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ABSTRACT 

Representations of the two-body partial-wave tr~~sition 

amplitudes of the form 

are displayed for several approaches to the calculation of these 

amplitudes. These representations separate the off-energy-shell 

behavior from the better known and more experimentally accessible 

on-shell behavior and they allow the insertion 2 (for k > 0) 

of the experimental on-shell t-matrix, expressed in terms of 

the phase shift, into calculations involving off-shell -'- -.L.,0 "ranSl"lon 

amplitudes. Such representations permit us to compare the off-

shell behavior generated by two different approaches to the 

calculation of off-shell amplitudes, both of which yield the ss}ne 

on-shell amplitude. 
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Dispersion'representations for the,full off-shell 

amplitude are obtained independent of any dynamlcal 

asswnptions. Use of the off-shell unitarity relation in these 

dispersion ,representations allows us to determine the fUll 

off-shell amplitude from the half-off-shell amplitudes 

and thus from the experimentalquasiphase par~~eters of,Sobel. 

This approach leads to.a new approxima:ti6n -to the off-shell 

amp'li tude useful when the scattering is asswned to be dominated 

by the contribution of a single partial wave. 
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I. INTRODUCTION 

A useful representation or approximation for the off-

shell two-body partial-wave transition amplitude 2 t ("0 p' . k ) t -, , 

should satisfy at least the following general non-dynamical 

requirements: 

(a) Reduction: It must reduce to the known form of t (k2) 
t 

on the energy shell; 

(b) Unitarity: It must satisfy two-particle elastic unitarity 

1 on and off the energy shell, that is 

2 
Im\(p,p';k) = 

2 *. 2 
- ~ k t t (p ,k; k ) t t (k, p' ; k ) (1) 

(c) Analyticity: It should be an analytic function of k2, with 

the only singularities in k2 being the right-hand unitarity 

cut and bound-state or resonance poles. It should be analytic 

in p(p') 
2 2 for p > 0 (p' > 0) and it should have singularities 

for p2 < O· and p,2 < 0 which become the left-hand or driving 

singularities of the on-shell amplitude2 when p2 p,2 = k2 ; 

(d) Time-Reversal: 

that is 

It should satisfy time-reversal invariance) 

t ( , . ~ k2 ) = t P ,p, . 

In addition, the limitations of available electronic 

computers make it desirable to have a separable representation 
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or approximation for the off-energy~shell tr8-TJ.si tion amplitude 

for use in multiparticle scattering calculations. That is, 
I . 

we would like to have 

so that the off-shell amplitude would be separable in incident 

and outgoing relative momenta. 

, We must stress that very little is known about the off-

energy-shell behavior of transi tion amplitudes. Perhaps the 

best experimental test of the off-shell behavior of two-body 

amplitudes .is 1'-1' bremsstrahlung, but the experimental data 

is sparse and rather difficult to interpret. 

Throughout this paper we use the conventJons of Goldberger 

and watson,3 and ~its in which ~ = 2m = 1, so that 

the c.m. energy .. For simplicity, we consider only the non-

relativistic single-channel case. 

We commence, in Sec. II, with a review and some comments 

on the usual methods of calculating off-shell amplitudes, in 

order to provide background and 'motivation for our work. In 

Sec. III we investigate representations of the form 

tt(p,p' ;k2) = Ft(P,P' ;k2) tt(k2) for several previous approaches 

to the calculation of off-shell amplitudes.
4 

Finally, in Sec. IV, 

we present a method of calculating' the full off-shell amplitude 

from a Cauchy formula incorporating the off-shell unitarity 

,.. 

. • 
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relation. We shall see that this allows the full off-shell 

amplitude to be de:ermined (except, perhaps, for.a subtraction 

constant) in te~ms of the half-off-shell amplitudes and the 

bound-state wave functions. Thus, in the absence of bound 

states, the full off-shell amplitude is determined almost 

completely by experimental quantities, i.e., the phase shifts 

aDd quasiphase parameters. We also obtain an approximation for 

the off-shell amplitude useful when one partial wave dominates 

the scattering. 
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II. EARLIER APPROACHES TO CALCULATION 
OF OFF-SHELL AMPLITUDES 

. 
In the potential theory approach to the calculation of 

off-shell transition amplitudes, unitarity is enforced by 

putting a potential representing the force between the inter-

acting par'ticles into the Schrodinger' equation or , equivalently, 

into the Lippmann-Schwinger equation for the transition ampli-

tude. Time-reversal invariance is' ensured by demanding that 

the potential-have the symmetry V.e(p,:P'I} = V.e(pl ,p). Usually, 

a local potential form or a non-local separable potential form 

is chosen to parameterize the on-shell data. This chosen form 

is fitted numerically to the on-shell amplitude, which can be 

expressed in terms of the experimental phase shifts. Then the 

potential form is inserted into the Lippmann-Schwinger equation, 

which defines a unique continuation of the transition amplitude 

off the energy shell. 'Thus, the potential form completely determines 

the off~shell behavior of the resulting amplitude, and assw~tion of 

a potential form to fit the on-shell data implies assumption of 

the off-shell behavior 'of the amplitude. This is obviously a 

highly arbitrary procedure since many potential forms (some of 

which may lead to very different off-shell behaviors) can be used 

to fit the on-s,hell data. All that can be done is to try various 

potential forms which fit the orr-shell data in, for example, 

nuclear-matter or multiparticle-scattering calculations and see, < . 
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which form gives an off-shell behavior that coincides most closely 

with experiment. 

Potential: theory is really onl:1>aparameterization of 

the scattering amplitude, because we have only a posteriori 

knowledge of the potential. That is, the correct potential is 

the one which leads to the experimentally measured transition 

amplitude. Therefore, at this stage in our knowledge, there is 

no reason for preferring a local potential parameterization to a 

separable potential parameterization when the separable potential 

approach may be more convenient. 

Also, within the usual potential theory approach to the 

calculation of off-shell amplitudes, there is no convenient way 

of isolating the different off-shell behavior given by two 

different potential forms, both of which fit the same on-shell 

data. 

The other main approach to the calculation of off-shell 

transition amplitudes is the single-pole dominance model wherein 

we assume that the ~th partial-wave is dominated by a single 

bound state or resonance pole. We say single-pole dominance 

because the introduction of more than one pole term in a given 

partial wave leads to a non-unitary transition amplitude in this 

approach. 

Lovelace shows that the residues of bound-state or 

resonance poles in the partial-wave transition amplitudes factor 
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in the incident 'and outgoing relative momenta. 5 Thus, in the 

vicinity of a bound-state or resonance ~ole, we may write the 

transition amplitude in a se~arable form. When a single ~ole 

dominates a given ~artial wave, it is frequently assumed that 

the resulting se~arable form describes the transition amplitude 

for all energies in that ~artial-wave, although it is strictly 

true only for energies ~ the bound state or resonance energy. 

Therefore, in,the single-~ole dominance model we write 

= 
a t (~) a t (~ f ) 

D t (k
2

) 
, 

where at(~) is the bound-state or resonance form factor. Also, 

D t (k2) is zero at the bound-state or resonance ~ole and is 

chosen such that satisfies off-shell unitarity. 

In the case of a bound state, the form factor ai(~) can be 

related to the bound-state wave function in moment~~ s~ace. 

In ~articular, Lovelace5 notes that the on-shell transition 

am~litu'de can be written in the (unitary) N/D form, 

and 

= ~ -[ 2 ' ( 2) dq q Nt q 

"k2 2'-l€ - q "t" ... 

(2 ) 



;:' . 
........ 

Here N
t

(k
2

) has only left-hand singularities and Dt(k2) has 

only right-hand singularities. Lovelace next points out that 

the off-shell ~litude has only a right-hand cut in k2 and 

that the bound-state and resonance form factors at(p) satisfy 

dispersion relations in p2 with only a left-hand cut. He 

then suggests that the off-shell transition amplitude can be 

written as 

1 

[N t (p 2) Nt (p! 2) J"2 

D t (k
2

) 
, 

where Dt(k2) is given by Eq. (2),'provi~ed that the partial wave 

is dominated by a bound state or resonance. 

We obtain an identical form for the off-shell amplitude 

by introducing a single term separable potential of the form 

V t (p ,p f) = g t (p) g t (p r ) into the Li:l;pmann -Schwinger equation, 

so that the introduction of a single term separable potential 

and Lovelace r s fonn of the single- po~e dominance model are 

completely equivalent. Parenthetically, it can be shown that 

if we choose a single separable potential form gt(k) such that 

2 2 2 g.e, (k) = B t (k) where, B.e, (k) is the Born term in the integral 

equation,for N.e,(k2), then the lippmann-Schwinger equation gives 

a form for t (k2) identical to that obtained in the determinantal 
t 

approximation to the N/D equations. However, if we choose 

g ,2(k) = N,(k2) 'L 1 r h d th f't ~h '" '" as In ove ace s approac, an en l v e 
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resulting form for t.e,(k2) to the on-shell experimental data, 

,.,e will achieve a p:trameterization of N.e, (k2) in the exact 

on-shell partial~wave scattering amplitude. 

This approach has the drawback that N.e, (k2) must be 

of definite sign for k2 > ° [g.e,(k) must be real] to avoid 

the introduction of spurious,cuts into the amplitude. 

when we demand that N.e,Ck2) be of definite sign for 

Further, 

2 . 
k > 0, 

we find that we cannot reproduce a phase shift that changes 

sign. It has been suggested that a sign-changing phase shift 

might be reproduced by a single term separable potential with 

an explicit energy dependence. However, it is readily shown 

that separable potentials of the form 

do not lead to transition amplitudes that satisfy the requirements 

of analyticity and unitarity. 

Notice that ·the single-pole dominance model is also only 

a parameterization of the on- and off-shell behavior of the 

transition amplitude, because of the arbitrary assumption that 

the form of the amplitude valid near a pole is valid at all 

energies. In addition, the choice of the form factors· a.e, Cp), 

which determine the off-shell behavior, is quite arbitrary at 

our present state of knowledge. For example, the bound-state 



-9-

form factors depend on the poorly known momentum~space wave 

functions of the bound states. 

The point of this revie'." is to show that the available 

methods for calculating off-shell transition amplitudes lead, 

in practice, merely to bases for the parameterization of the 

off-shell amplitudes consistent with the four general require

ments we set down earlier. The theme of our work, then, is 

th~t approaches which allow us to reduce the uncertainty in 

our knowledge of off-shell scattering amplitudes by directly 

incorporating a maximum of experimental information into the 

methods for calculating or representing these off-shell amplitudes 

will be valuable supplements to the present trial-and-error 

approaches. 



-10-

III. SEPARATION OF OFF-SHELL BEHAVIOR 

It seems .worthwhile to have representations or parameter-

izations for the off-shell partial-wave transition amplitude of 

the form tt(P,pf;k
2

) = F/p,pf;k2) tt(k
2
), where F

t
(k,k;k2) = 1 

and time-reversal invariancedemands that F t (p ,p f ;k2) = F t (p f ,p ;k2) . 

The value of such representations is threefold: 

(a) They enable us to separate the off-shell behavior of the 

transition amplitude from the on-shell be~~vior, which is better 

known and more accessible to experiment .. That is, they permit 

us to study the off-shell behavior of amplitudes independently, 

to some extent, of their on-shell behavior. 

(b) They allow us to include the experimental d:ata from on-shell 

two-body scattering in calculations involving off-shell transition 

amplitudes by writing 

2 
- -;k sin 

for Thus,· we can take on-shell two-body scattering 

into accountexactlt in such calculations, and the only 

approximation will lie in the treatment of off-shell effects 

2 . 
and the region k < 0; 

(c) They permit us to compare the off-energy-shell behaviors 

(h) 

" 
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produced by two different approaches to the calculation of 

off-energy-shell amplitudes, both of which yield the same on-

shell amplitude.· This would be useful in illuminatin&for 

example, the differences between'the various potential forms 

which have been used to fit the nucleon-nucleon scattering 

data. 

The separations are useful for 

is determined by the experimental phase shifts. However, if 

we assume that the on-shell t-matrix is known from some other 

theory, they are good for all k2 . 

Note that, since one of our main aims is to isolate the 

different off-shell behaviors given by two methods that yield 

the same on-shell amplitude, the explicit appearance of the on-

shell amplitude in some of our expressions for the trseparations" 

is not an important drawback. 
, 

Ft(P,P' ;k
2

) It is clear that the off-shell factor 

poles as a function of k2 at the zeros of the on-shell 

amplitude tt(k2). This follows from the facts that if 

ttCk02) = 0, tt(k2) can be represented as 

for and 

.. '-..... 

has 
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In potential theory, the transition amplitude is obtained. 
) 

from the Lippmann-Schwinger equation 

+ [ dq -k2~·-",q,-2"="2--.-
, 0 - q +~€ 

2 
V t (p,q) t t (q,p' ;k ) 

. 2 
Now, suppos~ we know thattt(k) has n zeros at values of 

.. 2 ,,2 
k denoted by k. , Let us write the off-energy-shell factor 

~ 

2 Ft(P,P';k) in the form" 

. . 2!n 2 2 
= ,X,(p,P',;k) ,IT (k .,. k. ) , 

. ~ ~=l ' ~ 

= 
i=l 

n 
IT (k2 _ k 2) 

i 

(6) 

r + I dq 2 
)0. k 

2· 
q 2 Vl(pq) X,(q,p';k2) , 

- q + i€ - ~ 
(8) 

2 2' 2 2 At values of, k near, the zero,of tt(k) located at k = kj , 

22 2 2 ,..., 
where tt(k) can be represented as tt(k) = tt'(kj ) (k - kj~)' 



-13-

the inhomogeneous term in the integral equation (8) becomes 

v t(p,p' ) 

t to, (k
j 
2) 

n 
IT 

i=l 
ifj 

while the full off-shell amplitude is 

.. 2 
Xt(p,p';k) 

n 
IT (k2 _ k. 2 ) 

i=l ~ 
ifj 

Furthermore, Kowalski6 has shown that the transition 

amplitude is the solution to a non-singular integral equation 

obtained by Fredholm reduction from the Lippmann-Schwinger 
:: .::: .... 

equation. This equation is 

where the non-singular kernel is 

(10) 
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Kowals~i also shows that the half-off~shell amplitude is 

, 2··· 2 
glven exactly by tt(p,k;k) = ft(p,k) tt(k), where ft(p,k) 

satisfies a non-singular integral equation with the kernel (10), 

namely, ' 

v .eCP ,k) 

V t(~,k) 

These equations are time-reversal invariant if. V t(p,pf) = V .e(pf :p), 

Noyes 7 'ha~ shown that the zeros of _ V.e(k,k) cause no essential 

problems, since k enters these equations only as a parameter 

and not as a variable,. 

Let us write the half-off-shell amplitude t.e(P,k;k2 ) as 

2 ·2" 2 
where F.eCP ,k;k) ~ H,e(P;k ) and H .e(k;k ) = 1-

. 2 
half-off-shell factor H,e(P;k) in the form 

"2 2jn 2 2 Hn(P;k) = hn(p;k) II (k - k, ) , 
k k '-1" l . l- " 

we obtain an integral equation for h .e"(p ;k
2

): 

2 h ,e(p ;k) 
V .e(p ,k) 

= V ik,k) 

(11) 

If we cast the 

(12) 
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immediately from Kowalski's work. Also~ if we insert Eqs.(ll) 

and (12) in Eq. (9) and use Eq. (5) and Eq. (7) we. find the 

2 following equation for Xt(P,P';k): 

., 
I 

Vt(p,k) Vt(k,p')j 

- Vt(k,k) J 

satisfY non-singular 

integral equations with the same kernel. Less convenient 

separations can be made by starting with Kowalski's6 Eqs. (6) 

. (2 Finally, we present a way of determining X
t 

p,p';k ) 

that does not explicitly involve the on-shell t-matrix. Suppose 

we start with the Lippmann-Schwinger equation (6) for the off-,. 

shell amplitude. We also know that 

[ 

2 
+ dq ~2-.... q-:::'2--

o k _.q + iE 
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s'o: if w.e multiply Eq. (13) by V t (p ,p f) Iv t (k,p' ), subtractthe 

result from Eq. (6), and use Eqs. (5), (7), (11) and (12), we 

find 

V t Cp ,p" ) 

Vt(k,pl) 

1
00 ' 

. +. 0 . dq 

This equation ,is valid for Vt(k,p') ,,0 but, again, k and 

p! ,enter this equation only as parameters and not as variables .. 

so the zeros of VtCk:pf) should not cause any essential problems. 

To make the separations between experimental and theoretical 

qUfu~tities complete in the expressions we have obtained thus far 

from potential theory, we must use tt Ck2) (obtained by solution 
M 

of the Lippmann-Schwinger equation with the model potential) 

in the expressions for the off-shell factors, rather than the 

exp,erimental model-independent t t Ck2) obtained from the phase 

shifts. 

Although we have dealt in potential theory, with the 

partial-wave t-matrix: analogous derivations can be made for 

the partial-vlave reaction or K-matrix that satisfies the 

equation 
.~ 
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whe,re P indicates a principal value integral. 

In a single-pole dominance model, or when a single term 

separable potential is inserted into the Lippmann-Sch'tTinger 

equation, the off-shell amplitude has the form of Eq. (3) and 

the separation is made simply by writing 

or 

(
. 2 

tt p,pf;k ) 

In this case, the relation between the off-shell behavior and 

the assumed separable potential form is particularly transparent. 

It can easily be shown that any separation of the form 

where Ft(p,pf ;k2) is real, is· constrained by unitarity to be 

of the form 
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where 2 
H.e. (p;k) is the multiplicative half-off-shell factor. 

Watson8 has shown that the off-shell amplitude 

2 t.e.(P,p';k) can. always be written in poten~ial theory as 

-for 2 
P and ,2 

P 

= 

positive. Here 

respectively, operator analytic and analytic for k2 in the 

complex plane cut from zero to infinity. In addition,all the 

(14) 

poles of 

2 
of P 

- 2 2 
t -(n p"k) in the variable k.e. ~, , (for positive values 

d P ,2) t f an _ mus appear as zeros 0 

2 . 
N.e.(P,p';k ) 'will have cut singularities for negative ,and 

negative p12. 

a S1LTU of separable terms which preserve the 'correct analyticity 

structure for N (p "p' 'k2 ) .e. ,- , and have shown that the resulting 

separable approximate amplitude gives results reasonably close 

- to the corresponding local potential amplitude. Also, it is 

known that if the potential is assumed to be separable, the 

as 

Lippmann-Schwinger equation always reduces to a set of algebraic 

equations, and· the solution can be displayed in closed form. ,If 

we consider a two-term non-local separable potential of the form 

where ~ and A2 are constant and ;t·~(p,p') has the symmetry 
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required for time-reversal invariance, it can be shown that 

the off-shell t-matrix has the form (14) with the same general 

analyticity properties. S~ch a separable potential is 

needed in a partial-wave where the phase shift changes sign. 

The obvious separation to be made for an ~~litude of 

the form (14) is 

= 
N

t
(P,P';k2) 

2 
Nt(k,k;k ) 

The single-pole dominance and single separable potential 

approaches are special cases of this more general approach. 

This separation is no more complicated for computational use 

thah the usual approaches in which an off-shell amplitude in the 

general N/D form is used. We simply use the form (15) when 

k
2 > ° and tt(k

2
) f 0, with tt(k

2
) obtained from the ex

perimental phase shifts. Then, when k
2 < ° or tt(k

2
)"= ° 

we revert to the usual form (14). 

Multiparticle scattering calculations are frequently done 

by fitting the on-shell data with a potential theory or a single-

pole dominance model. Then the resulting off-shell amplitude 

is inserted into the multiparticle scattering equations. In 

the range k2 < 0, where the on-shell amplitude is no more 

accessible to experiment than the off-shell amplitude, one must 

use the method originally chosen. But, for k2 > 0, we suggest 
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the use of the separation proposed herein, so that the experimental 

on-shell two-bodY data in the form of phase shifts, can be included 

in the calculati.ons, thus taking on-shell two-body scattering 

effects into account exactly. It is also possible that one might 

insert the known on-shell scattering data and some convenient form 

for the parameterization of th'e off-shell effects into a 

calculation involving off-shell amplitu,p'es. We might then fit 

_ the result to experiment and thereby obtain a parameterization 

of the full off-shell 8~plitude in a given partial wave. We 

further suggest the use of these separations to expose the differences 

in off-energy-shell behavior produced by various methods for 

calculation of the transition amplitude which have been constructed 

so that they yield the· same on-shell results. Such a comparison 

may be made by plotting the half-off-shell factors 

or 

vs p and the symmetrically off-shell factors 

or 

vs p at given values of k2 . Altern:~'tivelY, these factors can 

be studied as functions of 
2 

p = P 

distance off the energy'shell. 

where p measures the '. 

d 
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IV. DISPERSION RELATIONS FOR OFF-SHELL AMPLITUDES 

The non-dynamical constraints of analyticity and unitarity, -' 

coupled with the assumption that tp(p,pT ;s) goes (at worst) 
~, 

to a constant as lsi ~ 00, allow us to derive dispersion 

relations in the energy variable s = k2 for the full off-shell 

two-body partial-wave transition amplitude tt(p,p! ;s). We 

will show later that tt(p,p' ;s) goes to a constant as lsi ~ 00 

within the framework of potential theory, but for the moment 

'. we will take this as an added assumption, since we do not wish 

to introduce any dynamical postulates at this time. 

Let us consider a partial wave in which there are N 

bound states at energies s = - s . n 
We kno.? that the residue 

Rn(P'p!) of the ~th bound-state pole can be factored as 

= an(p) an(p!), where the bound-state form factor 
, 2 . 

a (p) = - (s + p ) 'It (p) and 'It (-0) is the bound-state n n n n ~ 
satisfies 

"rave function in momentum space. We then obtain the follOl'ling 

once-subtracte~ dispersion relation for t (p -0 T • s) : t ,~, . 

G
S -

- s 
n 

1m \ (p ,p! ; ~ ) 
d~ , (~ - s) (~ - sO) (16) 
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where the subtraction has been made at with 

the physical sheet of the complex energy Riemann sUrface. 

If we make the subtraction at So = 0, we find 

tt(p,p' ;s) = tt(p,p' ;0) + L 
n 

a (p) a (p') 
n n 

s + s n 

, sf + -' . 
, rr 

o ' 

Im tt(p,p' ;~) . d~ 

( g - s) S 

Cnsj 

on 

The off-shell unitarity relation (1) tells us that the subtraction 

constanttt(p,p' ;0) is real provided the half-off-shell amplitude 
1 

tt(p,S2;S) is finite for all p when s = '0. 

If, however, we assume that Im t (p,p' ;s) 4 0 
, t 

as 

along the ,real axis, we can make the subtraction at So = 00, 

whence 

n 

a (p) a (p') n n 
s + s 

'n 

d~ , 

and ,tt (p,p' ;00) is real by assumption. 

(18) 

Let us consider the possibility of making the subtraction 

at the position of a bound-state or resonance pole at s = s . 
p 

The residue of the pole will, of course, factor in the form 

/ J 
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R(p,p') = g(p) g(p'), where g(p) denotes the bound-state 

or resonance form factor. The resulting once-subtracted 

dispersion relation is 

g(p) g(p') 
s - s 

p 

+ 

L a (p) a (p ') 
+ n n 

s + s 
n n 

Imte. (p,p';~) 

(I; - s) (I; - s ) . p 

(

S - S-p ""\. 

-s - s ) n p 

ds . 

The plus sign in the first term holds if s 
p 

is chosen as a 

bound-state pole, in which case the sum in the second term is 

over the remaining bound-state poles. The minus sign in the 

first term is appropriate if s 
p 

is chosen as a resonance pole. 

The sign difference between the bound-state and resonance cases 

arises because the bound-state and resonance poles are, respectively 

inside and outside the large circular contour (indented to exclude 

the right hand unitarity cut) on the physical sheet of the complex 

energy Riemann surface, which was used to derive the dispersion 

relations (16) and (19). "This is beca1'ise the resonance poles 

lie on the second sheet of the energy variable s, just belOlv 

the physical region, which is reached by approaching the real 

s axis from above in the first, or physical, sheet. 

Let us consider the dispersion integral term in Eqs. (16) 

through (19). We shall have to digress slightly to discuss 
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some properties of the half-off-shell amplitudes .. Since 

·22 
t (p,k;k ) = t (k,p;k) by time-reversal invariance: we need 

t '. t 

only discuss the. former. Kowalski 10 has shown, from time-

reversal invariance and the off~shell unitarity relation that 

we may ali-lays write 

2 t (p,k;k ) t . 

with real. 
'11 

In addition, Sobel has shown that, based 

on the same general considerations of unitarity, time-reversal 

invariance, and conservation of angular momentum and parity which 

allow us to make the phase shift representation.of the on-shell 

amplitude j the half-off-shell amplitude can always be represented. 

by 

The real quasiphase parameter is such that 

A (k
2

;k2) = sin 0 (k2). Using the expression (4) for the on-
t· . t 

shell amplitude, we find 

whence , 
J 
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From the off-shell unitarity relation (1), we have 

(20) 

If we use Eq. (4), we find 

(21) 

or 

( 2) 2 (2 2 (f 2 2 1m \ p,p';k = - 11k 6.t l' ;k )6.t l' ;k). (22) 

Now, we insert the off-shell unitarity relation (1), or one, 

of its variations (20.) through (22), into the dispersion relations 

(16) through (19). Notice that, if we have a separable re-

presentation or approximation for the mUltiplicative half-off-

shell factor Ht(p;s) of the form Ht(p;s) = cxt(p) Bt(s), 

the dispersion integral term in Eqs. (16) through (19) will 

be separable in incident and outgoing relative momenta. In 

fact, Eq. (19) will provide, in this case, a representation 

for tt(p,p' ;s) that is a sum of separable terms. 
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Therefore, based only on the non-dynamical assumptions 
, 

of analyticity, unitarity, and asymptotic behavior, we have 

shown that the fUll off-shell transition amplitude_ t (~ pt 's) P., -, , 

is determined by the half-off-shellscattering data and bound-

state and resonance form factors, at least to within a subtraction 

constant. This is in contrast to the earlier methods, wherein 

we had to assume Vp.,(p,pf) to obtain tp.,(p,pf;S) [or else assume 

tp.,(p,pf ;s)] and then try the-resulting transition amplitude in 

calculations to see if vle had the correct form for t p., (p ,p! _; s) . 

Notice that this dispersion theoretic approach is valid for all 

values' of s, including s < O. Indeed, if we had the requisite 

half-off-shell scattering data, we might use the dispersion 

relations to assess the validity of approximating by a 

bound-state or resonance pole. 

Now we would like to introduce a new approximation to the 

off-shell transition amplitude based on this dispersion theoretic 

approach. First, let us 

given by crt = (2t + 1) 

note that the partial cross section 'is 

4n sin2 5 (s).- Unfortunately, the 
s t 

partial cross section cannot be extracted from experiment unless 

a phase shift analysis is done. However, suppose the p.,th 

partial wave dominates the scattering so that crE(s), vmich 

denotes the total elastic cross section, is given by 
) 

\ 
J 



( 

sin
2 

0 (s) 
t 

which, with Eq. (21), yields 

1m t t (p ,P I ; s) 
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s 

Thus, in the case where a given partial wave dominates the 

scattering, we may insert Eq. (23) into our dispersion relations 

and find that the partial-vlave amplitude in the dominant vlave 

is determined by the total elastic cross section, the quasiphase 

parameters, and bound-state and resonance form factors, at least to 

VIi thin a subtraction constant. 

We hope to apply this approximation to the low-energy 

pion-nucleon interaction, which is dominated by P-wave scattering. 

In that case, the P-wave multiplicative half-off-shell 

factor Hl(P;s) ~~d the nucleon and 3-3 resonance form factors 

can be determined from Chew-Low theory.5 Additionally; the 

Chew-Low theory tells us that Hl(P;S) factors as 

Hl(p;s) = a(p) $(s). If we subtract at the nucleon bound-state 

pole, Eq. (19) then leads to a t"\.,ro-term separable approximation 

to the off-shell rrN transition amplitude in the "D 

-'-11 "rave. 

Similarly, subtraction at the 3-3 resonance pole in Eq. (19) 

leads to a two-term separable approximation to the off-shell 

P7.- pion-nucleon t-wAtrix. 
)) 
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We may estimate the validity of this approximation on the 

energy shell by choosing an energy at which the phase shift is 

known and using ~his phase shift to obtain t t (s) from EQ.. (4). 

We may then use our approximation (23), which gives 

1 

since Ht(S2;S) ~ 1. Equation (24) can be inserted into the 

dispersion relations and the resulting value of tt(s) can be 

compared with the value known from phase shift anaiysis. 

(24) 

This single wave dominance model is slightly more general 

than the usual approximation in which a transition amplitude 

is approximated by a single pole in the dominant partial v~ve. 

It is hoped that such a scheme will be useful for approximating 

transition amplitudes for two-particle scattering processes for 

which phase shift analyses have not been carried out .. 

Let us now assume that we are operating within the dynamical 

framework of potential theory. The Lippmann-Schwinger equation (6) 

shows that tJ'.,(p,p' ;s) ~ Vt(p,p'), which is constant as a function 

of s, when s ~ ± 00. In other words, the Born approximation 

becomes exact as we go to very high energies. Then, the 

12 Sugavlara-Kanazawa theorem tells us that t (p,p' ;s) - constant 
t 

as lsi - 00 in any direction in the complex plane, justifying 

our assumption on the asymptotic behavior of t ("0 p' . s) t ~, , in 

potential theory. 

, 
) 
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We have shown that, in potential theory, 

te.(p,pl ;(0) = Ve.(p,pl), which is real when Ve.(p,pl') is real. 

Thus, when we deal with a real potential, we have 

2 2 
1m te.(P:pl;k ) .... 0 as k -+ 00 and ... -re may use Eq. (18). 

Incidentally, when as we may 

set p = pI and use the off-shell unitarity relation (1) to 

find 

1l 

2 
as 2 k -+ 00 • 

In potential theory, the half-off-shell multiplicative factor 

He.(P;S) which appears in Eqs. (20) and (21) is calculated 

from Eq. (12). If we have reason to believe that the phase 

shift in the e.th partial wave does not change sign, and 

the par,tial wave contains at most one bound state, we may hope 

to parameterize the partial-wave scattering amplitude by inserting 

a single term separable potential in t.1.e Lippmann-Sch1-ringer 

equation. We may fit the separable potential to the scattering 

length, effective range, and bound state' binding energy, if 

any. In this case 

and Eq. (18) gives a representation of te.(p,pl ;s), which is 

a sum of three separable terms. 
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V. CONCLUSION 

vie 'have, attempted to reduce the uncertainty in our 

knowledge of off~energy-shell two-body partial-wave transition 

amplitudes by introducing representations for, 'and a method of 

calculating: these amplitudes that directly incorpor.ate as 

much experimental data as 'possible int'b"the determination of 

these amplitudes. It is hoped that this approach might lead to 

more detailed and accurate knowledge of the off-energy-shell 

behavior of transition amplitudes. This knowledge would be 

useful for constructing good approximations to the off-shell 

amplitudes for use in the multiparticle scattering calculations 

which depend on these amplitudes for input. Also if we had 

detailed numericai information on the off-shell amplitude 

..I- (p -0 I • s) v.e, ,~ , we could use this information as irtput to the 

Lippmann-Schwinger equation and solve for the potential 

V.e,(p,pl ;s), which gives the experimental amplitude. This 

~erimentally determined potential might be compared with the 

relevant limit of some more fundamental description of the forces 

between elementary particles. 
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