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Abstract 

It is shown that the frequency-dependent 
input impedance of a lossless distributed network 
may be represented by the frequencies of the input 
impedance poles and zeros. Then, given the net
work reactance at a single frequency other than 
that of a pole or zero, one may apply Foster's 
reactance theorem to dftermine the input imped
ance at any frequency. Using the frequency
dependent impedance representation, one may 
calculate the response of the system to any peri
odic driving function. 

General Considerations 

In the design of radio-frequency accelera
tion systems, the problem of a power amplifier 
connected to a distant reactive load by means of 
a transmission line may occur. The response of 
such a system to a periodic current pulse that is 
short in duration with respect to an RF cycle is 
of interest to the designer. Z For instance, a 
particular harmonic of the current waveform may 
excite aIJ unwanted mode in the system being con
sidered. 

It is neces sar"y to know the frequency de
pendence of the input impedance of the two-termi
nal system in order to calculate the response. 1 
For 'all but simple systems, the description of the 
impedance variation with frequency is usually a 
formidable task. 

It is often relatively easier to specify or 
determine the frequencies at which the input im
pedance (for a lossless system) has an infinite 
value, called poles, and the frequencies at which 
the input impedance is zero, called zeros. This 
list of frequencies of the poles and zeros and the 
value of the input reactance at a given frequency 
completely specifies any two-terminal network 
composed of a finite number of reactive compo
nents, as shown by Foster. 1 Others have shown 
the equivalence between lumped constant circuits 
and transmission lines, 4, 5 These lumped-con
stant circuits are pure reactances for a lossless 
line. 

The application of Foster's reactance theo
rem to a transmis sion-line system, which has an 
infinite set of poles and zeros, requires a consid
eration of the convergence of the infinite product 
formed. The convergence is proved in the 
attached appendix. 

* , Work done under ausplces of the U. S. Atomic 
Energy Commission. 
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A Particular Case 

To illustrate the analysis of a distributed 
system by the pole -zero method, we shall con
sider the case of a transmission line of uniform 
characteristic impedance Z~, and length 1., which 
is shorted at the far end. The input impedance of 
this two-terminal system is obtained by consider
ing the input-impedance poles and zeros. This 
result is compared with the input impedance (Zin) 
derived from the transmission-line equations. 

Applying the transmission-line equations, 
one obtains 

Zin(w) = j Zo tan w1./v [from transmission-line 
equation] (1) 

where v is the velocity of propagation of a funda
mental mode (TEM) wave on the transmission 
line. 

Input-impedance zeros (t;.) are obtained at 
w 0, and w = nTTv/1., where n = 1, Z, 3 .•.. 

Input-impedance poles (p) are found at 
w = ¥ (n - 1/Z), where n = 1, Z, 3 .•.. 

Let t;.n = n, and Pn = (n - 1/Z). 

The input impedance obtained by use of 
Foster's equation is 

[wZ - (t;.nTTV/nZ] 
Zin(w) = jwH·rr :=1 ---,,,.------..,,.-

[wZ _ (PnTTV/1.)Z] 
[from 
Foster's 
equation] 

(Z) 

where rr ~=1 indicates an infinite product with 
n = 1, Z, 3 . .. • In order to show the equivalence 
between Foster's equation and the transmission
line equation, we let s = w1./ TTV; then 

( sZ/r Z - 1) 
. TTVS 00 "'n 

Z. (s) = J -,-·H'·rr -1 Z Z ' (3) 
lfi x n- (s / P _ 1) 

n 

00 Z/ Z where H' = H.rr n =1 (t;.n P n). 

Now H may be evaluated by considering Zin 
at a particular normalized frequency s = so' where 
So f t;. nand So f P n· 

H 

Solving Eq. ( 3) for Hat s = so' 
Z Z/ Z 1. Zin(so) 

00 Pn 00 (so P n 
·rr -·rr 

jTTvs o n=1t;.Z n=1 (sZ/I;.Z 

If we let H' 

non 

1. Z lv, we obtain o 

we get 

- 1) 
(4) 

- 1) 



Z 
o 

then from Fosters equation we see that 

(5) 

( s Z /S Z _ 1) [from 
Zin(s) = j7Tszo·n:=1 n Foster's 

(sZ /pZ _ 1) equation] 
n 

( 6) 

= tan w!./v 

( 7) 

by use of the Weierstrass factor theorem. 6 

Therefore, the above impedance expression 
i's equivalent to that obtained from the transmis
sion-line equation, and for the particular case 
shown 

Zin( w) [from transmis sion -line equation] 
== Z, (w) [from Foster's equation]. In 

Conclusions 

We have demonstrated how the continuous 
impedance expression of a lossless system may 
be represented by a set of discrete points. This 
representation for a lossless system is extremely 
useful, because most well-designed real systems 
have negligibly small losses. In practice, one 
would identify a finite number of impedance max
ima and minima, and with the aid of a computer, 
generate the system voltage waveforms where 
desired in response to a given current input wave
form. 
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Appendix 

When we attempt to extend Foster's formu-

(Ai) 

(where Sn are the zeros of Zin and Pn are the 
poles) to the infinite case (N .. 00), we must study 
the convergence of the infinite product which, 
according to the factor theorem of Weierstrass, 
depends upon the convergence of the following 
infinite sum6. 

,00 wZ _ S Z 

L Z ~ - 1 
n=1 w - P n w 

Z Z 
-P n 

. (AZ) 

Z 

We find that this product does not always 
converge. For example, if sn = a· nand 
P n = a· (n - i)' we must consider 

OOz ZZ 00 
, (n - n + t - n)a = '\ 1 -tn 
L 2 Z 1 Z L z~""z""-"------, 
n=1 w - (n - n + 4)a n=1 (-w /a ) + n - 1 + t n 

(A3) 
where a is some arbitrary constant. 

But, for any fixed w (even if we exclude 
values of w close to any of the. poles), this series 
majorizes (i. e., termwise, it equals or exceeds 
in absolute value for sufficiently large n) the well
known divergent series 

00 

L k 
(A4) 

n 

n=1 

where k = 1/Z; for example. 

We now show that a revised form of Foster's 
formula can be extended to the infinite case under 
the following hypoth~sis, which includes many 
useful example s, including the o~e just considered, 
Let us write 

Zl'n(w) = jwH"n
N 
n=1 

where 
Z 

N Sn 
H' = H·n 

n=1 2 
Pn 

(A5) 

(A6) 

Since H, and therefore H', is a constant (indepen
dent of w), we see by considering a particular fre
quency w = Wo that 

Z, (w) N 
H' = :...l~·rr 

jwo n=1 
(A7) 

Now formulas (A5) and (A 7) will provide a rep
resentation for Zin(w) in the infinite case (N -+ 00) 
also, provided that the infinite products are con
vergent. We must assume (in order for the factor 
theorem of Weierstrass to be valid) that neither 
the zeros (sn) nor the poles (Pn) have a finite 
accumulation point. This means, in particular, 
that only a finite number of the poles and zerps 
have magnitude less than any given (large positive) 
R. We are interested in the uniform convergence 
of the formulas for all win some. (finite) compact 
set Q which excludes the poles: For instance, let 
Q be a circle of finite radius cente red at the origin, 
minus a small neighborhood of fixed size about 
each pole. As in Foster's paper, we assume that 
each pole aI}d zer,o is of order one, and that sym
metry allows us to combine the factors in pairs 
such as sn = -s _ . in order to form the connection 
between Eq. (A5) and the Weierstras~ factor theo
rem. 

The convergence of Eq. (A5) depends upon the 
convergence of the following infinite sum: 



00 

L - 1 
n=1 

(AS) 

But in our compact set n, this sum Eq. (AS) 
is majorized uniformly (i. e., independent of w, 
so long as WEn) by 

(A9) 

where k is some number k ;;.2 . 1 w
2

1ma on n. 
Let N be so large that all ~n for n > N tave a 
magnitude exceeding 2' \w \max (which is possible 
since the poles have no fimte accumulation point). 
Then Iw - Pn I> IPn/21, so 

l(w
2 -p~) S~ 1= 1 w-Pnl' I(w+p)' s~1 > 

1 / 2 I' 1 21 - 1 2 2 P n P n ' Sn - 2" Pn Sn ' 

~k 

(as required) for n > N. 

(A10) 

2 2 
Pn-S n 

2 2 
PrrS n 

(A11) 

Hence, a sufficient condition for the validity 
of Eq. (A5) in the infinite case is the convergence 
of the sum 

00 

L 
n=1 

(A12) 

This condition is readily verified in the example 
S n = a' n, P n = a' (n - i): We have 

2 2 
Pn - Sn 

2 2 
Sn P n 

1 - t n (AD) 

and the sum of (A12) is majorized by the conver
gent series 

LoO ~. 
n=1 (n-1) 
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