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VECTORS
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Marks, Lionel S., Mechanlcal Engineers Handbook
Synge and Griffith, Prineciples of Mechanics

DEFINTTION OF A VECTCR

A vector is a quantity which has magnitude and direction and which adds
according t6 the laws of the triangle, :

Thus a vector can describe the motion of a particle which travels in the
shortest path from point A to point B, or a vector may describe the force existe
ing in a member of a truss under a given set of conditions. In the above
example of the motion of a particle, both the magnitude and direction are given.
Points A and B are separated by X units of length, and since spe01flc points
are designated, that is, points A and B, then a definite direction is also
specified, If rectangular coordinates are assumed as a reference frame then
point A may be specified as having the coordinates (xig.yi, Zl) and Point B by
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If L is the magnitude of this vector it is then equal to the quantity

(% = %)%+ (yy = y2)2+ (2, = 7,)?

The direction of this vector can be defined by giving the angle between
the vector and lines which pass through point A and which are parsllel to the
three coordinate axess
Thuss

CCos A = Fp =X

Cos 4 & J1 ; J;

Cos Y = 3z1 - Zo
L\

90°
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The force which the member B C of the pip-jointed truss illustrated,
exerts on point C may be defined by a vector F whose direction is given as
lying on the straight line joining B and C and vwhose magnitude is defined as
being such that the substitution of this force for the member produces no
change in the equilibrium of point #CH,

In the two above examples the vectors have the following characteristicss

lo A point of origin (as point A in the first example)
or a point of application (as p01nt C in the second
example) o

2¢ A direction (in the first example defined by the
three direction cosires,-i.es Cos A , Cos /2
Cos ¥ and in the second example by the angle of 920°),

ye
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30 A magnitude (in the first example defined by

2 » |
L= \/ (2 =%)" + (5 = y2)2 + (2, - 22)2 and in the

second example as stated in discussing the example.,)

" Quantities which do not satisfy these conditions and are therefore not
vectors are 10 gallons of water - $5 « 100 ft. 1lbs. = 40° Centigrade, etc.
These quantities have magnitude but no direction is defined, Such quantities
as these are known as scalar quantities,. ‘

VECTOR NOTATION

A vector is denoted in print by a bold face letter, It may also be
denoted by a lg;t_;er which is underlined ass A or by a letter surmounted by
an arrow thus A . -

Vectors, whichjare equal may have this equality shown in the usual
- manner thus A ?o To be equal they must have parallel directions, be
of the same sense, and of equal magnitude. The sense of a vector is its
direction of action; that is Ay——v_y.B the point moves from A to B, or
the force acts from A in the direction of B in the illustration.

The sum of two wvectors 'a? and _l? is defined as the vector repre-
sented b_y;the diagonal of a parallelogram whose two adjacent sides are the
vectors @and™®, Thus ¢ is the vector sum of & and B .

b

m}'

»/

T+ T - Ja2+'b2+2ab Cos ©
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The addition of vectors is commutative, that is it makes no difference
vhat sequence is chosen in the addition of vectors. __ _,

— D
a+b = b+a

or

O}

ok
S

S

o}

Vector addition is also associative, That is

. T (TH+T) = DH (3T,

Tt may be cons:Ldered that (-F-}' G )+ a means to add vectors b and o
aft%' which vector & is added to that vector which is the sum of vectors
+C . '

, It is thus seen that the order in which operations are performed is of
no consequence in the addition of a mumber of vectors,

MULTIPLICATION OF A VECTOR BY A SCALAR QUANTITY

If & is a vector and M is a scalar, the product of M2 or of BM
is defined as followss

When M is positive, M@ has the direction of % and a magnitude of M a}
when M is negativey, M 2 has the reverse sense of “& and of magnitude of =M a.

- = - . —ipe
W ¢ © 6 6 o 6 0 © © © 0 © 0 o o e._a._> M 'tvlm.esc Thus a
is ad d M times giving the product M@, Similiarly «ME is shown below:

-> . P il — o
a a a a -3 o © -] L] -] Q. (-3 -] © [ o (-] L © Od_ M tmeSQ

=, - R

N




UCRL 1740
SUBTRACTION OF VEGTORS
' . . - r -
The subtraction of vectors is written 23+ (b ) = ¢
NOTE:

-
That =b has the
game direction as
does+ b but is of
the opposite sense.

"The subtraction of vectors is both commutative and assoc:.atlve as in
the addition of vectors.
UNIT VECTOR

A unit vector has a magnitude equal to 1 and a direction, Ib épecifies
a direction, A unit vector a is dencted by ‘a o

,\ Thus a vector b divided by the magmtude of b %ves the unit vector
- (The magnitude of vector b is denoted by | |

COMPONENTS OF A VECTCR
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Vector 1;‘ is shown starting at the origin of the three axes: x, y, and z.
The three components of the vector a along the z, ¥, and x axes are found as
followss

To find the z camponent of °g> » bass planes through points O and through
p01nt b, which are perpendicular to the z axis, Thesgﬁg%gnes intersect the z
axis at point O (in this case) and at point e, Veector is the z component of
vector a o Similiarly to find the y component of & pass planes which are
pérpendicular tg_;;through points O and b. These planes intersect y at O and at
e. The vector O e is the y component of a o

< - .
- In the seme manner O _c_i’ is found to be the x component of _a . In a like
manner, if given the vector @ and the line d e the camponent n of along
line d e is found as followss

Pass planes through point b and ¢ which planes are perpendicular to the
ine d es These planes intersect the line d e at points f and g The vector
n's magnitude is defined by the portion of line d e existing between points f
and go Its direction is that of the line 4 e,

d”

When the action line of the vector intersects the line along which the
camponent is to be found the component is found in a similiar manner. However
since the component and vector are coplanar the solution is simplified and the
camponent 'ﬂ"equalslﬁf] Cos O, where 8 is the angle between the vector ™a and
the line,

"
—

o/

b

I

l

- |

, L -
"i—r ‘l_' n M
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UNIT GOORDINATE VEGCTORS

The set of vectors shown as i,, g, and k are known as the unit Orthogonal

Triad. These vectors are wrltken as i, 39 and % and have unit magnitude and a

specifie direction such that I lies along the x axis, along the ¥ axis and
along the z axis, They have a common origin O and have a positive sense,

Z

X

-
If we have a vector a and at its origin erect cartesian coordinate
x>
axes X, ¥, and z, the components of a along these are ay, ays and a_e

/’r;\———__—/vi
e /
0 ek /7
—_— e | . ——— / l
f- [,;*az |
| A8 Lo
| 6,3& (32K
A i l
I A < 8y J i y.._...._
| Y /
| 2 g | s
R
—_ e~

. - : A
By the addition of vectors it can be proven that ry o ax/j?-}- aﬁ -+ azko
This is shown by the dashed lines in the figure,

The reduction of vectors to their three components is of use as a link
between vector analysis and the usual methods of analysise
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-
: The magnitude of vector a is expressed in terms of its scalar components
by the equations :

-2 2, 2, .2
lal = \j 2y + & + a
8, = gag‘ﬂ Cos (of the angle between & and x axis)

- ]—:] Cos ( a, x)

|51 Cos ( a, ¥)

J
t

ﬁ?ﬂ Cos ( a, =)

N
B3

MULTIPLICATION OF VECTORS

There are two vector products which are of interest, The scalar product
of two vectors is the first considered._An example of a sealar product of
vector quantities is work, If a force has a point _%g application on a line

d this force moves along the line a vector distance - then the work dqpe by
%ﬂ is the scalar product | F | T | Cos 8, where © is the angle between F and

F

p=

-
— b ' W = work = F||L]|

— 4 L . Cos 8. This is
scalar product,

Scalar product is denoted by a dot, thusly -é’.”o?

‘Scalar goduetmrg_&ndependent of the orde:;b in_yhich the iroduct is

token, Thus @ o Pm b o 2 or Bo (P4 )=t b+ a e
Scalaer products follow the rules of algebra., That is

o
(B¥D) o (F4D) =TT
i ' .
T2 R 2 o b e R ~ <D= ab Cos O
a?4 R+ 2ab Cos 9 22 @2 |

This is the case of a triangle:
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NECG S
If the scalar product a o b = 0 then the vecltors are perpendicular or

one vector is zero.
- = g = : :
If the scalar product a o b= [al \b] the vectors are parallel.

If the scalar product & o b - e (gal @b! ) the vectors are in oppositiom
(that is they have opposite sense to each other).

It follows therefore thate
= Je ,] o= kek = 1 , these sets of unit vectors are p_arallel,

g ick = 0 ; these sets of unit vectors are -L- o

N '
Now given two vectors "2 and b who have rectangular components a., a_,
and azy and by, by9 and ’bZ,, then ) J

-t A A

A A 4)
a :ax1+ay;j +azk

- A\ A A
bzbgi+ byt bk

theng
- > AN AN AN AA A A ATA
a o beagh, ici4 a"yb;x iej+ a by Tk + axby i-§ + ayby Jod + az'by ik +
AN AN A ARA AN
axbz Ik 4 aybz Jok 4 az‘bz ke k (aybX isj = O since iej = O ) therefore

- —
aebe=ab 4+ ay‘by-f- a b

i %

In cartesion coordinates if axbx + ayby—i- azbz &z O the vectors a and b

are perpendicular,

8xhy + Byby + 3,0,

2 2 2 2/ 2
Ja,x.;., ay+ a, be+by+bz

iy
COS(-:°b)s

2

The vector product is the seeond type of vector multiplication, The vector
product is denoted by a cTross, thus 2 x b, and is a vector whose magnitude is
given by ab sin © where 8 is the angle between a and b and whose direction is
perpendicular to the plane of a and b, and having a sense such that with the vector
grasped in the right hand in glch a yay as to turn a toward b the thumb points in
the direction of the vector a x b.

—
An example of a vector product is a torque. Point O is given and force F.
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N
Y
“~

i

— N
F x r is known as a pseudo-vector because an arbjlrary rule determines
the sense of the moment vector. Torque about point O of F force is:

— =
Torque =| F| [r | sin ©

Because bf the question of determining the 'sense of the vector product,

- — -— — — N — —
a x b£ b x a, However, a x b=<b X a, The order in which the vectors

are considered is therefore important,

— - —-— —— - -—
The vector product a x ( bxe ) =a x b+a x ¢ or
— — -— — — -— ——
(a+b)x(€+d);?x*&‘+a x A4 D x T+ b x 4 provided that

the order of the factors in each product is preserved.

In rectangular coordinates there is a simple rule for the cross products.
The terms are arranged in a determinant thuss

ANAN
ijk

A ~
Ay Ag A, =i (4B - ByAZ) + 7 (B -43B)

By B, B + 2 - A
Bx;r.z k(AXB:Y YBX)

- e
A x B

. For the product of three vectors the following holds

ao(bxe)g‘bo(cx?);@"(ax‘b)
— - L . N -
a x (bx c)m(ace)b-(a-b)e

If however, only two letters are interchanged as a °» (¢ x b ) the
sign changes.
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N
a
bx¢C Sx(b*C)
/| =
/| b
-— - st } e
- a x (b x ¢ ) triple product lies in the plane of b

and Co

DIFFERENTIATION OF A VECTOR BY A SCALAR

The differentiation of a vector by a scalar can be shown by the
example of the rate of change of a vector with time,

The notation is the same as for 21l derivatives., The derivative of
2 o ° o —
a 1in respect to time t is written 4 & o
at

S :
If a = F (t) is the equation of a vector % in respect to time
t, a scalar quantity, then :

d% = F(t+at) = F (1)
a6 4t

limit as A+t—=>0
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Consider a particle B moving with uniform circular motion about

point O, its position vector being » ., Take a radial unit vector > parallel

with @ , and a tangential unit vector % perpendicular to T .

dt
‘ 1/\
\ 1
\
Ado [~
\ ~
\ _ _ . a
\ — a%r — ”’T‘i?
o o ¥

The differential of a unit vector is perpendicular to the unit
vector, and is a measure of change in direction only, In rotating the unit
vectors through an infinitesimal angle d8, it can be seen that

a? = ) (@) @) = a ?
af = @ (@) (@) <ae (D)

AY

A
t and (4%) specify direction, and 1 is the magnitude

in which the unit vectors
of the unit vector,

The velocity of B is given by the vector
- - A P
Ve a0 = d (%) =r df er d 't = rwk,
A dt dt dat dt '
in which t shows that the velocity is in the direction of t o

The acceleration of B is given by the vector

— A A
e 4V = & (ret) = rw a1t = T 48 (-8)
at 3t at at

in which («@) shows that the acceleration is in the opposite direction to T,

ple;3/24/52
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