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ABSTRACT OF PART I 

Measurements of space-time correlations in the intensity of 

a beam of scattereq particles yield information about the scatterer. 

Goldberger and Watson have developed a theory of such measl~ementG 

appropriate to the case of ne~rly elastic scattering; in this paper 

we extend their theory to the case of inelastic scattering. The main 

result of our work is that under certain experimental conditions the 

correlated counting rate in an inelastic scattering experiment is of 

a form equivalent to the correlated counting rate for an incoherent 

beam of particles emitted by a source. This result applies, in 

particular, to Raman or Brillouin scattering of light by phonons in 

an extended target. However, estimates of the signal to noise ratio 

for this case indicate that it may not be possible to observe intensity 

correlations in Raman or Brillouin lines using presently available 

light sources. 



ABSTRACT OF PART II 

The coherent excitation of several atomic status by inelastic 

electron' scattering and their subsequent radia ti ve decay is considered. 

General expressions for the photon counting rate in a quantum beat 

experiment, and the total number of photons counted. in a le,vel crossing 

experiment are d.erived. The general results are used to calculate the 

phase of the oscillatory part of the photon counting rate in the 

Radeishi-Nierenberg quantum beat experiment. 

I 
~' 

, 
* A slightly different version of this work has been published 

,., 

previously. R. L. Kelly, Phys. Rev. 147, 376 (1966). 
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PART I 

I. I~~ODUCTION 

A quantl~ mechanical theory of intensity correlation experi-

. 1 5 
ments has recently been developed by Goldberger} Lewis} and Watson. -

The exp;eriments considered by these authors involve the detection of 

correlations between measurements of the intensity· of a beam of 

particles made at two different space-time points. Intensity correla-

tion measurements on a beam. of scattered particles give information 

about the target. Goldberger and vlatson3 (hereafter referred to as 

GW) have developed a theory of such experiments appropriate to the 

case of nearly elastic scattering. In this paper we consider correla-

tions in the intensity of a beam which has been inelastically 

scattered by ~ many-particle target. 

The results of GW for.intensity correlations in a beam which 

is emitted by a radiating source can be reproduced by the follo"l-ring 

heuristic'''derivation.'' For definiteness we consider the case of a 

beam of photons. The amplitude for emission of a photon with wave 

vector k at a point ~l in the source at time tl and subsequent 

detection at a point 

A(k,sl,t l ; Y ,t ) - -a a 

Y at time 
-a 

t 
a is, 

A(k) 
exp(i[k!!a - ~ll - c k(ta - t l )]} 

I!~ - ~ll 

The amplitude for emission of two photons of wave vector k at points 

~l and 

·points Y -a 

at times 

and 

and 

at times t 
a 

and their subsequent detection at 

and is then 
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where we have s~~etrized the amplitude in accordance with Bose-Einstein 

statistics. The probability of such a double measurement is,. 

where we have put Iy - sl -a -
v 
.La and 

complex } 
conjugate 

in the 

denominator. The total p~obability of observing two photons of wave 

vector kat· !a' ta and !b' tb is obtained by integrating ~l 

and s~ over the source volume, V 
-~ s 

-" "" 

. I 
"tI'--

, 



I " 

(' 

= (const.) J 
v s 

( 

-:-3-

Finally, the probability of making such a measurement on a photon of 

arbitrary energy is obtained by integrating over the emission spectrum 

where P(k) is' an appropriate spectral Height function. 

Two important points must be mentioned about this result. 

Intensity correlation effects are seen to arise from interference 

between the amplitude 

before integrating over 

A(k,s,tj Y Jt) - -a a 

~l and s 
-2 

rather than integrating first 

and then s'luaring the total amplitude t 6 find P(k; r a , t a' r b' t b ) 

For this reason there is no interference betHeen A(kJ~lJtlj ~t) 

=f s ' . 
-2 

This is a valid procedure 

if the source is large compared to any characteristic correlation 
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,lengths in it, so that,different parts of the source radiate incohE:.:-:'ently. 

Simi~arly, there is no interference between amplitude for emission of" :. ':', 

J)hotons of different wave vector. This is valid if the beam is 

; temporally incoherent, Le.} the emission spectrum is time independent. 

The primary result of the present paper is that when double, 

measurements are made on a beam of scattered light' (or massive particles) 

the form of p(Ya, ta' !b J • t b ) is entirely similar to the above 

expression for the case of emitted light (or the appropriate expression 

for massive particles). The ohly difference is that the source volume 

is replaced by the target volume and that !A(k)!2 represents the 

scattered spectrum at a certain scattering angle rather than an 

emission spectrum. There are two important restrictions on the types 

of targets '{e consider. The first is that the target is small enough 

, so that multiple scattering may be neglected. The second is that a 

particular form of the impulse approximation is 'valid. We write our 

results in a v.ray ,{hieh allows the usua,l kind of impulse approximation 

'(neglect of the binding of particles in the target) to be applied, but 

no use is made of this except when we com~re our results with those 

of OW. The quite unrestrictive form of the impulse approximation that 

, , ,,' is used may be described as follows. It is assumed that there exists" 

',a correlation length, " C J 
such that tt-TO parts of the target, separated, 

I 

by a distance much larger thari p, 
c 

scatter incoherently. The target 

is then imagined to be partitioned into a nUlnber of voiume elements 

,each of which j.s large compared to 1, 3 
c but small enough to satisfy 

the conditions forF'raunhofer scattering (EqS.' (39) and (51)). !t is 

" , 

" . '" 
-I.: 

-,,' .. '. ' 

", '.', 
" ,:\" 

'. I',: 

, ,;1", ' 
, , 

: ~,', ' 

'i.,"" 

:.' 

~ .,., 
!', ,.:,' 

.. ,,: .,"_1 

, , 
i 1 

; ! 
j 

, I 
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then assumed that the impulse approximation may be applied to each 

of these voll@e elements, i.e., the binding of a particular volume 

element to the rest of the target is neglected when calculating the 

scattered intensity arising from that volume element. This is pointed 

out in the remarks following Eq. (30) and in the paxagraph preceeding 

Eq. (54). 

There are certain experimental conditions that must be ful-

filled in order for our result to be valid. The most important of 

these is that the angular separation of Y and 
-a Ib must satisfy 

a certain criterion of smallness. Unlike light from an isotropically 

radiating source, scattered light will in general have an energy 

spectrum which depends on the angle of observation. We will require 

the angle between Y -a 
and Ib to be small enough so that both are 

characterized by the same energy spectrum. We do not investigate the 

potentially interesting case of wide angle intensity correlations in 

which Ia and Ib do not satisfy this criterion. 

In Section II we give a preliminary description of the type 

of scattering experiment under consideration. The characteristics of 

the source of incident particles, the incident beam, and the target 

are discussed. The scatterir~ cross-section of the target is written 

in a form which is useful for later applications. In Section III we 

derive the correlated counting rate for a beam of inelastically 

scattered particles, and compare it with the result of GW for the case 

of almost elastic scattering. Applications to Raman and Brillouin 

scattering are briefly considered. 

. .i 
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In the main body of this paper we do not always give credit 

to GW ,{hen we use their techniCluesj this vTOuld reCluire too many 

footnotes. However, our work is, to a large extent, based on that 

of GW, and much of what is said here is also contained in their 

paper. We attempt to stick to their notation as closely as possible. 

) -.. 
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,II. IRELIMINA.-qy DESCRIPrION OF EXPERJ:MEIIj'T 
, " 

, ' '. , 

We consider a scattering experiment in which an incoherent 

, incident be~m is, directed onto a many particle tatget. The wave 
" .' 

function of the beam at points between the target, anq the source is, 

~ih =J (1 ) 

Here ~ is the projection operator onto symmetrized or anti-symmetrized 

states} and N' is the total number of particles emitted by the source 

during the experiment. The wave functions of ,the individual particles 

are taken to be of, the form (11 =1); 

where 

.. €(q) = q2/2m (non-relativistic particles) 
.. 

e(q) - ( 2 2,' 2 c q +m c4//
2 

(relativistic particles) , , (3) 

,€(q) = cq (photons) 

and, ui (si ) ',is the ~pin wave function. "The dependence Ofr'i (~iJ t) 

, on, si,' will be leftimpl:t.cit ~,0i(!SiJ t > t i ) is normalized t? unity) 

'." . 
'. ,', 

, ,'. " :, ' ~ 
,\'. 

" , 

.", ' ;J . . ,' ,'''''" '. . ':' ~ . '. : . :: 

. ', ',' ..... . 
,.; , . 
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. and wave functions with different indices are assumed orthogonaL' 

. '91i: describes a particle which is emitted in an outgoing s-wave 

.wave packet at the time ti and location ~i' These parameters} 

t i . and ~, are introduced phenomenologically in order to represent 

'the incoherence of the beam. Their physical interpretation depends 

.,:;' ,on the type of soUrce under consideration. For a thermal source of 

. ': 

:.: ;. 

. ','-

massive particles; for exa~ple, they should be interpreted as the 

··timeand place of the last collision suffered by a particie before 

. 'leaving the source. .' 
ill', 
~ ~; 

Theemissibn times iie within the rangeJ 

That is, the source is turned on at time Tl and ,turned off at time 

Tl + TO' TO is a macroscopic time (the duration of the experiment). 

In order to take collimation of the source into account we restrict 

. "~i to lie in that part of the source that can I'see" the target through 

.the collimation apparatus. From now on when we speak of the "target" 

t :: 

we will mean that part of the actual target which is intercepted by the 

actual incident beam. Thus the part of ¢i(!i,t) which lies outside 

the incident beam does not interact with the "target" and is not 

scattered so v'e need not take explicit account of. the fact that this 

pa~rt of 911 is, removed by the collimating apparatus. Energy resolution 

in the incident beam will be accounted for by defining an energy .. 

spectrum in terms Of the wave packet amplitudes a
1 

(q) ., .• 

, .,'. 

" , . ;1: : 
<,:" 

"'J'. , .' . , ..... , '.J" " 
.'J .. .\-',', .r,·· 

, '.": " .: .. ' 

. ~ . 

.... ; 

';' . 

,.C \' 
.~ 

i 

I 
I 

t 
~ 

I 
1 
1 

.1 , 
I 
! 
l , 
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We will choose an origin of coordinates which lies in the 

target and assume that the average density of the incident beam is 

uniform over the target. This average density is, 

where Tl < t < Tl + TO and the brackets indicate tnt averages over 

a
i 

(q), 9:.i' and ti are to be taken. We will assume that the 

characteristics a i (q), u i (s), 4' and ti of each wave packet are 

statistically independent of each other and of the characteristics 

of other wave packets. Further, weaSSlUne that the magnitude:d
i 

and 
A 

the direction d
i

' of 9:.iare statistically independent. Finally, we 

assume all incident wave packets to be statistically equivalent. 

Substituting Eq. (2) into Eq. (5) we obtain, 

n = N J dp dq (6) 

where 

(8 ) 
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N 

L 
i=l 

-i[€(q)-€(p)](t-t. ) 
e 1 e(t - t.) 

1 

(10 ) 

The step function in Eq. (9) takes account of the fact that ¢. (x., t). 
1 -1 

vanishes if t < t. • If the distribution of emission times is 
1 

uniform (9) n~y be replaced by, 

t J dt' 
-i[€(q)-€(p)](t-t') 

e • 

Tl 

(11 ) 

During ml0st of the experiment t - Tl will be much larger than any 

other relevant quantity with the dimensions of time. We utilize this 

fact by taking the average of Eq. (11) in the limit that t - Tl - 00. 

= 

lim 
t-T - CO 1 

p 

For p I q the quantity a~(p) ai(q) will have a non-zero phase, 

and this phase will have a random dependence on i. Thus we expect 

(a~(p) ai(q») to vanish for p * q so that the principle part in 

(12) may be neglected. This will be done here and in the future. 

n now becomes, 

, i' 

" 

\.1 



" " 

·1 
~, 
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n = "R (~2>Id q 
<la(qJI2) (13 ) 

v(q) 

where 

v(q) = 
dE(q) (14) crq-

and 

R 
N (15 ) 
TO 

is the average rate at which particles are emitted from the source. 

In a similar way the incident current at the target is found to be 

(16) . 

We now turn our attention to the average energy and momentum 

of the beam particles. The average energy is, 

(.) = (C0i ('5.i,t) 1Ki l rii(~'t)) 

= ("" J dx'dp dq a~ (p )'i (q.l.(q) exp {i[ (q - p)x' - [.(q)-.(p)l(t 

where Ki is .the Hamiltonian of the ith beam particle and 

x, = I~i - ~il • The integral over x' yields, 

00 1 dx I e:1. ( q - p ) x ' _ 1( 5 (q ~ p) + i q:1 p 

o 
(18 ) 
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The contribution to (E) of the principal part in (18) vanishes, 

p 

q - p 
(19) 

so 

( 2J -i[dq)-E(p)](t-t i )\ 
(E) 4rc d.p dq a~(p) a

i 
(q) E(q) o(p q) e . / 

(20 ) 

= 

Similarly the average momentum and the normalization integral are, 

(21) 

(22 ) 

We note that Eqs. (13), (16), and (22) may be combined to give, 

'" (1) R(-d) -
4rcd

2 
(2) -
(24 ) 

where 

<_1) 4 2 J v = rc dq (25 ) 

It is convenient to define a normalized energy spectrum fer 

the beam as, 
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(26) 

then 

( E) J dE g (E) dE 

(q) :::; J dE(q) g[ E(q)] q (28) 

We are now ready to consider scattering of the incident 

particles. We begin by considering the scattering of a single 

particle in the. wave packet state .¢l (~l' t). The target Hamiltonian 

will be denoted by h, and its eigenstates and eigenvalues by g 
n 

and W, respectively. n 

h g 
.n 

W g • 
n n 

. We will assume that the impulse approximation is valid so ·that the 

T-matrix for the particle-target interaction may be written as 

where Tal is the T-matrix for the interaction of the incident 

particle and the ath particle in the target. We allow the 

"particles" to which the impulse approximation applies to be composite, 

e.g., Tal might refer to the ath atom in a gas or theath unit 

cell in a molecular crystal. Actually, there is no loss of generality 

in using (30) because we can always consider the target itself to be 

.a·single composite particle in which case (30) becomes simply Tl = TIl. 
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It will be convenient to relocate the time origin by defining, 

t ' :::: t - t c 

t'l :::: t1 - tc 

where t is a time at "rhich .¢l(X ,t) overlaps the target. We c -1 

take the initial target state to be gm so that the ,{ave flUlction 

prior to scattering is, 

~l (t) 
iE(q)t '1 

e X. (t') 
l.n 

i[ql~l-~ll-€(q)tl] 
e 

The complete solution of the Schroedinger equation corresponding to 

the initial wave function ~l(t) is obtained by replacing Xin in 

6 Eq. (32) by, 

X(t ,) :::: Xi (t') + X (t') n sc 

where 

-i[ €(q)+W ]t I 

X (t ') 
e m 

T X. (0 ) :::: 
sc 

W + €(q) + iT) -h-IS. 
l.n 

m ' 

-1[ E(q)+W ]t I 
1: ' m 

:::: e gn 
n 

(32 ) 

(34) 

(35 ) 

-(gn I 1 
1: 

iql~l-~ll 
,\(51 ) Igm) . Tal 

e 

+ E(q) I~l - ~ll I{ + iT) - Wn - IS. a m 

't' 

'i 
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We will assume that the distance from the source to the target is 

large compg.red to the size of the target so that we may put, 

1 

The exponent in Eq. (35) may be expanded as, 

where 

9. ::; 
/\ 

- q d -1 

and tc is a typical linear dimension of the target (Tal f(~l) 

vanishes unless ~l is in the. target). It will be assumed that 

« 1 

and the last term in Eq. (37) will be dropped. This is a rather 

restricti~e approximation, and we will have to ql~lify it later. 

In order to evaluate X Ct') we Fourier analyze g with 
.~ m 

respect to the center-of-mass position vector of the ath target 

particle. 

ik ·r 
e -a -a g (k ) 

m -a 

-ik • r -a -a e 

. (40) 
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Using Eq. (4o) and the approximations (36) and (39) we may iITite} 

Tal e 

where 

i(q.x,+k ·r ) 
- -...L -a-a 

(41 ) 

i(n ·x, +k ·r ) 
.:& -...L -a -a 

e 

(42 ) 

and Tal ° is the momentum shell sub-matrix of Tal. Equation (4~) 

may now be formally evaluated as} 

...... ",".'1' ," 

ik ·r -a -a e g (k ) 
m -a 
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(n!- iV' +q - q' IT 1°1 o. - i'\7) is the same function of 
:b' a - - a :b' a ' 

that (.9J~a+ 9. - 9.' ITa~1 9/ ~a) is of ~a· 
Putting (43) into (35) we obtain, 

'X (t') = e m I: gg \"-
-i[E(q)+W h', , (I 

, sc , ' 'n n n ~ 

iq'.(x -r ) 
e - . -1 -a (9.', -iV'a+ 9. -9.' ITa~ 19/ -iV'a) 

(44) 

W + €(q) + i~ - W- €(q') 
m' n 

The integral in Eq. (44) is of a familiar form and its asymptotic value 

is 

i9. i • (X1 - r ) , ° 
e - -a (n!-1V' + n - 9.' ITII q,- iV' ) , ::v a .;0.., a - a, 

W + €(q) + 1~ - W ~ €(q') m .' n 

) 

, (~) 
1a Ix -r I, . . 

-run -l -a ' 
e ' (a, -iV' +9. -a IT all g" -iV' ); € (a ) > 0 

I 
'1"""'n!Il a ""nlIl. a, a -run x - r ' 

-1 -a 

Ix -rl ... 00 
-1 -a ° ; € (~) < 0 

where 

(46) 

a = Q < (x, - r ) I x:1 - r" 1-1 
"""Om '"llIll -... -0; -. -0; , 

It will be assumedher'e that the target to detector distance is large 

enough so that {the followingapproxtmations may be made in (45), 
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. A 
51nm = ~m xl 

1 • 1 

I~l - Ea I 
xl 

i~l~l - Ea I • i~mxl -i9:n 'r - m-a e = e e 

Approximation (50) requires that a condition analogous to (39) be 

satisfied, 

« 1 

Where (~) is a typical final momentum and. (Xl) is a typical 

target to detector distance, 

Using (44), (45), and our subsequent approximations the 

scattered wave function at the detector(s) may now be written as, 

-iW t J i€(q)t'l 
= e m c dq al(q) e X (t') 

sc 

-ihtJ () ~I 1 = e dq a l q ~ gn xld
l 

I 
where the sum 1: includes only those states for which ~(~) is 

n 
posi ti ve and, 

~ 

(48 ) 
"" 

(!~9 ) 

(50 ) 

(52 ) 
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E. 
ex 

-i(k-q)·r - - -ex e 

We recall that· (0 ~ + 9. - ~ I T~ I g" ~ex) does not operate on ~l 
or r , but that it is :Still an operator on the incident particle's -ex . 

spin and on the internal degrees of freedom of the Oth target 

particle. (0-iV + q - k IT 1°1 _q, - iV) also operates on r , of ex - - ex ex -ex 

course. 

We dlgress for a moment to consider the conditions (39) and (51). 

These are actually too restrictive, and ;, may be thought of as an 
c 

approprtate correlation length in the target rather th:-ln the size of 

the target. The target may then be thought of as being made up of a 

number of essentially independent parts each of volume .e 3 wher'e 
t 

one of these parts will be incoherent with the scattering from any 

other part, and the scattered intensities (rather than amplitudes) 

from t~e different parts may be added to find the total intensity. The 

calculations given here are appropriate to the part located at the 

(arbitrarily chosen) ortgin; knowing the scattered intensity from this 

part one may find the total intensity by the methods of geometrical 

optics. 

It 1s useful to write (52) in the form, 

~1( t) 
-iht - e ·~l(xIJt) g - rn 

.. 
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where WI (~l' t) is an operator "\-Those matrix elements are given by 

(52 ), 

1 
== xldl 

(55 ) 

== 

We shall deal here with the case of a low density incident beam. The 

density is assumed to be low enough so that the excitations of the 

target due to one incident particle do not appreciably affect the 

properties of the target "seeq" by another incident particle. In 

this case the wave function for the scattered particles and the target 

may be written as, 

where the W.(x.,t) are to be treated as commuting operators. Only 
]. -]. 

wave packets for which t. < t are to be kept in the product in (56). 
]. 

go '~s the iniUal target state, and it must be averaged over an 

ensemble after expectation values have been taken. 

To close this preliminary section we will use expression (52) 

to calculate the scattering cross-section of the target. The average 

current of scattered particles far from the target is, 

.' 

-~.- - -- ---_ ... - .~ ... -.------~-. 
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where ~ is the velocity operator of the incident particle. Inserting 

a complete set ·of target states and \.;rit:fng out the matrix elements of 

0/1 explicitly we obtain, 

r' 
n 

1 
v('\,o) ~l exp {i [('1 - '1') dl + (€(q) - €(q' ))\ 

+ ('\,0 - q'nO) xl ~ (€('\,O) - €('1'no))t)} 

We carry out the average over emission times, 

~i(€(q)-€('1' ))t~ = 

and use (23) to obtain, 

A 

.t\., () 9E. 
Vsc E = ~ 

r -
. I v(~O) r v{gJ 

n 

(:;8) 

(60) . 
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In Eq. (60) the brackets include an average over the incident beam 

spectrum, 

(61) 

The differenLj.t11 scattering cross-section is, 

(62 ) 

where 

Here k is defined by, 

e = e: (k) • (64) 

If the 5-function in (63) is written as, 

e[e: - e:(a )] = J. dt 
!l0 . 211: 

and the factor 
i(W -WO)t n . 

e is used to form a Heisenberg operator, 

we may write the energy-dependent cross-section as, 



d a v(k) dt ~ 2 ~ ~ J d~ dE = V(qJ" . 2J! 

where 

A 
A (k r, q, t) 

I -
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iht A -iht = e Al (k r, 9) e •. 

Expressions of this general type for (d
2 

(J /d~ dE) are familiar in 
. 7 8 

the theory of scattering by many-particle systems.' To obtain 

useful results it is usually necessary (and quite valid) to make a 

number of approximations in Tal. For example, Van Hove l s 7 

expression for the neutron scattering cross-section of a many-particle 

target may be obtained from (66) by putting Tal equal. to the Fermi 

pseudo-potential, 

wherea
al 

is the spin-dependent scattering length of the ath 

nucleus in the target and m. is the neutron mass. 

(68) 
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III. INTENSITY CORRELATIONS 

In order to describe intensity correlations we will use the 

GW counting operators. We first consider the case of observations 

made at.a single detector called detector a. It will be represented 

by the operator, 

J a 

= 

N 

I ja i 
i=l J. 

1. dE 
a l (x , E ) a(x - x ) a(E - K

i
) • a -a a -a -1 a 

The integrals in ja,i extend over the active volume of counter a 

and over the range of scattered particle energies accepted by counter 

a. This operator is slightly different from the GW operator in that 

we include the possibility of a finite range of acceptable final 

energies. (The range of final energies will usually be determined by 

some sort of energy filter in front of the actual detector.) 

la(~aJ Ea) depends on the sensitivity and calibration of the detector. 

For the sake of simplicity we will take la to be a constant? 

= 

Except for a numerical factor Ja represents the number of 

particles in counter a at a given instant. In an actual me~surement 

this number can not be observed because of the finite resolving time 

of electronic apparatus. Thus) if 



J' 
;'-. 

'. 

'. I 
:, ... 

. ,,: .' ~ ,. , ">. , ~ .. ; 
.::.', '. 
'. , ........ ; .. 

,', 
':, .' :'"-' .. 

.. ," 

. ' ... ' 

:<:',~ ; .' . ' 
' .. ; .... 

, " 
.'. ( 

.: : . 
. ,''; 

is the average{averagE(d~OVer; ai(q)'l\(S)"'ti'~:' and go) 
, ' . . 

expectation value of Ja at t:lme t'only the quantity 

.,' . '" 

(G (T) , a " jCO dt "£ (T-,'t){; (t) , 
-, ", 'a,;,',' a" 

'-co ,''', " :' .. ",': '.'. 
":. t.· 

-J.' 

", .... '. 

can ,be observed. Her~ 'L - a 
'. . . 

is the response, function ,of the electronic 
. ::.\ 

recording apparatus. It'is convenient to d~fine a ,~requency character-

istic' for the recording apparatus as, 

, .~: 

B (00) , a 
.. ':' . 

,If the intensity of, scattered particles is steady' (so that ',(J a (t) 

, ,does not depend on', t), ' (Ga ) becomes, 

.' : 

(G)- B (0) (i) 
",a, a,' a, 

, , 

'" , : ". ': ,:, 

We will take the detector tO,be so calibrated that To(Ja ) ,is ,the' 

total number ,of particles detected a t :: a' dJring, the e~per:l.ment.' 

(J ) a may then be inte~pret~c:iasthe a.verage counting rate ;at a and 

,(G
a

) as,an amplified cpunting rate. 
", 

. ~ . , ' . ... 

. ,.,:!:,' 

!f there is never more than one particle at,a time in the 

det~ctorEq. (73) for (Ja(t) reduces to 
.. ; .. . ',: . 

..... 

' .. ; 
'. ,", 'I, 

• :.'" "1" 

. (~ 

'. ",. 

.. .. 

.1 
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l1r
l
(t)) 

The evaluation of (J (t)) is similar to the evaluation ~ (r) 
a 'tsc --given in the previous section. It is found that (Ja(t)) is independ-

ent of t and is given by, 

1 

~ a 

where E(k) = E, dQ is an element of solid angle in the direction a a a 
~ of x, and the cross-section is defined by Eq. (66). In (78) we will a 

put, 

1 a 

dQ 
a (79) 

where w is a mean depth of penetration of scattered particles into a 

the counter. (Ja ) then becomes, 

(J Iv a a 

where (1 is the cross-section for scattering into a and v is 
a a 

an average value of v(k ). a If the counter were 100% efficient the 

counting rate at a would be just ~(J • ,a Thus our calibration 

requirements reduce to, 

= 
v 
a 

w 
a 

(80) 

Ji 
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""f 

, where '11' is, the counter~fficiency ,', 
a 

",":, '; :,:,'; 

", "' 

.' '." : 

We n~t~onsider'the case of observations made at two detectors, 

. ,a 
, 

and' b • . The otitpu~ of detector a' ,. lsserit through a delay line 
" .'. 

. and then multiplied with the output of. detector " b, The output of 
! .. ' 

'. the multipler is, 
,- \. , ' 

""" ,"4 

",. " , .... 
\,: .. 

",i'" 

00 

-/ dtb' dt L (T' +'1-0' ~'. t
b

) L (~f ~ t) (J
b 

(t
b

, t) 
" aD '. a ',a .a· a 

-00 ,,: (82) 
~ : 

'where, .,.1"0 is the delay time and' 

, , 

".", (Jba(tb,ta »' = «1fsc(ta)/Jb(or)Jalilsc(ta)) , 

N 
/ .~ 

i~ (84) 

, ",' 

, ~, " 

' •. , It 'is assUmed that 1"0 is large compared to electronic response, times 
, ' 

, so that 1" is always positive. Ki' is the Hamiltonian' of the "ith 

beam particle andjb i is defined analogously to 
, :' I 

,correlated counting rate, is defined as .' 
", .;. 

,", i:' 

:,' . 

. ~'" '" 

j i'; The a, , 

, (86)" 

". ,". "r,";, 

' .. <, ~. ."', '":'" 
, .... , .. 

. ; 
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"'.: 
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Equations' (82)-(86) also apply to the case in which a and bare 

. actually a single detector... The' use of the ." time dependent operator 

Jb(T)J to describe intensity correlation measurements has been 
. a .. 

di scussed in detail by GW •.. 

In the case that no particle can be cotirtted in both detectors 

...•. (or twice in a single detector if a and" b are the same) 

where 

e 
-iht 

a 

.: ', .... -

" . 

". '., ..... 

:1:.",.. ' . , . ~ 

(88 ) 

The upper (lower). sign in (84) refers to an incident beam of Bosons 

,(Fermions). Equation (55) for the matrix elements. of Wl shows that 

(89)' 

, , r: 

'. Using (89) and the statistical equivalence of the incident wave packets .\1 

. it is readily shotm that, . 

(90) . 

. . . 

,I" '1'.' 

". j' 
';':' . " . 

. ,.' 'where 
.,. ' ..... 

- ~." '. 
'. 

,': " 

. '~"."" 
. ,': 

<I.' :.", 

'". '.: , . .-
'., : 

" '." ,.. .. 
.:' ''-' 

, ': 1,:. . ' ........ ' 

:, : 

. . " . . ~ . 
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(J d (tb, t a )) = ~ « \lr2 (~2' tb HI (~, t)go Ijb, 2 j a, 11 \112 (~2,tb )\lrl (~l' t a )go») 

(91) 

(J (tb,t)) ex a 

In the evaluatj.on of (Jba(tb,ta )) '-Ie vHI use an approximation due to 

GH which neglects correlations between scattered wave-packets originat-: 

ing from different incid.ent wave-packets. This allows us to put, 

(92) 

Independent (but equivalent) ensemble averages over the initial target 

states g2 and gl are to be taken in (92) and (93). Upon inspection 

of '(77) it is seen that (J d (t
b

, t
a

)) is independent of tb and ta 

and is simply 

(J eX> is the more interesting term in (J
ba

). The matrix 

elements in (93) are evaluated. similarly to (57). It is found that, 
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when ~l is in the active volume of counter a. A12 is the same 

as Al except that u
l 

(sl) is replaced by ul (s2)' A similar 

resul t is found for the other factor in (93). (J (t
b

, t )) thus 
ex a 

depends on tb and ta only through T = tb - ta and is given by, 

where 

€ (k ), = €, € (k.) = € a a -'0 b 

A J\ 
~ = - q dl , P = - P d , 2 

k -aa 
A = k x k a a' -a b 

(96) 

(97) 

A , 
~ ~, ~a = 

.' 

t: ' 

.., 
, .' 
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A A 
The brackets in (96) indicate averages over dl , d2, ul ' u2' gl' g2' 

and beam spectrum averages over both p and q, 

(98 ) 

We will assume an unpolarized incident beam so that those terms in 

vanish. We also assume that 

the remaining terms are .independent of sl or s2. Then we may replace 

~land A12 by A2 and AI' respectively, in (96) if we include a 

-1 factor s to account for overcounting. s is the number of terms 

in the sum I' 
Sl 

or These assumptions are not at all 

necessary, but they simplify the notation considerably. 

Under certain limiting conditions (96) reduces to the resQlt 

obtained by GW for, (J (1"). ex First we take the exponential in (96) 

ins:!.de the brackets and assume that the scattering is nearly elastic 

so that we may put 

dq W -W 
k • [€ - €(q)] 

1 'n 
q + dE(qJ = q + a a v(qJ 

~ ~ 
W2 -, Wn ' 

p + 
v(p) 

The exponent then becomes 

(k.- k ) (x. - x ) - (€ .:. € ) 'L" 
b a b a b a 

'f ~- X) + (W
1

- W) T _ , a + (1-/ , 
, n v(qJ n 

~ , 

, . 
(100) 
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We also put 

(101) 

in the a-functions and assume that there is no energy selection at 

the counters. Finally we assume that 
o 

Tal may be approximated by} 

(102 ) 

,. 
where fal(q') is a scattering amplitude whose energy dependence is 

negligible over the incident beam spectrum. The terms in (100) 

involving W 1 - W nand Wn , - W 2 are used to form Heisenberg operators 

and (96) reduces to} 

(J (-r) 
ex 

.A 
i(qx -q)·r a - -0: 

e 

which is equivalent to GW's result. 

i(q(~-Xa)-E(q)'t"] 
e . 

: (103) 

Returning to Eq. (96) we. note that by expanding the a-functions 

as in (65) (J ('t") may be written as, ex 



-. • 

/1 Jdt XW 2J( 

/1 fdt \vr<iJ 2J(' 
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i[ "b -t:(p)]t 
e 

When .the target is translated by an amount R the first and second 

matrix elements in (104) are multiplied by exp[ i~~: (~-1a)] and 

exp[ ikR· (~ - 1.. )] I respectively. Thus we expect these matrix elements a- a b 

" A to be peaked about ~ = xa. Letting 8 be the angular separation 
A 

of ~ and 
A 
x 

a 
the matrix elements in (104) will be peaked functions 

. 
of 8 about 8 = 0, and the width of these peaks will be 

(68)b '" (k. it rl, (68) - (k it rl .0 s a a s (105 ) 

where its is a length associated with translation symmetry breaking 

in the target. At its largest its . will be of order it. In the 

remainder of this paper we will assume that 

(106) 

where 8m is the maximum angular separation of ~and ~a When 

(106) is satisfied the matrix elements in (104) may be evaluated at e = o. 
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There may well be interesting and useful information to be obtained in 

a wiae-angle intensity correlation experiment where (106) is not 

satisfied but ""ve l¥ill not investigate that possibility here. 

Comparing (104) and (66) it is seen that we now have, 

1 
(J (-r)) 

ex 

The direction of the solid angle element dUO must be in the general 

direction of the counters but is otherwise arbitrary. The integrals 

over solid angle in (104) have been carried out in (107), 

f 
b 

= ~f 
b 

;1 
a x a 

dx 
a 

We will assume hereafter that 

so that and x 
-a. 

may be replaced by average values ~ 

(108 ) 

. (109) 

and Y, 
-e. 

and that the ranges of ener-gy acceptance are narrow enough so that 

v(~) and v (ka ) can be replaced by average values vb and 

Using (81) we then obtain, '. 

v • 
a 

,.,. . 



.. 
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(llO) 

We must now return to the comments made in Section II concerning 

conditions (39) and (51). Equations (80), (94),and(110) give only 

that part of the counting rates that arises from scattering by a small 

volume of order i t
3 about the origin and we must now scale these up 

in order to take scattering from the whole target into account. It is 

easy to see how (Ja ) should be scaled up; C1 is replaced by C1 T 
a a 

which is the cross-section for scattering into a by the whole target. 

C1 a 
T 

In the evaluation of (92) we treated *1 and *2 as waves which 

were both scattered from the same small region near the origin. In 

scaling up (Jd ) we must allow. *1 and *2 to be scattered 

independently from any region of the target. Thus, 

(Ill) 

(112 ) 

In Eq. (110) we will assume for the sake of simplicity that the solid 

angle subtended by the target at the detectors is small enough so that 

variations in dn
O 

over the target may be neglected. Then only 

variations in the exponential need betaken into account. It is dear 

from Eq. (95). that the scaled up version of Eq. (llO) is, 
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Uexp(i[k(ly - s 1- Iy - 5 I) - k (Iy - 5 1- IY_b - _Sa I)-(E.. - Ea)'r)} -- -a -b -b -a -b a - b -a b 

>( ~~ ~Q~ Y ~~: :Q~>T (ll}) 
where the integral j( d}s runs over the volume of the target, V

t 

is the volUme of the target, and (d2
0' /dEdU)T 'is the differential 

cross-section of the whole target. E~uation (113) becomes particularly 

simple when the same energy filter is used for both detectors, 

In this case 

= I dE • 
f 

Equation (115) is quite similar in form to the results obtained by 

(114) 

(115) 

GW for the correlated counting rate in an incoherent beam of particles\. 

emerging from a source. " 

Photon beams "are Ino:re.ame.nable to intensity correlation experi-

ments than are beams of massive particles because it is easier to 
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produce long Havelength photons. vThen specialized to the case of light 

scattering Eq. (115) becomes completely equivalent to the correlated 

counting rate for a radiating source considered by Goldberger} Levis} 

and \'latson5 (hereafter referred to as GuT). To show this correspondence 

explicitly "Te define} 

(116) 

(117) 

(118 ) 
0) 

2 L dt L (T - t ) ••• - 4rc Y. .Q Tl c 
a a a a a a 

feb).' . (~ d3~ r~ 0) 

- L, d"-o 
~(T + T - t ) ••. o b 

(119) 
Q) 

. 2 J dt ~(T + T - t ) ••• 4rc Yb ~ Tlb c b . 0 b 
-0) 

Using Eqs. (94) and (115) we may then write Eq.(82) for the correlated 

counting rate as} 

(120) 

where 



X(ba) J dE gt(E) exp{i[k(lrb- ~I-Ira- ~I)- E(tb-ta )]}. 

f 
(121) 

This is equivalent to GLW's Eqs. (2.21) - (2.24) except for the fact 

that we have already made certain approximations which they do not 

make until later in their paper. Practical applications of these 

equations to intensity correlation experiments have been considered 

in detail by GLW. 

Two interesting types of experiments to which (120) and (121) 

apply (when a little more care is taken with the spin correlations) are 

the resonant scattering of light by a gas of atoms and Brillouin or 

Raman scattering of light by phonons. The first experiment is physically 

quite similar to the experiments considered by GLW, and we will not 

discuss it here. In order to get useful results in an intensity 

correlation experiment it is desirable for the width of B(rn) to be 

larger than that of gt(E). For the fastest electronic equipment 

currently available B(rn) has a width of order 1010 -1 while sec 

Brillouin lines have widths of order 109_ 1010 -1 and Raman sec 

lines are somewhat wider. Thus it appears that intensity correlations 

in Brillouin lines, at least, might be observable. However, it is 

necessary for ~ and TO to be quite large in order to obtain a ~ 

good signal to noise ratio. For the case of fast electronic response ~ 

times and a large target the signal to noise ratio given by GLW is, 

S 
N = 

' .. 

(122 ) 
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... . . 

r. '." 

where A. is a ty:picalphoton wavelength, ·.t
T 

isaty:pical linear 

dimension of the target, and 6:" is the. response time of the recording 

apparatus. Taking. A.-5 x 10-5 em, 6'"( ,..., 10-10 
sec ,. and9 

(dcr/dQ)T .. f -10-6 J, 2 
T 

the signal to noise ratio becomes, 

. (123) 

. . 

where TO is in seconds and ~isin phot~ns/crrf sec'~· This is rathe~ 

discouraging because the highest available photon currents from gas 

lasers are about 1017 Photons/cm
2 

sec which would requir~ a c'ounting 

time of order 

T A,l3 years 
01) . 

(124) 

. for a signal to noise ratio of one. However, there are so many factors 

.. of ten floating around in this .crude estimate that the experiment 

might actually prove to be feasable upon closer examination • 

. Intensity correlations in Raman scattering bave also been 

.. studied by FetterlO using a different method. Fetter's results are 

less general than ours because he uses a specific dynamical model for 

the target and makes a number of approximations that we have avoided; . 

e.g", he considers' only one-phonon scattering. Also, his calculations 

are restricted to the case of a small target while our Eqs. (120) and 

(121) are valid for a target of arbitrary size and shape. The most 

important difference between Fetter I s work and ours, how"ever, is that 

his method does not bring out the simple and exact correspondence· 

between the intensity correlat~ons .in abeam of scattered light and· 

the intensity correlations in·a light beam emitted by a radiating sour.ce i 

.... .' .. 
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PART II 

I. INTRODUCTION 

Interference effects associated with the decay of coherently 

excited non-degenerate atomic states have been observed and studied 

for some time. Most of the interest in these effects has been con

cerned with the decay of radiatively excited states. l 
HO"l'rever, a 

number of recent experiments have demonstrated the possibility of 

observing such effects in the decay of electronically excited states. 2 

In this paper we derive a general expression for the integrated photon 

counting rate in an experiment in which an arbitrary number of atomic 

states are coherently excited by electron impact and the resultant 

luminescence is detected by an arbitrary system of photon counters. 

The result is directly applicable to quantum beat and level crossing 

experiments~.------------- --------- ----- --- -------- '----

A quantum beat experiment involves the coherent excitation of 

several (usually just two) non-degenerate but closely spaced atomic 

levels, and the detection of the subsequent decay radiation. The 

excitation is performed by a pulse of electrons or radiation which 

passes through the target (a gas of atoms) within a time.6t If-

.6tjn is small compared to the inverse of the level spacing, llw, 

between the excited levels it is found that the intensity of the 

decay radiation oscillates in time with frequency w. In order to 

obtain good resolution of these oscillations it is clearly necessary 

that .6t« w-l Since the uncertainty in the energy of the inci-

dent beam, /c,E, is at least -tr/.6t the, criterion for good 

resolution is the same as the condition .6E »1fw which must be 

'" .-, 



satisfied if the incident beam is to be capable of inducing coherent 

exci tation. The effect of the parameter w(t,.t.) on the experimental 

resolution may be seen clearly by comparing the results of Dodd, 

Kaul, and Warringtonl [(w/2n) (6t) ~ 10-lJ with those of Hadeishi 

and Nierenberg2 [(w/2n) (6t) ~ 2 x 10-2 J . In a level crossing 

experiment the target atoms are excited by a continuous beam of 

electrons or radiation and the total intensity of decay radiation is 

measured. Interesting effects are observed if the separation of the 

exc:ited levels is produced by an external field. Then w can be 

varied by varying the field, and it is found that the intensity 

of the decay radiation has a resonance as a function of w at 

w = O. This effect was first observed by F. Colegrove, et al. l 

The physical mechanism involved in both quantum beat and level 

crossing experiments are the same; only the manner in which the decay 

radiation is detected distinguishes them. Thus it should be possible 

to give a unified theoretical treatment of both types of e~periment. 

In the present paper this is done by using a wave packet description 

of the incident electrons. This llave packet description allows us 

to impose the condition for coherent excitation, 6E» liw ,in a 

straight forward manner. Wemve chosen to treat the case of electronic 

excitation because there· are already a number of treatments of 

radiative excitation in existence (e.g., Breitl and Frankenl ). Also, 

it is easier to make a clean physical separation between the excitation 

and decay processes in the case of electronic excitation. 

The main result of this paper is Eq. (43) for the integrated 
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photon counting rate in either a quantum beat or level crossing 

experiment. This expression brings out the physical connection 

between these two kinds of eA~eriments. Similar expressions have 

been derived for the case of radiative excitation and these have 

been extrapolated in various ways to the case of electronic ex

citation (e.g., Aleksandrov2 ). However, it appears that there has 

been no previous derivation of the integrated photon counting rate 

using wave packet techniques. 

The remainder of this paper is divided into three sections 

and an Appendix. In Section II we consider the excitation process 

and derive the scattered wave function for the electron-atom system. 

The decay process is described in Section III, and the expression for 

the counting rate is obtained. In Section IV we apply our general 

results to a calculation of the phase of the oscillatory part of 

the photon counting rate in the Hadeishi-Nierenberg experiment. 2 

The effect of exchange scattering is considered in the Appendix. 



II. THE EXCITATION PROCESS 

The excitation and subsequent decay ,rill be described in 

terms of a single incident electron and a single infinitely heavy 

* atom located at the origin. An actual experliuent, of course, in-

volves a beam of electrons incident on a many-atom target, and it 

may be that different scattering events are correlated. Our 

treatment is applicable only to situations in which individual 

scattering events are independent. It is perhaps worth noting that 

by choosing the atom to be initially at rest we are simply making a 

convenient choice of inertial frame and are not neglecting effects 

associated with finite atomic velocities. Recoil effects, on the 

other hand, are completely neglected. 

The atomic Hamiltonian will be denoted by h, where h 

includes the interaction with an external magnetic field if one is 

present. The internal atomic variables will be denoted by ~ ,and 

the eigenstates of h by ga(~) . 

(1) 

For definiteness, vTe will assume that the atom has a non-degenerate 

ground state go with energy W
O

' and that it is initially in this 

state. In order to avoid cumbersome notation the incident electron 

will be treated as if it were distinguishable from the atomic electrons. 

* We use the word" atom" for convenience. Our results apply equally 

well to atoms or molecules. 
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The modifications which are necessary for inclusion of exchange 

effects are given in the Appendix. The incident electron's 

kinetic energy operator is T ,and if a magnetic field is e 

present the interaction energy operator is ':'fl1?·~ The inter-

action of the electron's orbital angular momentum ~vi th the field 

will change its trajectory from a straight line to a path which 

obeys the equation of motion d~dt (e!m)~ x'~. It will be 

assumed that the Larmor radius is large enough So that this effect 

may be neglected. It is convenient to choose the positive z-

direction in the direction of B Then the electron Hamiltonian 

is T -fiBa . 
e z 

We will use the wave packet formalism of Goldberger and 

Watson3 to describe the excitation process. The pre-collision wave 

packet for the electron-atom system is (11' = 1) , 

(2a) 

where 

(2n:)-3!2 i£.r 
X = e - u g (5) , s 0 (2b) 

...... 
(2n:)-3/2 i9.· r ) X = e - u g (g , s 0 (2c) 

E 'p2/2in -fiBs + Wo (2d) 

(2e) 

":r 



·' 

::: I 3 i"p·r dp a(n) e "'--.... . 
(2f) 

In Eqs. (2) ~ is the mean incident momentrun and u 
s is the initial 

electron spin vlave function with cr zUs su where s is either s 

+ 1 or - 1. g(~) is the spatial packeting factor, centered at 

r ::: o. Thus X(t) is centered at r::: 0 when t::: 0 , i.e., the 

electron-atom collision occurs at t::: 0 The complete time 

dependent solution of the Schrodinger equation corresponding to the 

precollision 1'lave packet X(t) is, 

where 

LL 
s 
a 

A ::: E -(~~BS + w) . 
~ a a 

eiEa, . £ Ta (£a ,12) 
2 

6a + i~ - Pa /2m 

(3b ) 

In (3b), v+ has been expanded in the complete set of eigenstates 

of K ~ 

KX ::: EX , (4a) 
a a a 

. (211:)-3/2 iEa, r 
X -

ga (~) (4b) ::: e u , a s 
a 
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2 
= p /2m -~Bs + W a a a 

Ta(Ea,E) is the matrix element of the scattering matrix for 

(4c) 

scattering from X to X 
a 

The asymptotic value of the integral 

in (3b), is 

lim 
r -, 00 

= 

where 

p' 
a 

d 
a 

2 
{2rr~ m 

r 

(f( !!! e -r/da T 
r 

1 
(2m6 )2 

a 

1 
= (_2m6.)2 

a 

ip' r 
a "") e T (p I r ,E a a-

{:-, <0 a a 

and ~. is a unit vector in the direction of r 

drop the prime on p'. 
a 

and denote it simply as 

ta> 0 

(5a) 

Hereafter we will 

p . 
a 

Dropping 

terms "lith {:-,. < 0 and defining the scattering amplitude, 
I a 
! 
! 

f (?-,p) a-- = 
. 2 .A 

(2rr) m T (p r,n) a a- J;.. 

. i . • + 
the asymptotic expression for W becomes 

(6) . 

,.. . 
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, 'where, the sum L:' L:' includes only those Us ,'ga for ,,{hlch D. > 0 . 
, a a ga: sa 

" The scattered wave packet at large distances is obtained by in-

serting (7) into (3a). In doing this we will assume that the entite 
.' '.' . . . 

',' incident wave packet lies far enough from any excitation threshold so 
. ~ - ) , 

: ." 

that fa,(rJE.) is slowly varying over the packet and may be removed 

from the integral and replaCedbYfa(~'.9J . It will also be assumed 

that the distance from threshold is much greater than ~B so that 

L:' may be replaced by 
s 
a 

L: and 
s a, 

L: t· may be interpreted as a sum 

, ga 

over those atomic states for which W' < q2/2m +W ' 
a , 0 

We will take 

.' q2/2m to be iess than the i-onization energy so that EI includes 

, ',' 

ga ' 

only discrete states. The resulting asymptotic expressiort for the 

scattered wave function of the electr'on':"atom system is, 

where 

.' ~,;.' 

A (t,t) a-

- " " 

x(t) 

'. , " 

= , ¢ (' ) e "ihtg (t)' L: . a !,t a ~ , , 
g 
" a . 

'. 
,; , 
.,,', . 

, '" 
"; .:~ .. : .,., . 

" .: '~ .; " : . :. ' . . 

" 
.' , 

....... ' " 

. ' . : .. :"" 

. . . , . 

" " 

", '. : ..... 
' .. , ~ 

,~ .. 

,.;, ,: 

(8a) 

(8b) 

(8c) 

".' " 

, .. 
. , 
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The~Otii'f:i.cations of Eqs. (8) which are necessary in 'order to 

include e:x:changescattering are d:is~ussedinthe Appendix. < It is shown 

there that one need only redefine· f to be, 
a 

'. ,where z is the number of,electrons in the atom and T ex .is an 
a. 

exchange scattering matrix defined in the Appendix •.... Here· p_ is 
".a, 

.. ··· ... Pa evaluated at 
, 

p <1, 

(10) 

"Hereafter f will be def'in~d by Eq. (9 ) rather than Eq. (6) .. a 

.. ' 

....... .', 

:.- .. 

. ;', " 

:.'" 
.: .• ,., <.: 

' . .'.' 

. . ;': 

We note in passing that if ,wave packet spreading is neglected 

Aa may be put in a form which displays the properties of the scattered 

electron packet quite clearly.' To neglect wave packet spreading we 

drop terms of order 1£ _~12 in the eXponent of (8c), 

where 

" ;' 

EO: 

a 

, . ,', 

2 . 
= p~./2m, 

:a" 
: .. 

• '.'" ," J", ' 

+' 

,.'," 

,.',. 

.9. • (p. - ~) 

p- ,', 
a. 

. :. 
. " 

,'. ,,'. 

,,~. I' " 

.:.: .... ' 
. . ;" , . ~.,. : 

.':-> 

" ',' \ " . ,,: ." :. ~, ~'.. " ' , ~ , 

',' .' 

.. . ,' 
~ . :. 

;!. '.:,,' 

I ~ -.: \' . • 

.:.': ... 
',Ii .'. 

. ;,'.: 

" .. '" 
, . 

. (lla) 

l. - ~ 

... ,." 
" :., ,'. 

, . 

(lIb) 
,:,\ 

, ',' 

. . ., . 
, " .. : . . ':.., 

. '-. 

'. 
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Substituting (lla) into (8c) and using (2f) we obtain, 

A (r,t) 
a -

a ct) ( p 1 - q -
a g -= (r _ ~ t) 

p_ 'm 
a ' 

(12) 

Thus A is an outgoing spherical packet which eA-ptil.llds "i'li th velocity 
a 

p_/m and has radial thickness (p_/q)6r ,,,here 6r is the linear 
a a 

dimension of the incident packet. 



III. THE DECAY PROCESS 

In order to describe the decay process '\<Ie ivill replace h by 

H h + K + V in (8a). K is the Hamiltonian for the free r r r r 

electromagnetic field, and V 
r 

is the interaction between the electro~ 

magnetic field and the atom. The physical reasoning behind this 

prescription is as follows. The excitation process takes place over 

a time of order 
-1 

(m/q) (6r) ::::: (m/q) (6q) == 6t where 6r is the 

spatial extent of g(E,) and 6q is the width of a(;E) The un-

certainty in the energy of the incident "rave packet is 

q6q/m = The lifetime of an excited atomic state is 
-1 

r 

(say) and its line width is r. We will require that 6t« r-l . 

This condition may be interpreted either as requiring an experimental 

situation in which a well resolved temporal behavior of the decay 

luminescence may be observed (6t« r-1:) or as requiring a 

situation in which the uncertainty in the incident electron energy is 

much greater than the line width (q6q/m » r) . During the excitation 

V has little effect and may be neglected in comparison with the 
r 

electron-atom interaction, but after the atom is excited and the 

electron has moved away V 
r 

becomes the dominant interaction and 

causes the atom to decay. Since the excitation is very fast compared 

to the decay we may describe the decay process by treating the ex-

citation as an impulse at t 

of replacing h by Hdoes. 
r 

o , and this is just what our prescription 

The error associated with this 

approximation is an error of order 6t in t, e.g., if ive obtain 

I':' 
i'1 
11 
i ~ 
i2~ 

ij 
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a .decaYlaw of th~~':forln. 'l~'i'l<~~ro/'bY ·an -am6unt' 

e-r(t~t)~e-rt~'-±r6~'~:-rt./In order:to~i~escr,ibe the decay 

we must :include the initial state of th~radiationfield in (8a);' 

we will neglect'background'radiation and take this initial state 
c 

to be the vacuum state.' Thus the 'wave f'uilction describing the 

decay of the.excited'atom is, .. ' 
.. j:. ,:' 

'. .... 

',.'. 
,;' -iH t =L ~ a (i; t) erg (~) /vac) 
g' .a .. 

a 
,.,.", t •• . '.',. 

The decay channel. which will be considered .here isa single 

photon emission vlhieh leave~the at~m in its ground state; it vTill 

..... be assumed that only this ~eCaYChannel co~tr~b~tes appreciably to 

the observed decay luminescence~ The emitted photons are·tobe 
. . 

observed by a photon counting apparatus which operates continuo\lsly 
. . ., .': . 

". ;; 

from __ some negative time onwards ~ The integrated photon counting rate, 

i.e., the probability that a photon has been observed prior to time 

... t . (t > 0) is the expectation valu~of the. operator,' 

. p" = ·(14) .. 

taken with respect tQ ~c{t)·. In (14)', /1!i~).:i.s, ~~~e phd~oh eigen-

. state of ·K 
r 

.'" with wave vector.~ and polarization e.' ,The photon 

field will be, quantized in a box of volUlTle.V O·so that Kr has. 
p 

discrete' eigenstates. ' .. The sum .. ' .. 

." '. 

. ': " '. ': ;' .'~ ~. 

'.>:,.: ';"', .. ' 

·r A' includes all photons admitted. 
. ' . ,!~,;:':. 

, . , . 
, .:." " .:1 . ;; 

. '."J' 

" : .. ~. 

- ; . 

,'. ~ , 
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p 

[ may be 

k ~ -'-

by the counting apparatus, e. g., the range of k in 

determined by an optical filter, the directional range '" of .~ by the 

size and location of a photon cOlmter, and the choice of ~. by a 

polarizer. In using, (14) vie have assUl'iled for the sake cif simplicity 

that the counting aPJ.:'aratu[; detects all photons in its range of 

admittance "rith equal sensitivity; if 

approximation ''Ie could replace P by 

this were not an adequate 
p 

)' s(~,~) I~,~) (~,~I 
T'@" _,_ 

where s(~,~) is a sensitivity function, e.g., the dependence of 

s on k might be determined by the shape of the pass band of an 

optical filter. The integrated photon counting rate is, 

(p(t» = (fdC(t) Ipl!Eac(t» = t L 1 (ga,,,-,~IIdc(t» 12 

k~ ga -,-
where we have multiplied by unity in the formL gaga t and used 

Sa 

the notation g Ik/~) = jg ,k,~). By assumptions; photon I~,~) 
a-- P a--

which is included in 'L can be emitted with appreciable probability 

k~ _,_ 
only by decay of Idc(t) ,to the ground state, so the only appreciable 

term in the sum L' in (15) is ,the ,go term. Thus, 
ga 

(p( t) ) 

e 
-iH t 

rig, vac) 12 
a 

(Equation (16) Contd) 

I: 
! 

,: 

',' 
"': 
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+ 2 Re 

(16) 

. In (16) the sum r may be restricted to those atomic states 
ga 

which can 

for which 

actually e!llit a detectable photon, i.e., those 
-iH t 

(go,~,~1 e r I- ga,vac) is appreciable when 
p 

states 

is included in L Hereafter "lie will consider the sum to be 

kfl' -'-so restricted. 

We w:Lll begin our evaluation of (p(t)) by evaluating the 

This scalar product is time in-

dependent, but 'Ive will choose t to be much larger than 

(;a: Jr:) & so that we may use (8b). This gives, 

L F ba a' ba (!l.) 5 sb sa 

s'b,sa 

where 
1 

J dnr 

(p_ p_)2 

a'ba (g) 
b a * (~,g) fa (1,9) = fb q 

1 q r * A (r,t) Eba -- I dr ~ (r,t) 
(2rr)3 (py_)2 a 

b a 0 

(17b ). 



Equations (17) apply both to the case b f a and the case b = a 

We nOl'1 S1101'1 that, under suitable conditions, Fba reduces to the net 

incident electron flux at the target. For large t the electron 

wave packet is localized far from the origin and the lm-rer limit of 

integration in (17C) maybe replaced by -co. Tnis results in the 

expression, 

(18) 

where p' is the same as p except that p is replaced by p' . a a 

We will let 

" . 
be the independent variable in O(Pb - p'a) . It is readily sho~ 

that 

where 

P' a 
n [o(p -n) + o(p" "+n)] 

II H 

(p,2 2 2 2 .1. 
n - P +P _ P_ )2 

1. 

P = .l 
(p2 

The integrand of (18) 

F 
ba 

1 

-a b 

2 .1. 
PII "" )2 

vanish"es when PH - n 

(20a) 

(20b) 

(20c) 

so Fba reduces to, 

(21) 

, ~. 

{" 

." 
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Ive now introduce the variables c.) and W, 

w 

W 

E E 

a b 

1.( E + E_) 2 _ 

a b 

(22q.) 

(22b) 

and expand in powers 'of w To first order in w Eq. (21) may be 

rewritten as, 

where 

1 

(231)2 

- n o 

In order to set w = 0 in (23a) we must require that, 

~«l 
W 

mw 
"" 

w « 1 
2 2 

nO q 1m 

row w ::::: « 6q 
nO q/m 

(?3a) 

~ (24) 

(26) 

These inequalities are of course satisfied identically if b ='a . 

Note that (25) is implied by (26) because 6q« q. If (24) and 



(26) are satisfied ive may put, 

1 

(211)2 
a 

The last step in the reduction of Fba is to expand nO and 

p' in pOivers of 6q 
a 

2 ,2 
p~ - P ~ 

2q 

a 

" :a [1+ 6' (:}) + 01~ ) ] 
a 

We see from (28) and (29) that Fba reduces to, 

if 

« 1 

and 6q« q 

(28) 

(29) 

(31) 

., .. 
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The right- hand- side of (30) is the net incident electron flux. 

The incident electron wave packet is, 

ri. (r,t) 
'f1n -

1 

and the incident flux is 

which reduces immediately to (30). 

(32 ) 

The inequalities we have invoked all have simple physical 

interpretations. 6q« q needs no comment. Inequality (31) is 

equivalent to our requirement that the entire incident wave packet 

must lie well above any excit~tion threshold. Inequality (31) (which 

must hold for all states ga included in the sum ~' ) and in
ga 

equality (26) taken together imply (24). Thus (26) is the only new 

condition necessary to reduce Fba to F The weaker condition 

w~ q6q/m is necessary in order to observe any interference effects 

at all, Le., in order that (rI. IrI.) -' O· )IIb)lla f The stronger condition (26) 

ensures that the interference effects will not depend on the detailed 

structure of the incident 1-laVe packet. This is seen most clearly by 

writing (26) as, 

6t «w-l 
(34) 



which is an obvious criterion for the observability of well resolved 

beats in a quantum beat experiment. 

The scalar product (¢b I ¢ a) may now be written as, 

(¢b I ¢a) FOb· (q) a - (35a) 

where 

Cba (g) r cr' ba (g) I) 

sb' sa 
sb,sa 

For b a , 

=L 
p- i dnr / cr (q) = cr aa (9) 

a 
f a (~9.) /2 - q a - s 

(36) 

a 

is the total cross section for excitation 'of state g by an electron 
a 

of initial momentum ~ and spin projection s/2. ~a with b I a 

may be interpreted roughly as the total cross-section for coherent 

excitation of states ga and ~ 

general complex. 

Note, however, that is in 

-iff t 
It remains to calculate the matrix elements of e r which 

occur in (p( t) ) 4 
This is done in Goldberger and Watson and only 

the results will be presented here. We will consider only the case 

in which each state in the (restricted) sum L' decays to 
ga 

the ground state through ~n.allowed dipole transition and the 

dominant contributions to the line widths arise from dipole transitions. 

:". 

i· 

, .. 
! .. 

, 
" 

• I 

I 
I 
I 

i 
I 
i 

I 
j 
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In this case (c = 1) , 

. -i (W +k)t o 
~.e 

where 

1 - exp(i[k - (Wa - 1'10 ) +ira/2JtJ 

k - (W a - vIO) + i r a/2 

(37b) 

is the total moment~ operator for all the electrons in the atom, and 

, ~. p 

'- I (gb l - m 
~ 

is the natural line width. Using (35a) and (37a) and changing the 
p 

sum ~ in (16) to an integral, the non-interferent part of 
Lk~ 

.' -'-
(p(t» becomes, 

., 

(p( t) ) 
.n "a (9,)} ililk t 

k - (W - W ) + ir /2 a 0 a 

2 e 
A e • P 

m 

(38) 
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We will aSSllrne that the filter used in the experiment passes all 

radia tion ,vi th a frequency in the vicinity of W - Wo (for all 

included in 

, a L ). By "vicini ty" ~'le mean a frequency range 

ga 

much ,-rider than f . a 
This allows us to replace 

dkk by .J'~oo dk in (38). The result of this re-

placement is, 

L 
f P -f t 

(p (t) ) F CJa(S) 
a (1 - e a) 

n fa 
ga 

where 

e
2

(W - W ) 1 p ~. P 
f P a 0 

. dnk L I (go I - m - I ga) 12 . a 2n: 
P A e 

Using (35a) and (37a) the interferent part of (p (t) ) becomes, 

b. "ba (g) 1 P 2 ~. P 
(p( t) ). 2F Re dQ

k r e 
(gol I~)* 

1. (2n:)2 m 
P ? 

b > a 

~. P 

Iga) 1dkk [ 

1 - exp[i[k - (Wb - W ) + ifb/2]t} r " (gol 
o . 

m 
k - (w Wo ) + ifb/2 b 

exp[i[k - (Wa - Wo) + ira/2JtJ ] 

k - (Wa - Wo ) + ifa/2 
(40) 

! ' 

l' \: .. 
i , 
i 
i 

i f ! 
i 
i fl ., 
i! 

i ,~, 
i'~~, 

. 

! 
; " 
i 

~ :{: 

ii 
, :g 
l :;~; 

L~' 
if· 
~' 
} 
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~st, 

~'i~ 
l:,:~ 
r',:: 

~ : 

;'j:" 
:,:::":: 

f£ 
a,~, 

1/ 

... ";: 



-61-

The int,egral over k in (40) may'be put in the form, 

Wb - Wa +\(f
b 

+f
a
)/2 I dkk(k - (Wb C\e)-

~ (1 exp(i[k -(Wb ~ ~vo)+ irb/2JtJ} * 

" (1 exp(i[k - (Wa - We) + ira/2ltll (41) 

The overall multiplicative factor of k in (41) will be replaced by 

-1 
Wb - Wo when it multi?lies [k - (Wb - Wo ) - iPb/2J and by Wa - Wo 

when it multiplies [k -(W
a 

- W
o

) + ira/2J-l. With these replacements (40) 

becomes, 

(p(t»). = 2F Re 
1. L' 

-gb,ga 

b>a 

" (1 - exp([i(Wb - Wa ) - !(rb + ra)]tj 

where 

~. p 

(42a) 

I ~) * 

(42b) 



-62-

Adding (39a) and (42a) one obtains the following expression for 

the total integrated photon counting rate. 

F[~' 
P -r t 

(p(t)) a (q) 
ra 

(1 - e a) 
a-

ra 

t(rb + l'a)Jtl)1 r'w 
p 

(1 °ba (s) rba - exp([i(W. - W) -- 2 1m 
- W + i(rb + ra )/2 

b a, 

(43) J ~,ga b a 

b> a 

The differential counting rate observed in a quantl® beat 

experiment is, 

d(P(t) 
dt F a (q) f p 

a - a 

-r t a e + 2 Re 

(44) 

The total number of photons counted in a level crossing experiment is, 

L' °a(g) 
r p r ~a (g) rba 

p 

(p( 00) ) F a - 2 1m 
ra Wb - Wa + i(rb + fa)/2 

ga ~,ga 

b > a 

(45) 

The expression for the counting rate must be modified if there are 

several possib~e initial and final states. The cross-sections defined 

by (35b) depend on the initial electron spin orientation. For an un-

polarized incident electron beam these should be replaced by their 

averages over initial spin orientations, 

, 

" 
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(46) 

There may be more than one possible initial atomic state. We will 

denote the initial states by a Greek subscript, and let p be the a 

probability that g is the initial state. a Finally, there may be 

several possible final states which we will denote by a primed Greek 

subscript. The statement that is a possible final state means 

that ,{hen L 
ga 

ga gat is inserted into (p( t» (as in (15» the 

term ga' galt gives an appreciable contribution. The generalized 

form of (~3) for this situation is, 

(pC t» F r Pa r 
ga ga' 

- 2 Im L 
~,ga 

b > a 

r' rala 
p 

~aa(g) f I 

a 
ga 

~aa(g) fa'ba 
p 

Wb - Wa + i(fb + fa)/2 

-r t 
(1 - e a ) 

~ (1 -exp[[i(\ - W ) -J·(r + a 2 b ra)JtJ) 

and ~aa are the same as and ~a ' respectively, 

except that the initial atomic state is ga rather than go' .and 

r are the same as a'ba 
p 

fa and 
p 

rab ' respectively, 

except that the final atomic state is ga' rather than gO' 
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In any given e:h.,})eriment there ,'Till be corrections to (h3) 

(or (47)) arising from the finite extent of the target and the finite 

velocity of the atoms. The operator P, as given by (14), is not a 

strictly correct d.escription of a photon counter, e.g., a counter 

measures the position of a photon, but does not measure the direction 

in ,.hich it is traveling. However, if it is kno .. m that the photon 

was emitted at the origin, then when the photon is counted it is 

also known that the portion of the photon wave packet intercepted by 

the counter consisted of plane waves 'Those wave vectors lay wi thin 

the solid angle subtended by the counter at the origin. So P is 

an effective measurement operator valid for a particular atomic 

position and velocity. By performing a spatial translation and a 

velocity translation one can construct an operator valid for an atom 

at position R and moving with velocity V The counting rate is' then, 

(pC t) ) =J d3R d3V peg) F(~) (PR vet)~ -'-
(48) 

where peg) is the density of atoms in the part of the target inter

cepted by the beanl and F(~) is the atomic velocity distribution, 

both normalized to one. With respect to such corrections we only wish 

to note that the Doppler effect will be unimportant if the range of k 
p 

\ is sufficiently greater than the Doppler ,ddths of the lines in 
Lk~ -'-

involved in the experiment. 

F is to be interpreted exper:i.mentally as the net beam flux, 

and (p(t)} as the integra.b~d cou.nting rate pel' atom in the part of 

, ..•. 

I 
I 

I 
I 
\ 



the target intercepted by the beam. In a level crossing experinEnt 
, 1"' 

the total duration of the beam :i1ay be much gr'eater than the value 

• of 6t for individual electrons. The total mllllber of counts is 

c 

still given by (45) (or the modified version of (45) obtained from 

(47)) in this case since the increase in the nurnber of counts ,'/ith 

increasing beam duration is accounted for by the increase in F iii th 

increasing beam duration. 

t 
t 
t 
[ 
I': 
F r: 

( 

Ii .r 
,'/1"" ;r 

b", 
1'. 

f 

t., 
".' I 

,': 

I 

" 

I" 

J 

I" j , 

! 
I 

i 
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IV. THE HADEISHI-NIERENBERG EXPERIMENT 

As a simple application of our general considerations l,.,e will 

calculate the phase of the interferent part of the photon c01.mting rate 

2 1(. 

in the Hadeishi-Nierenberg 'luantwn beat e;,:periment.' We will not 

consider corrections arising from finite target volwne or finite atomic 

velocities. Equation (44) "Will be used as it stands except that 

(J 
a and a will be replaced by 

ba 
and (Jba ' respectively .. 

1 
go is the 5 So ground In the Hadeishi-Nierenberg experiment 

state of Cd. The atom is in a "Teak magnetic field (0.88 gauss) and 

beats are observed behreen the excited states. 

The experimental configuration is shown in Fig. lea). The incident 

beam is perpendicular to ~,and the emitted photons are intercepted 

by a counter which subtends a small solid angle about the z-axis. 

Denote the M = + 1 (-1) 
J 

excited states by Let W+ 

W be the energies of g+ and g_ when B is in the positive 

z-direction as in Fig. lea). Then the interferent part of the 

differential counting rate is, 

* 

and 

Hadeishi and Nierenberg state that in their experiment the incident 

electron energ'J l,.,as close to threshold vrhile we have required that the 

incident electron ,.,ave packet lies far from threshold. H01.,ever, their 

criterion for an energy close to threshold was E «Wa which clearly 
a 

does not conflict with our criterion (31). In fact, (31) r,vaswell 

satisfied in the Hadeishi-Nierenberg experiment (T. Hadeishi, private 

communication) . 



... 

1 

):. 

d(P( t)) . 
. 1. 

dt 

Ivhere v.Ie have put 

= 2F Re (f 

r = r = r . + 
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e -rt 
e 

In Fig. l(b) another experimental 

configuration is shown; it is obtained from Fig. lea) by 1800 rotation 

about the x-axis. Clearly the counting rate for the situation pictured 

in Fig. l(b) is the same as that for Fig. l(a). Let us. calculate the 

counting rate for Fig. l(b) using (44). For a sufficiently weak field 

, ~_ +(9) , and are essentially field independent. Further, g+ ' g 

r P 
-+ 

is the same for both situations pictill'ed in Fig, 1 since it is 

" "-invariant under replacement of ~ by - k. The energies of g+ and g_ 

depend linearly on the field, and the effect of reversing the field is 

to replace W_ - W+ by W+ - W 

Fig. l(b) is, 

d(P(t» . .. 1. 

dt 

Thus the cOilllting rate calculated from 

i(W 
+ e 

WJt -rt e 

Comparison of (49) and (50) shows that, 

1m d o (51) 

and 

d(P(t)) . 
1. 

dt = 
. rt 
e -. cos(W+ - WJt 
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According to (52) the oscillations should start out at either a rnaxhnum 
.-'; .. 

or a minimum. Eztrapolation of the data in Hadeishi and Nierenberg's 

Fig. 2 to t = 0 shows that the oscillations start at a maximum wnich • 
indicates that is positive. 
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APPENDIX: EFFECTS OF EXCHAlifGE SCATTERING 

In this appendix we will justify the use of equation (9). This 

vall. be done in a rather brief manner since much of what is said here is 

also contained in Goldberger and Watson. S We first replace the initial 

uns~nmetrized wave packet X(t) by an .anti-s~etrized wave packet 

Xs(t). Since the atomic wave functions ga(~) are already anti

symmetrized we need only anti-symmetrize with respect to interchange 

of the incident electron and each of the atomic electrons. 

1 
x (t) 

s 
(z + 1)2 SX(t) (Ala) 

where S is the projection operator onto anti-symmetrized states 

S = (Z + 1)-1· ~ o.~. . L J J 
j = 0 

(Alb) 

Here Z is the number of electrons in the atom, 00 ~ 1, 0j/o = - 1 , 

~O = 1 , and ~j/O interchanges the incident electron! s variables 

and the ,J,th atomic electron's variables. Q
j 

is Hermitian and unitary 

so adjoints and inverses will not be indicated explicitly. Let t 
c 

be a large negative time at i'lhich the electron wave packet does not 

overlap the atom. Let H = K + V where V is the electron-atom 

* interaction. Then since all permutations commute with H the 

symmetrized solution of the Schroedinger equation is, 

* This is not strictly true since K does not include the interaction of 

the incident electron's orbital angular momentum with B It is assumed 

that this is of rio physical significance. 
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-iH(t - t ) 1 -iH(t - t ) 
\jr. (t) 
-s 

c 
== e x (t ) s c (Z + 1)2 S c 

e x(t ) 
c 

where 

\jr s( sc) 
+ 

3 ( -iEt + 
dpaE.·-g)e \Ve) s sc 

1 
(Z + 1)2 S(\jr+ - X) 

Z 

(z+l)-l L 
j=O 

(A2a) 

(A2b) 

We will expand ;v e )(t) ==I (t) - X (t) -s sc . s s in anti-synnnetrized eigen-

states of K . 

X 
sea) = 

1 
(z + 1)2 SX 

a 

In general the states X 
sea) 

do not give rise to a simple eA~ansion 

of the identity, but it is readily verified that 

L X <\(a)lf s > =L X (X If) f (A4a) sea) sea) a s 
a a 

whenever f is of the form s 

1 
f == s 

(Z + 1)2 Sf (A4b) 

where f is an un syrnrnetri zed 'va ve function in which the incident 

electron is localized far from the origin and the atomic electrons are 
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localized near the origin. The nature of the sum ~I in (A4a) is 
a 

defined by \ X X t = 1 ; it is displayed e~'"Plicitly in (3b). L. a a 
a 

For sufficiently large positive times ~ ( )(t) is of the form (A4b) 
"""S sc 

(we assume the excited atom is not ionized) and admits t1e eA'}lansion 

(A4a). Before carrying out the expansion vle will put~ s (sc) + ina 

more convenient form by using the operator identity 

E + iT) - K. T 
1 1 

T., . QJ. 
J J E. + iT) K - j' 

where j' is arbitrary and, 

V. 
J 

= H-V 
j 

This leads to the expression, . 

where 

(z + lfl 
E + ill - E a 

=~ .. ~l + ill - E a 

L . 5
k

5 j <'\c Xa ITkj 1Ql) 
kj 

(Ta(Ea,El - ZTaeX(Ea,El:! 

. (Asa) 

(A5b ) 

(Ase) 

(A5d) 

(A6a) 

" ... 

1" 
;. 

:} 

:: 
.~ 

{ 
.' 
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(x ITIX) a (A6b) 

(A6c) 

wi th· k 1 o. I (t ) r s (sc) is thus, 

X 

ili (t) (z + l)! S ' .,l..s(sc) L -E-+-i-Tj-__ a_E-- [Ta (Ea,E) - Ta eXCEa,E) ). 
a a 

(A7) 

Following the same line of development as in Sec. II this may be put 

in the form, 

(AB) 

where I (t) is given by equations (B) with f defined by (9). sc a 

The decay process is now described by, 

which is obtained from (AS) by replacing h with H and including 
·r 

the initial state of the radiation field. In the same way that one 

verifies (A4a) it is readily verified that, 



Thus the symmetrization in (A9) may be ignored for the purpose of 

calculating the photon counting rate. 



} 

• 

'. 

1. 

-75-

REFERENCES 

Some representative papers are: G. Breit, Rev. Mod. Phys. ~, 91 

(1933); J. Brossel and F. Bitter, Phys. Rev. 86, 308 (1952); 

F. Colegrove, P. Franken, R. Lewis, and R. Sands, Phys. Rev. 

Letters }, 420 (1959); P. Franken, Phys. Rev. 121, 508 (1961); 

J. Dodd and G. Series, Proe. Roy. Soc. (London) A263, 353 (1961); 

A. Podgoretskii and 0: Khrustalev, Usp. Fiz. Nauk 81, 217 (1963) 

(English Transl.: Soviet Phys. -Usp . .§., 682 (1964)); J. Dodd, 

R. Kaul, and K. Warrington, Proc. Phys. Soc. (London) 8h, 1,(6 

(1964). Concise descriptions of quantum beat and level crossing 

experiments will be found in the papers by Hadeishi and Nierenberg: 

Ref. 2 (quantum beat) and F. Colegrove, et. al. (level crossing). 

2. Some representative pap~rs are: O. Nedelec and J.-C. Pebay-Peyroula, 

Conrpt. Rend. 254, 1951 (1962); A. Faure, O. N edelec, and J. -C. 

Pebay-Peyroula, Corrrpt. Rend. 256,5088 (1963); O. Nedelec, H.-H. 

Deschizeaux, and J.-C. Pebay-Peyroula, Conrpt. Rend. 257, 327 (1964); 

E. Aleksandrov, Opt. i Spektroskopiya 16, 377 (1964) (English 

Transl.: Opt. Spectry. (USSR) 16, 209 (1964)); T. Hadeishi and 

W. Nierenberg, Phys. Rev. Letters 14, 891 (1965). 

3. M. Goldberger and K. Watson, Collision Theory, John Wiley. and Sons, 

New York, 1964. See particularly pp. 95-101. 

4. Ref. 3, Chap. 8. Our Equation (37a) is a special case of Goldbel'ger 

and Watson's Equation (8.119b), p. 451. See also the discussion of 

radiative decay on pp. 460-469. 

5. Ref. 3, Chap. 4. 



-76-

FIGURE CAPTION 

Fig. 1. (a) Experimental configuration of the Hadeishi-Nierenberg 

experiment. (b) Experimental configuration obtained from the 

Hadeishi-Nierenberg configuration by a 1800 rotation about the x-axis 
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