - to descrlbe inten31ty correlatlon measurements has heen

lfu;” dlscussed in detall by GW.V‘ 35

vi?ﬁfiﬁ( (tb,ta))_hredueesjto,;L;'f;,f’:““"

In the case. that no. particle can be counted in both detectors

"fe(or twice in a 31ngle detector if a and b are the same)

'.'<<.I (6 ,t ))
SR (87),

<<lflg(t e iKE ' ﬁiKET 'é,l' +eK1'r ,V .A -iK:LT Sa, 2| \Iflg(t >> -

ha(t,) =
el -

E;The upper (lower) sign in (8h) refers to an 1nc1dent beam of Bosons

(w(xl,t)w( ,t)-_xv(z,t)w(xl,tﬁgo? .
| co o _ (88)

'-',A(Fermlons) quation‘(55) for the matrix.elements,of ;Wi " shows that'

“-iKir

: e nyl(xl,t ) wl(xl,t ) . E 89y

TtutUsing (89) and the statlstlcal equivalence of the inC1dent wave pacAets_f

R ) is readlly shown that

Fulty) - 6 <‘°bﬂ= Mreleey e

“uf;where




-

L

“of (77) it is seen that '<Jd(tb;ta)) is independent of t

<29~

i

RO RN RN P AR IR EN I}
| (91)

2 / . . . . .
(Tee(bp ) = 0 Q0 G 0, 0 8 Deg 13y, o3y 3 1 Gty 2 (3 8, D))

a,l

“In the evaluation of '(Jba(tb,ta)) wve will use an approximation due to

GW which neglects correlations between scattered wave-packets originat-

ing from different incident wave-packets. This allows us to put,
(34(tyt,)) = W [ O, xy & <(g2w;<52,tb> %,é ufe(ie,tbngg»
2°1
'{.(gillwl*(zl',lta') S 1 0 xpt,)lg)) | )
(7 (6,8.)) §szg3_g<2 gfgl_;zs ‘((geI\lf;(zc_l,‘c.él)jb)2 ‘l’z(}iz’tb)lge)>
o o : 2°1 ' .

et 4y e gl o)

Independent (but equivalent) ensemble averages over the initial target

states g, and g, ‘are to be taken in (9%2) and (93). Upon inspection

b' and ta

‘and is simply

(1) = @y Ey . BENCON

(Jex) is the more interesting term in - (Jba).- The matrix

. elements iﬁ (93) are evaluated similarly to (57). it is found that,



-30-

L CHACIR NN NCRIES )

¥ i‘[k (x,-x, )+e 7]
_ fr fdea o & 172" a <?f—(l—<D— E dle, - e(qnl)] (%)
A . .

*2*1
to A A
(e, 18,70 20 a)le) (e 1a, (x Xl,g_)lgl)>

when fl is in the active volume of counter a . A12 is the same

as A, except that gl(sl) is replaced by ‘ul(sl.e). A similar

result is found for the other factor in (93). (Jex(tb, ta)) thus

depends on t, and t  only through T = t_ - t_ end is given by,
2 Idij djxa : |
<Jex(1)) = 9’ 7a7bf 2 [ % ° .[deb] i<, exP[1[(kb-ka)(xb"xa)'(eb"-ea)lr]] '
a

b % a a b
<m r§1' 8le, - e(p_ 1)1 Ble, - ela )] | (96)

st (gglAgl*(gba,p)lén,) G, 14, (li-bb,P)lge)
251 .

G, la Tk, g')lgn) G, o (x, g)|g1)>

where
e(ka)- = €, e(kb) = €
| A A o
g = -q_dl, P =.-Pd2 S (97)
- A . : A .
. 1-:-a.a = ka.,xa’ l{-ab =, ka. %’ —krob

= kb)ACb’ -k-ba = kb?a '.
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A A
d

The brackets in (96) indicate averages over 4., U

1 2’ ulJ 2) gl) ge’

and beam spectrum averages over both
. |

p énd_ q,
(£(p,a)) = ]de(p) de(q) gle(p)] gle(q)] f(p,i) L . (98)

We will assume an unpolarized incident beam so that those terms in

vanish. We also assume that

1
271 N .
the remaining terms are .independent of 5, or 32. Then we may replace
Ay ‘and A, by A2  and A, respectively, in (96) if we include a

factor s-l' to account for.bvercounting. s is the number otherms

in the sum E:s" or z:s + These assumptions are not at all
1 2 '

'necessary, but they simplify the notation considerably.

Under certain limiting conditions (96) reduces to the result
obtained by GW for: (Jéx(r)); First we take the exponential in (96)
inside the brackets and assume that the scattering is nearly elastic

so that we may put

[ . d | ‘ | n
kot o gy le, - e(@)] = q+-i(q) -
| (99)
. Wé-.Wh, o
’ = P+ —————,
k'b V(P’) .
The exponent then becomés
Uy i)l %) = (42 ) © 2 (0 - a)ligm ) - [e(p) - ela))r
o : B (100)

-+

v (22 (222
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We also put
é(o ) = (@) elay) = e(a) “(101)

in the ©d-functions and assume that there is no energy selection at’

"the counters. Finally we assume that Tag may be approximated by,

| N
k) = -0 Y @) (102)

0
' - '
@k, +a -2t o
where fal(q') is a scattering amplitude whose energy dependence is
negligible over the incident beam spectrum. The terms in (lOO)
involving Wl - wn and Wn' -W2 are used to form Heisenberg operaﬁors
and (96) reduces to,

o | T el e )oe(a)e]
%w;sv%1§] | Gy e
b xb. Xg

(o) 5 el 0 S e, (5]

£ 0x,) ul(sl)lgl)>§2 | : a0

" which is equivalent to GW's result.

Returning to Eq. (96) we note that by expanding the 8-functions

“as in (65) (Jex(T))- may be written as,



-

L §

v

_53-

&x, &x | i[(k -k_)(x -x_)-(e -¢_)1]
%27a7b!1 ;bf Xzajdeb!deae.l LLULICUN |

e( )t o
<mj—— e eb d z (g IA (k,,o2) A, (kbb,p:t)lgo)> (104)

,_i[ea-e(q)]t -

1

ni

(T (7))

i

When the target is translated by an amount R the first and second

matrix elements in (10k) are multiplied by eXp[ikbgv(Qb-'Q;)]' and

exp[ikag‘(ga-‘gb)]l respectively. Thus we expect these matrix elements

’ A
to be peaked about ﬂ%) = X, . Letting © ©be the angular separation

of x ~ and ‘X . the matrix elements in (104) will be peaked functions

" of © about © = 0, and the width of these peaks will be

(28), ~ (2,7, (20), ~ (.2, )7 (105)

where zts is a lehgth associated with translation symmetry breaking

in the target. At its largest £, Wwill be of order £ . In the

remainder of this paper we will assume that

6m < (kbﬂés)-l;,(kazts)—l o A ' .(106) |

_ Where Gm is the maximum angular separation of 1Eb and xa . When.

(106) is satisfied the matrix elements in (10k) may be evaluated at 6 = O.
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" There may well be interesting and useful information to be obtained in
a wide-angle iﬁtensity correlation experiment where (106) is ﬁot
satisfied but we will not investigate that possibility here.

Comparing (104) and (66) it is seen that we now have,
(7 (1)):l 27752 Id jdx!defde'-——i———-
ex s %Y a’b agb . Xb X a N b . é v(kb)v(ka)
exP[l [, - k)(xb'x)' (e~ €5)71) <de dQ} {ée d520>

The direction of the solid angle element df2

9 must be in the general

direction of the counters but is otherwise arbitrary. The integrals

over solid angle in (104) have been carried out in (107),

3

d
I -—:—b szaj dx_ . (108)
b b a g |

We will assume hereafter that

Jx - kél SETRA | (109)

so that X and X, may be replaced by average values X% and .zéf

and that the ranges of enefgy acceptance are narrow‘enough 50 that

v(k.b) and v(ka) can be replaced by average values v, and V.

Using (81) we then obtain,

u®
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| (Je;ctr)) = % (‘}2 Mo %% ] dey ! de,
o b a (110)
exp[i[(kb- ka)_(Yb-Ya) - (eb- ea)T]} é—%;‘%ﬁg .

We must now return to the comments made in Section IT concerning
conditions (39) and (51). Equations (80), (94), and (110) give only
that part of the counting rates that arises from scattering by a sma]'_l'
volume of order ‘£t3 about the origin and we must héw scale these up
in order to take_ scattering frdm the whole target into account. it is
easy to see how <Ja) should be scaled up; oa is replaced by caT

which is the cross-section for scattering into a by the whole target.

)" = Y, oL | (111)

In the evaluation of (92) we treated ¥, end ¥, as waves which

were both scattered from the same small region near the origin. 1In
scaling up (Jd) we must allow.'\}f_l and ¥, to be scattered

independently from any region of the target. Thus,

(J‘d

T T, \T - _

In Eq. (110) we will assume for the sake of simplicity that the solid
angle subtended by the target at the detectors is small enough sd that
variations in df,

variations in the exponential need be taken into asccount. It is clear

over the target may be neglected. Then only

from Eq. (95). that the scaled up versi_on‘of Eq. (110) is,



3 3
d’s d’s
T 1 2 - b a
<Jex(T)> T s W Na T S-_zaﬂb dE’b [ deaf Vt f Vt i
_ . b a t t ‘
Wexplilk (v, - s l - lza- spl) -k, (ry-s |-y, -5, D- (eb- e )r]}
de dsz> <1e dsz> (13)
where the 1ntegral d d”s ‘runs over the volume of the target, V

t
" is the volume of the target, and (%0 /aed2)T 'is the differential.

cross-section of the whole target. Equation (113) becomes particularly

simple when the same energy filter is used for both detecﬁors,

Ideb =<Id€a = fde. '(nh)
b - ,

In this case

3
v 1 a2 - &8
ool = 2 s | o f 5
T 't » o
| »  \7g2 - (115)
weplile(r- ol - Iz, - 5D - e (G E ' -
| A N

Equatioﬁ (115) is quite similar in form to the results obtained by
GW for the.correlated counting réte in an incoherent beam 6f particles |
emerginé from a source,

Photon 5eamsfare mg;gfqmgnable to'intensitj correlation eiperi-

ments than are beams of massive particles because it is easier to

(*
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- produce long wavelength photons. When specialized to the case of light

scattering Eq. (115) becomes completely equivalent to the correlated

counting rate for & radiating source considered by Goldberger, Lewis,

and ‘.-Iatson5 (hereafter referred to as GLW). To show this correspondence

explicitly we define,

4]
ct
—~
m
~
ut

=]
t

¢

. dUT._' : d2cr . 116
‘%’d"sz‘ = 9’ ae Te an, | (116)

(a7)

L

tH
P
Jh"“"\
o))
b
&“’;/
-
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o
ot
P
=
-1
ct
m .
=

'(118)
(I) -

1]}
UP"““%
A
) N
e
Setcscry
8 8
o8
O"d.
o
sy
+
Oﬂ
o

(119)

Using Egs. (94) and (115) we may then write Eq. -(82) for the correlated

counting rate as,

. where

(Cpa (7)) = (G, (@) + 3 j (v) jka) [X(oa)[? o az0)
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X(ba) = [ 9—3 jde g (e) explili(ly, - sl-1¥ - s])- e(t -t )]},
. t f )

(121) -
This is equivalent to GIW's Egs. (2.21) - (2.24) except for the fact |
thet we have aiready made certain approximations which they do not
make until later in their paper. Practical applications of these
equations to intensity correlation experiments have Been-considered
in detail by GIW.

Two interesting types of experiments to which (120) and (121)
apply (when a little more care ie taken with the spin correlations) are
the resonant scattering of light by a gas of atoms and Brilloﬁiﬁ or
Raman scattering of light by phonons. The first experiment is physically:
quite similar to the experiments considered by GIW, and we will not
discuss it here. 1In ordef to get useful results in an inteﬁsity
correlation experiment it is desirable for the width of B(w) to be
larger than that of gt(e). For the fastest electronic equipmehtf7

currently available B(w) has a width of order 1070 sec™ while

Brillouin lines have widths of order 109- lOlO sec“l and Raman
lines are somewhat wider. Thus it appears that intehsity correlations

in Brillouin lines, at least, might be observable. However, it is

necessary for Qg/ and TO to be quite large in order to obtain a .
good signal to noise ratio. For the case of fast electronic response -
times and a large target the signal to noise ratio given by‘GLW is, '_ s R
: - . :
5 = T on)FR —— (122)
b £

T



lasers are about ‘10

e time of order

| v‘where A 1s a typlcal photon wavelength, 4 iS-e’typical 1inearv

T.

';fdimen31on of the target, and AT 1s the response tlme of. the recordlng

" .F'"‘.apparatus. Taklng A ~5 X 10 5 IRAUN Y 10 ~10 sec,' and9.:‘

-6,

| ;7(do/aﬂ) ~. lO "k 2, the 31gnal to noise ratlo becomes, o

;% o 10 ) n Q{ r_.. 3 h_ ‘v ‘:: _(12551_

0

' ?}; where T. is inVSeoohds and. §%7tis‘in photons/%u?sed;i This.is rather

x discouragingibecause the highest'availabie-photon,eurrents from gas

1o

photOns/bme_eec which would require a4oounting

. 3 years o L L "
| TO o = , R Sleh)

Afor a s1gnal to noise ratio of one.v However, there are so many factors
Cof - ten floating around in this,crude estimate that the experiment'

: might‘actuallv prove to be feasable upon‘closer examination.

Intens1ty correlatlons in Raman scatterlng have also been

"._5gtud1ed by Fetterlo using a different method. Fetter s results are..

K less‘general than ours because he uses a specific dynanical model for ,

the target and makes & number of approximations'that'we have avoided;-

’e.g., he con31ders only one-phonon scatterlng. Also, h1s calculatlons ef"

'1are restrlcted to the case of a small target while our Eqs. (120) and '

(121) are valid for a target of arbltrary 31ze and shape. The most

important dlfference betWeen I7‘etter s workvand»ours, however, is that

o hls method does not brlng out the s1mple and exact correspondenCe- s

"'between the intensity correlatlons in a beam of scattered llght and -

T

"the 1ntens1ty correlations in ‘a light beam emltted by a radiatlng source..tv




’f Ac;mowmms |

I would llke to thank Professor Kénneth Watson for suggestlng

ﬂathe problem con51dered here, and for hls contlnued adv1ce and

iencouragement whlle this work was 1n pmogress.v This work was supported

in part by a Natlonal Science Foundatlon Predoctoral Fellowshlp and

part by the Uhltedﬁstates Atomic Energy Comm1531on




L]

Te

8.

9.

10.

-390~

REFERENCES
M. L. Goldberger, H. W. Lewis,.and K. M. Watson, Phys. Rev.
132, 2764 (1963). |
M. L. Goldberger and K. M. Watson, Phys. Rev. 134, B919 (196k).
M. L. Goldberger and K. M. Watson, Pays. Rev. 137, B1396 (1965).

M. L. Goldberger and K. M. Watson, Phys. Rev. 140, BS00 (1965).

M. L. Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev. 142,

25 (1966).

- M. L. Goldberger and K. M. Watson, Collision Theory (Johaniley

and Sons, Inc., New York, 196L4),

Leon Van Hove{ Phys. Rev. 95, 2&9‘(195M).
L. I. Komarov and I. Y. Fisher, Soviet Physics JETP 16, 1358 (1965).‘v
R. Loudon, Proc. Roy. Soc. (London) A275, 218 (1963).

A. L. Fetter, Phys. Rev. 139, A1616 (1965)..



~Lo-
PART II
I. INTRODUCTION

Interference effects associated with the decay of coherently
excited non-degenerate atomic states have been observed and studied
for some time. Most of the interest in these effects has been con;
cerned with the decay of radiatively excited stdtes.l However, a
number of recent experiments have demonstrated the'éossibility of
observing such effects in the decay of electronically éxcited states.2
In this paper we derive a general expression for the integrated photon
counting rate in an experiment in which an arbitrary numbér of atomic
states are coherently excited by electron impact and the'resultant"
luminescence is detected by an arbitrary system of photon counters.
The result is directly applicable to quantum beat and level crossing

experimentss : - — .

A quantum beat experiment involvés the coherent excitation of
several (usually just two) non-degenerate but closely spaced atomic
levels, and the detectioﬁ bf the subsequeht decay radiation. The
excitation is performed by a pulse of electrons or radiation whichi
passes through the target (a gas of atoms) within a time At ; If-
.Amfﬁ is small compared to the inverse of the level spacing, Hw ,-
betwéen the excited levels it is found that the intensity of the
decay radiation oscillates in time with frequency w . In order to
obtain good resolution of these oscillatioﬂs it is clearly necessary
that At w-l . Since the uncertainty in the énergy of the iﬁci-
ﬁent beam, Z&l, is at least #/At the criterion for good

resolution is the same as the condition Ae >> Hw which must be .
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satisfied if the incident be;h is to be capable of inducing coherent
excitation. The effect of the parameter w(@@j on the experimental
resolution may be seen clearly by compafing the results of Dodd,
: Kaul; and Warringtonl‘ [(w/2r) (at) ~ 1o'l] with those of Hadeishi
and Nierenbergg [(w/2n) (Aat) ~ 2 x 10-2] . In a level crossing |
experimgnt the target étoms are excited by a continﬁous beam of
. electrons or radiation and the total intensity of decéy radiation is
measured. Intéresting effects are observed if the separation of -the
excited levels is produced by an external field. Then w can be
varied by varying the field, and it is found that the intensity
of the decay radiation has a resonance as a function of w at
w =0 . This effect was first observed by F. Colegrove, et ;l.l

The physical mechanism involved in both quantum'beat and level
crossing experiments are ﬁhe‘séme; only the manner in which the decay
radiafion is detected distinguishes them. Thus it should be possible
to give a unified theéretical treatment of both types of experiment.
In the present paper this is done by using a wave packet description
Of.the incident electrons. This wave packet description allows us -
to impose the condition for coherent excitation, Ae > Hw , in a
straight forward maﬂner. We lave chosen to treat the case ofvelectrohic
excitation begause there are already a number of treatments of
radiative éxcitation.in existence (e.g., Breitl'and Ffankehl). Also,
it is easier to make‘a clean physical separation bétween.thg excitatioﬁ'
_éhd'decay»processeé in the case bf'electronic e#citation;

The main result of this paper is Eq. (43) for the integrated
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photon counting rate in either a quantum beat or level crossing
experiment. This expréssion brings out the physical cohnection
between these two kinds of experiments. Similar expressions have
been derived for the case of radiative excitation and these have
been extrapolated in various-ways to the cése of electronic ex-~
citation (e.g.,‘Aleksandrov2). ‘However, it appears that there has
been no previous derivation of the integrated photon countihg rate
using wave packet techniqﬁes.

The remainder of this paper is divided into three sections
and an Appendix.. In Section II we consider the excitation process
and derive the scattered wave function for the electron-atom system.
The decay process is describgd in Section IiI, and the exﬁression-for
the counting rate is obtained. 1In Section IV we apply our general
results £o a calculation ofJ£hé phase of the oscillatory part of
the photon counting rate in the Hadeishi-Nierenberg experiment.2

The effect of exchange scattering is considered in the Appendix.

1 €
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ITI. THE EXCITATION PROCESS

The excitation and sﬁbsequent decay wili be aéscribed in
terms of a single incident électron and a single infinitely heavy
atom*'located at tﬁé'origin. An actual éxpérimént, of.course, in-
volves a beam of electrons incident on a many-atom target, and it
may be that different scattering events afe correlatéd; Our
treatment is applicable only to situations in which individual
scatﬁerihg evén£s are iﬁdépendent. It is perhaps'wértﬁ noting that
‘by choosing the atom to be initially at rest we are simpiy making a
'conveniéht choice of inertial frame and aré not neglecting effects
‘assoéiated with finite atomic velocities. Recoil.éffects, on the
othér hand, are completely neglected.

The atomic Hamiltonian-will be denoted by h , vhere _h‘
includes the interaction'wigh én external magnetic field if one 1is
present. The internal atomic vériables will be denOfed by ¢ , énd

the eigenstates of h by gé(g) .
‘bg (8) = We(t) . Y

For definiténess,vwe will assume that the atom has a non-degenerate

groundfstate with energy WO , and that it is initially in this

&%)

 state. In order to avoid cumbersome notation the incident electron

will be treated as if it wére distinguishable from the atomic electrons.

* _ - T - ‘ - L : o
~ We use the word "atom" for convenience. Our results apply equally

well ‘to atoms or molecules.
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The modifications which are heceéééry for inclusiqn of exchange
effects are given in the Appendix; The inéident‘electron's
kinetic energy 6perator‘is Te , and if avmagnetic fieid is
present the interaction energy operator is 4g§;g ; The inter-
" action of the electron's orbital anguiaf momentum with»ﬁhé field
will changexits trajectory fféﬁ a straiéht line to a path which
‘obeys the equation of motion dv/dt = (e/m)v ﬁ'g . It.will be
assumed that the Larmor fédiﬁs is large enough so tﬁat thié effect
may be neglected. It is con?enieht ﬁo choose the poéiti;e‘ z -
direction in the direction of B . Then the electron Hamiltonian
is Te-uBcZ | |

We will use the wave packet formalism of Goldbefger and

3

Watson” to describe the excitation process. The pre-collision wave

packet for the electron-atom system is (= 1) ,

x(t) = de3p a(p - q) e Ft x ; e b ()X - (22)
where
x = )R N CY
X - eV Tugw) L ()
E - p°/em -uB§ * WO : | N (2d)

K = T, -uBo, +h L 3 (2e)
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g(r) = fd3i> a(p) gig'z - (er)

In Egs. (2) q 1is the mean _incident momentim_i and ug is the initial
electron spin wa,v'e function with cz'_us = sug where s Iis either
+1 or =-1.g(r) is thé spatial packeting factor, centered at
r=0. Thus X(t) is centered at r = 0 when t =0, i.e., the
electron-atom collision o.gcu_rs at t =0 . The complete time

dependent solution of the Schrodinger equation corresponding to the

precollision wave packet X(t) is ,

T(t) ='fd3p alp - q) e-i?t 1lfqlL s _ (3a)

where

L - 2 Z10p p)
v oxs @032 ) ) g (¢)u, [’ 22

. 2
g, s a B, +in -p, /2m
(3b)

4 - B -(-uBs, +W) . |  (3¢)

In (3b). ¥ has been expa.nde‘d. in the complete set of eigenstates

ofK'.

Kxg=,E-x', L - (ka)

x

!
—~

.o

A
~r

X i i
. N
N
. no

.
1o

o

AONFE ()
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2
E,. = p, /2m.-sza + Wa (ke)

" Ta(Ba’E) is the matrix element of the scattering matrix for

scattering from X -to ><,a . Thevasymptotic value of the integral

in (Bb), is

lim 3 . a '=a’=
r -»> o J d pa

2 ’ r |
- LT e T (p'T,p); 4,>0
= | - (5a)
Oz e/ dg ¢ ); A <O
r a a
\
‘where . .
. 1 .
pta — (2mAa)2 . . . (5b)
%
da = (—2mAa) (50)

and '2' is'a unit vector in the direction of 2 . Hereafter we will
drop the prime on p'é and denote it simply as P, - Dropping

tgrms with Aa‘< 0 and defining the scattering amplitude,

i
!

-,

r,&p) = - eo)’n1, L) (6)

L : .
the asymptotic expression for ¢+ beconmes

Ly



LR vx e ‘?a_(E’E_) s T 3Sa_ga<_.e>. , (7>

5wheré,the sum ,Z') It includes only those ug:ga for Whieh"A; >0 .
) v . . . . ) v‘ . a . . ‘ B t.
o ®a o R
The SCattered wave packet at large dlstances is obtalned by 1n-r
{fsertlng (7) 1nto (3a) - In d01ng this we w1ll assume that the entlre
“"ﬁ;inc1dent wave packet lles far enough from any exc1tat10n threshold so
”?.that fa(z,g) is slowly varylng OVer the packet and may be removed E‘V )
"*3’fromvthe integral and replaced'by f (r,g) . It will also be assumed vf
B that the distance from threshold is much greater than uB so that

Ty may be replaced by z and 2'j may be interpreted as a sum
. over those atomic states for whlch W, < q /2m + Wb Weswili teke
/2m %o e less than the- ronlzatlon energy so that ‘£ includes
“f onlyﬁdiscrete‘states- The resultlng aSymptotlc express1on for the i

. scattered wave functlon of the electron—atom system 1s,

l‘h:;Isc(t)i ﬁ(t) - X( =_‘il 1¢a(r t) e ihtg (E) ft.h' -h(8a)‘

B T T N ) R IR

pap)e Tt ()
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The modlflcatlons of Eqs (8) whlch are necessary 1n order to f }i:ti;xf
'H'lnclude exchange scatterlng are dlscussed 1n the Appendlx It 1s shown o
:7fathere that one need only redeflne f to be, :,T‘

S @) - - (0%, %) - 'z’T;‘f”"ﬁo; ta) @

”5;wheie 1Z‘ is the number of . electrons in the atom and T -is an

w"if;exchange scatterlng matrlx deflned 1n the Appendlx.H Here' ﬁ_ﬂ iS’ft‘t e
LoE P S a B

;':jf'bgj evaluated at .p ; Q:;‘

i

= (2m T . s + "— s + % T
(em)2 (3 - uBs + W, - (pB w)) (o)

L

¢:i5€lﬁereaften ,fa will be defined by Eq. (9) rather than Eq (6)
B _ o We note in paSS1ng that 1f wave packet Spreadlng 1s neglected ‘
ipt; Aa may be put in a form whlch dlsplays the propertles of the scattered '
"Vl?_electron packet quite clearly - To neglect wave paCket spreadlng ve

"'rff~yfci-ftfdrcpiterms of order - |R g| 1n the EXPOI’lenJG Of (8c),

P
a
m

(2 _q)

. where

m
|
'd .
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Substituting (1la) into (8c) and using (2f) we obtain,

i r - et
(p_ _t) q D_

: a a = a : '
A(r,t) =~ e g\ ;- (r-—1) (12)

Thus Aa is an outgoing spheriéal packet which expands with velocity

p_/h and has radial thickness (p_JNQ)Ar where Ar is the linear
a a '

‘dimension of the incident packet.
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IIT1. THE DECAY PROCESS

‘In order to describe the decay process we will replace h by «
H, = h+K +V,  in (8). K  is the Hamiltonian for the free
electromagnetic field, and Vr is the interaction between the electro-
magnetic field and the atom. The physical reasoning behind this

prescription is as follows. The excitation process takes place over

a time of order (m/q) (ar) = (m/q) (Aq)-l'Eazﬁt where Ar is the

spatial extent of g(r) and Ag 1is the width of a(p) . The un-

certainty in the energy of the incident wave packet is | i
aq/m = (Am)-l . The lifetime of an excited atomic state is r-l

(say) and its line width is [ . We will require that At << r-l .

This condition may be interpreted either as requiring an experimental
situation in which a well resolved temporal behavior of the decay

luminescence may be observed (At << F-I) or as requiring a

situation in which the uncertainty in the incidenﬁ electron energy is®

much greater than the line width (aAq/m >> T) . During the excitation

Vr ‘has little effect and may be neglected in comparison with the

electrdnfatom interaction, but after the atom is excited and the

electron has moved aﬁéy Vf becomes the dominant interacﬁion and

‘causes the aﬁom to decay. .Since the excitation is very fast‘comparéa

to thé decay we may describe the'decay process by treating the ex-
citation as an impulse at t = 0 , and this.is just what our prescriptidn
of replacing h .by Hr 'dbes. Thg error associated with this

approximation is an error of order At in t , e.g., if we obtain




oy

‘.;'we must 1nclude the 1n1t1al state of the radlatlon field in. (Ba),

e Wlll neglect background radlation and take thls 1n1t1a1 state T IR

:Na decay.law of the form _
- -F(tnﬁt) R

: gfdecay of the exclted atom 15’ Lioa o

-,,ga

The decay channel whlch w1ll be cons1dered here is a s1ngle

’ffphoton emiss1on whlch leaves the atom 1n its ground state, 1t w1ll

"“_be assumed that only this decay channel contributes appreciably to fy_' 3

-

'”"the observed decay luminescence The emitted photons are’ to be -

i_observed by a photon counting apparatus which operates contlnuously

“ from some negative'time onwards The integrated photon counting rate,

i.e., the probabillty that a photon has been observed prlor to time

-ﬂt (t > O) is the expectation value of the operator,'f!

>Mf"

,e

'istate of K w1th wave vector k and polarizatlon 'g' The photon

o tield w1ll be quantized 1n a box of volume v so that K

O

discrete elgenstates The ‘sum L

‘%o be the vacuum state Thus the wave functlon descrlblng the tff'ft"

lk e)(k ef S ey
E;A7 1s a'one photon eigen-f;"d

':_d'taken with respect to idc(t) In (lh)_ﬁt

includes all photons admitted “'f“
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P
by the counting apparatus, e.g., the range of k in- E: may be
. T

e
A
X

determined by an optical filter, the directional range of by the b

size and location of a photon counter, and the choice of gV by a

polarizer. In using .(14) we have assumed for the sake of simplicity
that the counting apparatus detects all photons in its range of ' ' oo
admittance with equal sensitivity; if this were not an adequate

; ‘ P
approximation we could replace P by g s(k,8) }5,’3\)(‘5,_@[
where s(5,§) is a sen51t1v1ty function, e. g , the dependence of

s on k might be determined by the shape of the pass band of an

optical filter. The integrated photon counting rate is,

(B(t)) = @ (0PI, (¢)) = Z‘l(é )k, etid N 5)
| k2 & |

_ where we have multiplied by unity in the form '§: gaga* and used
| & ’
the notatlon g lk ) = [g )k, Q) By assumption a photon [k,%) _ i

P .
which is 1ncluded in E: can be emitted with appreciable probability
. _ T,

S

only by decay of j[d (t) .to the ground state, so the. only appreciable

term in the sum §: in (15) is the &, term. Thus,

(B(t))

Mg

1
.
jod

eo, lId (t))]

T

. t
}: (B, 16,(4)) et (2l o 7 lgvee)?

e

1=
o>

(Equation (16) Contd)



B

y ' A -iH t %
+ 2 Re (¢b(t)|¢a(t)>(go,}§_,gl e _r , gb,vac>
g 78,
. b >a -iH t
% (go,E;gl e T g, ,vac) - | ‘ (16)

In (16) the sum j[? may be restricted to those atomic states
g,
which can actually emit a detectable photon, i.e., those states
-iH_t
for which (go,}_i,'g\] e T I ga,vac> is appreciable when |k,%)

is included in Hereafter we will consider the sum to be

o

k,

1m)

so restricted.
We will begin our evaluation of (P(t)) by evaluating the
scalar product (¢b(t) [¢a(t)) . This scalar product is time in-

dependent, but we will choose t  to be much larger than

L P_ '
(g—) —aai Ar  so that we may use (8b). This gives,

(¢bl¢a) - Z Fba. 01‘ba(g‘) 6s S. ' | (l7a)

o b a
b’ a
where
1
(p_»p.)2
= * -
@ = g a5 Ge) r,B) - am)
1 ‘ ' % ' . '
Fba = 4 _é_ dr Ab (r)t) Aa(r:t) _ (173)

(1) (p_p_)
b a 0
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Equations (17) apply both to the case b # a and the case b =a .
We now show that,.unger suitable conditions, Fba reduces to the net
incident electron flux at the target. For large t the electron
wave packet is localized far from the origin and the lower limit of

integration in (17c) may be replaced by -« . Tais results in the

expression,

i

Fo. = 1 5 9 f‘dSp &p' a’(p-q) alp'-q) 5(pb-15a) (18)
(2x) (PB,P_) . ,
a,

where p'a is the same as P, except that p 1is replaced by p'

We will let

~
b% = 9

' S . s

be the independent variable in 6(pb - p’é) . It is readily shown

that
p' .
a .
- ! — —————— - .
8(pyp'y) = & [8(p, -n) + 8(p n)] (20a)
where
2 2 2 2.4 ‘
n = (p'" -p" +p " -p_")° (20b)
a b
O |
p, = (p p“v_, ) | (20¢)
The integrand of (18) vanishes when ﬁh = -n so Fﬁa reduces to,
. C P ' .
1 q ‘f 333, _* Fa
F = i’p d’p’ - taq) =2 -

)5 )
e - | (e1)
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We now introduce the variables w and W,

w = €_ - e_. v : (22a)
a b '
Wo= L(e +e) (22b)
a b v | .
and expand in powers of w . To first order in w Eq. (21) may be
rewritten aé,
. 1 9 w j 3 33 0 ¥ L 'L
Fra = on)? g Q) Japap alp-a)al -9
, a :
P' . 2
o | Bl L LTERE Sl (232)
0 n_ . ' o] : v
.70 ‘ ‘
where
ng - ®2-3,%? (230)
0 1 .

In order to set w =0 in (23a) we must require that,

. e
W << 1 .

mo - _ w ‘ o A

NG ~ 2/m <1 _ , (25)
o q | |

T < o (28)
0 q/m ‘ . L _ e ,

These inequalities are of course satisfied identically if b ='a .

" Note that (25) is implied by (26) because Aq << q . If (24) and



(26) are satisfied we may put,

* : ' ) '
Fra = ——-l——g- Eq_ dep &p' 2 (p-a)alp' -a) 5_2 3(p,, - ng)
(2x) Y 0

(27)

The last step in the reduction of F is to expand n and

ba 0
in powers of Aq . '

2

2 . .
P, -p', - 2
ng = Py - "i—e—i——é* +J(a)’ - P +0’(@—3—)—) -9

Pa

o)

1

®
S P

' - 29
14 qgéq') ] Puq h 0 (0)? | (29)

(@]

a B
‘ P_ '
a JAY Ag
- 3 l+<9’~9“%)*@1“§)
o_
a

We see from (28) and (29) that F , reduces to,

* : .
F, = 1 5 ]d3p Pp'a(p-gq) al® - g) &(p,, - Py ) (30)
(2n) | . v
if
——qég——— - (31)
p_
a
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The right-hand-side of (30) is the net incident electron flux.

The incident electron wave packet is,

2
1 3 i(p - r -(p"/2m)t) -
g, (r,t) = —=7 d’p a(p - q) e = " = (32)
in (gn)j/a
and the ingident flux is
~ 2 o
F o= dz|g, (=,0)| (33)

-0 -

which reduces.immediately'to (30).

The inequalifies we have invoked all have simple physical
interpretations. Aq << q needs no éom@ént. Inequality (31) is
equivalent to our requirement tbaf the entire incident wave packet.
must lie well above any excitation threshold. Inequality (31) (which

must hold for all states gé included in the sum Z' ) and in-

: | | o o 8y

equality (26) taken together imply (2L). Thus (26) is the only new
condition neCessary to reduce Fba to F . The weaker condition

WS qu/m is necessary. in order to observe any intefference effects

at all, i.e., in order that <¢b|¢a> # 0°' . The stronger condition (26)
ensures. that the interference effects will not dépend on the detailed

structure of the incident wave packet. This is seen most clearly by

writing (26) as,

At << Wt o - (k)



which‘is an obvious criterion for the observability of well resolved
beats in a quantum beat experiment.

The scalar product <¢bl¢a> may noﬁ‘be‘written as, v

@18.) = Fo(a) (5

where

PO NI A RS (350)

VLN
For b =a,
P

o (a) = o, (a) =‘Z' qE ]er | fa(gg)llQ | - (36)
S .
. o

is the total cross section for excitation of state g, by an electron
of initial momentum q and spin projection s/2 . Gg with b # a
may be interpreted roughly as the total cross-section for coherent
excitation of states g, and ng . Note, however, tbat Opg . 1S In ‘ s
general complex.

L - -iH t
It remains to calculate the matrix elements of e r which

occur in (P(t)) . This is done in Goldberger and watsonh and only
the results will be preéented here. We will consider only the case

‘ 4 .

in which each state in the (restricted) sum Z decays to
. s

a . , .

the ground state through an allowed dipole transition and the o [

dominant contributions to the line widths arise from dipole transitions.
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In this case (¢ = 1) ,

~ 1
- ~iH , NICH O 2.p
[ ' b1 - -
(gg,k2le  “lg vac) = - VK (gol—— lg,)
-i(wo+—k)t 1 - explilk - (wa - wo) + ‘ira/Q]_t] _
Y.e _ _ (37a)
. k - (wa - wo) + 1ra/2
where
Z
P = E " Ry | : (370)

is the total momentum operator for all the electrons in the atom, and -

| e(w W)
T, = Z | f Zl(gb — |g>| (37¢)

&y
wb<wa R

is the natural line width. Using (35a) and (37a) and changing the

P .
© sum z A In (16) to an integral, the non-interferent part of
: i, 2

(P(t)) ‘l;ecomes,

a
s

: : o P 5 .
(B(t)), = F Z' 0 (@) § a9 }; __(_2:7_ [{eol —— | g )|°
B ga . . € B

2

.){‘ . dkkéa l'_ eXP(iEkl;(wé - Wb) +'iPa/2]t} ‘ | o _
g b - e s S
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We will assume that the filter used in the experiment passes all
radiation with a frequency in the vicinity of wa - Wb (for all

4
g, included in 2: ) . By "vicinity" we mean a frequency range
g ' '
a

much wider than Pa . This allows us to replace

o
.IP dkk by (Wa - wo) dk in (38). The result of this re-
placement is,
, -
: M Ty, -rat
(p(t)), = F o, (a) T - (1-e ) (39a)
g&
where
nf e —— a0, ) Hegl—=—1 )% . (%)
. P ~
e

Using (35a) and (37a) the interferent part of {(P(t)) becomes,

. / 3 2 g?. P N
&, S
b >a

' ? P 1 - exp(ilk - (W -w ) + irb/e]t]

¥ (gOITlga) dik 0 .

. P k - (wb - W, ) + ipb/e

1 - exp(ilk - (wa - W) +ir /2lt)

p 4 (10)

k- (W - W) + ipa/_e: ‘
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. . The integral over k 1in (40) may be put in the form,

1 ik 1 i 1

- 3 - - i ) - - W i
Wwo- W+ 1(rb + pa)/e P k (wb _wo)- 1pb/_ k (wa wb) + 1pa/2

)8 ‘l - expli[k -(WB - wb)% irb/2]t]} *
$$ (l - exp(ilk - (Wa >- WO) + ira/2]‘t}, | (41)

The overall multiplicative factor of k in (41) will be replaced by

. ' .. -1
Wo- Wb when it multlplles [k - (WB - WO) - 1pb/2] and by W_ - Wb

when it multiplies [k -(Wa - WO) + ira/2]fl . With these replacements (40)

becomes, o S : ,
» — ! . P
ig _(9) I
(P(t)); - 2F Re Z_ be Tt
o 8,8, wb3' W, *i(r, + 1)/
b >a
R |-l - W) - H(r - ra)th . S (42a)
_hwhere ‘
| eg[%—(wb W) =Wl i | ? P S
Toa? = Pr a0, 2, (g m | &)

?.r o B
R (el —5lg) | . (ua)
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Adding (39a) and (L42a) one obtains the following expression for

the total integrated photon counting rate.

| ~ / r,S ot
(p(t)) = F jg: o (@) —2— (@-e *)
; Fa .
¢ * b o
‘ Oba(g) I"ba ' GL
-2 Im : 1 - exp{[i(Wﬁ - wa) - —( * T, Y1t
- 8,28, wb - wa * i(Fb * Fa)/2 : ; ‘ ‘E
b>a : - (43)

The differential counting rate observed in a quantum beat
experiment is, ¢

| (4 -rt .
. P
Qig%ﬁll = F 9 2 5, (a) FaP © Y +2Fe E % (1) Toq

g . 8,284
4 : » b>a

expll1(i, - ) - 3(r, + r)le) | (k)

The total number of photons counted in a level crossing experiment is,

P P
(P(»)) = F AL 2 Im 2 Y Tba
Ty ee, "ot i(rn, + )/2
b>a

(45)

The expression for the counting rate must be modified if there are
several possible initial and final states. The cross-sections defined
by (35b) depend on the initial electron spin orientation. For an un-
polarized incident électron beam these should be replaced by their

averages over initial spin orientations,

-

e
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5 (@) = 3 z 5, () (46)

There may be more than one possible initial atomic stéte. We will

- denote the initial states by a Greek subscript, and let Py be the

probability that gy is the initial state. Finally, there may be

several possible final states which we will denote by a primed Greek

~subscript. The statement that 8yt is a possible final state means

that when z g, gaJr is inserted into (P(t)) (as in (15)) the
gq, '

term 8oyt gives an appreéiable contribution. The generalized

al

form of (43) for this situation is,

- P
. ’ — Pata -F&t
(P(t)) = F z pa Z d Z Uaa(g)T (l—e )
gOf ) gav - ga )
- 2 Im Z ' cbaoz(-q) Ta'va
8,28, o~ Wé * i(rb * Fa)/2.
b>a
e (l - exp({i(ig - w ) -3(p, + ra)]t}) (47)
;éa and ;ﬁaa are the same_as v;; and ;ba , respectively,

except that the initial atomic state is %a rather than gy » and

- P P .
Pa'a and Pa’ba are the same as Fa and Pab , respectively,

except that the final atomic state is g, » rather than g, -
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In any given experiment there will be corrections to (L3)

(or (h?)) arising from the finite extent of the target and the finite
velocity of the atéms. The operator P , as given by (14), is not a
strictly correct description of a photon counter,‘e.g., a counter
measures the position of alphoton, but does not measure the direction
in which it is traveling. Howéver, if it 1s kﬁown that the bhoton
was emitted at fhé origin, then when the photon 1s counted it is
also known that the porfion of the photon wave packet interéepted by
the counter consisted of plane wafes.whose wave vectors lay within
the'solid angle subtended by the counter at the origin. So P is1
an effective measurement operator valid for a particular atomic
positign and vélocity. By performing a sbatial translation and a

velocity translation one can ¢onstruct an operator valid for an atom

at position R and moving with velocity V . The counting rate is then,
— &R @V o(R) F(V) (P, (t)) (18)
- (p(t)) ==

ﬁhére p(g) is the degsity of atoms in the paft of the targetvinter-
cepted by the beam andJrF(X) is the atomic velocity distribution,
both normalized to one. With respect to such corrections we only wish
to noté tﬁat the Doppler effect will be,unimportant if the range of k fwi

P ) .
in z P is sufficiently greater than the Doppler widths of the lines
k,¢e '

involved in the experiment.
F is to be interpreted experimentally as the net beam flux,

and (P(t)) as the integrated counting rate per atom in the part of
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the target intercepted by the Eeam. In a levél cfossing expériment
the total duration of the beam nay be huch greét;r than the value

of At for individual electrons. The tgéal number of counts is
still given by (45) (or the modified version of (45) obtained from
(k7)) in this case since the increase in the number of counts with
increasing beam duratibn is accounted for by the incfease in Fowith

increasing beam duration. .




-66-

IVv. THE HADEISHI-NIERENBERG EXPERIMENT
As a sinmlé applicatioﬁ of our general considerations we will
calculate the phase of the interferent part of the phpton counting rate
in the Hadeishi-Nierenberg quantum beat experiment.z’* We will not
consider corrections arising ffom finite target volume or finite atomic
velocities. Equation (L4) will be used as it stands except that

(2 and %a will be replaced by a, and Cha 2 respectlyely,‘

1
In the Hadeishi-Nierenberg experiment go is the 5 SO ground
state of Cd . The atom is in a weak magnetic field (0.88 gauss) and
1 Mj = + 1 excited states.

The experimental configuration is shown in Fig. 1(a). The incident

beats are observed between the 55P

beam is perpendicular to B , and the emitfed photons are intercepted
by a counter which subtends a small solid angle about the z-axis.
Denote the My o= +1 (-1) excited states by g+(g_) . Let W, and
W_ be the energies of g, and g_when B 1is in the positive
z-direction as in Fig. 1(a). Then the interferent part of the

differential counting rate is,

*
Hadeishi and Nierenberg state that in their experiment the incident

electron energy was close to threshold while we have required that the

incident electron wave packet lies far from threshold. However, their

criterion for an energy close to threshold was e K Wa which cleafly
does not conflict with our criterion (31). In fait, (51)~wgS'well

satisfied in the Hadeishi-Nierenberg experiment (T. Hadeishi, private

communication).

B e o g
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da{p(t)). iw -w)t
RS - P - + -rt
—_— = 2
3 F Re ¢ _ +(g) F_+_> e e | (49)
where we have put r.=r_-= r . In Fig. 1(b) another experimental

configuration is shown; it is obtainéd from Fig. 1(a) by 180° rotation
about the x-axis. Clearly the counting rate for the situafion pictured
in Fig. 1(b) is the same as that for Fig. 1(a). Let us calculate the
counting rate for Fig. 1(b) using (&h). For a sufficiently weak field
g, » &, a_ (q) , and F_S_ are essentially field independent. Further,

r E_ is the same for both situations pictured in Fig. 1 since it is

o) A
.invariant under replacement of k by - k . The energies of g, and - g

depend linearly on the field, and the effect of reversing the field is

to replace W; - W+ by W+ - W Thus the counting rate calculated from

Fig. 1(b) is,

a(p(t)). _ i(w, - W)t _
'—_TEE—_l = 2F Re o_ +(g) r?4_ e eIt (59)
Comparison of (49) and (50) shows that,
- P '
Im g_ +(g) r., =0 : (51)
and
ae(t)), B - -
——~a%——l = 2F g_ +(g) r_ﬁ_' e Tt cos(w+ - W)t .(52)
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According to (52) the oscillations should start out at either a maximum
or a minimum. Extrapolation of the data in Hadeishi and Nierenberg's
Fig. 2 to t = 0 shows t_hat the oscillations start at a maximum which

indicates that o (a) p:i_ is positive.

oo
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P AL R i A

APPENDIX: FEFFECTS OF EXCHANGE SCATTERING
In this appendix we will justify the use of equation (9). This A
will be done in a rather brief manner since much of what is said here is
5

also contained in Goldberger and Watson. We first replace the initial

unsymmetrized wave packet X(t) by an anti-symmetrized wave packet

%
g
5
¥
o

Xs(t) . Since the atomic wave functions ga(g) are already anti-
symmetrized we need only anti-symmetrize with respect to interchange

of the incident electron and each of the atomic electrons.

(1) - (z+ 1 sx(e) (m28)

where S 1is the projection operator onto anti-symmetrized states

s = (z+ 1)-1' Sij . (A1b) _
J7=0 :

‘Here Z is the number of electrons in the atom, 60 =1, 5j¥0 = -1,
Qo =1, and Qj#O interchangesAthe incident electron's variables
énd the Jjth atomic electron's variables. Q. is Hermitian and unitary
so adjoints and inverses‘will not be indicated explicitiy. Let tc

be a large negative time at which the electron wave packet does not

overlap the atom. Let H =K + V where V 1is the electron-atom

* .
interaction. Then since all permutations commute with H the

symmetrized solution of the Schroedinger equation is,

This is not strictly true since K does not include the interaction of N

T BT T TR R T S e o A

the incident electron's orbital angular momentum with B . It is assumed

that this is of no physical significance.




W o’

~T1-

_ -iH(t - tc) 1 -iH(t - tc)
ys(t) = e A -xs(ﬁc) =(Z+1F Se X(tc)
| -iEt i .

= X(t) + a’p a(p-q) e ‘ys(é,c;)+ o (A2a)

where
1 ' 1 Z '
’ + _ . 5 o+ _. _ - - 1l ]
Vo(se) ~ (z +1)2 s(v X)=(z+1)2 E:’ 5,9, Frin - &
‘ o i , ,

(A2p)
We will expand ﬁ-s(sc)(t) '.'-F-..Is(t) - Xs(t) in anti-symmetrized eigen-

states of K .

Ko@) = (24 1) sx_ (83)

In general the states Xs(a) do not givé rise to a simple expansion

of the identity, but it is readily verified that

a a

Z xé(a) <Xs(a),fs> ;z Xs(a)’(xa,f) - f"s (Ala)

whenever fs is of the form

1 ' v
fs = (2 +1)2 sf o (ALkb)

‘where f 1is an unsymmetrized wave function in which the incident

electron is localized far from the origin and the atomic electrons are
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localized near the origin. The nature of the sum 2; in (ALa) is
a v

defined by :E; % Xaf = 1 ; it is displayed explicitly in (3b).
a : Vo
For sufficiently large positive times ys(sc)(t) is of the form (Akb) %

(we assume the excited atom is not ionized) and admits the expansion

(Aka). Before carrying out the expansion we will put ‘ws(sc)+ in a

more convenient form by using the operator identity

1 1

G FFm ok T Eeam oK, a9 (B52)
where Jj' |is arbitréry and, : .
T, = V. +V,, S W 7 (A5Y)
J'd J

-

E+din -H ]

vy o= QVa, (a5¢)
= H -V, . E A5d
K, 3 (a54d)

This leads to the expression,;

. ) -l . :
4 (z +1)
Csaysse)? = Brams E, Z 805 (G %y ITye5105%)
. - kJ : ;
E"—“:\L“a'; (T, (p,0) - 27,(p,,0)))  (4e) ’

where

T SR

TR
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il

1,(p,2) 0 |7 - (a6v)

L ex

a (Ea)I_))

fl

'(xal'rOklx) S (a6c)

with- k # 0. ¥

S(SC)(t) is thus,

X

v ES(SC)(t) = (2 + l)% S z T 3;”\ —aEa (Ta(lna,g) - Taex(ga,g)]

a

(a7)

Following the same line 6f development as in Sec. II this may be put

in the form,
Ty (o)) = (2 + D2 (5) (a8)

where Isc(t) . is given by equations (8) with f, defined by (9).

The decay process is now described by,

[

T.0 (49)

C

~’}Zs(dc)(t) = (2 +1)

which is obtained from (A8) by replacing h with H, and including
the initial state of the radiation field. In the same way that one

verifies (Aba) it is readily verified that,

(B) = g0y (DB g0y (8)) = oo (®)[PIE (2) (810)
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Thus the symmetrization in (A9) may be ignored for the purpose of

~calculating the photon counting rate.

0

(IR BRI IR RS S M R SR A DA A
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FIGURE CAPTION

6

Fig. 1. (a) Experimental configuration of the Hadeishi-Nierenberg
experiment. (b) Experimental configuration obtained from the

Hadeishi-Nierenberg configuration by a 180o rotation about the x-axis .
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