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A general method has been developed for calculating Bragg curves, flux 

curves, and energy spectra resulting from the transport of high-energy 

heavy-ion beams in arbitrary media. The method takes into account the 

processes of energy loss from both electronic and nuclear elastic collisions, 

nuclear attenuation, small-angle multiple scattering, and straggling, as 

well as effects due to initial energy and angular spreads of the beam. Con

tributions from secondary particles are not included. 

Calculations are made for ions of various atomic numbers and energies 

incident on different targets. It is found that for a given range in a 

particular target, the peak-to-plateau dose ratio goes through a maximum 

as the atomic number of incident ions increases. Similarly, the Bragg peak 

full width at half-maximum goes through a minimum. 

Another significant result-is that for a given particle range, the 

average energy per atomic mass unit at the Bragg peak is nearly independent 

of the bombarding ion, and also of the target material. 

The calculated results agree very well with experimental data for 

those cases in which secondary~particle production is of minor importance. 

In addition, even when secondaries are a large contributing factor, the 

method yields valuable information regarding the variation in energy 

deposition by the primary particles. 

The calculated results are found to be quite sensitive to the degree 

of angular and energy spreading of the initial beam. 
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I. INTRODUCTION 

In this paper we consider a beam of monoenergetic particles incident on 

a slab of material whose transverse dimensions are large compared with the 

...;.> beam-dimensions and with the depth of penetration of the beam. .As these 

particles traverse the medium they lose energy through a variety of processes, 

• 

the predominant ones being ionization energy loss, nuclear interactions, and 

small-angle multiple scattering. Other processes, including large-angle 

Coulomb scattering and elastic nuclear scattering, are usually of secondary 

importance when the initial energy of the beam particles is significantly 

greater than a few MeV per amu. 

A. Energy Loss 

The energy loss of a beam of ions results primarily from many collisions 

between the beam ions and the electrons of the medium, causing a net transfer 

of energy to the medium. This process is referred to as ionization energy 

loss. 

There are many facets to the highly complex process of charge exchange 

and ionization energy loss, but a wealth of experimental evidence backs up 

a great deal of theoretical work. Consequently, very good estimates are 

available for the rate of ionization energy loss of many ions in many 

different materials. The state of knowledge with regard to heavy-ion 

ionization energy loss has been summarized by Northcliffe. l 

B. Nuclear Interactions 

At very high particle energies, nuclear reactions can play an important 

role in the energy-loss process. A great many different reactions occur, 

and the total process is exceedingly complex. In some of the collision 

processes, many different secondary particles can be produced, and each of 

these gives up energy to the medium by the processes of ionization loss 

(charged particles only) and nuclear interaction (all particles) . 

The total cross section for nuclear interactions is known reasonably 

well over most energies of interest in this work. From this, attenuation 

factors can be calculated for the beam particles at all penetration 

distances. 

Although the effect of nuclear attenuation on the flux, dose, and 

spectral curves is taken into account, the additional terms due to the 

secondary particles produced by the nuclear interactions are neglected in 

this work. 



-2- UCRL-17392 Rev 

Elastic scattering of the beam ions by the nuclei of the target causes 

a small fraction of the total energy deposition in certain regions of the 

ion energy, in the form of kinetic energy of the recoil target nuclei. 

effect is included as a correction term in the calculation of the total 

stopping power. 

This 

In addition to this elastic process, both the incident ion and the 

target nucleus can be raised to an excited state during an interaction in 

which the two bodies do not actually merge to produce a single compound 

nucleus. This effect is commonly referred to as Coulomb excitation, and as 

a result of such an interaction, each of the two bodies may be raised as high 

as an MeV or two above its respective ground state. For the energies of 

interest in this work, the contribution from Coulomb excitation to the 

total stopping power is negligible (see Appendix D). 
C. Multiple Scattering 

The process of small-angle mult;ple scattering leads to a divergence 

of the beam. As a result, the me~D range of the particles decreases somewhat, 

and the range distribution is broadened. The basic scattering law is well 

known, so that it is possible to make reasonably accurate estimates of the 

multiplelscattering effects. 

D. Straggling 

The process of ionization-energy loss occurs in discrete steps, rather 

than being continuous. This process leads to the general concept of 

straggling, whereby a given particle energy does not correspond to a uni~ue 

distance of travel. Instead, for a given distance of travel, there is a 

distribution of particle energies, and for a given particle energy, there 

is a distribution of dist~Dces of travel. This distance distribution is of 

paramount importance in calculating Bragg curves. 

E. Other Processes 

Various other process (most of them not significant from the standpoint 

of energy deposition
2

) influence the P9"ssage of charged particles through 

matter; they include large-angle Rutherford scattering, energy transport via 

fast secondary electrons (5 rays), and Cerenkov radiation. 

F. Previous Work 

The classical method of calculating Bragg curves is described by Evans. 3 

This simple method is based on the assumption that the processes of nuclear 

attenuation ~Dd multiple scattering can be neglected, and that only range 

• 
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straggling need be considered. Although useful for low-energy beams, this 

method is of little utility for the work described here; for the beams of 

interest here, both nuclear interactions and multiple scattering must be 

considered. 

Other authors4,5 have gone one step further by including the effects of 

.~~ multiple scattering along with range straggling. These methods are not ade~uate 

• 

~ 

• 

for this work for two reasons. First they do not treat nuclear interactions; 

in this work, we .. are concerned with beams of particles that are much heavier 

than protons, and that often have sufficient energy to cause a significant 

number of .nuclear interactions. Second, these methods are not applicable to 

very heavy ions, because of various assumptions made with respect to the 

multiple-scattering process • 
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II. BASIC EQUATIONS 

A. Particle Number Density 

We first consider the problem of deriving an expression which describes 

the attenuation of a beam of particles as they traverse a medium. The beam 

particles are all assumed to have an initial energy E , to be perfectly o 
collimated, and to strike the surface of tjre medium in a direction parallel to 

the surface normal. The medium is assumed to be homogeneous, with transverse 

dimensions large compared both with the beam dimensions and with the depth of 

penetration of the beam particles. 

The medium is assumed to be characterized by a total nuclear-reaction 

macroscopic cross section ~(E) (in cm-l ) and by a stopping power, or specific 

energy loss, f(E) (in MeV-cm
2
/g). The reaction cross section represents any 

and all nuclear reactions that remove particles from the beam. The fQ~ction 

f(E) is the total energy given up to the medium due to interactions between 

the beam particles and the medium; E is the energy of the particles, in MeV 

per atomic mass unit. 

The path of the beam particles is characterized by the dimension s(E), 

which is defined as the mean distance traveled by particles which have gone 

from an initial energy E to an energy E. Consider those particles that o 
have reached an energy E, denoted by the function N (E). In traversing an 

e 
incremental distance 65, these particles lose on the average an energy (per 

amu!) 6E. Since f(E) is the total energy lost by each particle in a unit 

distance of travel, then the relation between DE and 6s is 

DE/65 = f(E) / A , 
p 

where A is the atomic weight of the beam particles. 
p 

(1) 

For this group of particles, the fractional decrease in their numbers 

in going from E to E-6E is given by the macroscopic reaction cross section 

multiplied by the mean distance traveled in losing this energy. Thus, we have 

6N 

Using E~s. 1 and 2 we obtain 

Ne (E) ~ -~(E)·65. (2) 
e 

dN 
e 

N 
e 

(E) = A . ~(E) dE 
P f(Ef , 

where we have taken the limit as 6E tends to zero. 

E~uation 3 thus gives the fractional decrease in the number of 

• 
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particles in losing the increment of energy dE. Note that Eq. 3 is actually an 

operational definition of the total reaction cross section that is slightly 

different from the usual definition given by Eq. 2. That is, ~(E) may be 

~ considered to be defined in terms of the stopping-power function f(E) rather 

than in terms of a distance s. This subtle difference is due to the fact 

that statistical fluctuations, strictly speaking, invalidate the use of a 

relation of the type given by Eq. 2. In any event, we may regard Eq. 3 as 

the definition of ~(E) if we wish; in practice Eqs. 2 and 3 are equivalent, 

because cross-section values are known only approximately. 

;;;: 
• 

Integration of Eq. 3 yields the number density of a given energy within 

the slab, 

N (E) == N (E )·exp{-A JEo [~(E'/f(E')]dE'), 
e· 0 0 p 

(4 ) 

E 

where N (E ) is the number of incident particles, all of which have an energy o 0 

E . 
o 

Note thai; this expression for the number of particles surviving down 

to an energy E is independent of any particular distance, but is instead 

a function of .only the cross section and stopping power between the initial 

energy and the energy in question. 

The energy loss process is not a continuous one; that is, particles lose 

energy in discrete steps, rather than continuously. Because of these 

fluctuations, and because of other processes to be discussed later, a 

particular energy corresponds to· a distribution of path lengths, rather than 

to a unique value. 

1. Mean Path Length of Travel 

A very good approximation to the mean path length traveled by particles· 

that have gone from energy E to energy E is obtained by direct integration of o 
Eq. 1: 

s(E) ApJEO[l/f(E' )]dE'. (5 ) 

E 

2. A Limiting Case 

If the reaction cross section is energy-independent, it may be removed 

from under the integral sign in Eq. 4. Then, we have 

N (E) == N (K )'exp{-A ~JEO[l/f(E')]dE')' e 0 0 p 
E 
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By using Eq. 5, this becomes simply 

N (E) = N (E )~exp{-~'s(E)}, e 0 0 

which is a well-known result. 

B. Path-Length Distribution 

Equation 4 gives the number of particles reaching energy E. To obtain 

an expression for the energy deposition and for the flux at a particular 

distance of travel s, we must relate the energy of an ion to its position. 

This is done by defining a path-length distribution function as follows. 

For a group of particles, each with energy E, M(s,s)ds is the fraction 

of these particles that have traveled a distance s, where s is the mean 

distance traveled by particles of energy Eo and is given py Eq. 5. 
Lewis6 has shown that if the path-length distribution is a result of 

statistical fluctuations in the energy-loss process, then th~ distribution 

function should be well represented by a Gaussian. Berger and Seltzer? 

have extended the study of the problem and show that the deviations from a 

Gaussian are negligible for nearly all cases of interest. 

It should be pointed out that the distribution function M should not 

be affected by the occurrence of nuclear interactions, provided that one 

is concerned only with the- initial beam particles as opposed to nuclear 

secondaries. This can be argued by considering that the fractional 

decrease in the number of particles of a given energy, as given by Eq. ~, is 

a function of the energy only, not of the position of the particles. Another 

way of stating this is that if at some energy the path-length distribution is 

Gaussian, then the fractional decrease in particles lying in any given 

distance increment is constant. -Therefore, the attenuation does riot affect 

the shape of the path-length distribution. 

Processes other than energy-loss fluctuations also contribute to the 

path-length distribution, the principal ones being multiple scattering and 

the energy spread, and imperfect collimation of the initial beam. We assume 

that these effects are such that the path-length distribution is still well 

represented by a Gaussian. The validity of this assumption is discussed later, 

when each of these processes is examined. 

Therefore, the path~length distribution function is written in the 

form 
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M(s,s) := 
1 

.[21C a(E,E ) 
o 

The quantity [a(E,E )]2 is the 
o 

variance in the path-length distribution for 

particles slowing down from energy E to energy E. In general, this o 
variance is the sum of several terms, each of which represents the variance 

due to a particular effect. Calculation of the variance is discussed fully 

in later sections. 

Note that there may be a small range of energies near E for which Eq. o 
6 does not hold. Thus, consider an energy Enear E. If a(E,E ) is not o 0 

sufficiently large, then the distribution function cannot be symmetric, 

because s can never be less than zero (no path length). 

Thus, for Eq. 6 to be valid, we require that E be small enough so 

that the inequality 

is satisfied. 

s(E) ».[2 a(E,E ) o 

This requirement usually imposes no practical limitations, since 

for energies near E , the quantities of interest -- such as dose and o 
flux -- are independent of the form of the distribution function (see 

Appendix B). 

Many authors have adopted the convention of using the quantity 

called the straggling parameter, equal to.[2 a(E,E ), rather than the 
. 0 

standard deviation a(E,E). However, inasmuch as the term "straggle" o 
carries particular implications with respect to energy-loss fluctuations, 

we shall adhere to the use of the variance itself. 

We now transform the distribution M(s,s) as follows. Defining the 

variable U as 

we can write 

U(E) s - s(E) 

.[2 a(E,E ) 
o 

M(s,s)ds := M(U) au := .L e -~ dU. 
.[1C 

(8) 

The distribution M{U)dU may now be interpr~ed as the fraction of 
\ 

particles of energy E that have traveled a distance s such that the 

normalized difference between s and the mean distance of travel s(E) is 
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within an increment dU of U, and U is the normalized difference given by Eq. 7. 

Therefore, given the total number of particles N (E), as calculated from Eq. 4, e 
the number of those having traveled a distance s is given as 

dN(s,E) = N (E)'M(U)dU, e 

where U is an implicit function of E and is given by Eq. 7. 
C. Flux and Dose Distributions 

The total flux at a distance s is now obtained by integration of Eq. 9 

from U(Eo) to U(O). Using Eqs. 4 and 8 and changing the variable of inte

gration from U to E, we obtain the total flux at a distance s: 

N(s) "No(Eo ) IEo exp{_Ap(O ;~~:l dE} ~1] (!~) dE. (10) 

The mean range of the particles, R(E ), is given by Eq. 5 with E = O. o 
The quantity a

2(E ) is the variance for particles having come to rest. It o 
is eqUivalent to a

2 (E,E ) with E = 0; that is o 
2 2 

a (E ) ~ a (O,E ). o 0 

We al'so wish to calcula te the total dose at s. If dN( s) represents a 

certain number of particles of energy E, as given by Eq. 9, then dN(s)f(E) 

is the dose per unit distance of travel of these particles at s. Thus, the 

total dose is 

D(s) = J 
All E 

Using Eqs. 4, 8 and 9 we then have 

dN(s,E) f(E). 

D(s) = N (E )JEo eXP'{-A JEo 
o 0 P 

o E 

I:(E') dE.} [e -~J f(E) (dUjdE)dE (11) f(E' ) I 
, '" 1( 

It should be noted that in Eqs. 10 and 11 the independent variable E 

appears, as well as the variable U. In order to perform the integration, 

one of these must be expressed in terms of the other. This is easily done, 

inasmuch as the unique relationship between them is given by Eq. 7. 

D. Energy Spectrum 

At any given position s, the total flux may be written as 

N(s) = J N(E,s) dE, 

AllE 
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where N(E,s)dE is .the number of particles having energies within dE of E. 

Comparing this expression with that given by E~. 10, we deduce that the 

spectrum at any position is given as 

N(E,s) " No (Eo) exp {-Ap~ Eo m: l dE} e·if- • .[~ (dU/aE), 

with U given by E~. 7. 

E. Some Simplifying Cases 

Suppose that the cross section is. independent of energy. Then, as 

before, we may remove ~ from beneath the integral in both E~s. 10 and 11. 

When Eq. 5 us used, the expressions for the flux and the dose simplify to 

N(s) = N (E )J Eo exp {-[~s(E) + if]) (dUjdE) 
o 0 .[1t 

6 

dE (12) 

and 

D( s) N (E )JEo exp {-[~s(E) + if]} f(E) (dUjdJE)dE 
o 0 .[1t 

0·· 

The integrals in both E~s. 12 and 13 must be evaluated numerically. 

A further simplification is obtained in the limiting case, where the 

attenuation due to nuclear interactions is negligible, as it would be for 

ions of sufficiently low energy. In that case, the cross section is assumed 

to go to zero, and the expressions for the flux and the dose reduce to 

N(s) = N (E )JEo e-if (dUjdE) dE 
o 0 .[1t 

o 

(14 ) 

and 

N (E ) J Eo e -if .f(E) (dUjdE) dE. 
o 0 .[1t 

o 

D(s) 

The latter expression for the flux is e~uivalent to the classical expression, 

derived by Evans3 and others. It can be obtained from basic principles as 

follows. 

We assume that the distribution of ranges for particles with initial 

energy E is Gaussian, with a variance [a(E )]2: o 0 

P(R) 1 exp {_[ R-R(EO)] 2} 
.[2 O'(E ) 

o 
.[21t a(E ) 

o 



-10- UCRL-17392 Rev 

where R(E ) is the mean range~ The flux at a given distance s is contributed 
o 

to by all particles whose range is greater than s. If the initial flux is 

N (E ) at s = 0, then the flux at s is given as o 0 

N(s) 

If we change variables from R to W, where W is given as 

Eq. 15 becomes 

N(s) 

W 
R-R(E ) o 

.[2 a(E ) 
o 

= No(EoU

oo 

S-R(Eo ) 

.[2 a(E ) 
o 

-vr dW e 

which is equivalent to Eq. 14. 

F. Nuclear Interactions 

Energy deposition from nuclear interactions arises from two sources-

direct and indirect. The direct contribution comes from thedeexcitation of 

the compound nucleus formed by the interaction of the target atom with the 

bombarding ion. A certain fraction· of this deexcitation energy is released 

at the point of impact, and it is this fraction which comprises the direct 

contribution. The indirect portion aroses from secondaries produced at 

points within the medium other-than the position of interest. 

1. Direct Contribution 

The total number of interactions, per unit length of travel, of ions 

with energy E, due to those par~icles whose initial energy is E , is given by o 

rO(E,s) = N(E,s) ~(E). 

The total energy release at s from the direct contribution is then 

Ddir(s) = JEo 
N(E,s) ~(E) G(E) dE, 

o 

where G(E).is the energy deposited at s per nuclear interaction with a 

particle of energy E. 

2. Indirect Contribution 

Let H(E t ,s I ~ s) be the energy released at 's due to a nuclear interaction 

.-
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of an ion of energy E' at s'. Then the total indirect contribution to the 

linear energy transfer, denoted D (s), is given by . n 

Dn (s) == J ds' J dE'N(E' ,s' )L:(E') H(E' ,s' ~s). (16) 

The simple form of E~. 16 belies the inherent difficulties involved with its 

evaluation; although, as will be indicated, N(E,s) can be .calculated, the 

function L:(E) is usually not well known. Furthermore, even less is known 

about the function H(E' ,s I ~ s) . 

For the work in this report, we neglect the contributions to the dose 

and flux from secondary particles. 

G. Variance of the Path-Length Distribution 

The path-length distribution is a function of several processes; we 

assume that each of these processes is independent of others. We further 

assume that each process contributes in a random manner to the deviations in 

the path-length distribution. Therefore, the total variance in the distri

butiOn can be expressed as a sum of terms, each '-of which represents the 

variance due to a given process. 

In this section, we discuss the different processes and show how 

each contributes to the total variance. 

1. Energy-Loss Fluctuations 

The process of ionization-energy loss occurs in a random fashion,. so 

that one expects that, over a finite energy interval, the path-length 

distribution of.particles with given ienergy will be Gaussian. The classical 

derivation of the expression for the associated variance, made by Lewis,6 

is given below. 

Suppose that a particle has an energy Etot ' From LewiS, the average 

number of collisions experienced by the particle per unit distance of travel, 

in which an energy loss T occurs, is given by the expression 

NT(T) dT == 
k dT 

(17) 
2 ' 2 Etot T 

where constant k is given as 

2 4 
k == 2:rc n Z M e 1m , e p p e 

and where n is the number of electrons per unit volume of the target and 
e 

M and Z are the mass and atomic number of the incident particle. The 
p . p 
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function NT(T) is often referred to as the collision spectrum. 

E~uation 17 is valid in the nonrelativistic limit. It is also assumed 

that the velocity of the incident particle is much greater than that of the 

k electrons of the target atom. 

Now, in traversing an increment of distance ~, the average number of 

collisions in which an energy loss T occurs is given by 

NT(T) dTI = k dT ~ ~. 
6s 2 E 

, tot 
I 

Since the collisions occur randomly, the standard deviation associated with 

the average number NT(T)dT is e~ual to the s~uare root of that number. The 

variance (N 2) in the number of collisions is therefore e~ual to 
c 

(N 2) = k dT 8s. 
c 2 E

tot 
~ 

Because each collision is associated with an energy loss T, the variance in 

the total energy loss over the distance 6s is given as 

22 2 k dT 
(0 Et,t> = r (N > = ~2"""E--

, 0 c tot 
• 6s. (18) 

For each value of T, there is a corresponding variance given by Eq. 18. 

Inasmuch as the collisions associated with each value of T are independent, 

the variances for all values of T are additive. Therefore, the net variance 

in the total energy loss associated with an incremental distance 6s is given 

by the sum 

and in the limit, by 

2 = \' k dT 
(6 Etot> L 2 E 66, 

All T tot 

(6 E~ot> = kJ ~AX 
TMIN 

It can be shown that the maximum energy loss in a single collision is given 

by E Etot ' where 

2 
E = 4 m /[M (1 + m /M ) J. e pep (20) 

A discussion of the lower limit is given by Bloch, who shows that it 



'. 
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8 
can usually be neglected. Integrating Eq. 19 using Eq. 20 we have 

4rm Z 2e4 

(~ E~ot) =e p 2~' (21) 
(l+me/Mp) 

Equation 21 gives the variance in the energy loss produced by collisions in ~s. 

Evans3 gives an argument to show that the relationship between an energy 

variance 'and the corresponding variance in the path-length distribution is 

given as 

where Etot is the mean energy of the particles in question. This can be 

argued as follows. At some energy Etot ' a change in energy, ~tot' 

produces a corresponding change in path length ~s, given by Eq. 1. The 

term ~s is then the contribution to the total path length due to the energy 

change ~tot' Therefore, if ~tot represents an uncertainty in the energy 

change, then the corresponding uncertainty in the contribution to the total 

path length is again,~s, and (~;ot) is the square of ~tot' Equation 22 

then follows. 

Substituting the expression given by Eq. 21 into Eq. 22 we obtain 

4:n:n z2e 4 
(~2) = e p 

(l+m 1M )2 
e p 

which is the contribution to the variance in the path length due to collisions 

in~. Since collisions within each increment ~s are independent from those 

in any other increment, the net variance over a group ~s. will be the sum 
~ 

of the individual variances. As the ~s. approaches zero, the sum becomes 
~ 

an integral, and we obtain 
'4 2 4 TCn Z e 

<~2) = e p 
(l+m 1M )2 

e p 

Using Eq. 1, we have 

2 4 
_4_TC_n_e-,Zp=..e_-:=:- A J E2 

(l+m IM)2 p 
e p El 

dE 

This is the expression for the contribution to the variance in the 

path-length distribution for particles going from an energy E2 to an energy E
l

• 
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It is valid when the energy range is nonrelativistic, but at very high 

energies, correction factors must be applied. Furthermore, at very low 

energies, corrections must be made to take into account the fact that the 

electrons of the medium are in a bound state. 

a. High- and Low-Energy Corrections 

At high energies, the collision spectrum deviates from the form given 

by Eq. 17. Maccabee9 discusses this effect and gives the modified expression 

as developed by Vavilov10 as 

with 

NT(T) dT = __ k_d_T_,= 

2 Etot ·r1 [~ - ~.T. l, 
max J 

T = 4 Et t m /[M (1 + m /M )2(1 - 13
2

)]. max 0 e p. ep 

When these relationsh;Lps are used, the expression for the variance contribution 

(6R2 ) becomes, instead of that given by Eq. 23, 

224 JEo (1 .. f32L2) K dEl 
(24) (6R ) = 4nZ e n A pep (1 ~ 132 )[1 + ,(2m /M )7] [f(E , )]3 

E e p 

where 

7 = (1 _ 132 )-1/2. 

These are the equations given by Sternheimer 11 for calculating the 

path-length variance due to energy-loss straggling. The quantity 13 is the 

ratio of the particle velocity to the speed of light, 

13
2 = 1 - [ Mo C

2 

rf J" 2 , 
, E + M 

o 

where M ~, the rest energy per amu, is equal to approximately 931 MeV. The o 
term K is a factor introduced by Sternheimer to take into account the effects 

due to the binding of the atomic 
2 

g/cm , then Eq. 24 becomes 

2,4 
4nZ e n A p' e p 

p 

electrons. If the variance is expressed in 

K dEl 

(1-13
2

)[1 + (2m /M )7] [f(E ' )]3 E e p 

where f(E) is in units of MeV-cm
2
/g. The term p is the density of the 

target in g/cm3 . If we substitute numerical values in Eq. 25, and define 

~' . 
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the function 

ECl. 25 becomes 

1.3027 X 10-25' Z
2

n A 
( 2) pep 
[ili = -------=---=-p 

l+H(E') 

+ (2«) /H(E 1)1/2] 
P 
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(26 ) 

K dEl • (27) 
[f(E') ]3 

For the energies of interest, the Cluantity H(E) varies between approximately 

0.15 and 1.0. Since for even the lightest particles of interest (i.e. protons) 

the ratio 2m /M is much less than 1.0, the term 1 + (2m /M )/HCE)1/2 in e pep 
ECl. 27 is very nearly unity. ConseCluently, ECl. 27 simplifies to 

1.3027 X 10-25. Z
2n A 

([ili2) = pep 
p 

b. The Binding-Correction Term 

E 

1 + H(E') 
.H(E' ) 

K dE' 

[f(E' )]3 • 
(28) 

Sternheimer points out that the Cluantity K decreases rapidly to unity 

with increasing energy. For Be, for example, typical values of K for protons 

are as follows: 

MeV K -
1 1.24 

2 1.12 

10 1.07 

50 1.02 

Table I gives values of the various terms in the integrand for the 

energy spectrum ranging from 1 to 500 MeV per amu for neon, in water. On 

the basis of the approximate numbers shown in this table, it is concluded 

that the term K can be set eClual to unity with no significant error intro

duced into the· calculated values for the variance. This follows for several 

reasons.· First, at those values of the energy. range for which K differs at 

all from unity, the value of the integrand is nearly zero. Second, even 

if the integrand values were nontrivial in this range (which might be true 

for some very heavy ions at energies between zero and 5 MeV), the portion 

of the energy range OVer which K differs significantly from unity is a 

small fraction of the total range, so that the contribution from this 

portion of the range to the total integral is correspondingly small • 
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Table 1- Terms of the integrand in E9,. 2$ for neon ions in water. 

E f(E)2 1 + H(E) 1 
(MeVLamu) H(E) (MeV-cm Lg) H(E) X [f(E)]3 

500 0.423 278 1.56 X 10-7 

250 0.621 396 4.20 X 10-8 

100 0.816 740 5.52 X 10-9 

50 0·900 1270 1.05 X 10-9 

25 0·947 2400 1.49 X 10-10 

10 0.980 4700 1.94 X 10-11 

Furthermore, in the very-low-energy region where f(E) dec~eases (for 

heavy ions), the quantity Z2 also de~reases, again tending to reduce the 
p 

valUe of the integrand. 

Tables II through IV show typical values of the standard deviation 

as calculated by Sternheimer,12which are denoted tlreference. tI 

Table II. a Comparison of calculated and reference values for the standard 
deviation in the path-length distribution of protons in Be. 

InCident Standard deviation 
energy (gLcm2 ) 

(MeV) Calcu~ated Reference ~ error 

4 4.052 X 10-4 4.588 X 10-4 11.68 

10 1.969 X 10-3 2.055 X 10-3 4 .. 18 

25 9.571 X 10-3 9.757 X 10-3 1.91 

50 3.190 X 10-2 3.220 X 10-2 
0·93 

70 5.697 X 10-2 5.739 X 10-2 
0·73 

100 0.1048 0.1052 0.43 

140 0.i845 0.1850 0.27 

250 0.4745 0.4746 0.02 

500 1·364 1·360 0.003 

a. '. Rei. 11 and 12 

As usual, the standard deviation is taken to be the square root of the 

variance (6R
2

). Also shown are the values calculated neglecting the 

correction term K. For beryllium, there is only a 2% error for 25-MeV 

protons. For aluminum, the corresponding error is 5%; it is 12% for lead. 

These results show that, for the passage of protons through the lighter 

.-. 
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elements, the neglecting of variations of K from unity produces very small 

errors in the calculated values for the variance. 

Table III, Comparison of calculated and reference valuesa for the standard 
deviation in the path-length distribution. The particles are 
protons in Al. 

Incident energy 
(MeV) 

4 

10 

25 

50 

70 

100 

140 

250 

500 

.a. Ref. 11 and 12 

Standard deviation 
(g/cm2 ) 

Calculated 

5.327 X 10-4 

2.455 X 10-3 

1.133 X 10-2 

3.644 X 10-2 

6.471 X 10-2 

0.1178 

0.2056 

0.5224 

1.479 

Reference 

6.440 X 10-4 

2.715 X 10-3 

1.200 X 10-2 

-2 
3.798 X 10 

6.653 X 10-2 

0.1202 

0.2087 

0.5269 

1.483 

% error 

17·28 

9·58 

?58 

3·53 

2·74 

2.00 

1.49 

0.85 

0.27 

Table IV. 
a Comparison of calculated and reference values for the standard 

deviation in the path-length distribution. The particles are 
protons in Pb. 

Incident energy 
(MeV) 

4 

10 

25 

50 

70 

100 

140 

250 

500 

a. Ref. 11 and 12. 

Standard deviation 
(g/cm2 ) 

Calculated. 

1. 767 X 10-3 

6.599 X 10-3 

-2 
2·591X1G 

7.713 X 10-2 

0.1318 

0.2330 

0·3969 

0·9723 

2.6568 

Reference 

2.303 X 10-3 

7.499 X 10-3 

2.931 X 10-2 

4 -2 8.5 0 X 10 

0.1436 

0.2514 

0.4255 

1.0262 

2·7562 

% error 

23·27 

12.54 

11.60 

9·68 

8.22 

7·32 

6·72 

5·25 

3·63 

Although the results given here are for protons only, the order of 

magnitude of the errors shown in Tables II through IV is the same for all 
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incident ions. The final expression for the variance due to fluctuations in 

the ionization energy-loss process is therefore 

1.3027 X 10-25n Z2A 
(6R2) = e p p 

p 
E 

with the function H(E) given by Eq. 26. 

2. Initial Energy Spread of the Beam 

dE' 

In general, a beam of particles is not monoenergetic, but has some 

sort of spread centered around a most probable energy. To include the effect 

of this spread on the path-length distribution, we assume that the energy 

distribution of the beam is well represented by a Gaussian, with a variance 

(E2) and with a most probable energy E. Associated with this variance in o 0 

the energy is a constant variance in the path-length distribution. This is 

calculated as follows. The relationship between an energy interval ~ and 
o 

the corresponding distance of travel ~ is given by Eq. 1. If we interpret o 
~ as the uncertainty in the initial energy, then the corresponding 

o 
uncertainty in the path length is given as 

~ o 
6;3,0 = Ap f'fE':l"' 

o 

This is a constant uncertainty over the entire path length of the particles. 

The associated variance in the path-length distribution is therefore 

Strictly speaking, a Gaussian distribution in the initial energy of the beam 

can lead to a Gaussian distribution in the path lengths only if f(E) is 

constant over the energy range of the distribution. For most beams of interest, 

. however, the initial energy spread will be sufficiently small so that f(E) 

is nearly constant over the energy range. 

3. Multiple-Scattering Contributions 

As a charged particle travels through a medium, it undergoes what is 

commonly termed small-angle multiple scattering. This arises principally 

from electromagnetic interactions between the charged particle ~~d the 

nucleus.. When these interactions lead to a large-angle scattering,. it is 

either due to (i) inelastic interactions arising from the short-range nuclear 

forces, or (ii) the very infrequent scattering also due to the electromagnetic 
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interactions. If the interaction arises out of the first caus~, it is termed 

a "nuclear interaction," and is neglected for the reasons discussed earlier. 

Obviously, there is no fine line between small-angle multiple scattering 

and large-angle Rutherford scattering. However, because of the strong angular 

dependence of the Rutherford law, the probability of an angular change 

produced as the result of an interaction is a rapidly decreasing function of 

the angle, so that only very small angles contribute appreciably to the 

angular spreading of a beam of particles. 

The result of the scattering process is that the particles spread 

slowly as they traverse the medium, so that an "average" trajectory would 

look something like that shown in Fig. 1, rather than a straight line. 

Therefore, if x denotes the penetration distance of a particle into the 

medium -- i.e., measured along the initial direction of the beam -- then 

for a mean distance of travel s corresponding to a given energy E, there 

will be, because of the scattering process, a distribution of penetration 

depths. In other words, even if all the particles traveled exactly the same 

distance s -- i.e., in the absence of any statistical fluctuations in the 

energy-loss process -- multiple scattering would still lead to a distribution 

in the penetration distances traveled by these particles. 

Of primary concern are the flux and dose as functions of penetration 

depth into the medium. We must therefore find some method of relating the 

mean distance of travel s of a group of particles to corresponding mean 

penetration distance x. 

In order to arrive at expressions for the dose and flux in terms of 

the penetration distance x, we must convert from the distribution M(s,s) 

to a distribution M'(x,s). This is defined as the fraction of particles, 

all having slowed down to energy E from energy E , that are at a penetration o 
distance x. To do this we proceed by calculating the mean square difference 

between the path length s and the penetration distance x, as a function of s, 

denoted as «(s_x)2). 

Referring to Fig. 1, we can deduce the relationship between a small 

change Ds in the distance of travel of a given particle, and the corresponding 

change 6x in the penetration distance, 

6x = Ds cos cp, 

where cp is the angle that the particle makes with the x direction. The 

change in the square of the difference (s_x)2 is therefore given approximately 
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as 

L,(s - x)2 = [&(1 _ cos cp)]2, 

where ~ is the mean angle of the particles within ds. Again, making the 

assumption of independence of events, the net value of the mean square differ

ence is given as the sum 

2 ~ - 2 ( (s - x)·) = L[ (1 - cos ~ )6s] . 

Expressions for calculating ~ are developed in a subsequent section. 

We now proceed to the development of the penetration-distance distri

bution. For a given distance of travel, the distribution function of the 

difference (s - x) may be approximated by a Gaussian. The quantity 

«(s - x)2) given by Eq. 30 is then an estimate of the variance of this 

distribution. Since we are considering a particular value of s, then 

«(s - x)2) also represents the variance in the distribution of penetration 

distances corresponding to the distance of travel s. 

Thus, if the distribution in (s - x) is given as 

p(s - x) = ~ exp (-[(s - x) - D ]2/2K2}, 
.[2n 0 

where the variance K2 is the mean square difference given by Eq. 30, and 

D is the mean about which the distribution is centered, then the distribution o 
in penetration distances is 

1 - 2/ 2 p(x) = - exp {- [x - x] 20} . 
.[2n 

The quantity x is the mean value of the penetration distance, and is 

estimated simply as the difference between s and the mean difference between 

s and x. Thus, 

2 1/2 s -((s - x)} . 

We may summarize as follows. For a given value of the energy E, the 

mean penetration distance is given by Eq. 31; the contribution to the 

variance in the penetration distance distribution from multiple scattering 

is given by Eq. 30. 
4. Ini tial Angular Spread of the Beam 

Typically, a beam of particles is not unidirectional, but instead has 

some angular distribution centered about a most probable value. The effect 

of this distribution is most easily taken into account as follows. In the 
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previous section, the multiple-scattering effects were discussed and 

characterized in terms of a mean angle ~, which is a function of the mean 

distance of travel in the medium. The calculation of ~ is discussed in 

a later section, but it is clear that the initial value chosen for the mean 

angle will have a direct influence on all values of~. Thus, the effect of 

an initial angular spread in the beam is taken into account by imposing a 

suitable initial condition on ~ in the multiple-scattering calculation. The 

exact method of introducing this condition is demonstrated in the later 

section dealing with the calculation of the mean angle due to multiple 

scattering. 

Ai ternati vely, one could eClually well calculate a constant variance 

due to the angular spread, to be added to the variance of the penetration

distance distribution. The former approach is more efficient from a 

computational point of view, and for this reason it is chosen. 

.~. 

.' 
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III. PHYSICAL PROCESSES 

The previous section was devoted to the derivation of expressions that 

describe Bragg and flux curves, and energy spectra. These expressions 

contained functions that represented certain physical processes -- namely 

ionization loss, nuclear interactions, and multiple scattering. For 

example, it was assumed that the nuclear-interaction cross section could be 

represented by an energy-dependent function I:(E). 

The purpose of this section is to discuss these phenomena in detail 

and to derive expressions that can be used to calculate values for the 

functions. 

A. Energy Loss 

The process of energy loss is extremely complex. Steward has calculated 

the stopping power for ions of arbitrary energy and mass in an arbitrary 

medium. 13 In Steward's method the problem is treated in two main parts, 

one for ion 'atomic numbers less than 10 and the other for ion atomic numbers 

greater than 10. This division is based on the fact that experimental 

stopping-pqwer data are available for ions with Z < 10 for all energies for 

which the atom is not completely stripped, whereas such data are not at all 

complete for ions with Z > 10. 

For the lower-atomic-number region, Steward calculates the stopping 

power, using experimental data and a modified version of the method developed 

by Northcliffe for low energies. l For the region of Z > 10, Steward uses 

the nuclear and electronic stopping-power theory of Lindhard et al.,14,15 

with adjustments made in order to obtain agreement with fission-product 

range data at low energies. At intermediate energies, charge-state data 

developed from experimental Ar range-energy data in Al are extended to other 

ions and stopping media. At high energies,. a modified form of Bethe's theory, 

as developed by Barkas and Berger, is used for all ions.16 

The values of f(E) used throughout this work are obtained by using the 

methods of ?teward. The values of the mean excitation energy used in 

connection with the Bethe e~uation are those given by Turner. l ? 

It should be mentioned that high-energy 5 rays are occasionally 

produced, and that these energetic electrons influence the energy-deposition 

process. The phenomenon is discussed in detail by Segre.18 He shows that 

in part because the probability for the production of an electron of energy 

T is approximately proportional to l/rf, so few 5 rays of significant energy' 
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are produced that their effect can be neglected. 

B. Nuclear Reactions 

In order to calculate the energy deposition even from the primary 

particles alone, it is necessary to know the value of the total reaction 

cross section as a function of energy. One must in principle specify 

exactly what is meant by this cross section. Too often, the literature is 

confusing by giving vague references to such terms as "reaction cross section," 

"inelastic cross section," etc. We shall remove any possible ambiguity by 

defining the total reaction cross section to be that which describes any 

nuclear interaction that removes a particle from the beam, excluding 

Rutherford scattering, which is treated elsewhere, in the section on 

multiple-scattering corrections. 

For most of the cases of interest -- namely very heavy ions with 

energies on the order of a few hundred MeV per amu -- experimental data are 

essentially nonexistent; conse~uently, we must rely on theoretical considerations. 

Following the treatment by Blatt and Weisskopf,19 we develop below a 

simple formulation for the calculation of the reaction cross sections. If 

we consider the range of energies sufficiently high so that the wavelength 

of the beam particle is much less than the characteristic dimension of the 

medium nuclei, then one would expect that the reaction cross section would 

be on the order of the total geometric cross section -- assuming, of course, 

that any interaction leads to a compound nucleus. If we let R represent the 

radius of this geometric cross section, then at sufficiently high energies 

the microscopic cross section is given by 

2 
Tj = :rcR , 

The radius of a nucleus may be expressed in the form 

r = r 'Al / 3 - SKT, 
o 

where A is the atomic weight of the nucleus, r is the nuclear unit radius, o 
and SKT may be interpreted as an overlap parameter. Since the radius of 

the geometric cross section is simply the sum of the radii of the incoming 

particle and the target nucleus, we have 

R = r p + r t ' ( 32 ) 

where the subscripts "p" and "t" refer to the particle and target, respectively. 

At low energies, the Coulomb barrier obviously plays a role in the 

interaction process. It can b~ shown19 that if R, given in E~. 32 in this 

• 
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case, is the classical distance of closest approach, and V(R) represents the 

potential at this distance, then the cross section is given by 

T} ,R2 [1 -E:~:~ ] for E > V(R), and c.m. 

T} = 0 for E < V(R), c.m. 

where E is the total energy of the particle in the center-of-mass c.m. 
system. The potential is given by 

2 
ZpZte 

V(R) = R (34) 

where Zt is the nuclear charge. E~uatibn 33 reflects the fact that 

classically the potential barrier cannot be crossed with less than a given 

amount of energy. 

The exact form of the Coulomb correction is of secondary importance, 

since for almost all cases of interest in this study, E is much greater c.m. 
than V(R). Hence, the presence of the Coulomb barrier has almost no effect 

on the cross section for the energies of interest. 

We must now consider the fact that the incoming particle exhibits wave 

properties, especially in the energy region where the e~uivalent wavelength 

is not trivially small. If the wavelength is denoted by *, then the uncertainty 

in the position of the particle is also given by~. Hence, one would expect 

that the "effective radius" of the particle-pius-target cross section would 

be enhanced by this amount. Thus, a better estimate of the cross section is 

~ = ,(R + J<:)2 [1 - V(~c~m~) 1 
At very high energies, ~ approaches zero and the cross section is given simply 

2 
by ~R. As the energy decreases, the cross section increases as the wave 

length becomes importaJ?t. Finally, there is a sharp drop in the cross 

section near energies comparable to the potential threshold. Using E~s. 

and 33 we obtain the complete expression for the reaction cross section: 

,[ro (A~/3 + A:!t\ H_2SK~12 ri , - , E1Z~)(: (A~!,'~I,Ai/~: J ,(35) l '. c"Jrn;,), 0 [, t -

Blatt and Weisskopf have calculated the cross sections for protons and 

alpha particles using the results of a wave-mechanics treatment. The results 

given by E~. 35 are found to be in excellent agreement, for energies 
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significantly greater than V(R + ~). Igo has calculated the variation of 

h . th 1 . ft· 1 20 the cross section wit energy ln e ow-energy reglon or a par lC esc 

The behavior given by Eq. 34 agrees well with his results. 

It is convenient to express both the particle wavelength and center-of

mass total energy in terms of the laboratory energy E, in units of MeV per 

amu. These are given by the relationships 

E c .m. 

hc 

A +A
t p . 

I 

and 

E, 

where (M c
2

) is the rest mass of an amu expressed in energy units (approx 931 o 
MeV). Substituting nQ~erical values, we obtain 

1.977 X 10-11 

A (1862 E + E2 )1/2 
P 

The Values of rand SKT 
o 

Most important in the use of Eq. 35 is the value of the nuclear unit 

radius r. In general, r varies somewhat from one nucleus to another; o 0 

however, inasmuch as the concept of a nuclear radius is somewhat vague, it 

is permissible to use a single value of r for all nuclei. 
o 

Most earlier analyses of nuclear interactions have been made using a 

simpler model in which the par~eter SKT was not considered. With this model, 

many attempts have been made to assign a value to r. Evans 3 has summarized 
. 0 

the various methods utilized prior to 1955. These include: 

a. Analysis of the f3 decay of certain isotopes to infer the value of 

the classical Coulomb-energy radius; 

b. Quantum-mechanical corrections to the classical Coulomb-energy radius, 

leading to an equivalent electromagnetic radius;2l 

c. Analysis of isotopic shift in line spectra; 22 

d. Measurement of the characteristic electromagnetic radiations from 
. t 21,23,24 lJ,-mesonlC a oms; 

e. Analysis of fine-structure splitting of electronic x-ray levels in 

heavy atoms;25 

f. Measurement of the lifetime of a ray emitters;26 

I· 

• 
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g. Analysis of anomalous scattering of a particlesj27 

h. Measurement of the cross sections for nuclear reactionsj 2.8 

i. Measurement of the elastic scattering of fast neutrons by nuclei. 

Later attempts to measure r include the following. Willoughby measured o 
the mean free path of a particles in emulsions and calculated a value for r 

o 
of 1.23 fermis. 29 Williams30 measured the reaction cross section for 1.4-GeV 

neutrons, and calculated a value of 1.28 for r. Note that at very high o 
energies Eqs. 35 and 36 apply equally well for neutrons. Thomas has 

calculated the cross sections for compound-nucleus formation using two 

different models. 31 The first model, based on a square-well nuclear potential, 

gives i:'esults that agree reasonably well with experimental data when a value 

for r of approximately 1.5 is used. The second model, based on a diffuse o 
nuclear potential, fits experimental data well with a value for r of 1.17. o 
Longo and Moyer measured the ·reaction cross sections for 1.4- to 4.0-GeV 

protons. 32 The corresponding value of r lies between 1.25 and 1.35 fermis. 
o 4 

The result of Zerby,33 as reported by Wallace,3 for the proton cross section 

in oxygen yields a value for r of 1.17. o 
By use of these and other early works as guidelines, and by making use 

of the analysis of nuclear charge distribuL~i6n by Hofstadter, 35 a set of 

values for rand SKT was found that fi ttedreasonably well the literature o 
data. These values, 1.4 F for rand 0.4 F for SKT, were used in obtaining o 
all the calculated results presented in this work. 

C. Multiple Scattering 

The scattering process is important for several reasons. First, as 

was discussed earlier, the beam spreading associated with the scattering 

introduces a variance in the path-length distribution. An analysis of the 

process is required, therefore, in order to calCUlate the mean .angle ,of 

deflection, ~, from which this variance contribution is obtained • 

Similarly, a knowledge of the mean angle allows one to calculate the 

amount of travel by the ions in a direction perpendicular to the original 

direction of motion of the ions. This in turn can be used to estimate 

(i) the minimum beam diameter necessary so that the multiple scattering does 

not significantly dilute the beam, and (ii) the degree of beam attenuation 

resulting from geometrical spreading. 

Various attempts have. been made to treat the multiple-scattering problem 

in detail, some meeting with more success than others. Bichsel gives an 



UCRL-17392 Rev 

extensive review of the work in the field. 36 Unfortunately, none of these 

treatments is directly applicable to the problem of very heavy, high-energy 

ions in matter. Some of the past work done is discussed briefly below, 

primarily to furnish background for the rest of this section. 

The basic limitation of most of the treatments of the multiple-scattering 

process is that the assumption is made that the ratio of the atomic number 

of the incoming ion to that the stationary medium is quite small. This 

allows the use of c.m. results, which are quite simple in form, in the laboratory 

(lab) system. 

Moli~re37 and Goudsmi~ ,and saunderson38,39 obtained solutions to the 

problem of a parallel beam of ions impingent on an infinite ,slab. Bethe 

demonstrated the conditions under which the two solutions were equivalent. 40 

Because of the simplicity of the scattering law in the case of light pro

jectiles and heavy targets, Moli~re succeeded in performing certain 

transformations on the general solution which yielded a result in a much 

more tractable form. 

Because for a great many of the cases of interest the atomic number 

ratio of the projectile to target is unity or larger, the transformations by 

Moli~re do not appear to be possible. Consequently, methods that make use 

of the results of Moli~re, such as that of Bichsel and Uehling,4 and Overas41 

are not directly applicable in this case. 

Various authors have attempted to estimate the multiple-scattering effects 

by making direct use of the scattering law to calculate such quantities as 

the mean square angle as a function of position. segr~18 and Rossi42 both 

discuss some of the more common methods. Although this avenue of attack 

seems the most immediately promising for this work, none of the published 

methods and results is directly applicable. This is again primarily because 

most authors have used the scattering law in the fOTIa restricted to the c.m. 

system. 

Furthermore, in 
44 Mather and Segr~, 

many of the methods, such as those given by Williams,43 

and Snyder and Scott,45 the approximations used do not 

adequately handle the wide energy range of interest here. Since in this work 

the variation in energy is often very large, it is felt that it would be best 

to start from the fundamental scattering law, follOwing in part the methods 

outlined by others, but modifying to (a) transfer to the lab system of 

coordinates, and (b) treat in a more rigorous manner the problem of energy 

• 
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dependence. 

In the following analysis, we first develop the equations that describe 

the basic scattering law. These are then used to obtain expressions for the 

mean square angle of deflection of the beam particles, which is in turn used 

to estimate the mean angle of deflection,~. Finally, these results are used 

to calculate the mean square beam spread and contribution to the path-length 

variance as functions of penetration distance. 

1. Scattering Law 

The quantity p(e)de is defined as the number of collisions per unit 

distance of travel of a particle, which deflect the trajectory of the 

particle by an angle which is within de of e. The classical Rutherford 
42 

scattering formula for this probability is given by Rossi as 

211: sin e de 

sin4(e/2) 

where N is Avogadro's number, r is the classical electron radius, m is 
a e e 

the electron mass, and p is the momentum of the particle. This equation c.m. 
applies to the c.m. system of coordinates; it may be valid in the lab system 

if the mass of the incident particle is mucp less than that of the atoms of 

the medium. Since for many cases of interest to this study this is not so, 

Eq. 37 must instead be considered in the c.m. system only. 

For the purposes of this treatment, it will be convenient to leave the 

angle e in the c.m. system, but to transform the momentum term into the lab 

system. 

From the expressions derived by Halliday,46 the relation between the 

momentum in the lab and c.m. systems is 

(1 : / ) PL ' 

where Y = Ap/~ . 

Using Eq. 38 in Eq. 37 and dropping the subscript on the lab momentum term, 

we have 

The limitations on the validity of Eq. 39 must be discussed. At 

extremely small angles, this equation fails because the electrons of the 



·-30-

scattering atom screen the particle from the field of the nucleus. 

UCRL-17392 Rev 

R .42 
OSSl 

states that Eq. 39 is valid for angles significantly larger than 'f../r , where 'X 
a 

is the de Broglie wavelength of the incident particle divided by 2~ and r is 
a 

the radius of the atom; whereas, for angles less than ~/r , Eq. 39 grossly a 
overestimates the scattering probability. In fact, one can see that the 

equation is singular for 8 O. 

Various attempts have been made to modify Eq. 39 in order to take into 

account the screening effect. Using 

V = (ZtZ e
2
/r) exp (-r/r ), Goudsmit 

an atomic potential of the form 

and saunderson38,39 show that the 
p a· 

scattering-probability law takes the form 

8~NaZ~Z~ ( me c ) 2 sin 8 d8 2 
P(8)d8 = A. re ~ 2 2 2 (1 + y) 

-l; P [8 +8
1

] 
(40) 

where (4l) 

By use of the expression in Eqo 38 and the classical expression for r a , 

Eq. 41 is transformed to 

r .!... r Zl/3 
a cpe t ' 

8 = 
1 

m c 
e 
p 

(1 + y) • 

Note that 81 is in c.m., whereas p is the lab momentum. 

(42) 

Williams has derived corrections to the scattering law given in Eq. 40 

for high energies, using a simple model for the charge distribution within 

the nucleus. 43 He shows that the fact that the charge is not concentrated 

in a single dimensionless point does not materially affect the scattering 

law for angles less than 82 ~~/r , where r is an assumed radius for the n n 
nucleus. On the other hand, for 8 >~/r , the scattering probability goes n 
to zero much more rapidly than predicted by Eq. 39. Using for r the 

n 
expression 

r = 0.49 r ~/3 , 
net. 

we can estimate an upper limit, 82 , for nonzero values of the scattering 

probabili ty: 
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1\ ~ -1/3 mec 

e2 ~ 0.49 r Al/3 = 280 At . -p- (1 + y). 
e t 

It is convenient to express the various ~uantities appearing in E~s. 40, 

42, and 43 in energy rather than momentum units. To do this, we use the 

relativistic relation between momentum and energy, 

(44) 

where E is in'units of energy per amu, and M is the rest mass per amu. o 
The ~uantity ~ in terms of E is 

Using E~s. 44 and 45 in 10,42, and 43, and rearranging terms, we 

z2z2 ) 
p(e)de = (8nN l)(m c2 )2. 1 sin ede (p t (1 y)2 

a e e HH ( E ) [e2 + e2 ] 2 l. A + 
1 P t 

with 

and 

If we 

with 

t(E + 2 M C
2
)] 2 

HH(E) = 2
0 

E + M c o 

137 A p 

e _ 280(1+Y) 
2 - Al/3'A 

t P 

substitute numerical values, 

(

z2z2 \ 
p(e)de = 0·3139 1-;;~ 1 (1 + 

A~'Ad 

2 
m c 

e 

2 
m c 

e 

these e~uations reduce to 

HH(E) = fE(E + 1862)]2 l E + 931 ' 
z-1/3(1 + y) 

3·73 
X 10-3 _t_.....,-___ ___ ~l __ _=_r.",. 

Ap [E(E + 1862)]1/2 ' 

obtain 

(46) 

(48) 
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2. Mean S~uare Angle of Deflection 
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1 

We are now ready to calculate the mean s~uare angle of deflection, denoted 

(~2), as a function of distance of travel. Since each scattering is inde

pendent and represents a very small fraction of the total scattering angle, 

the change in (~2) in a distance element ~s is 

where ~ is the scattering angle of a single collision (lab), and PL(~) 

is the corresponding probability of occurrence per unit length. In the limit 

as & ~ ° we have 

where ~2 is the mean s~uare angle change per unit distance of travel. 
s 

Now, since all expressions describing the scattering process are in 

the com. system, we must transform E~. 52 as follows. Since there is a 

uni~ue relation between an angle ~ lab and the corresponding angle 8 in 

the c.m. system, we may write 

Substituting into E~o 52, then, we obtain 

where the functional dependence of ~ on 8 is indicated. 

We now seek a simple means of relating ~ to the c.m. angle. Halliday46 

has shown that this relationship is given by the expression 

sin 8 
tan ~ = cos 8 + Y 

From an examination of the expression for 82 given by E~. 50, we can 

conclude that for nearly all cases of interest, 82 is less than unity. 

Further, one can show that for those small energies for which 82 exceeds 

unity, the corresponding residual range of the ions is so small that the 
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multiple-scattering effects within that range are negligible. Therefore, we 

may replace Eq. 54 by the simpler expression 

e 
CPL = 1 + )' 

Substituting this expression for e
L 

into Eq. 53 we obtain 

The integral in Eq. 55 is easily evaluated by using the expression for 

p(e) given by Eq. 48. The result is 

and e2/el is, from Eqs. 49 and 50, 

4 
(e /e ) = 3.836 x 10 , 

2 1 (A Z )1/3 
t t . 

and HH(E) is given by Eq. 47. Note that if e2 as calculated from Eq. 50 is 

greater than Jt, then the value of e2 is to be taken as Jt instead. 

case, the term e2/el is 

842.2·A [E(E + 1862)]1/2 
e 2/ 81 = --"1::-j-r=3:'"-P------ . 

Zt (1 + )') 

In that 

2 Using these expressions for cP , we can proceed with the calculation of the s 
mean square angle of deflection. 

From Eq. 52, we have 

where we have indicated the 

d 2 2 __ (cp ) = cp (E), 
ds s 

2 dependence of cP s 
on the particle energy. 

unique dependence on the energy is established by Eq. 56. 
As an initial condition, we specify that 

2 I 2 (cp ) = cp • o s=O 

Integrating Eq. 59, then, from s = 0 to some value s, we have 

This 
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( cp2) 2 JS 2 == cP + cp (E')ds' o s 
0 

Eo 
( cp2) 2 

+ ApJ dE' 2 
== CPo f"(ET) CPs (E'). 

E 

For a perfectly collimated beam, cp- is zero. However, if the initial o 
beam has an angular distribution that can be represented by a Gaussian with 

sOnie standard deviation, then cp is eClual to this standard deviation. o 
The mean angle of deflection cp is estimated to be the sCluare root of 

the mean sCluare angle. Thus we write 

3. Scattering for Multiple Materials 

The difficulty involved in treating a target composed of more than 

one type of atom is that there is no uniClue relationship between the c.m. 

and lab systems. That is, for each type of target atom, there is a 

different c.m. system. ConseCluently, it is necessary to resort to further 

approximations in order to arrive at results that are applicable in the 

lab system. The method used is as follows. 

The scattering probability function given by EClo 46 is rewritten 

p( e )de= .(Na P).{s:rrr
2

. (m c
2

). 1 . sin e de (
ZpZ

t)2 (1 + '.)j !p 
At e e HH(E) [e2 + e2]2 Ap 

1 

where (N piA) is the number of atoms of the scatterer per cubic centimeter, 
a 

and p is the total density of the scattering medium. The term in the braces 

is then interpreted as the probability of scattering into de(e) per atom 

of scattering material. 

The scattering probability for scattering atom type "i" is hence 

P. (e)de == 
~ 

S:rrN. 
~ 

p 
(r . 

e 

where N. is the number of type "i" atoms per cubic centimeter, and p is the 
~ 

total density of the medium. 

The mean sCluare angle change per unit distance, due to type "i" atoms, 

,. 
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is then 

(~~l; " 2.6Cb X 10-25 (:i)[ Z~:ir HH(E) {In[(:~r +lJ 1} , 
where the results embodied in E~. 56 have been used. Also, by use of E~s. 

57 and 58, we have 

(e2 ) 
4 

3.836 X 10 for 82 < re 
81 i 

== 
(A. z. )1/3 

1 J. 

(:~t 
A [E(E + 1862)]1/2 

and == 842.2 p for 82 :::: re. 
Zi/3 (1 + I'i) 

We now consider the problem of obtaining an estimate of the net mean 

s~uare scattering angle. E~uation 52 may be written as 

d 2 J 2 2 ds (~) = ~ ~Pi(~L)d~L = ~(~s)i ' 
1 . 

(60) 

where the Pi(~L) are the probabilities due to the various scattering species. 

The mean s~uare angle at s is then obtained, as before, by integration 

of E~. 60 from s == 0 to s. 

4. Multiple-Scattering Effects 

Earlier, it was shown that the scattering process leads to a contri

bution to the variance in the path-length distribution. Other effects that 

can be calculated from the e~uations describing the scattering are discussed 

below. 

a. Radial Spreading 

Of particula+ interest is the function (y2), which is defined as the 

mean s~uare distance of travel in a direction perpendicular to the initial 

direction of travel, and is a function of the mean distance of travel s. For 

simplicity, it is denoted as the meap s~uare radial spread. This function 

characterizes the general shape of the beam within the medium, and can be 

used to estimate the minimum beam size necessary to ensure against excessive 

effects due to spreading. 

Suppose the mean-s~uare beam spread at some positions in the medium is 

given as (y2). Clearly, then, if the initial dimensions of the beam are 

much greater than [(y2)]1/2, the effect of radial spreading will be small. 
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That is, the fractional change in the beam dimensions will be much less than 

unity. 

On the other hand, if the beam radius, say, is much smaller than the 

value of (y2) at some distance s, then the beam at that point will have 

smeared out to the extent that the shapes of the flux and dose curves are 

grossly altered from what they would be for a large-diameter beam. 

We proceed to the calculation of the function (y2). Referring to Fig. 1, 

we can express the change in the mean-s~uare radial spread at Xl due to a 

change in the mean angle of deflection .~ at some x < Xl. Thus, we have 

so that 
222 6(y ) = (Xl - x) 6(~) . (61) 

The change in the mean s~uare angle is given by E~. 51 and substituting 

into E~. 61 we have 

2 2 
= (Xi - x) . ~ 6s • 

s (62) 

Recognizing that the contributions to the mean s~uare radial spread 

are additive, we obtain 

E 

2 J 0 (y ) = Ap (x 1)22 dE' - x ~ s f(E') 
E 

where we have interchanged the variables x and Xl for convenience. The 

~uantity (Dlf )2 is the contribution to the radial spread variance at x due o 
to an initial angular spread of the beam particles. Thus, if ~is the o 
initial mean angle of the beam particles, then reference to Fig. 1 and E~. 62 

shows that (Dlf )2 is 
o 

\.-

222 (Dlf) = x ~ , .~ 
o 0 

where (Dlf )2 is evaluated at a penetration distance x. o 
It is shown later that, in many cases, the term (Dlf )2 dominates o 

the right-hand side of E~. 63, even for ~uite small values for ~. In 
o 

other words, the mean beam deflection can be a strong function of the 

initial angular spread. Numerical examples are presented in the section 

dealing with results. 

The variable Xl is related to the energy E' through the expressions in 

E~s. 31 and 5. 
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Equation 63 thus gives an expression for the variance in the radial 

spread distribution for particles having reached an energy E. We may define 

a mean beam deflection as the square root of (y2). This is another measure 

of the amount of radial spreading of the beam. 

b. Beam-Spreading Attenuation 

As the beam spreads, there may be an effective geometric attenuation of 

the flux and dose; i.e., the particles are spread out over a larger area. 

A very rough estimate of this effect is given as follows. 

Let y be the radius of the initial beam. At some penetration distance 
o 

x, suppose that the mean-square radial spread is (y2). Then at that pOint, 

one can say that the beam "effective radius" is estimated to be y + y, o 
where y is the mean berun deflection. Therefore, the attenuation factor will 

be simply 

f =(YoY~ y)2 (~ +~Y7yj2 (64) 

As the ratio y/y increases, one would expect this function to more 
o . 

nearly represent the attenuation of the center-line flux and dose. 

For the experimental situation in which the sensitive-area dimensions 

of a detector are much larger than the maximum value of y, there is no 

attenuation of the form given by Eq. 64. Similarly, if the beam were very 

broad and the diameter of the sensitive area of the detector were small, no 

attenuation would result. On the other hand, the function f would be 

expected to give the proper attenuation for the situation in which (i) the 

ratio y/y is large, and (ii) the counter diameter is small compared with y . o 0 

c. Range Shortening 

Because the particles follow curved paths, the effective range in the 

medium is somewhat less than if the particles all traveled in straight 

lines. If R is the effective range of the particles and SR is the 

corresponding mean distance of travel, then Eq. 31 gives their relationship 

as 

R = SR - (s - x) I , 
R 

where (s - x)I R is the mean difference at the range. 

The choice of definition of the range is somewhat arbitrary, and 

several are in common usage. For the purposes of evaluating the expression 

in Eq. 65, the value chosen for the range is i~~aterial, since (s - x) is 
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virtually constant in the vicinity of the end of the range. That this is 

so follows from the fact that when the mean angle of deflection becomes 

significant, the mean energy is so low that the residual range is a minute 

fraction of the total range. That is, although the particles are traveling 

at large obli~ue angles, their remaining distance of travel is so small 

that the contributions to (s - x)I R are negligible. 

The degree of range shortening is often expressed in terms of a ~uantity 

called the percentage detour factor, which is defined by Berger and Seltzer7 

as 

D = 

.-
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IV. RESULTS 

Presented in this section are the results of calculations based on 

the analyses presented in the preceding sections. For the most part, these 

calculations were performed by using the program BRAGG,47 which was written 

to solve the various equations developed in this work. The first part of 

this section deals with those results related in particular to the multiple

scattering process. Also presented here are comparisons with the results 

of other workers. The second part of this section is devoted to the 

presentation of Bragg and flux curves for various ions in different targets. 

Also presented are results pertinent to the energy spectra at the Bragg 

peak. The effects of using different ions in the same medium, and of using 

the same ions in different media, are discussed. The next section deals with 

the importance of initial energy and angular spreads of the beam. Finally, 

experimental results of the Bragg, flux, and spectral curves are compared 

with the corresponding theoretical calculations. 

A. Multiple-Scattering Calculations 

The multiple-scattering process may be considered separately from the 

other processes occurring in the medium as the mean angle of deflection and 

the mean beam deflection are essentially functions of the particle energy 

only, and do not appreciably depend on the actual number of particles 

reaching this energy. 

1. Comparison with the Literature 

Other workers have studied the scattering of protons in media for 

which the lab and c.m. systems are equivalent. 

Berger and Seltzer have calculated the percentage detour factor for 

protons of various energies incident on various absorbers. 7 These results 

are reproduced in Fig. 2. Table V gives various values taken from this figure. 

Table V. Comparison of multiple-scattering results for an incident beam 
of 100-MeV protons. 

Percentage detour factors 

Absorber Berger and Calculations, 
Seltzer this work 

Lead 2.28 1.49 

Copper 0.756 0·57 

Aluminum 0.306 0.24 

Beryllium 0.087 0.069 
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Fig. 2. Ratio of percentage detour factor to the 
atomic number of the medium for protons. 
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Also given in the table are the corresponding results obtained by using the 

analysis of this work. 

Berger ,and Seltzer also give the results of Monte Carlo calculations 
48 performed by Berger for the angular distribution of 338.5-MeV protons 

slowed down to 2 MeV in .copper and lead. These results are shown in Fig. 3, 

which can be used to estimate the mean angle of deflection. These estimates, 

along with the cal,culated values, are shown in Table VI. 

Table VI. Comparison of multiple-scattering results for an incident ,beam 
of 338.5-MeV protons. 

Absorber 

Lead 

copper 

Mean angle of deflection (deg) 

Estimates from Calculations, 
Berger and Seltzer this work 

30 to 40 44 

15 to 25 21 

Looking at Fig. 3, we see that in both cases the curves are skewed 
! 

towards the high end. Consequently, the mean angle of deflection is somewhat 

greater than the most probable angle. For lead, the mean angle would appear 

to lie in the vicinity of 30 to 40 deg. This agrees reasonably well with the 

calculated'val'Ll,e of 44 deg for the mean angle, as shown in Table VI. For 

copper, Fig. 3 indicates that the mean angle lies in the range from 15 to 25 

deg. This is cCinparedto a calculated angle, of 21 deg. 

In comparing the two sets of results, it should be pointed out that 

the Monte Carlo data are based on the case histories of only 5000 particles. 

Consequently, a good deal of uncertainty is attendant, especially in the 

upper and lower angular regions, where the figures are based on very few 

events. 
, 49 Preston and Koehler have measured the radial intensity of a beam 

of protons passed through various thicknesses of different absorbers. From 

these measurements, they calculate the standard deviation in the radial 

spread. Their results are presented in Table VII, along with the results 

obtained by using the methods in this work (note that the SD in the radial 

spread is equivalent to the square root of the mean square radial spread). 

In the table, E is the initial beam energy, T is the thickness of the o 
absorber traversed by the beam, (J is the experimentally determined value exp 
of the radial SD, and (J is the corresponding calculated value. The 

c 
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Fig. 3. Angular distribution of protons slowed down 
from 338.5 MeV to.2 MeV in lead and copper, 
based on 5000 Monte Carlo histories. 

.-



results are generally in excellent agreement. 

Table VII. Comparison of multiple-scattering results. 

Absorber 

Aluminum 

Water 

E o 
(MeV) 

158 

112 

127 

T 

(cm) 

2.54 

5.08 

6.38 

7·62 

8.25 

2.54 

3.81 

4.44 

5·7 

8.7 

11.4 

(J 
exp 

(mm) 

0·35 

1.62 

2·35 

3·24 

3.43 

0·97 

1.66 

2.06 

1.15 

2.18 

3·46 

~. Scattering Effects for Various Ions and Materials 
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(J 
c 

;(mm) 

0·55 

1.64 

2.40 

3·29 

3·78 

0·79 

1.57 

2.08 

loll 

2.22 

3·66 

In this section, we present the results of calculations of the multiple

scattering effects for various ions in different materials. From the equations 

describing small-angle scattering, it can be seen that the scattering effects 

decrease as the ratio of the atomic numbers of the beam and target increases. 

One can see this most easily by recognizing that as this ratio increases, 

the maximum angle of scattering decreases. Hence, for a given absorber,.and 

a given range, one would expect the mean beam deflection and the percentage 

detour factor to decrease as the atomic number of the beam particles increases. 

To illustrate these effects, calculated values of the percentage detour 

factor, the standard deviation in the radial spread, and the mean angle of 

deflection -- all at the Bragg peak -- are tabuiliated for various ions in 

water, copper, and uranium. Tables VIII and IX give the results for ions 

in water, with the Bragg peak at 5.0 and ·10.0 gjcm2
. Tables X and XI show 

similar results for copper and uranium, with the peaks at 5.0 gjcm2
. 

In all cases, it is clearly demonstrated that the scattering effects 

decrease markedly as the atomic number of the beam particles increases. For 

example, for the Bragg peak at 5.0 gjcm2 of water, the degree Qf beam 

spreading goes down by a factor of approximately 5 in going from a beam of 
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protens to one,-of -neen4ons • A similar decrease is calculated for the 

Table VIII. Multiple-scattering results for water with the Bragg peak 
at 5.0 g/cm2 . 

Mean beam 
-Beam Percentage deflection 
particle detour factor (gLcm2 ) 

P 0.114 0.168 

He 0.0285 0.083 

C 0.0088 0.046 

Ne 0.0051 0.035 

A 0.0025 0.024 

Kr 0.0012 0.017 

Xe 0.0007 0.013 

Table IX. Multiple-~cattering results for water with the Bragg peak at 
10.0 g/cm . 

Mean beam 
Beam Percehtage deflection 
particle detour factor (gLcm2 ) 

P 0.108 0.328 

He 0.027 0.162 

C 0.0083 0.090 

Ne 0.0048 0.068 

A 0.0024 0.047 

Kr 0.0011 0.032 

Xe 0.0007 0.026 

Table X. Multiple-scattering results for copper with the Bragg peak at 
5.0 gLcm2 • 

Mean beam 
Beam Percentage deflection 
particle detour factor (gLcm2 ) 

H 0.628 0.388 

He 0.159 0.193 

C 0.0475 0.105 

Ne 0.0269 0.0791 

A 0.0141 0.0554 

Kr 0.0066 0.0383 

Xe 0.0042 0.0300 
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Table XI. Multiple-scattering results for uranium with the Bragg peak at 
5.0 g/cm2 . 

Mean beam 
Beam Percentage deflection 
particle detour factor (g[cm2 ) 

H 2.54 0·772 

He 0.669 0·390 

C 0.193 0.207 

Ne 0.108 0.155 

A 0.0548 0.108 

Kr 0.0261 0.0740 

Xe 0.0168 0.0577 

other cases. It should also be pointed out that in all cases, the rate 

of change of beam spreading with respect to increasing beam-ion mass 

decreases at the higher masses. Thus, there is a greater effect in going 

from protons to neon than there is in going from neon to xenon. 

A~ extremely important result is the magnitude of the lower limit on 

the beam dimensions predicted by the calculations. For a proton beam with 

the Bragg peak at 10 cm H20, this limit is on the order of 0.75 to 1.5 cm, 

whereas for neon the lower limit is approximately 0.1 to 0.2 cm. 

It is also interesting to examine the variation of the multiple-scattering 

effect with absorber, for a given beam particle. Tables XII and XIII show 

the results for protons and neon ions in miscellaneous absorbers. For 

comparison purposes, the initial energies are chosen such that the Bragg 

peak occurs at 5.0 cm. 

Table XII. Multiple-scattering results for protons in various absorbers 
with the peak at 5 g/cm2 . 

Mean beam 
Percentage deflection 

Absorber detour factor (g[cm2) 

Al 0.256 0.250 

Cu 0.628 0·390 

Ag loll 0·515 

Pb 2.22 0·722 

U 3. 88 0·962 
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Table XIII. Multiple-scattering results for neon ions in various absorbers, 
with the peak at 5 g/cm2 . 

Mean beam 
Percentage deflection 

Absorber detour factor (gLcm2 ) 

Al 0.011 0.051 

eu 0.027 0.075 

Ag 0.047 0.103 

Pb 0.092 0.145 

U 0.172 0.197 
.....! 

As expected, the scattering effects increase with increas-ing absorber 

atomic weight for both cases. Again, it is seen that neon ions produce 

scattering effects that are less than those produced in th protons by a 

factor of 5. 
B. Bragg, Flux, and Spectral CUl~es for Monoenergetic Beams 

In this section, results are presented for the case in which the 

initial beam of particles is assumed to be perfectly collimated (zero angular 

spread) and to be monoenergetic. In later sections, the effects due to 
" finite energy and angular spreads are discussed. 

Presented here are Bragg curves, flux curves, and energy spectra at 

the Bragg peak, not only for ions ranging from protons to xenon and having 

a variety of energies, but also for a number of different targets ranging 

from water to uranium. 

In a discussion of Bragg curves, there are two quantities of particular 

interest. One is the ratio of the dose at the peak to that at the incident 

surface, denoted as the peak-to-plateau ratio. The other is the width of 

the Bragg peak, measured at those two points at which the dose is equal to 

one-half the dose at the peak. This is called the full width at half 

maximum, which we shall abbreviate to the "peak width" for convenience. 

Also of considerable importance is the shape of the spectrum at the 

Bragg peak. Of particular interest are the average energy at the :peak and 

the full width at half maximum. 

With regard to the calculations, it should be pointed out that for 

the very heavy, high-energy ions, there will be some secondary-particle 

generation, primarily in the initial portions of the path length. Conse-
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quently, the calculations are expected to be somewhat in error in this 

region. In fact, since most secondaries are generated near the incident 
I 

surface, with relatively few being produced in the vicinity of the Bragg 

peak, one would expect the calculated peak-to-plateau dose ratio to be 

somewhat high. 

Since there are relatively few secondaries generated near the Bragg 

peak, the shape of the peak is determined principally by the primary 

particles. In particular, the full width at half maximum of the peak is 

a relatively slowly varying function of the parameter r , which is known o 
reasonably well. Consequently, it is to be expected that the calculated 

half widths are fairly accurate. 

1. Effect of Different Ions 

We consider first the following question: given a particular target, 

and given that the Bragg peak is to be at a particular depth, then how will 

the shapes of the various curves be affected by using different ions? 

Qualitatively, one would expect these effects not to be trivial. In 

particular, the various contributions to the variance in the path-length 

distribution are all strong functions of the charge and atomic weight of 

the beam ions, as well as of the charge and atomic weight of the target. 

For a monoenergetic beam, the principal contributors to the variance 

are the processes of energy straggling and multiple scattering. For each 

of these, it is easily seen that the variance contribution decreases as 

the charge of the beam particles increases. Therefore, those aspects of 

the penetration process that are dependent on the path-length variance 

should be noticeably affected by changing the character of the bombarding ion. 

We consider first the case in which the target material is water. 

Figure 4 shows the Bragg curves for various ions in water, with the Bragg 
. 2 

peak at 5.0 g/cm. Figure 5 shows the flux curves for the same ions and 

Fig. 6 shows the spectra at the peak. The basic features of these results 

are depicted in Table XIV, which gives the peak-to-plateau dose ratio, the 

Bragg-peak full width at half maximum, and the average energy at the Bragg 

peak for each case. Also, the peak-to-plateau ratio and the Bragg-peak 

width are plotted as functions of the atomic number of the beam in Figs. 7 
and 8. 

As shown by these tables and figures, the peak-to-plateau dose ratio 
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Table XIV. Results for ions in water, with the Bragg peak at 5 g/cm
2

• 

Beam 
ion 

H 

He 

C 

Ne 

A 

Kr 

Xe 

Initial energy 
(MeV /arnu) 

79·75 
79·40 

147.5 

197·2 
263.0 
381.1 
471.0 

p-p 
dose ratio 

6.53 
8.04 

9.24 

9·09 
8.12 

5.69 
4.08 

Peak width 
(g/cm2 ) 

0·336 
0.170 
0.092 
0.075 
0.057 
0.063 
0.085 

Peak ave. 
energy 
(MeV/amu) 

7·33 
4·93 
6.25 
6.70 
6.39 
6.14 
5.84 

reaches a maximum value for a value of the beam atomic number between 6 and 8. 
Beyond a value of 10, the dose ratio falls off monotonically. 

On the other hand, the peak width falls off extremely rapidly with 

increasing atomic number, up to a value of approximately 20. For greater 

values of atomic number the width increases quite slowly. This behavior can 

in part be explained by considering the effective charge of the ions as they 

traverse the medium. 

Referring to Eq. 29 we see that the straggling variance is directly 

proportional to Z2 and inversely proportional to the cube of the stopping 
p 

power, which is in turn proportional to the square of the charge. Hence, 

the variance is approximately inversely proportional to the fourth power of 

the charge of the beam particle. We must also recognize that the peak width 

is directly related to the variance. 

Now, consider first the lighter particles. They retain their total 

charge for essentially the whole range, so that the effective charge goes 

up as the atomic number. Hence the variance decreases rapidly with 

increasing atomic number for small atomic numbers. For the heavier elements, 

however, charge exchange becomes an important process, so that the ion charge 

no longer is proportional to the atomic number. Hence, the rate of decrease 

of the half width would be expected to decrease with increasing atomic number. 

This is obviously not the complete picture, since the peak shape is also 

determined py the shape of the stopping-power f1L~ction. However, the same 

type of argument regarding effective charge applies. 

The behavior of the peak-to-plateau dose ratio can be explained, at 

least partially, in a similar manner. A decrease in the path-length 
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variance implies that the ions of a given energy are closer together in . 

the target. Consequently, the low-energy (high dE/dx) ions will deposit 

more energy in less space, and the dose in the vicinity of the peak will 

rise. 

The drop-off of the ratio at high values of Zp is again due, in part, 

to the ion-exchange process. Also, the nuclear reaction cross section becomes 

increasingly important for ions of increasing atomic number, so that more 

and more particles are removed from the beam. 

It is interesting to note that the peak width is nearly constant for 

values of Z ranging from approximately 20 to 40. Also, it should be noted 
p 

that the average energy at the Bragg peak is relatively independent of the 

beam ion. 

2. Effect of Different Energies 

Suppose one wishes to produce Bragg peaks at various penetration depths 

within a given medium, using a given ion. It would be useful to be able 

to predict the changes in the various features of the physical process as 

functions of the depth at which the peak is produced, or alternatively, 

as functions of the initial beam energy. This section presents results 

that depict these functional dependences. 

We consider two separate systems: protons incident on a water target, 

and neon ions incident on a water target. These cases serve to demonstrate 

the relationship between the initial beam energy and such quantities as the 

peak-to-plateau dose ratio and the Bragg peak width. 

The results for the two systems are embodied in Figs. 9 through 12 

and Tables XV and XVI. In general, the peak-to-plateau dose ratio goes 

Table XV. Variations with initial energy for protons incident on water. 

Initial Peak ave. Mean beam 
energy Mean range p-p Peak width energy deflection 
(MeVLamu) (gLcm2 ) dose ratio (gLcm2 ) (MeVLamu) (gLcm2 ) 

59 2.20 6·70 0.153 4·79 0.974 

100 7·64 6.26 0.489 9·05 0.247 

150 15.58 5 ·51 0.988 13·25 0.492 

200 25·58 4.76 1.61 17.36 0.792 

300 50·50 3·36 3·23 24.08 1.523 ~ 

400 80.61 2.26 5·91 31.64 2·385 

500 114.8 1.47 8.26 38 .36 3·342 
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initial energies ranging from 50 to 500 
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Table XVI'. Variations with initial energy for neon ions incident on water. 

Initial Peak ave. Mean beam 
energy Mean range p-p Peak width energy deflection 
(MeVLamu) (~Lcm2) dose ratio (gLcm2) (MeVLamu) (gLcm2 ) 

50 0.445 - 9·52 0.012 1.54 0.003 

100 1.538 10.86 0.032 3·30 0.011 

150 3·134 10.23 0.052 5·10 0.022 

200 5.143 8.99 0.076 6·76 0.036 

300 10.15 6.22 0.135 10.05 0.069 

400 16.21 2·35 0.209 13·27 0.107 

500 23.08 9·52 0.291 15.89 0.150 

through a maximum and then decreases monotonically with increasing energy. 

The peak width and peak average energy are increasing functions of the 

initial energy . 

.. C. Consequences 01' Initial Energy and Angular Spreads 

Actually, no beam can be perfectly collimated or monoenergetic. 

Generally, the energy distribution is approximately Gaussian and has a 

very narrow width. Also, as a result of many factors, there is a small 

angular distribution in the particles as they impinge upon the target. It 

will be shown that even very small widths in the initial energy and angular 

distributions can have strong influences on the shape of the Bragg and flux 

curves, and on the energy spectra. 

We consider the case of protons and neon ions incident on water targets, 

with the Bragg peaks at 5 g/cm
2

, and study the effects due to changes in 

the initial energy,distribution. Figures 13, 14, and 15 show the Bragg, 

flux, and spectral curves for protons incident on water, for various values 

of the standard deviation in the initial energy distribution. Table XVII 

gives the peak-to-plateau dose ratio, the peak width, and the average energy 

Table XVII. Variation With initial energy spread for protons in water 
with the Bragg peak at 5.0 g/cm2 (initial energy = 79.75 
MeV Lamu). 

Initial energy Peak average 
standard deviation p-p Peak width energy 
(MeVLamu) dose ratio (gLcm2) (MeVLamu) 

0 6.54 0.338 7·23 

0.25 6.23 0·377 7·70 

0,·50 5.62 0.475 8.76 
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at the peak for different values of the standard deviation. Figures 16 and 

17 and Table XVIII show similar results for neon ions incident on water. 

Table XVIII. Variations with initial energy spread for neon ions in water 
with the Bragg peak at 5.0 g/cm2 (initial energy = 197.2 
MeV/amu). 

Initial energy Peak average 
standard deviation p-p Peak width energy 
(MeVLamu) dose ratio (gLcm2 ) (MeVLamu) 

0 9·09 0.075 6.70 

0.25 8.00 0.099 5·00 

0.50 6.66 0.149 10·55 

In general, these results show that a value for the standard deviation 

of less than 1 percent of the mean initial energy can alter the Bragg and 

spectral curves significantly. Consider the neon case as an example. An 

initial standard deviation of 0.5 MeV per amu, or approximately 0.25 percent 

of the initial energy, produces a change in the peak-to-plateau ratio of 

approximately 25 percent, a change in the average energy at the peak of 

approximately 35 percent, and a change in the peak width of nearly 100 

percent. Interestingly enough, there is very little effect on the shape of 

the flux curve for the given changes in the standard deviation. 

The degree to which an initial angular spread of the beam particles 

influences the physical process is dep~ndent in part on the initial size 

of the beam. This comes about in the following manner. It was shown in 

Section III-C-4-a that the degree of radial spreading is dependent on the 

initial mean angle of the beam particles (see E~. 63). In Section III-C-4-b 

an estimate was made of the effects due to the beam spreading. Thus, the 

initial angular distribution leads to an increase in the effective beam 

attenuation due to the divergence of the beam. 

Whether or not this effect is significant depends on the initial beam 

size relative to the degree of beam spreading. Thus, if the amount of 

beam spread is much less than the initial beam radius, then the effective 

attenuation is unimportant. On the other hand, even if the degree of 

spreading is comparable to, or greater than, the initial beam diameter, 

the effect on the experimental measurements is small if the detector has 

a sensitive area radius much larger than that of the beam at the end of 

the beam range -- that is, if the detector is large enough to detect even 
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those particles that have traveled large radial distances. 

To illustrate these aspects, the case of neon ions incident on water 

targets is used. As before, the Bragg peak is taken to be at 5 g/cm
2

. 

Table XIX shows the variation of the peak-to-plateau dose ratio and the peak 

width with the standard deviation of the initial angular spread for various 

beam diameters. Figure .18 shows the calculated Bragg curves as functions 

of the standard deviation and beam diameter. Note that these results refer 

Table XIX. Effects due to the initial beam size and the initial angular 
spread for neon ions in water with the Bragg peak at 5 g/cm2 . 

Initial beam Initial angular Mean beam p-p Bragg peak 
diameter (cm) standard deviation deflection dose ratio width2 

(deg) (gLcm2 ) (gLcm ) 
co 0.0 0.035 9·09 0.075 
co 0·5 0.056 9·09 0.075 
co LO 0.094 9.08 0.075 
co 2.0 0.178 8·95 0.078 
LO 000 0.035 7·95 0.076 
LO 0·5 0.056 7·36 0.076 
LO LO 0.094 6.43 0.076 
LO 2.0 0.178 4.87 0.079 

0·5 0.0 0.035 7·01 0.076 

0·5 0·5 0.056 6.08 0.076 

0·5 1.0 0.094 4.80 0.077 

0·5 2.0 0.178 3.06 0.079 

to center-to-line measurements only. As expected, the smaller the beam 

diameter, the greater effect a given initial standard deviation has on 

the dose ratio. The effects can be extremely large, as illustrated by 

the results for a beam of 0.5 cm diameter. For an angular spread with 

a standard deviation of 1 deg, the peak-to-plateau ratio is 32 percent less 

than with no angular spread! 

D. Comparison with Experimental Results 

Several sets of experimental results are available, from which it is 

possible to make comparisons with the theoretical shapes of the Bragg, flux, 

and spectral ctITves. In making these comparisons, several points should 

be borne in mind. First, for sufficiently high-energy particles, nuclear 

interactions become important and· a variety of secondary particles may be 
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produced. In these cases, one would expect to note differences between 

the theoretical and experimental results. Since the great majority of 

secondaries would be expected to be generated towards the incident surface, 

with relatively few being produced near the vicinity of the Bragg peak, the 

theoretical curve shapes in this region should be reasonably accurate. 

One uncertainty in making comparisons between experiment and theory 

arises because in most experimental arrangements, it is very difficult to 

estimate the degree of angular and energy spread of the ion beam incident 

on a target; it was shown earlier that these initial distributions can 

strongly affect the measured curves. 

The effects due to the initial angular spread can usually be nearly 

eliminated by using a large enough beam or by utilizing a detector with 

sufficiently large diameter, or by a combination of both. These also elimi

nate the effective attenuation due to the inherent beam spreading from multi

ple scattering. 

On the other hand, the effects resulting from a finite width in the 

initial energy distribution cannot be eliminated, and they are present in 

the measured data. Usually, however, a reasonable estimate can be made 

of the upper limit on the degree of energ"y spreading. Consequently, the 

theoretical results that would be obtained if the exact initial energy 

spread Ivere known can be bracketed. 

In addition to the uncertainty in the initial energy spread, the 

mean energy of the beam is known only to within a certain accuracy. Further

more, the beam generally passes through one or more thin slabs of various 

materials prior to entering the main target. These slabs are associated 

with miscellaneous pieces of experimental apparatus such as counters, 

collimator edges, etc., and they degrade the beam energy somewhat. In 

general, the degree of energy degradation is small, but it does enhance 

somewhat the uncertainty in the initial energy of the ions incident on the 

target. 

It is sometimes necessary, then, to vary the assumed initial energy 

and energy spread until the best comparison is found. The optimum values 

have all been found to be well within the experimental uncertainties. 

It should also be mentioned that none of the experimental results cited 

was obtained with the intention of making comparisons with theoretical 

calculations. Consequently, various details, such as beam diameter, are in 
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some cases known only approximately, hence leading to uncertainties that 

can be difficult to estimate. 

1. 47-MeV Protpns' in Water 

Raju and Welch50 have measured the Bragg curve in water from protons 

generated by the 88';;,inch cyclotron at the Lawrence Radiation Laboratory. 

The nominal energy of these protons was 47 MeV, and this value is believed 

to be accurate to within 1 percent. However before entering the water 

absorber, the beam passed through various materials, such as detector faces, 

etc., which degraded the proton energy somewhat; consequently, the energy 

of the particles at the water face is not precisely known. 

The beam diameter was estimated to be 0.5 inn or approximately 1.25 

cm, and the detector used to measure the dose distribution was a semicon

ductor diode with a sensitive volume diameter of less than a millimeter. 

An upper limit on the standard deviation in the initial energy spread was 

estimated to be on the order of 0.5 MeV. 

By using an assumed initial energy of 43 MeV and an assumed standaii'd 

deviation in the initial spread of 0.2 MeV, or approximately ohe· ... half the 

estimated upper limit, the Bragg curve is calculated. Included in these 

calculations is the effective attenuation due to beam spreading. Effects 

due to initial angular spreading of the beam are neglected, since, for this 

pa:tticularcase, a small amount of initial divergence would not signifi

cantly influence the results. This is illustrated in Table XX, which shows 

Table XX. Effect of initial beam angular divergence for 47-MeV protons 
in water. 

Initial angular Effective 
standard deviation attenuation factor 
(deg) due to beam spreading 

0 0.81 

0·5 0.81 

1.0 0.80 

2.0 0·79 

that even for an initial standard deviation of 1 deg, there is very little 

decrease in the effective attenuation factor from beam spreading. The 

resultant curve is given in Fig. 19, along with the experimental points. 

The results are in excellent agreement. 
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Fig. 19. Experimental and theoretical Bragg curves 
47-MeV protons incident on a water 
absorber. 
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2. 49-MeV Protons in Aluminum 

Raju has also measured the energy spectrum, at the Bragg peak, of 

protons in aluminum. 5l These particles were produced by the 88-inch 

cyclotron at the Lawrence Radiation Laboratory, and had an energy of 49 MeV. 

As indicated earlier, the standard deviation of the initial energy spread 

is presumably less than 0.5 MeV. 

The peak spectrum was calculated for values of the initial energy 

spread SD of 0 and 0.25 MeV. The peak energies coincide for an assumed 

initial energy of 48 MeV. The results are shown in Fig. 20 along with the 

experimental points. The two calculated curves bracket that measured, so 

that in this case the theory agrees extremely well with the experimental 

results. As before, the exact energy of the incident protons is not known. 

3. Heavy-Ion Beams 

Measurement of the heavy-ion beams reported here were done at the Hilac, 

utilizing the experimental e~uipment used for investigating the biological 

effects of heavy charged rarticles. 52 After the beam has been accelerated 

to its final energy it passes through an analyzer magnet and is bent 18 

degrees relative to its original ~irection to ensure homogeneity of particle 

momenta. Next the beam passes through a 1.7-mg/cm
2

-thick aluminum foil, 

which is used as a beam monitor, The beam is then collimated, and passes 

into a bombardment chamber which contains a set of remotely operated 

aluminum degrading foils. TIle back wall of the bombardment chamber can be 

removed so that different radiation detectors may be placed behind the 

aluminum degrading foils, The monitor foil is electrically insulated so 

that with an electrometer the net loss of charge due to secondary electron 

emission can be measured, With a transmission ionization chamber mounted 

behind the aluminum foils, it is possible to measure the relative ionization 

of the ionization-chamber gas as a function of the thickness of the degrading 

foils in the beam path, When the ionization chamber is replaced by a 

~araday cup, it is possible to measure the relative beam current as a function 

of the absorber thickness. ; 
The beam current is proportional to the partlcle 

flux times the average charge per particle. If a semiconductor detector is 

placed behind the absorbers, it is possible to measure the energy spectrum 

after any thickness of absorber, The energy of the emergent beam particles 

is approximately 10.4 MeV/amu. 

Figures 21 through 35 show both the experimental and the corresponding 
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Fig. 20. Experimental and theoretical Bragg peak 
spectra for 49-MeV protons incident on an 
aluminum absorber. 
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Average energy versus penetration distance 
for 10.4-MeV/amu He ions incident' on an 
Al absorber 
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lOA MeV/amu Li Ions in AI 
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Average energyversys penetration distance 
for lO.4-MeV/amu Li ions incident on an 
Al absorber. 
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Fig. 23. Average energy versus penetration distance 
for lO.4-MeV/amu B ions incident on an 
Al absorber. 
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Fig. 24. Bragg curve for lO.4-MeV/amu C ions incident 
on an Al absorber. 
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Relative current versus penetration distance 
for lO.4-MeV/amu C ions incident on an Al 
absorber. 
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Fig. 26. Average energy versus penetration distance 
for lO.4-MeV/amu C ions incident on an Al 
absorber. 
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Fig. 27. Bragg curve for lO.4-MeV/amu 0 ions incident 
on an Al absorber. 
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Fig. 28. Average energy versus penetration distance 
for lO.4-MeV/amu 0 ions incident on an Al 
absorber. 
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Fig. 29. Bragg curve for 10.4-MeV/amu Ne ions incident 
on an Al absorber. 
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Fig. 30. Relative current versus penetration distance 
for 10.4-MeV/amu Ne ions incident on an Al 
absorber. 
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Fig. 31. Bragg curve for 10.4-MeV/amu S ions incident 
on an Al absorber. 
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Fig. 32. Bragg curve for lO.4-MeV/amu ~ ions incident 
on an Al abso'rber. 
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Fig. 33. Average energy versus penetration distance for 
lO.4-MeV/amu A ions incident on an Al absorber. 
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Fig. 34. Average energy versus penetration distance for 
lO.4-MeV/amu C ions incident on a Mylar 
absorber. 
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theoretical results for various ions in different absorbers. In general, 

the agreements are very good, although in certain cases some discrepancies 

do exist. This is assumed to be the result of the uncertainty in the 

calculated stopping power in this low-energy region. -. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

The methods developed here for computing Bragg, flux, and spectral 

curves are extremely flexible, in that the calculations are done directly 

in terms of energy-dependent functions for the ionization energy loss and 

total nuclear-reaction cross section. Thus, the method is directly appli

cable to any situation in which the important energy-loss processes are 

ionization and nuclear interactions. 

The methods are also more general than previous ones, in that they are 

able to make corrections for multiple scattering for systems in which the lab 

and c.m. coordinate systems are not eqUivalent. Also, effects due to 

initial angular and energy spreads of the beam have been included in a 

natural manner. 

Calculations have demonstrated that the nature of the initial beam can 

strongly influence the shapes of the Bragg and flux curves for a given 

range in a specified material, but the average energy at the Bragg peak is 

found to be relatively insensitive to the type of ion used. 

Within experimental uncertainties, excellent agreement is obtained 

between experimental Bragg, flux, and peak spectral curves and the corres

ponding theoretically calculated curves. 

The resolving of the uncertainty in some of the experimental data 

presented here as to the presence or absence of singificant events due to 

secondary particles would be an important contribution. 

In all calculations in this work, it was assumed that .the various 

processes, such as ionization energy loss and multiple scattering, led to 

distributions that could be represented by Gaussians. In general, this 

assumption is well founded. However, in certain limiting cases, deviations 

from Gaussian distributions are significant. For example, at very low 

energies, plural scattering could cause skewing of the angular distribution 

of the beam particles. It would therefore be useful to examine the limits 

within which the assumptions of Gaussian distributions are valid, although 

for this work there is little doubt as to the validity of these assumptions. 

One limitation of this work is in the assumption of a single, homo

geneous target medium. An extremely useful extension would be to multiple

slab geometry, allowing more realistic representations of physical systems. 

Another basic limitation of these results is that they do not include 

effects due to secondary particles. Research is being carried on in this 



UCRL-17392 Rev 

direction, and results including these effects are expected in the near 

future. 

.. . 
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APPENDICES 

A. Nomenclature 

Atomic weight of the ~th species in the target 

Atomic weight of beam particles 

Atomic weight of target 

Velocity of light 

Percentage detour factor 

Dose at distance s, in MeV/sec-gm 

Beam particle energy, in MeV/amu 

Initial energy of beam particles, in MeV/amu 

Total energy in the coordinate system, in MeV 

Total energy of a particle, in MeV 

Electron charge 

Variance of initial beam-energy distribution 

Attenuation factor due to beam spreading 

Stopping power, in MeV per g/cm2 

Binding-effect correction factor 

Electron mass 

Mass of beam particle 

Rest energy per amu, ~ 931 MeV 

Path-length distribution function 

Number of electrons per cm3 in an absorber 

Avogadro's number 

UCRL-17392 Rev 

Atomic density of the ith species in the target, in atoms/cm3 

Number of particles of energy E 

Initial particle flux, in particles/cm2 -sec 

Total flux at s, in particles/cm
2

-sec 
2 Energy flux at s, in particles per unit energy at E, per cm -sec 

Beam particle momentum 

Scattering probability 

Atomic radius 

Classical electron radius 

Radius of nucleus 

Nuclear unit radius, in fermis 

Mean range of particles in g/cm
2 

Contribution to variance in path-length distribution due to 
energy-loss fluctuations 
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SKT Effective overlap parameter 

s Distance of travel in an absorber, in g/cm 
2 

x 

p 

T] 

a(E ) o 

a(E,E ) o 

~(E) 

cP 

CPL 

CP02 

~ 
( cp2) 

Mean distance traveled by particles of energy E, in g/cm2 

Contribution to variance in path-length distribution due to 
initial energy spread 

Penetration distance into the target, in g/cm2 

2 
Mean beam deflection, in g/cm 

Initial beam radius 
2 

Mean s~uare radial spread, in g/cm 

Contribution to the variance in the radial-spread distribution due 
to initial angular spread 

Atomic number of the ~th species in the target 

Atomic number of beam particles 

Atomic number of target 

Velocity ratio 

Beam-particle--target-atom mass ratio 

Scattering angle in the c.m. system 

Lower limit on scattering probability 

Upper limit on scattering probability 

Wavelength of beam particles, in cm 

Density of target, in g/cm3 

Total microscopic nuclear-reaction cross section 

Standard deviation in the range distribution for particles of 
initial energy E o 
Standard deviation in the path-length distribution for particles 
of energy E 

-1 Total macroscopic reaction cross section, in cm 

Mean laboratory-system angle of deflection of beam particles 

Scattering angle in the laboratory system 

Standard deviation of initial angular spread 

Mean s~uare change in angle of deflection per unit distance 

Mean s~uare angle of deflection 
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B. Delta-Function Approximation 

We consider the evaluation of the expression given by Eq. 11. For 

sufficiently small values of a(E,E ) the term o 

(1/~1() 'exp (-~} [dU/dE] 

behaves like a 5 function. Equation 11 then reduces to 

D(s) = N (E ) exp (-A JEo [L:(E' )/f(E')] dE'} f(E), o 0 p (A-l) 

E 

where the relationship between sand E is given by Eq. 5. We wish to learn 

when this approximation is valid. This may be deduced by the following 

argument. Consider the exponential term 

2 
T = exp (-U } , (A-2) 

where U is given by Eq. 7. For a given value of s, T is the controlling 

factor in determining how rapidly the total integrand in Eq. 11 goes to 

zero. Thus, for U ~ 3, the contribution to the total integrand is negligible. 

Therefore, if each factor in the integrand remains relatively constant. 

over the energy interval within which the integrand differs significantly 

from zero, then the approximation of Eg,. 1.1 by Eq. A-l is valid. 

We state this mathematically as follows. Let D be the range covered 

by the variable s(E) over which the term T is significantly greater than 

zero. We may write 

D = M . a(E,E ) , 
o 

where M is some constant in the neighborhood of 2 to 4. We wish to 

calculate the change in energy, 6E, corresponding to the distance D. From 

Eq. 1, we find that for a change in s(E) equal to D, the corresponding 

change in energy is approximately 

D 1 6E ~ X- . f(E) = M . a(E,Eo ) . f(E) . X- (A-3) 
p p 

We now require that the percentage change in each other factor in the 

integrand be less than some fraction h over the energy interval 6E given 

by Eq. A-3. The two functions to consider are 

exp (_ApJEo [L:(E' )/f(E' )JdE'} 

E 

(A-4 ) 
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and (A-5 ) 

For a given function G.(E), the fractional change over an increment 6E 
l 

is given approximately as 

ffi. 
l 

G. 
l 

(A-6) 

Taking the derivatives of both functions in E~s. A-4 and A-5, using the 

approximation in E~. A-6 and the expression for 6E in E~. A-3, and re~uiring 

that the percentage change of each function over 6E be less than h, we 

obtain the criteria 

where 

I:(E) a(E,E ) < CRITl , 
o 

df(E) a(E E ) < A CRIT1" --cm- '0 p 

CRITl = hiM. 

(A-8) 

If both of these re~uirements are satisfied for a reasonable value 

of hiM, then E~. 11 may be replaced by the much simpler form given by 

E~. A-l. Similarly, if the ine~ualities given by E~s. A-7 andA~8 hold, 

th,en the expression for the flux given by E~. 10 may be replaced by 

E 

N(s) "'. N (E ) exp C-A J 0 [I:(E')/f(E')]dE'} . 
o 0 P 

E 

The value of the constant hiM is obtained experimentally by recognizing 

that the dose curve and its derivative must be continuous at the point at 

which the calculation changes from E~. A-l to E~. 11. A priori, one would 

expect that suitable values would be on the order of 0.05 to 0.10 for h 

and 1.5 to 2·5 for M. Hence one would expect the largest usable value of 

hiM to be somewhere in the range 0.02 to 0.07. It is found that for values 

of CRITl greater than approximately 0.04, there clearly are discontinuities 

in the dose curves. For values, less than 0.04, the calculated dose curve 

remains the same. That is, no change results from decreasing the value 

of CRIT1. 
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C. Numerical Integration 

For those points at which the delta-function approximation is invalid, 

the integrals in E~s. 10 and '11 are evaluated nUmerically, by using the simple 

trapezoidal rule., In this case, the procedure is basically as follows: 

Choose a set of energies {E.}, 
l. 

(i) 
(ii ) 

(iii) 

(iv) 

calculate the set {s.} = {s(E.)} for each energy from E~. 5, 
l. l. 

calculate a(E,E ) for each energy, o 
evaluate the integral 

JEO Ap[L:(E' )/f(E') ]dE' 

E ' 

at each energy. 

Finally, the numerical integration is performed for a set of values 

for the distance: s. In fact, the evaluation is greatly simplified by 

choosing these values to coincide with the set {s.}. 
l. 

It remains to choose the energy set {E.} at which the numerical 
l. 

calculations are to be performed. This is done as follows. Since the 

term T given by E~. A~2 is by far the most rapidly varying in both 10 and 

11, we impose the requirements that in traversing the energy interval M, 

which is the interval over which the trapezoidal rule is applied at any 

given step, the change in the ~uantity U be less than or e~ual to some 

fraction FR, where FR is a small fraction of unity. This ensures that 

the change in the exponential term T will likewise be small over the 

interval M. Experimentally, a value of 0.2 for FR is found satisfactory. 

The change in U across M is approximated by 

6U ~ 6s1;,{2' a(E,E ) , 
o 

where 6S is the difference between two successive members in the set {s.}. 
l. ' 

It is assumed that a(E,E ) remains relatively constant over the interval. o 
We re~uire, then, 

is/~2 a(E,E ) < FR. o (A-9) 

Using E~. 1, we obtain a relation between the change in distance is 

and the corresponding energy change M: 

M = ~ . f(E) is 
p 
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Substituting into Eq. A-9, we obtain the restriction on Lill: 

till < f2 . f(E) . a(E,E
o

) • FR. (A-10) 
P 

Thus, for a given energy Ei' the next energy Ei +l at which the calculations 

are performed is, given by Eq. A-10, where the equality sign is chosen. 

Therefore, we can write 

E. - Lill. 
l 
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D. Coulomb Excitation 

If a bombarding ion comes sufficiently close to a target nucleus, a 

(luadrupole interaction may occur in which one or both nuclei are raised to 

an excited state. This inelastic process is called Coulomb excitation, and 

the amount of energy that may be lost in a single interaction is on the 

order of 1 MeV. 

We can easily show that this Coulomb interaction process is not sig

nificant from the standpoint of energy loss by comparing the specific 

energy loss due to Coulomb excitation with that due to ionization. The 

microscopic cross section for a Coulomb excitation to occur can be shown 

to be on the order of one to two times the geometric cross section given 

by ~ = nR2.52 If this (luantity is multiplied by the atom density of the 

medium, the result is the macroscopic cross section for a Coulomb excitation. 

If this is then multiplied by the mean excitation energy lost per inter

action, the result is the stopping power, .or specific energy loss, due to 

Coulomb excitation. 

Estimates of this stopping power are made for a few extreme cases, 

and the results are shown in Table XXI. Also shown are calculated values 

of stopping power due to ionization. In all cases, the Coulomb excitation 

stopping power is a negligible fraction of the total. 

Table XXI. Comparison of stopping power due to Coulomb excitation and to 
ionization. 

System 

500-MeV/amu Neions in U 

500-MeV/amu Ne ions in H20 

500-MeV/amu Ne ions in Cu 

500-MeV/amu U ions in U 

Stopping power 
Coulomb excitation Ionization 

~ 0.01 

~ 0.1 

~ 0.05 

~ 0.05 

140 

280 

191 

11500 
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