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ABSTRACT

A general method has been developed for calculating Bragg curves, flux
curves, and energy spectra resulting from the transport of high-energy
heavy-ion beams in arbitrary media. The method takes into account the
processes of energy loss frém both electronic and nuclear elastic collisions,
nuclear attenuation, small-angle multiple scattering, and straggling, as
well as effects due to initial energy and angular spreads of the beam. Con-
tributions from secondary particles are not included.

Calculations are made for ions of various atomic numbers and energies
incident on different targets. It is found that for a given range in a
particular target, the peak-to-plateau deose ratio goes through a maximum
as the atomic number of incident ions increases. Similarly, the Bragg peak
full width at half-maximum geoes through a minimum.

Another significant result-is that for a given particle range, the
average energy per atomic mass unit at the Bragg peak is nearly independent
of the bombarding ion, and also of the target material.

The calculated results agree very well with experimental data for
those cases in which secondary-particle production is of minor importance.
In addition, even when secondaries are a large contributing factor, the
method yieids valuable information regarding the variation in energy
deposition by the primary particles.

The calculated results are found to be guite sensitive to the degree

of angular and energy spreading of the initial beam.
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_ I. INTRODUCTION

In this paper we consider a beam of monoenergetic particles incident on
a slab of material whose transverse dimensions are large compared with the
beam dimensions and with the depth of penetration of the beam. As these
particles traverse the medium they lose energy through a variety of processes,
the predominant ones being ionization energy loss, nuclear interactions, and
small-angle multiple scattering. Other processes, including large-angle
Coulomb scattering and elastic nuclear scattering, are usually of secondary
importance when the initial energy of the beam particles is significantly
greater than a few MeV per amu.

A. Energy_Loss

The energy loss of a beam of ions results primarily from many collisions
between the beam ions and the electrons of the medium, causing a net transfer
of energy to the medium. This process is referred to as ionization energy
loss.

There are many facets to the highly complex process of charge exchange
and ionization energy loss, but a wealth of experimental evidence backs up
a great deal of theoretical work. Consequently, very good estimates are
available for the rate of ilonization energy loss of many ions in many
different materials. The state of knowledge with regard to heavy-ion
ionization energy loss has been summarized by N’orthcliffe.l

B.» Nuclear Interactions

At very high particle energies, nuclear reactions can play an important
role in the energy-loss process. A great many différent reactions occur,
and the total process 1s exceedingly complex. In some of the collision
processes, many different secondary particles can be produced, and each of
these gives up energy to the medium by the processes of ionization loss
(charged particles only) and nuclear interaction (all particles).

The total cross section for nuclear interactions is known reasonably
well over most energies of interest in this work. From this, attenuation
factors can be calculated for the beam particles at all penetration
distances.

Although the effect of nuclear attenuation on the flux, dose, and
spectral curves is taken into account, the additional terms due to the
secondary particles produced by the nuclear interactions are neglected in

this work. :
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Elastic scattering of the beam lons by the nuclei of the target causes
a small fraction of the total energy deposition in certain regions of the
ion energy, in the form of kinetic energy of the recoil target nuclei. This
effect is included as a correction term in the calculation of the total
stopping power. .
In addition to this elastic process, both the incident ion and the -
target nucleus can be raised to an excited state during an interaction in
which the two bodies do not actually merge to produce a single compound
nucleus. This effect is commonly referred to as Coulomb excitation, and as
a result of such an interaction, each of the two bodies may be raised as high
as an MeV or two above its respective ground state. For_the energies of
interest in this work, the contribution from Coulomb excitation to the
total stopping power is negligible (see Appendix D).
C. Multiple Scattering

The process of small-angle multiple scattering leads to a divergence
of the beam. A4s a result, the mean range of the particles decreases somewhat,
and the range distribution is broadened. The basic scattering law is well
known, so that it is possible to mske reasonably accurate estimates of the
multipledscattering effects. h

D. Straggling

The process of lonization-energy loss occurs in discrete steps, rather
than being continuous. This process leads to the general concept of
straggling, whereby a given particle energy does not correspond to a unigue
distance of travel. Instead, for a given distance of travel, there is a
distribution of particle energies, and for a given particle energy, there
is a distribution of distances of travel. This distance distribution is of
paramount importance in calculating Bragg curves.

E. Other Processes l .

Various other process (most of them not significant from the standpoint
of energy depositiong) influence the passage of charged partic¢les through R
matter; they include large-angle Rutherford scattering, energy transport via
fast secondary electrons (8 rays), and Cerenkov radiation.

F. Previous Work

The classical method of calculating Bragg curves is described by Evans.3
This simple method is based on the assumption that the processes of nuclear

attenuation and multiple scattering can be neglected, and that only range
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straggling need be considered. Although useful for low-energy beams, this
method is of little utility for the work described here; for the beams of
interest here, both nuclear interactions and multiple scattering must be
considered . '
Other authors

multiple scattering along with range straggling. These methods are not adequate

4,5

have gone one step further by including the effects of

for this work for two reasons. First they do nét treat nuclear interactions;
in this work, we.are concerned with beams of particles that are much heavier
than protons, and that often have sufficient energy to cause a significant
number of nuclear interactions. Second, these methods are not applicable to
very heavy iens, because of various assumptions made with respect to the |

multiple-scattering process.
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ITI. BASIC EQUATIONS

A. Particle Number Density

We first consider the problem of deriving an expression which describes
the attenuation of a beam of particles as they traverse a medium. The beam
particles are all assumed to have an initial energy Eo, to be perfectly
collimated, and to strike the surface of the medium in a direction parallel to <
the surface normal. The medium is assumed to be homogeneous, with transverse
dimensions large compared both with the beam dimensions and with the depth of
penetration of the beam particles.

The medium is assumed to be characterized by a total nuclear-reaction
macroscopic cross section Z(E) (in cm_l) and by a stopping power, or specific
energy loss, f(E) (in MeV-c'mg/g)° The reaction cross section represents any
and all nuclear reactions that remove particles from the beam. The function
f(E) is the total energy given up to the medium due to.interactions between
the beam particles and the medium; E is the energy of the particles, in MeV
per atomic mass unit.

The path of the beam particles is characterized by the dimension E(E),
which is defined as the mean distance traveled by particles which have gdne
from an initial energy EO to an energy E. Consider those particles that
have reached an energy E, denoted by the function Ne(E). In traversing an
incremental distance As, these particles lose on the average an energy (per
amu!) AE. Since f(E) is the total energy lost by each particle in a unit
distance of travel, then the relation between AE and As is

AB/ns = £(B)/A | (1)
where Ap is the atomic weight of the beam particles.

For this group of particles, the fractional decrease in their numbers
in going from E to E=AE is given by the macroscopic reaction cross section
multiplied by the mean distance traveled in losing this energy. Thus, we have -

AN
— (B) ~ -Z(E)-2s. (2)

Using Egs. 1 and 2 we obtain

alN
T () = & gy e (3)

where we have taken the limit as AE tends to zero.

Equation 3 thus gives the fractional decrease in the number of
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. particles in losing the increment of energy 4E. Note that Eg. 3 is actually an

operational definition of the total reaction cross section that is slightly
different from the usual definition given by Eg. 2. That is, (E) may be
considered to be defined in terms of the stopping-power function f(E) rather
than in terms of a distance s. This subtle difference is due to the fact
that statistical fluctuations, strictly speaking, invalidate the use of a
relation of the type given by Eq, 2. In any event, we may regard Eq. 3 as
the definition of Z(E) if we wish; in practice Egs. 2 and 3 are equivalent,
because cross-section values are known only approximately.

Integration of Egq. 3 ylelds the number density of a given energy within
the slab,

E .

N (E) = N (E_)-exp{-A b/\ ° [s(r'/£(E*)]aE'], (4)

e’ o' o P

v B
where Nb(Eo) is the number of incident particles, all of which have an energy
E .
o ' .

Note that this expression for the number of particles surviving down
to an energy E is independent of any particular distance, but is instead
a function of only the cross section and stopping power between the initial
energy and the energy in question.

The energy loss process 1s not a continuous one; that is, particles lose
energy in discrete steps, rather than continuously. Because of these
fluctuations, and because of other processes to be discussed later, a
particular energy corresponds to a distribution of path lengths, rather than
to a unique value.

1. Mean Path Length of Travel

A very good approximation to the mean path length traveled by particles:
that have gone from energy EO t0 energy E is obtained by direct integration of
Eq. 1: _

2m) = &, [ Cr/e(enlas. (5)
- E

2. A Limiting Cage

If the reaction cross section is energy-independent, it may be removed

from under the integral sign in Eq. 4. Then, we have

EO
Ne(E) = NO(Eb)-eXp{—APZU/\ [1/f(E')1aE!).
E
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By using Eg. 5, this becomes simply
N (E) = N_(E ):exp(-Z-s(E)},

which is a well-known .result.
B. Path-Length Distribution

Equation 4 gives the number of particles reaching energy E. To obtain .
an expression for the energy deposition and for the flux at a particular
distance of travel s, we must relate the energy of an ion to its position.
This is done by defining a path-length distribution function as follows.

For a group of particles, each with energy E, M(s,g)ds is the fraction
of these particies that have traveled a distance s, where s is the mean
distance tgaveled by particles of energy Eo and is given by Eg. 5.

Lewis™ has shown that if the path-length distribution is a result of
statistical fluctuations in- the energy-loss process, then the distribution
funetion should be well represented by a Gaussian. Berger and Seltzer7
have extended the study of the problem and show that the deviations from a
Gaussian are negligible for nearly all cases of interest. '

It should be pointed out that the distribution funétion M- should not
be affected by the occurrence of nuclear interactions, provided that one
is concerned only with the initial beam particles as opposed to nuclear
secondaries. This can be argued by considering that the fractional
decrease in the number of particles of a given energy, as given by Eq. 4, is
a function of the energy only, not of the position of the particles. Another
way of stating this is that if at some energy the path-length distribution is -
Gaussilan, then the fractional decrease in particles lying in any given
distance increment is constant. - Therefore, the attenuation does not affect .
the shape of the path-length distribution.

Processes other than energy-loss fluctuations also contribute to the
path-length distribution, the principal ones being multiple scatteriné and
the energy spread, and imperfect collimation of the initial beam. Wé assume
that these effects are such that the path-length distribution is still well
represented by a Gaussian. The validity of this assumption is discussed later,
when each of these processes is examined.

Therefore, the pathxlength distribution function is written in the

form
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- 2
M(s,s) = —_1 . ex - L=5 ds. 6
(o8 Jex o(E,E_) P V2 o(E,E ) ©)

The quantity [O(E,EO)]2 is the véfiénce in the path-length distribution for
particles slowing down from energy Eo to energy E. In general, this
variance is the sum of several terms, each of which represents the variance
due to a particular effect. Calculation of the variance is discussed fully
in later sections.

Note that there may be a small range of energies near EO for which Eq.
6 does not hold. Thus, consider an energy E.near EO. Irf o(E,EO) is not
sufficiently large, then the distribution function cannot be symmetric,
because s can never be less than zero (no path length).

Thus, for Eq. 6 to be valid, we require that E be small enough so
that the inequality

CS(E) >> 2 o(E,E,)

is satisfied.

This requirement usually imposes no practical limitations, since
~ for energies near EO, the quantities of interest -~ such as dose and
flux -- are independent of the form of the distribution function (see
Appendix B). _ »

Many authors have adopted the convention of using the quantity
called the straggling parameter, equal to NE; o(E,Eo), rather than the
standard deviation o(E,EO). However, inasmuch as the term "straggle"
carries particular implications with respect to energy-loss fluctuations,
we shall adhere to the use of the variance itself.

We now transform the distribution M(s,g) as follows. Defining the

variable U as

s - s(E)
U(E) = === 8\ .
(%) J2 o(E,E,) ()

we can write

L F

M(s,s)ds = M(U) aU = = e au. (8)
N |
The distribution MﬂU)dU may now be interpre%ed as the fraction of
\
particles of energy E that have traveled a distance s such that the

normalized difference between s and the mean distance of travel s(E) is
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within an increment dU of U, and U is the normalized difference given by Eq. 7.
Therefore, given the total number of particles Ne(E), as calculated from Eq. 4,

the number of those having traveled a distance s is given as
aN(s,E) =_Ne(E)'M(U)dU, v . (9)

where U is an implicit function of E and is given by Eq. 7. -

C. Flux and Dose Distributions

The total flux at a distance s is now obtained by integration of Eg. 9
from U(Eo) to U(0). Using Eqs. 4 and 8 and changing the variable of inte-
gration from U to E, we obtain the total flux at a distance s:

E | E .
N(s):N(E)foexp -AfOZ(E)dE' eU2 W) gg . (10)
00 P
o)

TE) ° = | |&

The mean range of the particles, R(E ), is given by Eq. 5 with E = O.
The quantity o (E ) is the variance for partlcles having come to rest. It
is equivalent to o (E E, ) with E = 0; that is

| 02(EO) = 02(O,EO).-

We also wish to calculate the total dose at s. If dN(s) represents a
certain number of particles of energy E, as given by Eq. 9, then dN(s)f(E)
.is the dose per unit distance of travel of these particles at s. Thus, the
total dose is '

D(s) =f aN(s,E) £(E).
M1 E
Using Eqs. 4, 8 and 9 we then have

D(s) = N, (E )f exp -Apf © %Eg—)y dE! 'U2 jiE) (aU/4aE)aE (11)
It should be noted that in Egs. 10 and 11 the independent variable E -
appears, as well as the variable U. In order to perform the integration,
one of these must be expressed in terms of the othér. This is easily done, *~
inasmuch as the unique relationship between them is given by Eq. T.

D. Energy Spectrum

At any given position s, the total flux may be written as

N(s) = f N(E,s) dE,

All E
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where N(E,s)dE is the number of particles having energies within dE of E.
Comparing this expression with that given by Eq. 10, we deduce that the
spectrum at'any position is given as
E
_ o X(B') .., a2
N(E,s) = NO(EO) exp -Apu/\ FETy 9B e 7 (au/aE),
. L
E
with U given by Eq. 7.
E. Some Simplifying Cases

Suppose that the cross section is independent of energy. Then, as
before, we may remove I from beneath the integral in both Egs. 10 and 11.

When Eg. 5 us used, the expressions for the flux and the dose simplify to

E
N(s) = N_(E ) © exp (-[55(E) + v7]) (QU/AE) 4p 12)
s f p (-[55(E) U (
and
.
D(s) = N (Ed)ﬂfi © exp {-[Z5(E) + U°]) f}i) (dU/aE)ax (13)

The integrals in both Egs. 12 and 13 must be evaluated numerically.

A further simplification is obtained in the limiting case, where the
attenuation due to nuclear interactions is negligible, as it would be for
ions of sufficiently'low energy. In that case, the cross section is‘assumed

to go to zéro, and the ekpféssions for the flux and the dose reduce to

N(s) - N(E)f o d“E)dE (14)

J‘[

and

D(s) = Nb(EO)L/ﬁE° e_UE-f(E) (AU/AB) 4p,

A Vn

The latter expression for the flux is equivalent to the classical expression,
3

derived by Evans
follows.

and others. It can be obtained from basic principles as

We assume that the distribution of ranges for particles with initial
energy E is Gaussian, with a variance [O(Eo)]2°
2
1 exp ¢ - R-R(Eo)

P(R) = —————
NEP o(EO) NE: G(Eo)
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where R(EO) is the méan range. The flux at a given distance s is contributed
to by all particles whose range is greater than s. If the initial flux is

NO(EO) at s = 0, then the flux at s is given as

2t
. o 1 R-R(E_)
e - NO(EO)&{? Jexoz) | 2o | w ) B

If we change variables from R to W, where W is given as
R-R(E_)
W ==J;‘——-—-— s
2 O(EO)
Eq. 15 becomes
. - : o« . -
n(s) = NO(EOZ/W e ngfﬂ ;
7
s-R(B,)
J2 q(EO)
which is equivalent to Eq. 1k.

. F. Nuclear Interactions

Energy deposition from nuclear inberactions arises from two sources --
direct and indirect. The direct contribution comes from the deexcitation of
the compound nucleus formed- by the interaction of the target atom withvthe
bombarding ionf A certain fraction of this deexcitation energy is released
at the poiﬁt of.impact, and it is this fractioh which comprises the direct
contribution. The indirect portiQn aroses from secondaries produced at
points within the medium other-than the position of interest.

1. Direct Contribution

The total number of interactions, per unit length of travel, of ions

with energy E, due to those particles whose initial energy is Eo’ is given by

r°(8,s) = N(E,s) =(E).

The total energy release at s from the direct contribution is then

-

E
Dy, .(s) -u/" N(g,s) 5(&) 6(8) az,
o . :
where G(E) is the energy deposited at s per nuclear interaction with a
particle of energy E.

2, Indirect Contribution

Let H(E',s' ~s) be the energy released at's due to a nuclear interaction
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of an ion of energy E' at g'. Then the total indirect contribution to the

linear energy transfer, denoted Dn(s), is given by

p(s) = [ asr [amm(z o )s(®) HE e —e). (16)
The simple form of Eq. 16 belies the inherent difficulties involved with its
evaluation; although, as will be indicated, N(E,s) can be calculated, the.
function Z(E) is usually not well known. Furthermore, even less is known
about the function H(E',s*® —s).-
For the work in this report, we neglect the contributions to the dose

and flux from secondary particles.

G. Variance of the Path-Length Distribution

The path-length distribution is a function of several processes; we
assume that each of these processes is independent of others. We further
assume that each process contributes in a random manner to the deviations in
the path-length distribution. Therefore, the total variance in the distri-
bution can be expressed as a sum of terms, each of which represents the
variance due to a given process.

In this section, we discuss the different processes and show how

each contributes to the total variance.

1. Energy—Loss Fluctuations

The process of ionization-energy loss occurs in a randem fashion,. so
that one expects that, over a finite energy interval, the path-=length
distribution of particles with given 'energy will be Gaussian. The classical
derivation. of the expression for the associated variance, made by Lewis,
is given below.

Suppose that a particle has an energy E From Lewls, the average

tot”®
number of collisions experienced by the particle per unit distance of travel,

in which an energy loss T occurs, is given by the expression

k 4T
N (T) ar = —= | oan
2B T
tot . : g

where constant k is given as
k=2t n Z? M eu/m s
e pp e
and where n, is the number of electrons per unit volume of the target and

Mi and Zp are the mass and atomic number of the incident particle. The
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function NT(T) is often referred to as the collision spectrum.

Equation 17 is wvalid in the nonrelativistic limit. It is also assumed
that the velocity of the incident particle is much greater than that of the
k electrons of the target atom.

Now, in traversing an increment of distance As, the average number of
collisions ih which an energy loss T occurs is given by

k a7
Np(T) dT]AS = —— As.

2 Etot 12
4
Since the collisions occur randomly, the standard deviation associated with
the average number N (T)dT is equal to the sguare root of that number. The

variance {N ) in the number of collisions is therefore equal to

(m 2y - k4T

2 Bt -
Because each collision is associated with an energy loss T, the variance in

the total energy loss over the distance As is given as

2\ 2y _ kar .
(8 E,,) = e (n %) = cx-n 1s. (18)

For -each value of T, there is a corresponding variance given by Eq.l18.
Inasmuch as the collisions associated with each value of T are independent,
the variances for all values of T are additive. Therefore, the net variance
in the total energy loss associated with an incremental distance As is given

by the sum

2 k aT
(a Etot>'_§Z oE,_ S

ATL T tot
and in the limit, by
Tax _ar
(2 E2,) —kf 2T . (19)
t t
MIN

It can be shown that the maximum energy loss in a single collision is given

by € Etot’ where

=L me/[MP(l + me/MP)g]. ' (20)

A discussion of the lower limit is given by Bloch, who shows that it

M
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can usually be neglected..8 Integrating Eq. 19 using Eq. 20 we have

s MﬂneZ Eeh ‘ _ |
(BB y) = ——E— ss. | - (21)
-(l+me/Mp)
Equation 21 gives the variance in the energy loss produced by cellisions in As.
Evans3 gives an argument to show that the relationship between an energy

variance 'and the corresponding variance in the péth-length’distribution is

given as
2 1 2 ‘ '
(0F°) = —=—— (A E, ), (22)
| [(£(®)] | |
where Etot is the mean energy of the particles in gquestion. This can be

argued as follows. At some energy Etot’ a change in energy, AEtot’

produces a corresponding change in path length As, given by Eq. 1. The
term As is then the contribution to the total path length due to the energy

change AE Therefore,Aif LF represents an uncertainty in the energy

change, tﬁzz the corresponding EZ:ertainty in the contribution to the total
path length is again As, and <AE§dt> is the square‘of AEtot' Equation 22
then follows.

Substituting the expression givén by Eq. 21 intolEq. 22 we obtain

bgmn deu

(ARE) _ e’ p . As
(1rm )% [2(8)]°

b

which is the contribution to the variance in the path length due to collisions
in As. Since collisions within each increment As are independent from those
in any other increment, the net variance over a'group'Asi will be the sum
of the individual variances.A As the Asi approaches zero, the sum becomes
an integral, and we obtain
2 .L.L,mqezfaelL . E2 . ds
O P L T
e’ p

Using Egq. l; we have

2k -
han Z e E
2>‘= ep Afz aE

AR _—. 23)
< (l+me/MP)2_ P [£(2)]° -

B

This is the expression for the contribution to the variance in the

path-length distribution for particles going from an energy E2 to an energy El'
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It is velid when the energy range is nonrelativistic, but at very high
energies, correction factors must be applied. Furthermore, at very low
energies, corrections must be made to take into account the fact that the -
electrons of the medium are in a bound state.

a. High- and Low-Energy Corrections

At high energies, the collision spectrum deviates from the form given
by Eq. 17. Macca.'bee9 discusses this effect and gives the modified expression

_as developed by Vavilov-O as

N(T) aT = £ deg 1 -6 T —,
2 By oy max
with
T =hE L ow /(L +a M)A - 6]
max tot e T p el p

When these relationships are used, the expression for the variance contribution

(AB?) becomes, instead of that given by Eq. 23,

E 2 '
(02 = hnzletna [ 0 — (& - B/2) LB (24)
Tp® Telp kéj (1 - ) +-(2me/Mp)7] [£(E")13

where .
y =@ -2,
These are the equations given by Sternheimerll for calculating the
path-length variance due to energy-loss straggling. The quantity B 1s the

ratio of the particle velocity to the speed of light,

2 .
2 MbC 2
r=l-| ——= |
E+ M
o]
where Mbcz, the rest energy per amu, is equal to approximately 931 MeV. The e

term K is a factor introduced by Sternheimer to take into account the effects
due to the binding of the atomic electrons. If the variance is expressed in e

g/cm?, then Eq. 24 becomes

2k 1.2 .
(ABE) _ hnZ e neA.p E_ (1 - P ) IFKVdE
° p (L)L (2m L)) [2(s))3

where f(E) is in units of MéV-cmE/g. The term o is the density of the

target in g/cm3. If we substitute numerical values in Eq. 25, and define
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the function 5 | 5
, ' S .
H(E) =|———= | . (26)

Eq. 25 becomes

. 25 2 E :
(oF°) = B f ° 1 + H(E') KdE'_ (o0
' E v HEH[L+ G)mE0YE] rE))3
b

For the energies of interest, the quantity H(E) varies between approximately

0.15 and 1.0. Since for even the lightest particles Qf interest (i.e. protons)
the ratio Eme/Mp is much less than 1.0, the term 1 + (Eme/Mp)/H(jE)l/2 in
Eg. 27 is very nearly unity. Consequently, Eq. 27 simplifies to
: =25 2 _ ,
5 1.3027 X 10 aneAp EO 1+ H(E') K G’
) = H(E? ¢ (28)

(AR

E

b. The Binding-Correction Term

Sternheimer points out that the quantity K decreases rapidly to unity
with increasing energy. For Be, for example, typical values of K for protons

are as follows:

MeV K
1.24
1.12

10 1.07

50 1.02

Table I gives values of the various terms in the integrand for the
energy spectrum ranging from 1 to 500 MeV per amu for neon, in water. On
the basis of the approximate numbers shown in this table, it is concluded
that the term K can be set equal to unity with no significant error intro-
duced into the calculated values for the variance. This follows for several
reasons.. First, at those values of the energy. range for which K differs at
all from unity, the value of the integrand is nearly zero. Second, even
if the integrand values were nontrivial in this range (which might be true
for some very heavy ions at energies between zero and 5 MeV), the portion
of the energy range over which K differs significantly from unity is a
small fraction of the total range, so that the contribution from this

portion of the range to the total integral is correspondingly smali.
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Table I. Terms of the integrand in Eg. 28 for neon ions in water.

E ‘ ' £(E), L+ HE) 1
(MeV/amu) H(E) (MeV-cm™ /g) - H(E) [f(E)]3
500 0.423 278 1.56 X 1077
250 0.621 396 4.20 X 10'8
100 - 0.816 740 5.52 x'1077
50 0.900 1270 1.05 x 1077
25 0.947 2400 1.49 x 10710
11

10 0.980 4700 1.94 x 10~

Furthermore, in the very-low-energy region where f(E) decieases (for
heavy ions), the gquantity Zi also decreases, again tending to reduce the
value of the integrand. |

Tables II through IV show typical values of the standard deviation
as calculated by Sternheimer}le-which are denoted "reference."

Table IT. Comparison of calculated and reference valuesa for the standard
deviation in the path-length distribution of protons in Be.

Incident ' Standard deviation
energy _ (g/em?)
(Mev) Calculated Reference % error
L L.052 X 107 4.588 x 107" 11.68
10 1.969 x 1073 2.055 x 107 4.18
25 9.571 x 1073 9.757 X 1073 1.01
50 3.190 X 1072 3.220 x 1072 0.93
70 5.697 x 1072 5.739 X 1of2 : 0.73
100 0.1048 0.1052 , 0.43
140 0.1845 0.1850 0.27
250 0.4745 0.4746 - 0.02
500 1.36L 1.360 0.003

,,,,,,

As usual, the standard deviafion is taken to be the squaré root of-the
variance (ARQ). Also shown are the values calculated neglecting the
correction terﬁ K. For beryllium, there is only a 2% error for 25-MeV
protons. For aluminum, the corresponding error is 5%; it is 12% for lead.

These results show that, for the passage of protons through'the lighter
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elements, the neglecting of variations of K from unity produces very small

errors in the calculated values for the variance.

Table III. Comparison of calculated and reference valuesa for the standard
- deviation in the path-length distribution. The particles are
protons in Al.

Incident energy Standard deviation
(MeV) _ (gfem®)
Calculated Reference % error
I 5.327 X 101L 6.440 x 1o'u 17.28
10 2.455 x 1075 2.715 x 1073 9.58
25 1.133 X 1072 1.200 X 1072 5.58
50 3.6Lh X 1072 - 3.798 x 1072 3.53
70 6.471 x 1072 6.653 X 1072 2.7h
100 0.1178 0.1202 2.00
140 0.2056 0.2087 1.49
250 0.5224 0.5269 0.85
500 1.479 1.483 0.27

a. BRef. 11 and 12

Table IV. Comparison of calculated and reference valuesa for the standard
deviation in the path-length distribution. The particles are
protons in Fb.

Incident energy Standard deviation
(MeV) (g/cm?)
Calculated Reference % error

4 1.767 x 1073 2.303 x 1073 23.27
10 6.599 x 1073 7.499 x 1073 12.54
25 2.591 X 1077 2.931 X 1072 11.60
) 50 7.713 X 1072 8.540 X 1072 9.68
. 70 ' 0.1318 0.1436 8.22
100 0.2330 0.2514 7.32
- 140 0.3969 0.h255 - 6.72
250 0.9723 1.0262 5.25

500 2.6568 2.7562 3.63
a. Ref. 11 and 12.

M though the results given here are for protons only, the order of

magnitude of the errors shown in Tables IT through IV is the same for all
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incident ions. The final expression for the wvariance due to fluctuations in
the ionization energy-loss process is therefore

1.3027 X 1072

P

(aR°) =

2
n 7 A E .
e D f ol +H(E') _4E' (29) .
H(E") 13

a [£(E")]

with the function H(E) given by Eq. 26. .
2, Initial Energy Spread of the Beam

In general, a beam of particles is not monoenergetic, but has some
sort of spread centered around a most probable energy. To include the effect
of fhis gpread on the path-length distribution, we assume that the energy
distribution of the beam is well represented by a Gaussian, with a variance
(Ei) and with a most probable energy Eo° Associated with this variance in
the energy is a constant variance in the path-length distribution. This is
calculated as follows. The relationship between an energy interval AEO and
the corresponding distance of travel Aso is given by Eq. 1. If we'interpret
AEO as the uncertainty in the initial energy, then the corresponding
uncertainty in the path length is given as

OF

O
A‘SO = Ap @e

This is a constant uncertainty over the entire path length of the particles.

The associated variance in the path-length distribution is therefore

2 Ap 2 2
(Aﬁo> = [ETEST] (£E0>-
Strictly speaking, a Gaussian distribution in the initial energy of the beam
can lead to a Gaussian distribution in the path lengths only if f(E) is
constant over the energy range of the distribution. For most beams of interest,
-however, the initial energy spread will be sufficiently small so that f(E) *.
is nearly constant over the energy range.

3. Multiple~Scattering Contributions -

As a charged particle travels through a medium, it undergoes what is
commonly termed small-angle multiple scattering. This arises principally
from electromagnetic interactions between the charged particle and the
nucleus, When these interactions lead to a large-angle scattering, it is
either due to (i) inelastic interactions arising from the short-range nuclear

forces, or (ii) the very infrequent scattering also due to the electromagnetic
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interactions. If the interaction arises out of the first causeg, it is termed
a "nuclear. interaction," and is neglected for the reasons discussed earlier.

Obviously, there .is no fine line between small-angle multiple scattering
and large-angle Rutherford scattering. quever, because of the strong angular
dependence of the Rutherford law, the probability of an angular change
produced as the result of an interaction is a rapidly decreasing function of
the angle, so that only very small angles contribute appreciably to the
angular spreading of a beam of particles.

The result of the scattering process is that the particles spread
slowly as they traverse the medium, so that an "average" trajectory would
look something like that shown in Fig. 1, rather than a straight line.
Therefore, if x denotes the penetration distance of a particle into the
medium -- 1l.e., measured along the initial direction of the beam -- then
for a mean distance of travel s corresponding to a given energy E, there
will be, because of the scattering process, a distribution of penetration
depths. In other words, even if all the particles traveled exactly the same
distance s -- i.e., in the absence of any statistical fluctuations in the
energy~loss process =-- multiple scattering would still lead to a distribution
in the penetration distances traveled by these particles.

Of primary concern are the flux and dose as functions of penetration
depth into the medium. We must therefore find some method of relating the
mean distance of travel s of a group of particles to corresponding mean
venetration distance x.

In order to arrive at expressions for the dose and flux in terms of
the penetration distance x, we must convert from the distribution M(s,g)
to a distribution M'(x,s). This is defined as the fraction of particles,
all having slowed down to energy E from energy Eo, that are at a penetration
distance x. To do this we proceed by calculating the mean square difference
between the path length s and the penetration distance x, as a function of s,
denoted as ((s—x)g),

Referring to Fig. 1, we can deduce the relationship between a small '
change As in the distance of travel of a given particle, and the corresponding

change Ax in the penetration distance,

X = As cos O,
where ¢ is the angle that the particle makes with the x direction. The

change in the square of the difference (s-x)2 is therefore given approximately
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Fig. 1. Geometric model used in analyzing multiple-
scattering effects.
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as

2 -
Als - x)° = [As(L - cos @)]2,
where 6 is the mean angle of the particles within ds. Again, making the
assumption of independence of events, the net value of the mean square differ-

ence is given as the sum
(s - %) = )1 - cos Fisol”. (30)

Expressions for calculating 5 are developed in a subsequent section.
We now proceed to the development of the penetration-distance distri-
bution. For a given distance of travel, the distribution function of the
difference (s - x) may be approximated by a Gaussian. The quantity
((s - x)e) given by Eq. 30 is then an estimate of the variance of this
distribution. Since we are considering a particular value of s, then
((s - x)e) also represents the variance in the distribution of penetration
distances corresponding to the distance of travel s.

Thus, if the distribution in (s - x) is given as

P(s - x)

£ exp {~[(s -~ x) = DO]E/EKE},
2n

where the variance K2 is the mean square difference given by Eq. 30, and
Do is the mean about which the distribution is centéred, then the distribution

in penetration distances is

P(x) = L exp {-[x - 5]2/202}.
NEE:

The quantity X is the mean value of the penetration distance, and is
estimated simply as the difference between s and the mean difference between

s and x. Thus,

X ~s -({(s - 022, (31)
We may summarize as follows. For a given value of the energy E, the
mean penetration distance is given by Eq. 31; the cohtribution to the
variance in the penetration distance distribution from multiple scattering
is given by Eq. 30.
4., Initial Angular Spread of the Beam

Typically, a beam of particles is not unidirectional, but instead has
some angular distribution centered about a most probable value. The effect

of this distribution is most easily taken into account as follows. In the
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previous section, the multiple-scattering effects were discussed and
characterized in terms of a mean angle 6, which is a function of the mean
distance of travel in the medium. The calculation of @ is discussed in
a later section, but‘it is clear that the initial value chosen for the mean
anglé will have a direct influence on all values of ¢. Thus, the effect of
an initial angular spread in the beam is taken into account by imposing a
suitable initial condition on 5 in the multiple-scattering calculation. The
exact method of introducing this condition is demonstrated in the later
section dealing with the calculation of the mean angle due to multiple
scatteringo

Alternatively, one couid equally well calculate a constant variance
due to the angular spread, to be added to the variance of the penetration-
distance distribution. The former approach_is more efficient from a

computational point of view, and for this reason it is chosen.
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III. PHYSICAL PROCESSES

The previous section was devoted to the derivation of expressions that
describe Bragg and flux curves, and energy spectra. These expressions
contained functions that represehted certain physical processes -- namely
ionization loss, nuclear interactions, and multiple scattering. For _
example, it was assumed that the nuclear-interaction cross section could be
represented by an energy-dependent function >(E).

The purpose of this section is to discuss these phenomena in detail
and to derive expressions that can be used to calculate values for the
functions.

A. Energy Loss v

The process of energy loss is extremely complex. Steward has calculated
the stopping power for ions of arbitrary energy and mass in an arbitrary
medium.13 In Steward's method the problem is treated in two main parts,
one for idn'atomic numbers less than 10 and the other for ion atomic numbers
greater than 10. This division is based on the fact that experimental
stopping-power data are available for ions with Z < 10 for all energies for
which the atom is not completely stripped, whereas such data are not at all
complete for ions with 7Z > 10. .

For the lower-atomic-number region, Steward calculates the stopping
power, using experimental data and a modified Veréion of the method developed
by Northcliffe for low energies.l For the region of Z > 10, Steward uses
the nuclear and electronic stopping-power theory of Lindhard et enl.,lu’l'5 :
with adjustments made in ordervto obtain agreement with fission-product
range data at low energies. At intermediate energies, charge-state data
developed from experimental Ar range-energy data in Al are extended to other
ions and stopping media. At high energies, a modified form of Bethe's theory,
as developed by Barkas and Berger, is used for all ions.].'6

The values of f(E) used throughout this work are obtained by using the
methods of Steward. The values of the mean excitation energy used in
connection with the Bethe equation are those given by Turner.17

It should be mentioned that high-energy ® rays are occasionally
produced, and that these energetic electrons influence the energy-depo&ition
process. . The phenomenon is discussed in detall by Segré.l He shows that
in part because the probability for the production of an electron of energy

T is approximately proportional to l/TE, so few © rays of significant energy-
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are produced that their effect can be neglected.

B. Nuclear Reactions

In order to calculate the energy deposition even from the primary
particles alone, it is necessary to know the value of the total reaction
cross section as a function of energy. One must in principle specify
exactly what is meant by this cross section. Too often, the literature is
confusing by giving vague references to such terms as "reaction cross section,"
"inelastic cross section," etc. We shall remove any possible ambiguity by
defining the total reéaction cross section to be that which describes any
nuclear interaction that removes a particle from the beam, excluding
Rutherford scattering, which is treated elsewhere, in the section on
multiple-scattering coffections.

For most of the cases of interest -- namely very heavy ions with
energies on the order of.a few hundred MeV per amu =-- éxperimentél data are
essentially nonexistent; cbnsequehtly; we must rely on theoretical considerations.

19

Following the treatment by Blatt and Weisskopf, ” we develop below a
simple formulation for the calculation of the reaction cross sections. If
we consider the range of energiés sufficiently high so that.the wavelength
of the beam particle is much less than the characteristic dimension of the
medium nuclei, then one would expect that the reaction cross section would
be on the order of the total geometric cross section -- assuming, of course;
that any interaction leads to a compound nucleus. If we let R represent the
radius of this.geometric cross section, then at sufficiently high energies

the microscopic cross section is given by

n = 7R .
~The radius of a nucleus may be expressed in the form

T ='rO-A;/3.-.SKT,

where A is the atomic weight of the nucleus, r, is the nuclear unit radius,
and SKT may be interpreted as an overlap parameter.. Since the radius of
the geometric cross .section is simply the sum of the radii of the incoming

particle and the target nucleus, we have

R = T, + rﬁ, ' (32)
n__n

where the subscripts "p" and "t" refer to the particle and target, respectively.

At low energies, the Coulomb barrier obviously plays a role in the

19

interaction process. It can be shown - that if R, given in Eq. 32 in this
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case, is the classical distance of closest approach, and V(R) represents the

potential at this distance, then the cross section is given by

-—————} for B, > V(R), and

| (33)

1 =0 for E, < V(R),
where Ec.m. is the total energy of the particle in the center-of-mass
system. The potential is given by
2 7 e2
V(R) = 2E—, (34)

where Zt is the nuclear charge. Equation 33 reflects the fact that
classically the potential barrier cannot be crossed with less than a given
amount of energy. )

The exact form of the Coulomb correction is of secondary importance,
since for almost all cases of interest in this study, Ec,m. is much greater
than V(R). Hence, the presence of the Coulomb barrier has almost no effect
on the cross section for the energies of interest.

We must now consider the fact that the incoming particle exhibits wave
properties, especially in the energy region where the equivalent wavelength
is not trivially small. If the wavelength is denoted by X, then the uncertainty
in the position of the particle is also given by K. Hence, one would expect
that the "effective radius" of the particle-plus-target cross section would
be enhanced by this amount. Thus, a better estimate of the cross section is

0= 2(R + %2 [1M] :

b
c.m.

At very high energies, X approaches zero and the cross section is given simply
by nRe. As the energy decreases, the cross section increases as the wave
length becomes important; Finally, there is a sharp drop in the cross
section near energies comparable to the poﬁential threshold. Using Egs. - .
and 33 we obtain the complete expression for the re;ction cross section:
Y 7,7 e
n = “[TO<A§/3 #al/ x5k ? oL (-Aﬂ,éa.;;A.i/%..=-«]?4""'(35)

't.%imﬁﬁi o
Blatt and Weisskopf have calculated the cross sections for protons and

alpha particles using the results of a wave-mechanics treatment. The results

given by Eg. 35 are found to be in excellent agreement, for energies
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significantly greater than V(R + X). Igo has calculated the variation of
the cross section with energy in the low~energy region for « particles.20
The behavior given by Eq. 34 agrees well with his results.

It is convenient to express both the particle wavelength and center-of-
mass total energy in terms of the laboratory energy E, in units of MeV per

amu. These are given by the relationships
]

X = fic and

A (2E-M e+ E2)l/2
P (o]

A A
E -—Pt g
TCL.m. A +A ?

P

where (Mbcg) is the rest mass of an amu expressed in energy units (approx 931

MeV). Substituting numerical values, we obtain

1.977 x 107 L (36)

%:
a (1862 & + )L/2

The Values of fo and SKT

Most important in the use of Eq. 35 is the value of the nuclear unit
radius roe In general, ro>varies somewhat from one nucleus to another;
however, inasmuch as the concept of a nuclear radius is somewhat vague, it
is permissible to use a single value of r, for .all nuclei.

Most earlier analyses of nuclear interactions have been made using a
simpler model in which the parameter SKT was not considered. With this model ,

3

many attempts have been made to assign a value to Ty Evans~ has summarized

the various methods utilized prior to 1955. These include:
a. Analysis of the B decay of certain isotopes to infer the value of
the classical Coulomb-energy radius;

b. Quantum-mechanical corrections to the classical Coulomb-energy radius,

leading to an equivalent‘electromagnetic radius;gl

C. Ahalysis of isotopic shift in line spectra;22

d. Measurement of the characteristic electromagnetic radiations from
. 21,23,24
p-mesonic atoms;

e. Analysis of fine-structure splitting of electronic x-ray levels in
“heavy atoms,'25

26

f. Measurement of the lifetime of & ray emitters;
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27

g. Analysis of anomalous scattering of ¢ particles;

h. Measurement of the cross sections for nuclear reactions;a

i. Measurement of the elastic scattering of fast neutrons by nuclei.

Later attempts to measure T, include the following. Willoughby measured
the mean free path of O particles in emulsions and calculated a value for r,

29 30

of 1.23 fermis. Williams~ measured the reaction cross section for 1.L4-GeV

neutrons, and calculated a value of 1.28 for rye Note that at very high
energies Egs. 35 and 36 apply equally well for neutrons. Thomas has
calculated the cross sections for compound-nucleus formation using two

31

different models. The first model, based on a square-well nuclear potential,

gives results that agree reasonably well with experimental data when a value
for ré of approximately 1.5 is used. The second model, based on a diffuse
nuclear potential, fits experimental data well with a value for Ty of 1.17.
Longo and Moyer measured the reaction cross sections for l.4t- to 4.0-GeV

32

protons. The corresponding value of rS lies between 1.25 and 1.35 fermis.

34

The result of Zerby,33 as reported by Wallace, for the proton cross section
in oxygen yields a value for LN of 1.17.
By use of these and other early works as guidelines, and by making use

3

of the analysis of nuclear charge distribuion by Hofstadter, a set of
values for T, and SKT was found that fitted reasonably well the literature
data. These values, 1.4 F for r, and 0.4 F for SKT, were used in obtaining
all the calculated results presented in this work.

C. Multiple Scattering

The scattering process is important for several reasons. First, as
was discussed earlier, the beam spreading associated with the scattering
introduces a variance in the path-length distribution. An analysis of the
process is required, therefore, in order to calculate the’mean‘angle/df
deflection, 5, from which this variance contribution is obtained.

Similarly, a knowledge of the mean angle allows one to calculate the
amount of travel by the ions in a direction perpendicular to the original
direction of motion of the ions. This in turn can be used to estimate
(i) the minimum beam diameter necessary so that the multiple scattering does
not significantly dilute the beam, and (ii) the degree of beam attenuation
resulting from geometrical spreading.

Various attempts have. been made to treat the multiple-scattering problem

in detall, some meeting with more success than others. Bichsel gives an
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36

extensive review of the work in the field.” Unfortunately, none of these
treatments is directly applicable to the problem of very heavy, high-energy
ions in matter. Some of the past work done is discussed briefly below,
primarily.-to furnish background for the rest of this section.
The basic limitation of most of the treatments of the multiple-scattering
process is that the assumption is made that the ratio of the atomic number
of the incoming ion to that the stationary medium is quite small. This
allows the use of c.m. results, which are quite simple in form, in the laboratory
(lab) system. .
Moliére37

problem of a parallel beam of ions impingent on an infinite slab. Bethe

38,39

and Goudsmit and Saunderson obtained solutions to the

demonstrated  the conditions under which the two solutions were equivalent.uo
Because of the simplicity of the scattering law in the case of light pro-
jectiles and heavy targets, Molidre succeeded in performing certain
transformations on the general solution which yielded a result in a much
more tractable form.

Because for a great many of the cases of interest the atomic number
ratio of the projectile to target is unity or larger, the transformations by
Molidre do not appear to be possible. Consequently, methods that meke use
of the results of Molidre, such as that of Bichsel and Uehling,u and Overasul
are not directly applicable in this case.

Various authors have attempted to estimate the multiple-scattering effects
by making direct use of the scattering law to calculate such quantities as
the mean square angle as a function of position. Segrél8 and Rossiue both
discuss some of the more common methods. Although this avenue of attack
seems the most immediately promising for this work, none of the published
methods and results is directly applicable. This is again primarily because
most authors have used the scattering law in the form restricted to the c.m.
system. .
Furthermore, in many of the methods, such as those given by Williams,)+3

L L. L5
Mather and Segrg, and Snyder and Scott,

the approximations used do not
adequately handle the wide energy range of interest here. Since in this work
the variation in energy is often very large, it is felt that it would Be best
to start from the fundamental scattering law, following in part the methods
outlined by others, but modifying to (a) transfer to the lab system of

coordinates, and (b) treat in a more rigorous manner the problem of energy
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dependence.

In the following analysis, we first develop the equations that describe
the basic scattering law. These are thén used to obtain expressions for the
mean square angle of deflection of the beam particles, which is in turn used
to estimaﬁe the mean angle of deflection, 5. Finally, these results are used
to calculate the mean square beam spread and contribution to the path-length
variance as functions of penetration distance.

1. Scattering Law

The quantity P(6)d8 is defined as the number of collisions per unit
distance of travel of a particle, which deflect the trajectory of the
particle by an angle which is within 36 of 6. The classical Rutherford
scattering formula for this prcobability is given by Rossi as

P(6)dd = % Nazizire- iL Bpmec ° 2“'sin 9 b
t c.m. sin (6/2)

where Na is Avogadro's number, To is the classical electron radius, me is

(37)

the electron mass, and Po.m. is the momentum of the particle. This equation
applies to the c.m. system of coordinates; it may be valid in the lab system
if the mass of the incident particle is much less than that of the atoms of
the medium. Since for many cases of interest to this study this is not so,
Eg. 37 must instead be considered in the c.m. system only. |

For the purposes of this treatment, it will be convenient to leave the
angle 6 in the c.m. system, but to transform the momentum term‘into the lab
system.

From the expressions derived by Halliday,u6 the relation between the

momentum in the lab and c.m. systems is

Poum. 1+ P o (38)
where y = Ap/A.t .
Using Eq. 38 in Eg. 37 and dropping the subscript on the lab momentum term,
we have
T NaZ2Zi M C - sin 6 a6 2
p(6)ao = 5 2 = | =2 1+ 7). (39)

_2————r
Ay | Pp sinh(9/2)
The limitations on the validity of Eq. 39 must be discussed. At

extremely small angles, this equation falls because the electrons of the
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scattering atom screen the particle from the field of the nucleus. Rossi
states that Eq. 39 is valid for angles significantly larger thaniﬁ/ra, where X -
is the de Broglie wavelength of the incident particle divided by 2x and T is
the radius of the atom; whereas, for angles less than 1/ra, Eq. 39 grossly
overestimates the scattering probability. In fact, one can see that the
equation is singular for @ = O.

Various attempts have been made to modify Egq. 39 in order to take into

account the screening effect. Using an atomic potential of the form

vV = (Ztheg/r) exp (-r/ra), Goudsmit and Saunderson38’39 show that the
scattering-probability law takes the form
8ﬂNaZ§Zi Me® - sin 6 46 2
Ay © \PP | [6F467]
, 1
where 6, = 7(/1‘a . (41)
By use of the expressioh in Eq. 38 and the classical expression for T
o 1. /3
r =—=r_ 2 s
a O? e 't
with ' a =_e2/ﬁc P
Eq. 41 is transformed to .
Z%/3 mec ' -
0, = zmr —— (1 + . 42
LT =) . (k2)

Note that 91

Williams has derived corrections to the scattering law given in Eq. 40

is in c.m., whereas p 1s the lab momentum.

for high energies, using a simple model for the charge distribution within

43 He shows that the fact that the charge is not concentrated

the nucleus.
in a single dimensionless point does not materially affect the scattering
law for angles less than 92 2*«'?(’/rn, where T is an assumed radius for the
nucleus. On the other hand, for © >‘X/rn, the scattering probability goes
to zero much more rapidly than predicted by Eq. 39. Using for T the

expression
_ 1/3
r, = 0.49 r A,
we can estimate an upper limit, 92, for nonzero values of the scattering

probability: .



%

oC
0, = _____j§_17§ 280 A£1/3 = 1+ 7). (43)
0.49 r AL
It is convenient to express the various quantities appearing in Egs. 40,

42, and 43 in energy rather than momentum units. To do this, we use the

relativistic relation between momentum and energy,
2 2 2.2, 2
= + .
p” =24 ME + AF /e, (4)
where E is in units of energy per amu, and Mb is the rest mass per amu.

The quantity B in terms of E is

Mbce 27 1/2
p=l-| —= . (45)
E+Mec
o)
Using Egs. 4L and 45 in 40, 42, and 43, and rearranging terms, we obtain
2.2
Z 7
2 2,2 1 646 t N2
P(6)a0 = (8xl,x_)(mc™)" ey —S—ay (| (L +7) (46)
9 + 6 ] A A
Pt
with
ﬁxE + 2 Mbc2)’ 2
HH(E) = 5 (47)
LE + Mec
o}
Zl/3 (L + ) m c2
0. = t ‘ e ,
1 137 & [5(s + 2 ¢ 21172
o 2
ond o - 280(1+7) e®
2 B (m(E + am P)1H/2
T o}
If we substltute numerical values, these equations reduce to
7272\
"t 2 1 in 6 36
P(6)d6 = 0.3139 | -5 (1 + 7)™ Fre e (48)
A“'A;/ (65 + 67]
t 1
. B(E + 1862) ]
with HH(E) = ~ETos |
-3 tl/3 (1 +7) 1
= 3.73 X 10 - ; (49)

o [B(E + 1862)]1%/2

421 = : UCRL-17392 Rev
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_143.1 (1 + 9) 1
and 92 = =373 °
A . Ap [B(E + 1862)]

e (50)

2. Mean Square Angle of Deflection

We are now ready to calculate the mean square angle of deflection, denoted
(q?}, as a function of distance of travel. ©Since each scattering is inde-
pendent and represents a very small fraction of the total scattering angle,

the change in (¢2) in a distance element As is’

&) = 00 [ ofe (qany (51)
where @ is the scattering angle of a single collision (1ab), and PL(mL)

is the corresponding probability of occurrence per unit length. In the limit

as As — O we have

- (&) =L/N$LPL(@L)D@L = @i ’ (52)

where @5 is the mean square angle change per unit distance of travel.
Now, since all expressions describing the scattering process are in

the c.m. system, we must transform Eq. 52 as follows. Since there is a

unique relation between an angle @, lab and the corresponding angle 6 in

the c.m. system, we may write
PL(¢L)d@L = P(0)de.

Substituting into Eq. 52, then, we obtain

e

2 2 2

of = | 2 fore(oran, (53)
Gl . :

where the functional dependence of @y on @ is indicated.

L6

We now seek a simple means of relating P to the c.m. angle. Halliday

has shown that this relationship is given by the expression

_ sin O
tan @ = =5 . (54)
From an examination of the expression for 92 given by Eq. 50, we can

conclude that for nearly all cases of interest, 6, is less than unity.

2

Further, one can show that for those small energies for which 92 exceeds

unity, the corresponding residual range of the ions is so small that the
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multiple-scattering effects within that range are negligible. Therefore, we

may replace Eq. 54 by the simpler expression

6
=T+

Substituting this expression for GL into Eq. 53 we obtain

o .
A — b/\ ¢ 6°p(0)as. (55)
(1 +7) 6,

The integral in Egq. 55 is easily evaluated by using the expression for
P(6) given by Eq. 48. The result is

2.2 2 .
2 22y 1 %
¢ = 0.1569 Z. " EEEY in a; + 1| -p1 , (56)
Pt

and @2/91 is, from Egs. 49 and 50,

_3.836 x 10u

(92/91) = m ’

tTt
and HH(E) is given by Eq. 47. Note that if 6,
greater than =, then the value of 92 is to be taken as =w instead. In that

(57)

as calculated from Eq. 50 is

case, the term 92/9l is
812.2:-4 [E(E + :L86.2)]1/2

S . 8
Zi/g(l + ) (56)

92/@l =

Using these expressions for wi, we can proceed with the calculation of the
mean square angle of deflection.

From Eq. 52, we have

a 2y _ 2
& o) = o (B), (59)
where we have indicated the dependence of @i on the particle energy. This

unique dependence on the energy is established by Eq. 56.

As an initial condition, we specify that

2 2
()] = 9.
s=0 °©

Integrating Eq. 59, then, from s = O to some value s, we have
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S
2, 2 2,
(¢7) R +u/\ QS(E )ds
o
B

(0]
2 dB' 2.,
P + Ay HCRRALRE
B

I

and <¢2>

For a perfectly collimated beam, P is zero. However, if the initial
beam has an angular distribution that can be represented by a Gaussian with
sone standard deviation, then P, is equal to this standard deviation.

The mean angle of deflection ¢ is estimated to be the square root of

the mean square angle. Thus we write

7 = [DIY2,

3. Scattering for Multiple Materials

The difficuity involved in treating a target composed of more than
one type of atom 1s that there is no unique relationship between the c.m.
and lab systems. That is, for each type of target atom, there is a
different c.m. system.  Consequently, it is necessary to resort to further
approximations in order to arrive at results that are applicable in the
lab system. The method used is as follows.

The scattering probability function given by Eq. 46 is rewritten

Nop Z_7 2
o 2 2 1 sin 6 46 Pt 2\ 1
P(6)a6 = |2 {8ur " (m c“)° == ° : (L +9)) =,
A e ‘e HH(97' [62 + ei]2 :Ap N p

where (Nap/A) is the number of atoms of the scatterer per cubic centimeter,
and p is the total density of the scattering medium. The term in the braces
is then interpreted as the probability of scattering into d8(8) per atom

of scattering material.

The scattering probability for scattering atom type "i" is hence

2
Brally o2 B2+ 7y) 1 sin 6 40
(g + me)”™ - A ' 2 2.2
o HH(E) [6° + el]
where N, is the number of type "i" atoms per cubic centimeter, and o is the

total density of the medium.

Pi(e)de =

The mean square angle change per unit distance, due to type "i" atoms,
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is then ,
2 2
: N 7 7 6
2, -25 (71 p7i| . 1 2
(cps)i = 2.606 X 10 — Ap T(E) 1n 5; +1 1y,

where the results embodied in Eq. 56 have been used. Also, by use of Egs.
57 and 58, we have '

Pl

2 3.836 X 10LL

— for 6, < x
%01 (a.z.)Y3 2
. 11
- e} A [E(E + 1862)1%/2
and | = 842 .2 pl/3 for 92 > .
ol EA z;=(1 + 7)

We now consider the problem of obtaining an estimate of the net mean

square scattering angle.. Equation 52 may be written as

%E () = % h/ﬁmiPi(@L)de = Z(¢§)i ) (60)

where the Pi(¢L) are the probabilities due to the various scattering species.
The mean square angle at s 1s then obtained, as before, by integration

of Eq. 60 from s = O to s.

k. Multiple-Scattering Effects

Barlier, it was shown that the scattering process leads to a contri-

bution to the variance in the path-length distribution. Other effects that
can be calculated from the equations describing the scattering are discussed
below.

a. Radial Spreading

of particuiar interest is the function (yg), which is defined as the

mean square distance of travel in a direction perpendicular to the initial
direction of travel, and is a function of the mean distance of travel s. For

simplicity, it is denoted-as the mean square radial spread. This function

~ characterizes the general shape of the beam within the medium, and can be

used to estimate the minimum beam size necessary to ensure against excessive
effects due to spreading.

Suppose the mean-square beam spread at some positiens in the medium is
given as (y2). Clearly, then, if the initial dimensions of the beam are

much greater than [(yg)]l/e, the effect of radial spreading will be small.
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That is, the fractional change in the beam dimensions will be much less than
unity.

On the other hand, if the beam radius, say, is much smaller than the
value of (yz) at some distance s, then the beam at that point will have
smeared out to the extent that the shapes of the flux and dose curves are
grossly altered from what they would be for a large-diameter beam.

We proceed to the calculation of the function (ye). Referring to Fig. 1,
we can express the change in the mean-square radial spread at x' due to a

change in the mean angle of deflection @ at some x < x'. Thus, we have
— 2\41/2 :
& = A = - g

2
so that My) = (x' - ) Ao7) . , (61)
The change in the mean square angle is givenh by Eq. 51 and substituting

into Eq. 61 we have
A y2 = (x' - x)2 . wi Ds . (62)

Recognizing that the contributions to the mean square radial spread

are additive, we obtain

E

o}
Py =n [ G- xBel 5B ()R (63)

- E

where we have interchanged the variables x and x' for convenience. The
quantity (Ayo)2 is the contribution to the radial spread variance at x due
to an initial angular spread of the beam particles. Thus, if @Oris the
initial mean angle of the beam particles, then reference to Fig. 1 and Eq. 62
shows that (Ayo)2 is | V
)2

22
(AVO =XCPO:

where (Agb)a is evaluated at a penetration distance x.

It is shown later that, in many cases, the term (Ayo)e dominates
the right-hand side of Eq. 63, even for quite small values for @O. In
other words, the mean beam deflection can be a strong function of the
initial angular spread. Numerical examples are presented in the section
dealing with results.

The variable»x‘ is related to the energy E' through the expressions in

Egs. 31 and 5.



-37- UCRL-17392 Rev

Equation 63 thus gives an expression for the variance in the radial _
spread distribution for particles having reached an energy E. We may define
a mean beam deflection as the square root of (yg)a This is another measure
of the amount of radial spreading of the beam.

b. Beam-Spreading Attenuation

As the beam spreads, there may be an effective geometric attenuation of
the flux and dose; i.e., the particles are spread out over a larger area.
A very rough estimate of this effect is given as follows.

Let Yo be the radius of the initial beam. At some penetration distance
X, suppose that the mean-square radial spread is (y ). Then at that point,
one can say that the beam "effective radius" is estimated to be Y + v,
where y is the mean beam deflection. Therefore, the attenuation factor will
be simply

e 2
Yo 1

f=y—-——-—-—o+y =575 ¢ (64)

As the ratio y/yo increases, one would expect this function to more
nearly represent the attenuation of the center-line flux and dose.

For the experimental situation in which the sensitive-area dimensions
of a detector are much larger than the maximum value of y, there is no
attenuation of the form given by Eq. 64. Similarly, if the beam were very
broad and the diameter of the sensitive area of the detector were small, no
attenuation would result. On the other hand, the function f would be
expected to give the proper attenuation for the situation in which (i) the
ratio y/yo is large, and (ii) the counter diameter is small compared with Yo

c. Range Shortening

Because the particles follow curved paths, the effective range in the
medium is somewhat less than if the particles all traveled in straight
lines. If R is the effective range of the particles and SR is the
corresponding mean distance of travel, then Eq. 31 gives their relationship

as

R=SR-<s-x)|R, ~(65)

where (s - x)]R is the mean difference at the range.
The choice of definition of the range 1s somewhat arbitrary, and
several are in common usage. For the purposes of evaluating the expression

in Eq. 65, the value chosen for the range is immaterial, since (s - x) is
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virtually constant in the vicinity of the end of the range. That this is

so follows from the fact that when the mean angle of deflection becomes

significant, the mean energy is so low that the residual range is a minute

fraction of the tétal rangé. That is, although the particles are traveling

at large oblique angles, their remaining distance of travel is so small

that the contributions to (s - x)|R are negligible. _
The degree of range shortening is often expressed in terms of a guantity

called the percentage detour factor, which is defined by Berger and Seltzer7

as '

) 100 (s - x)]R

D =
SR
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IV. RESULTS

Presented in this section are the results of calculations based on
the analyses presented in the preceding sections. For the most part, these
calculations were performed by using the program BRAGG,u7 which was written
to solve the various equations developed in this work. The first part of
this section deals with those results related in particular to the multiple-
scattering process. Also presented here are comparisons with the results
of other workers. The second part of this section is devoted to the
presentation of Bragg and flux curves for various ions in different targets.
Also presented are results pertinent to the energy spectra at the Bragg
peak. The effects of using different ions in the same medium, and of using
the same ilons in different media, are discussed. The next section deals with
the importance of initial energy and angular spreads of the beam. Finally,
experimental results of the Bragg, flux, and spectral curves are compared
with the corresponding theoretical calculations.

A. Multiple-Scattering Calculations

The multiple-scattering process may be considered separately from the
other processes occurring in the medium as the mean angle of deflection and
the mean beam deflection are essentially functions of the particle energy
only, and do not appreciably depend on the actual number of particles
reaching this energy.

1. Comparison with the Literature

Other workers have studied the scattering of protons in media for
which the lab and c.m. systems are equivalent.

Berger and Seltzer have calculated the percentage detour factor for
protons of various energies incident on various absorbers.7 These results
are reproduced in Fig. 2. Table V gives various values taken from this figure.

Table V. Comparison of multiple-scattering results for an incident beam
of 100-MeV protons.

Percentage detour factors

Absorber Berger and Calculations,
Seltzer this work
Lead 2.28 1.49
Copper . 0.756 0.57
Aluminum 0.306 0.24

Beryllium 0.087 0.069
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Fig. 2. Ratio of percentage detour factor to the
atomic number of the medium for protons.
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Also given in the table are the corresponding results obtained by using the
analysis of this work.

Berger -and Seltzer also give the results of Monte Carlo calculations
performed by Bergeru8 for the angular distribution of 338.5-MeV protons
slowed down to 2 MeV in copper and lead. These results are shown in Fig. 3,
which can be used to estimate the mean angle of deflection. These estimates,
along with the calculated values, are shown in Table VI.

Table VI. Comparison of multiple-scattering results for an incident beam
of 338.5-MeV protons.

Mean angle of deflection (deg)

, Estimates from - - Calculations,
Absorber - Berger and Seltzer this work
Tead 30 to 40 L

Copper 15 to 25 21

Looking at Fig. 3, we see that in boph cases the curves are skewed.
towards the high end. Consequently, the mean angle of deflection is somewhat
greater than the most probable angle. For lead, the mean angle would appear
to lie in the vicinity of 30 to 40 deg. This agrees reasonably well with the
calculated walue of 44 deg for the mean angle, as shown in Table VI. For
copper, Fig. 3 indicates that the mean angle lies in the range from 15 to 25
deg. This is compared to a -calculated angle of 21 deg.

In comparing the two sets of.results, it should be pointed out that
the Monte Carlo data are based on the case histories of only 5000 particles.
Consequently, a good deal of uncertainty is attendant, especially in the
upper and lower angular regions, where the figures are based on very few
events.

Preston and Kc)ehlerh9

have measured the radial intensity of a beam

of protons passed through various thicknesses of different absorbers. From
these measurements, they calculate the standard deviation in the radial
spread. Their results are presented in Table VII, along with the results
obtained by using the methods in this work (note that the SD in the radial
spread is equivalent to the square root of the mean square radial spread).
In the table, EO‘is the initial beam energy, T is the thickness of the
absorber traversed by the beam, cexp is the experimentally determined value

of the radial 85D, and g, is the corresponding calculated value. The
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Fig. 3. Angular distribution of protons slowed down
from 338.5 MeV to.2 MeV in lead and . copper,
based on 5000 Monte Carlo histories.



shy3- UCRL-17392 Rev

results are generally in excellent agreement.

Table VII. Comparison of multiple-scattering results.

E : T o] o]

o] exp c

Absorber (MeV) (cm) (rmm ) (1m)
Aluminum 158 2.54 _ 0.35 0.55
5.08 1.62 1.64

6.38 2.35 2.40

7.62 3.24 3.29

8.25 3.43 3.78

112 2.54 0.97 0.79

3.81 1.66 1.57

Lohh 2.06 2.08

Water 127 5.7 1.15 1.11
8.7 2.18 2.22

11.4 3.46 3.66

2. ©Scattering Effects for Various Ions and Materials

In this section, we present the results of calculations of the multiple-
scattering effects for various ions in different materials. From the equations
describing small-angle scattering, it can be seen that the scattering effects
decrease as the ratio of the atomic numbers of the beam and target increases.

' One can see this most easily by recognizing that as this ratio increases,

the maximum angle of scattering decreases. Hence, for a given absorber,.and

a given range, one would expect the mean beam deflection and the percentage
detour factor to decrease as the atomic number of the beam particles increases.

T6 illustrate these effects, calculated values of the percentage detour
factor, the standard deviation in the radial spread, and the mean angle of
deflection =-- all at the Bragg peak -~ are tabuilated for various ions in
water, copper, and uranium. Tables VIII and IX give the results for ions
in water, with the Bragg peak at 5.0 and 10.0 g/cmg. Tables X and XI show
similar results for copper and uranium, with the peaks at 5.0 g/cmg.

In all cases, it is clearly demonstrated that the scattering effects
decrease markedly as the atomic number of the beam particles increases. For
example, for the Bragg peak at 5.0 g/cm? of water, the degree of beam

spreading goes down by a factor of approximately 5 in going from a beam of
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protens to one -ef -neoen-ions. A similar decrease is calculated for the

Table VIII. Multiple-scattering results for water with the Bragg peak

at 5.0 g/cmz.
, Mean beam v
" Beam Percentage deflection
particle detour factor (g{cm?)
P 0.11h 0.168
He 0.0285 0.083
C 0.0088 0.046
Ne 0.0051 0.035
A 00,0025 0.02}4
Kr 0.0012 0.017
Xe 00,0007 0.013
Table IX. Multiple-gcattering results for water with the Bragg peak at
10.0 g/cm .
. Mean beam
Beam Percentage deflection
particle detour factor (g{cmg)
P 0.108 0,328
He 0.027 0.162
c 0.0083 0.090
Ne 0.0048 0.068
A 0.0024 0.047
Kr 0.0011 0.032
Xe 0.0007 0.026
Table X. Multiple-scattering results for copper with the Bragg peak at
5.0 g/cmg.
Mean beam .
Beam Percentage deflection
particle detour factor (g/cn?)
H 0.628 0.388
He 0.159 0.193
C 0.0475 0.105
Ne 0.0269 0.0791
A 0.01h1 0.055k4
Kr 0.0066 0.0383
Xe 0,00Lk2 0.0300
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Table XI. Multiple-scattering results for uranium with the Bragg peak at

5.0 g/cme.
Mean beam
Beam Percentage deflection
particle detour factor (g/cm?)
H 2.5 0.772
He 0.669 0.390
C 0.193 0.207
Ne 0.108 0.155
A 0.0548 0.108
Kr 0.0261 0.0740
Xe 0.0168 0.0577

other cases. It should also be pointed out that in all cases, the rate
of change of beam spreading with respect to increasing beam-ion mass
decreases at the higher masses. Thus, there is a greater effect in going
from protons to neon than there is in going from neon to xenon.

An extremely important result is the magnitude of the lower limit on
the beam dimensions predicted by the calculations. For a proton beam with
the Bragg peak at 10 cm HEO’ this limit is on the order of 0.75 to 1.5 cm,
whereas for neon the lower limit is approximately 0.1 to 0.2 cm.

It is also interesting to examine the variation of the multiple-scattering
effect with absorber, for a given beam particle. Tables XII and XIII show
the results for protons and neon ions in miscellaneous absorbers. For
comparison purposes, the initial energies are chosen such that the Bragg
peak occurs at 5.0 cm.

Table XII. Multiple-scattering results for protons in various absorbers
with the peak at 5 g/cm2.

Mean beam

Percentage deflection
Absorber detour factor (g/cm®)
Al 0.256 0.250
Cu 0.628 0.390
Ag 1.11 0.515
Po 2.22 0.722
U 3.88 0.962
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Table XIII. Multiple-scattering results for neon ions in various absorbers,
with the peak at 5 g/em2.

Mean beam
Percentage deflection
Absorber detour factor (g{cme)
Al 0.011 0.051
Cu 0.027 0.075
Ag 0.0k7 0.103
Po 0.092 0.145
U 0.172 = 0.197

As expected, the scattering effects increase with increasing absorber
atomic weight for both cases. Again, it is seen that neon ions produce
scattering effects that are less than those produced with protons by a

factor of 5.
B. Bragg, Flux, and Spectral Curves for Monoenergetic Beams

In this section, results are presented for the case in which the
initial beam of particles is assumed to be perfectly collimated (zero angular
spread) and to be monoenergetic. In later sections, the effects due to
finite\energy and angular spreads are discussed.

» Presented here are Bragg curves, flux curves, and energy spectra at
the Bragg pesk, not only for ilons ranging from protons to xenon and heving
a variety of energies, but also for a number of different targets ranging

from water to uranium.

In e discussion of Bragg curves, there are two qﬁantitiés of particular
interest. One 1s the ratlio of the dose at the peak to that at the incidént
surface, denoted as the peak-to~plateéu ratio. The other is tﬁe width of
thevBragg peak, measured at those two points at which the dose is equal to
one-half the dose at the peak. This is called the full width at half
meximum, which we shall abbreviate to the "pesk width" for convenience.

Algo of considerable importance is the shape of the spectrum at the
Bragg peak. Of particular interest are the averasge energy at the peak'and
the full width at half maximum.

With regard to the calculations, it should be pointed out that for
the very heavy, high-energy ions, there will be some secondary-particle
generation, primarily in the initial portions of the path length. Conse-
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quently, the calculations are expected to be somewhat in error in this
region. In fact, since most secondaries are generated hear the incident
surface, with relatively few being produced in the vicinity of the Bragg
peak, one would expect the calculated peak-to-plateau dose ratio to be
somewhat high. ..o s 0 C M o e U Ton TRy a ah o

RS HE RV R G SO

Since there are relatively few secondaries generated near the Bragg
peak, the shape of the peak is determined principally by the primary
particles. In particular, the full width at half maximum of the peak is
a relatively slowly varying function of the parameter Ty which is known
reasonably well. Consequently, it is to be expected that the calculated

half widths are fairly accurate.

1. Effect of Different Ions

We consider first the following question: given a particular target,
and given that the Bragg peak is to be at a particular depth, then how will
the shapes of the various curves be affected by using different ions?
Qualitatively, one would expect these effects not to be trivial. In
particular, the various contributions to the variance in the path-length
distribution are all strong functions of the charge and atomic weight of
the beam ions, as well as of the charge and atomic weight of the target.

For a monoenergetic beam, the principal contributors to the variance
are the processes of energy straggling and multiple scattering. For each
of these, it is easily seen that the variance contribution decreases as
the charge of the beam particles increases. Therefore, those aspects of
the penetration process that are dependent on the path-length variance
should be noticeably affected by changing the character of the bombarding ion.

We consider first the case in which the target material is water.
Figure 4 shows the Bragg curves for various ions in water, with the Bragg
peak at 5.0 g/cme. Figure 5 shows the flux curves for the same ions and
Fig. 6 shows the spectra at the peak. The basic features of these results
are depicted in Table XIV, which gives the peak-to-plateau dose ratio, the
Bragg-peak full width at half maximum, and the average energy at the Bragg
peak for each case. Also, the peak-to-plateau ratio and the Bragg-peak
width are piotted as functions of the atomic number of the beam in Figs. 7
and 8. V

As shown by these tables and figures, the peak-to-plateau dose ratio
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Table XIV. Results for ions in water, with the Bragg peak at 5 g/cmg.

Beam Initial energy p-p Peak width Pegk ave.

ion (MeV /amu) dose ratio (g/cm?) energy
(MeV /amu )

H 9.5 6.53 0.336 .33

He 79 .40 8.0k 0.170 4.93

C 147.5 9.2k 0.092 6.25

Ne 197.2 9.09 0.075 6.70

A ‘ 263.0 8.12 0.057 6.39

Kr 381.1 5.69 0.063 6 .14

- 0.085 5.84

Xe 471.0 4.08

reaches a maximum Value for a value of the beam atomic number between 6 and 8.
Beyond a value of 10, the dosg ratio falls off monotonically.

On the other hand, the peak width falls off extremely rapidly with
increasing atomic number, up to a value of approximately 20. For greater
values of atomic number the width increases quite slowly. This behavior can
in part be explained by considering the effective charge of the ions as they
traverse the medium.

Referring to Eq. 29 we see that the straggling variance is directly
proportional to Zi and inversely proportional to the cube of the stopping
power, which is in turn proportional to the square of the charge.. Hence,
the variance is approximately inversely proportional to the fourth power of
the charge of the beam particle. We must also recognize that the peak width
is directly related to the variance.

Now, consider first the lighter particles. They retain their total.
charge for essentially the whole range, so that the effective charge goes
up as the atomic number. Hence the variance decreases rapidly with
increasing atomic number for small atomic numbers. For the heavier elements,
however, charge exchange becomes an important process, so that the ion charge
no longer is proportional to the atomic number. Hence, the rate of decrease
of the half width would be expected to decrease with increasing atomic number.
This is obviously not the complete picture, since the peak shape is also
determined by the shape of the stopping-power function. However, the same
type of argument regarding effective charge applies.

The behavior of the peak-to-plateau dose ratio can be explained, at

least partially, in a similar manner. A decrease in the path-length
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variance implies that the ions of a given energy are closer together in -
the target. Consequently, the low-energy (high dE/dx) ions will deposit
more energy in less space, and the dose in the vicinity of the peak will
rise. .

The drop-off of the ratio at high values of Zp is again due, in part,
to the ion-exchange process. Also, the nuclear reaction cross section becomes
increasingly important for iomns of increasing atomic number, so that more
and more particles are removed from the beam.

It is interesting to note that the peak width is nearly constant for
values of Zp ranging from approximately 20 to 40. Also, it should be noted
that the average energy at the Bragg peak 1s relatively independent of the
beam ion.

2. Effect of Different Energies

Suppose one wishes to produce Bragg peaks at various penetration depths
within a given medium, using a given ion. It would be useful to be able
to predict the changes in the various features of the physical process as
functions of the depth at which the peak is produced, or alternatively,
as functions of the-initial beam energy. This section presents results
that depict these functional dependences.

We consider two separate systems: protons incident on a water target,
and neon ions incident on a water target. These cases serve to demonstrate
the relationship between the initial beam energy and such quantities as the
peak-to-plateau dose ratio and the Bragg peak width.

The results for the two systems are embodied in Figs. 9 through 12
and Tables XV and XVI. In gengral, the peak-to-plateau dose ratio goes

Table XV. Variatiohs with initial energy for protons incident on water.

Initial Peak ave. Mean beam
energy Mean range P=p Peak width energy deflection
(MeV/amu)  (g/cm?) dose_ratio (g/cm?) (MeV/amu) (g/cnf)

50 2.20 ~6.70 0.153 k.70 .07k
100 7.6k4 6.26 0.489 9.05 0.247
150 15.58 5.51 0.988 13.25 0.492
200 25.58 L.76 1.61 17.36 0.792
300 : 50.50 3.36 3.23 24 .08 1.523°
Loo 80.61 2.26 5.91 31.64 2.385

500 - 114.8 1.47 8.26 38.36 3.342
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Table XVI. Variations with initial energy for neon ions incident on water.

Tnitial Peak ave. Mean beam
energy Mean range P-pP Peak width energy deflection
(MeV/amu)  (g/cm®) dose ratio (g/cm?) (MeV/amu)  (g/cn)
50 0.445 - 9.52 0.012 1.54 0.003
100 1.538 10.86 0.032 3.30 0.011
150 3.13k4 10.23 0.052 5.10 0.022
200 5.143 8.99 - 0.076 6.76 0.036
300 10.15 6.22 0.135 10.05 0.069
400 16.21 2.35 - 0.209 13.27 0.107
500 23.08 9.52 0.291 15.89 0.150

through a maximum and then decreases monotonically with increasing energy.
The peak width and peak average energy are increasing functions of the
initial energy.

-C. Consequences of Initial Energy and Angular Spreads

Actually, no beam can be perfectly collimated or monoenergetic.
Generally, the energy distribution is approximately Gaussiarn and has a
very narrow width. Also, as a result of many factors, there is a small
angular distribution in the particles as they impinge upon the target. It
will be shown that even very small widths in the initial energy and angular
distributions can have strong influences on the shape of the Bragg and flux
curves, and on the energy spectra.

We consider the case of protons and neon ions incident on water targets,
with the Bragg peaks at 5 g/cmg, and study the effects due to changes in
the initial energy .distribution. Figures 13, 14, and 15 show the Bragg,
flux, and spectral curves for protons incident on water, for wvarious values
of the standard deviation in the initiai energy distribution. Table XVII
gives the peak-to-plateau dose ratio, the peak width, and the average energy

Table XVII. Variation with initial energy spread for protons in water
with the Bragg pesk at 5.0 g/em® (initial energy = 79.75

MeV/amu) .
Initial energy Peak average
standard deviation P-p Peak width energy )
(MeV/amu) dose ratio (g/cm®) (MeV/amu )

0 6.54 0.338 7.23

0.25 6.23 0.377 7.70

0.50 , 5.62 0.475 8.76
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at the peak for different values of the standard deviation. Figures 16 and

17 and Table XVIIT show similar results for neon ions incident on water.

N Table XVIII. Variations with initial energy spread for neon ions in water
with the Bragg peak at 5.0 g/cm? (initial energy = 197.2

MeV/amu) .
- Initial energy Peak average
standard deviation P=p Peak width energy
(MeV/amu) dose ratio " (g/cn”) (MeV/amu)
0 : 9.09 0.075 6.70
0.25 8.00 0.099 5.00
0.50 6 .66 0.149 10.55

In general, these results show that a value for the standard deviation
of less than 1 percent of the mean initial energy can alter the Bragg and
spectral curves sighificantly. Consider the neon case as an example. An .
initial standard deviation of 0.5 MeV per amu, or approximately 0.25 percent
of the initial energy, produces a change in the peak-to-plateau ratio of
approximately 25 percent, a change in the average energy at the peak of
approximately 35 percent, and a change in the peak width of nearly 100
percent. Interestingly enough, there is very little effect on the shape of
the flux curve for the given changes in the standard deviation.

The degree to which an initial angular spread of the beam particles
influences the physical process is dependent in part on the initial size
of the beam. This comes about in the following manner. It was shown in
Section III-C-4-a that the degree of radial spreading is dependent on the
initial mean angle of the beam particles (see Eq. 63). In Section III-C-4-b
an estimate was made of the effects due to the beam spreading. Thus, the |
initial angular distribution leads to an increase in the effective beam
attenuation due to the divergence of the beam.

Whether or not this effect is significant depends on the initial beam
size relative to the degree of beam spreading. Thus, if the amount of
beam spread is much less than the initial beam radius, then the effective
attenuation is unimportant. On the other hand, even 1f the degree of
spreading is comparable to, or greater than, the initial beam diameter,
the effect on the experimental measurements is small if the detector has
a sensitive area radius much larger than that of the beam at the end of

the beam range -- that is, if the detector is large enough to detect even
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those particles that have traveled large radial distances.

To illustrate these aspects, the case of neon ions incident on water
targets is used. As before, the Bragg peak is taken to be at 5 g/cmg.
Table XIX shows the variation of the peak-to-plateau dose ratio and the peak
width with the standard deviation of the initial angular spread for various
beam diameters. Figure 18 shows the calculated Bragg curves as functions
of the standard déviation and beam diameter. Note that these results refer

Table XIX. Effects due to the initial beam size and the initial angular
spread for neon ions in water with the Bragg peak at 5 g/cm?.

Initial beam. Iniﬁial angular Mean beam P-p Bragg peak
diameter (cm) standard deviation deflection dose ratio  width,

(aeg) (g/ew?) (g/cn”)
© 0.0 0.035 9.09 0.075
o 0.5 0.056 9.09 0.075
© 1.0 0.09k4 9.08 0.075
® 2.0 0.178 8.95 0.078
1.0 0.0 0.035 7.95 0.076
1.0 0.5 0.056 7.36 0.076
1.0 1.0 0.094 6.43 0.076
1.0 2.0 0.178 ' 4.87 0.079
0.5 0.0 0.035 7.01 0.076
0.5 0.5 0.056 6.08 0.076
0.5 1.0 0.094 4.80 0.077
0.079

0.5 2.0 0.178 3.06

to center-to-line measurements only. As expected, the smaller the beam
diameter, the greater effect a giveﬁ initial standard deviation has on
the dose ratio. The effects can be extremely large, as illustrated by
the results for a beam of 0.5 cm diameter. For an angular spread with
a standard deviation of 1 deg, the peak-to-plateau ratio is 32 percent less
than with no angular spread!?

D. Comparison With Experimental Results

Several sets of experimental results are available, from which 1t is
possible to make comparisons with the theoretical shapes of the Bragg, flux,
and spectral curves. In making these comparisons, several points should
be borne in mind. First, for sufficiently high-energy particles, nuclear

interactions become important and a variety of secondary particles may be
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produced. In these cases, one would expect to note differences between
the theoretical and experimental results. Since the great mejority of
secondaries would be expected to be generated towards the incident surface,
with relatively few being produced near the vicinity of the Bragg peak, the
theoretical curve shapes in this region should be reasonably accurate.
One uncertainty inﬁmaking comparisons between expériment and theory _ -

arises because in most experimental arrangements, it is very difficult to
estimate the degree of angular and energy spread of the ion beam incident
on a target; it was shown earliler that these initial distributions can
strongly affect the measured curves. '

The effects due to the initial angular spread can usually be nearly
eliminated by using a large enough beam or by utilizing a detector with
sufficiently large diameter, or by a combination of both. These also elimiQ
nate the effective attenuation due to the inherent beam spreading from multi-
ple scattering.

On the other hand, the effects resulting from a finite width in the
initial energy distribution cannot be eliminated, and they are present in
the measured data. Usually, however, a reascnable estimate can be made
of the upper limit on the degree of energy spreading. Consequentliy, the
thecretical results that would be obtained if the exact initial energy
spread were known can be bracketed. _

In addition to the uncertainty in the initial energy spread, the
mean energy of the beam is known only to within a certain accuracy. Further-
more, the beam generally passes through one or more thin slabs of various
materials pricr to entering the main target. These slabs are associated
with miscellsnecus pieces of experimental apparatus such as counters,
collimator edgeé, etc., and they degrade the beam energy somewhat. In
general, the degree of energy degradation is small, but it does enhance v
somewhat the uncertainty in the initial energy of the ions incident on the .
target. -

t is sometimes necessary, then, to vary the assumed initial energy
. and energy spread until the best comparison is found. The optimum values
have all been found to be well within the experimental uncertainties.

It should also be mentioned that none of the experimental results cited
was obtained with the intention of making comparisons with theoretical

calculations. Consequently, various details, such as beam diameter, are in
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some cases known only approximately, hence leading to uncertainties that
can be difficult to estimate.
1. L47-MeV Protons in Water

Raju and Welch”®

have measured the Bragg curve in water from protons
generated by the 88-inch cyclotron at the Lawrence Radiation Laboratory.

The nominal enefgy of these protons was 47 MeV, and this value is believed
to be accurate to within 1 percent. However before entering the water
absorber, the beam passed through various materials, such as detector faces,
etc., which degraded the proton energy somewhat; consequently, the energy
of the particles at the water face is not precisely known.

The beam diameter.was estimated to be 0.5 in., or approximately 1.25
cm, and the detector used to measure the dose distribution was a semicon-
ductor diode with a sensitive volume diameter of less than a millimeter.

An upper limit on the standard deviation in the initial energy spread was
estimated to be on the order of 0.5 MeV., |

By using an assumed initial energy of 43 MeV and an assumed standard
deviation in the initial spread of 0.2 MeV, or approximately one=half the
estimated upper limit, the Bragg curve is calculated. Included in these
calculations is the effective attenuation due to beam spreading. Effects
due to initial angular spreading of the beam are neglected, since, for this
particular case, a small amount of initial divergence would not signifi-

cantly influence the results. This is illustrated in Table XX, which shows

Table XX. Effect of initial beam angular divergence for 47-MeV protons

in water.
Initial angular Effective
standard deviation attenuvation factor
(deg) . due to beam spreading
e 0.81
0.5 _ 0.81
1.0 . 0.80
2.0 o 0.79

that even for an initial standard deviation of 1 deg, there is very little
decrease in the effective attenuation factor from beam spreading. The
resultant curve is given in Fig. 19, along with the experimental points.

The results are in‘excellent agreement.
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2. 49-MeV Protons in Aluminum

Raju has also measured the energy spectrum, at the Bragg peak, of
protons in aluminum.sl These particles were produced by the 88-inch
cyclotron at the Lawrence Radiation Laboratory, and had an energy of 49 MeV.
As indicated earlier, the standard deviation of the initial energy spread
is presumably less than 0.5 MeV.

The peak spectrum was calculated for values of the initial energy
spread SD of O and 0.25 MeV. The peak energies coincide for an assumed
initial energy of 48 MeV. The results are shown in Fig. 20 along with the
experimental points. The two calculated curves bracket that measured, so
that in this case the theory agrees extremely well with the experimental

results. As before, the exact energy of the incident protons is not known.

3. Heavy-Ion Beams

Measurement of the heavy-ion beams reported here were done at the Hilac,
utilizing the experimental equipment used for investigating the biological
effects of heavy charged particles,52 After the beam has been accelerated
to its final energy it passes through an analyzer magnet and is bent 18
degrees relative to its original direction to ensure homogeneity of particle
momenta. Next the beam passes through a l.?-mg/cmg-thick aluminum foil,
which is used as a beam monitor. The beam is then collimated, and passes
into a bombardment chamber which contains a set of remotely operated
aluminum degrading foils. The back wall of the bombardment chamber can be
removed so that different radiation detectors may be placed behind the
aluminum degrading foils. The monitor foll is electrically insulated so
that with an electrometer the net loss of charge due to secondary electron
emission can be measured. With a transmission ionization chamber mounted
behind the aluminum foils, 1t is possible to measure the relative ionization
of the ionization-chamber gas as a function of the thickness of the degrading
foils in the beam path. When the ionization chamber is replaced by a
Earaday cup, it is possible to measure the relative beam current as a function
of the absorber thickness. The beam current is proportional to the particle
flux times the average charge per particle. If a gemiconductor detector is
placed behind the absorbers, it is possible to measure the energy spectrum
after any thickness of absorber. The energy of the emergent beam particles
is approximately 10.4 MeV/amu.

Figures 21 through 35 show both the experimental and the corresponding
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on an Al absorber.
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Fig. 28.
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Average energy versus penetration distance
for 10.4-MeV/amu O ions incident on an Al
absorber.
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Fig. 29. Bragg curve for 10.L-MeV/amu Ne ions incident
on an Al absorber.



RELRTIVE CURRENT

-82- UCRL-17392 Rev

14 1

12

10 —a

Fig.

PENETRATION DISTANCE (6-,CMZ x 102)

XBL683~2140

30. Relative current versus penetration distance
~ for 10.4-MeV/amu Ne ions incident on an Al
absorber.
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Fig. 31. Bragg curve for lO.h—MeV/amu S ions incident
on an Al absorber.
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Fig. 32. Bragg cirve for 10.4-MeV/amu A ions incident
on an Al absorber. : i
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Fig. 33. Average energy versus penetration distance for
10.4-MeV/amu A ions incident on an Al absorber.
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Fig. 3b.
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Average energy versus penetration distance for
10.4-MeV/amu C ions incident on a Mylar
absorber.
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Fig. 35.
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Average energy versus penetration distance for
10.4-MeV/amu Ne ions incident on a Mylar
absorber.
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theoretical results for various ions in different absorbers. In general,
the agreements are very good, although in certain cases some discrepancies
do exist. This is assumed to be the result of the uncertainty in the

calculated stopping power in this low-energy region.
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V. CONCLUSIONS AND RECOMMENDATIONS

The methods developed here for computing Bragg, flux, and spectral
curves are extremely flexible, in that the calculations are done directly
in terms of energy-dependent functions for the lonization energy loss and
total nuclear-reaction cross section. Thus, the method is directly appli-
cable to any situation in which the important energy-loss processes are
ionization and nuclear interactions.

The methods are also more general than previous ones, in that they are
able to make corrections for multiple scattering for systems in which the lab
and c.m. coordinate systems are not equivalent. Also, effects due to
initial angular and energy spreads of the beam have been included in a
natural manner.

Calculations have demonstrated that the nature of the initial beam can
strongly influence the shapes of the Bragg and flux curves for a given
range in a specified material, but the average energy at the Bragg peak is
found to be relatively insensitive to the type of ion used.

Within experimental uncertainties, excellent agreement is obtained
between experimental Bragg, flux, and peak spectral curves and the corres-
ponding theoretically calculated curves.

The resolving of the uncertainty in some of the experimental data
presented here as to the presence or absence of singificant events due to
secondary particles would be an important contribution.

In all calculations in this work, it was assumed that -the various
processes, such as ionization energy loss and multiple scattering, led to
distributions that could be represented by Gaussians. In general, this
assumption is well founded.. However, in certain limiting cases, deviations
from Gaussian distributions are significant. For example, at very low
energies, plural scattering could cause skewing of the angular distribution
of the beam particles. It would therefore be useful to examine the limits
within which the assumptions of Gaussian distributions are valid, although
for this work there is little doubt as to the validity of these assumptions.

One limitation of this work is in the assumption of a single, homo-
geneous target medium. An extremely useful extension would be to multiple-
slab geometry, allowing more realistic representations of physical systems.

Another basic limitation of these results is that they do not include

effects due to secondary particles. Research is being carried on in this
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direction, and results including these effects are expected in the near

future.
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APPENDICES

A. Nomenclature

Atomic weight of the ith species in the target
Atomic weight of beam particles

Atomic weight of target

Velocity of light

Percentage detour factor

Dose at distance s, in MeV/sec-gm

Beam particle energy, iﬁ MeV/amu '

Initial energy of beam particles, in MeV/amu
Total energy in the coordinate system, in MeV
Total energy of a pérticle, in MeV

Electron charge

Variance of initial beam-energy distribution
Attenuation factor due to beam spreading
Stopping power, in MeV per g/cm2
Binding-effect correction factor

Electron mass

Mass of beam particle

Rest energy per amu, =~ 931 MeV

Path-length distribution function

3

Number of glectrons per cm” in an absorber

Avogadro's number

Atomic density of the ith species in the target, in atoms/cm3
Number of particles of energy E

Initial particlé flux, in particles/cm?-sec

Total flux at s, in particles/cmg—sec

Energy flux at s, in particles per unit energy at B, per cmg—sec
Beam particle momentum

Scattering probability

Atomic radius

Classical electron radius

Radius of nucleus

Nuclear unit radius, in fermis

Mean range of particles 1in g/cm2

© Contribution to variance in path-length distribution due to
energy-loss fluctuations
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Effective overlap parameter
Distance of travel in an absorber, in g/cm2
Mean distance traveled by particles of energy E, in g/cm2

Contribution to wvariance in path-length distribution due to
initial energy spread

Penetration distance into the target, in g/cm?
Mean beam deflection, in g/cm2

Initial beam radius

Mean square radial spread, in g/cm2

Contribution to the variance in the radial-spread distribution due
to initial angular spread

Atomic number of the ith species in the target
Atomic number of beam particles

Atomic number of target

Velocity ratio

Beam-ﬁarticle-—target-atom mass ratio
Scattering angle in the c.m. system

Lower limit on scattering probability

Upper limit on scattering probability
Wavelength of beam particles, in cm

Density of target, in g/cm3

Total microscopic nuclear-reaction cross section

Standard deviation in the range distribution for particles of
initial energy EO

Standard deviation in the path-length distribution for particles
of energy E ‘

Total macroscopic reaction cross section, in cm T

Mean laboratory-system angle of deflection of beam barticles
Scattering angle in the laboratory system

Standard deviation of initial angular Spread _

Mean square change in angle of deflection per unit distance

Mean square angle of deflection
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B. Delta-Function Approximation

We consider the evaluation of the expression given by Eq. 11. For

sufficiently small values of o(E,EO) the term

(LN 7) -exp {-UE}[dU/dE]

behaves like a © function. Equation 11 then reduces to

D(s) = NO(EO) exp {-AprO [Z(E')/f(E'_)] ae'} f£(g), (A-1)
E
where the relationship between § and E is given by Eq. 5. We wish to learn
when this approximation is valid. This may be deduced by the following

argument. Consider the exponential term

T = exp (-UE} s : (A-2)
where U is given by Egq. 7. For a given wvalue of s, T is the controlling
factor in determiniﬁg how rapidly the total integrand in Egq. 11 goes to
zero. Thus, for U > 3, the contribution to the total integrand is negligible.

Therefore, if each factor in the integrand remains relatively constant
over the energy interval within which the integrand differs significantly
from zero, then the approximation of Eq. 11 by Eq. A-1 is valid.

We state this mathematically as follows.  Let D be the range covered
by the variable E(E) over which the term T is significantly greater than

zero. We may write
D=M - a(E,EO) s

where M. is some constant in the neighborhood of 2 to 4. We wish to
calculate the change in energy, AE, corresponding to the distance D. From
Eq. 1, we find that for a change in s(E) equal to D, the corresponding

change in energy is approximately

0B~ 2 - £(E) =M - o(B,E) - £(E) + . (A-3)
b b

We now require that the percentage change in each other factor in the
integrand be less than some fraction h over the energy interval AE given

by Eg. A-3. The two functions to consider are

EO .
G, (E) = exp {-Apf [=(E*)/£(E')]aE") (a-4)
E
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end Ce® = ®) . (a-5)

For a given function Gi(E), the fractional change over an increment AE
is given approximately as

oG, AR

AGi i

T, ~ % G (8-6)
Taking the derivatives of both functions in Eqs.'A-M and A-5, using the
approximation in Eq. A-6 and the expression for AE in Eq. A-3, and requiring

that the percentage change of each function over AE be less than h, we

obtain the criteria

>(E) o(E,EO).< CRIT1 , (A-T7)
of (E)
= o(E,B ) < A CRITL , (A-8)
where , CRITL = h/M.

-If both of these requirements are satisfied for a reasonable value
of h/M, then Eq. 11 may be replaced by the much simpler form given by
Eq. A-1. Similarly, if the inequalities given by Eqs. A-7 and A-8 hold,
then the expression for the flux given by Eq. 10 may be replaced by

N(s) = N_(B,) exp {-Apf ° (=(e")/£(E")]aE"} .
E

The value of the constant h/M is obtained experimentally by recognizing
that the dose curve and its derivative must be continuous at the point at
which the calculation changes from Eq. A-1 to Eg. 11. A priori, one would
expect that suitable values would be on the order of 0.05 to 0.10 for h
and 1.5 to 2.5 for M. Hence one wouldvexpect the largest usable value of
h/M to be somewhere in the range 0.02 to 0.07. Tt is found that for values
of CRIT1 greater than approximately 0.0h, there clearly are discontinuities
in the.dose curves. For values. less than 0.0k, the calculated dose curve
remains the same. That is, no change results from decreasing the value

of CRITI1.
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C. Numerical Integration

For those points at which the delta-function approximatien is invalid,
the integrals in Egs. 10 and ‘11 are evaluated numerically, by using the simple
trapezoidal rule.. In this case, the procedure is basically as follows:

(1) Choose & set of energies {Ei), | | '

(ii) calculate the set {E;} = {E(Ei)}'for each energy from Eq. 5,

(iii) calculate o(E,EO) for each energy, '

(

iv) evaluate the integral

fEO AP[Z(E')/f(E’)]dE'
- ;
at each energy.

Finally, the numerical integration is performed for a set of values
for the distance; s. In fact, the evaluation is greatly simplified by
choosing these values to coincide with the set {gi}.

It remains to choose the energy set {Ei} at which the numerical
calculations are to be performed. This is done as follows. Since the
term T given by Egq. A-2 is by far the most rapidly varying in both 10 and
11, we impose the requirements that in t raversing the energy interval AE,
which is the interval over which the trapezoidal rule is applied at any
given step, the change in the quantity U be less than or equal to some
fraction FR, where FR 1s a small fraction of unity. This ensures that
the change in the exponential term T will likewise be small over the
interval AE. Experimentally, a value of 0.2 for FR is found satisfactory.

The change in U across AE 1s approximated by

AU = AsK2 o(E,E,) ,
where As is the difference between two successive members in the set {Ei],

It is assumed that O(E,EO) remains relatively constant over the interval.

We require, then,

AsA2 o(E,E,) < FR. (A-9)

Using Egq. 1, we obtain a relation between the change in distance As

and the corresponding energy change AE:

A8 = 3 - £(E) ¢ 45
P
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Substituting into Eq. A-9, we obtain the restriction on AE:

Jo

AE < 3 ° f(E) * o(E,EO) * FR. (A-10)
Thus, for a given energy Ei’ the next energy Ei+l at which the calculations

are performed is given by Eg. A-10, where the equality sign is chosen.

Therefore, we can write
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D. Coulomb Excitation

If a bombarding ion comes sufficiently close to a target nucleus, a

gquadrupole interaction may occur in which one or both nuclei are raised to
an excited state. This inelastic process is called Coulomb excitation, and
thé amountvof energy that may be lost in a single interaction is on the
order of 1 MeV.

We can easily show that this Coulomb interaction process 1is not sig-
nificant from the standpoint of energy loss by comparing the specific
energy loss due to Couiomb excitation with that due to ionization. The
microscopic cross section for a Coulomb excitation to occur can be shown .
to be on the order of one to two times the geometric cross section given
by n = ﬂR2.52 If this gquantity is multiplied by the atom density of the
medium, the result is the macroscopic cross section for a Coulomb excitation.
If this is then multiplied by the mean excitation energy lost per inter-
action, the result is the stopping power, or specific energy loss, due to
Coulomb excitation. |

Estimates of this stopping poWer are made . for a few extreme cases,
and the results are shown in Table XXI. Also shown aré calculated values
of stopping power due to.ioniiation. In all cases, the Coulomb excitation

stopping power 1is a‘negligible fraction of the total.

Table XXI. Comparison of stopping power due to Coulomb excitation and to

ionization.
Stopping power
System _ Coulomb excitation Ionization
500-MeV/amu Ne ions in U : ~ 0.01 140
500-MeV/amu Ne ions in H,0 ~ 0.1 - 280
500-MeV/amu Ne ions in Cu '~ 0.05 : 191

500-MeV/amu U ions in U : ~ 0.05 - 11500
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