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ABSTRACT

Representations of the two-body partial-wave transition

amplitudes of the form

/
i

oy o 2
t,(p,275%7) = F,(o,p"5k7) t,(x%) ,

| are displayed for several approaches to the calculation of theée
amplitudes. These representations separate the off-energy-shell
behavior from the better known and more experimentally accessible
oﬁ-shell behavior and they allow the insertion (for k2 > 0)

of the eiperimental on-shell t-matrix, expressed in terms of

the phase shift, into caiculations involving off-shell itransition
amplitudes. Such representations.permit us to compare the off-
shell behavior generated by two different approaches to the

calculation of off-shell amplitudes, both of which yield the same

on-shell amplitude.



Disﬁefsi0h7feprésentations férithe,fuli 5ff-shé1lw:

~ amplitude fz(pgp’gk?) are obtaihed indepgndent of any dynaﬁical
asspmptioﬁé. Use of the off-shell unita;ity relation in these
.dispersion,repreéentatiOQS'allows us'to_detefmine the full
off-shell amplitude from the haif-off—éhell amplitudes tg(p,k;kgjk
and thus from_the ekpérimental_qﬁasiphase ?araméters of,Sobel,J |
This ééﬁrbaéh ieads to .a hew’apﬁféximaﬁzbn-to the off¥éhell
'amﬁlitudé'ﬁseful'when the scattering is assumed to be dominated

by the contribution of a single partial wave.
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I. INTRODUCTION

A useful representation or approximation for the off-
shell two-body partial-wave transition amplitude te(p,p‘;kg)
should satisfy at least the following general non-dynamical

requirements:

() Reduction: It must reduce to the known form of t&(kz)

on the energy shell;

(v) Uniterity: Tt must satisfy two-particle elastic unitarity

on end off the energy shell,l thet is
. 2 - 2y . * 4.2
In t,(p,p"557) = - Z k%, (p,k5k7) ¢, (,07557) 5 (1)

(¢) Anelyticity: It ghould.be'an analybic function of %%, with
the only singularities in k2 being the right—hand unitarity
cut.ahd bound~state or resonance poles. It should be analytic

in p(p') for ‘pe >0 (p'g > 0) and it should have singularities
for p2 <0 and p’g < 0 which become the left-hand or driving

singularities of the on-shell amplitudeg.when p2 = p'2 = k2 H

(d) Time-Reversal: . It should satisfy time-reversal invariance,
g 2 2 '
thet is t (p,p'3k") =t (p',B3k")

In addition, the limitations of available electronic

computers make it desirable to have a separable representation
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or approximation for the off-energyeshéll‘traﬁsition amplitude
for use in multiparticle'séattering calculations. wThat.;s,
 we would like to have

2 - N 2
5, (0,0 5K2) =)oy (0562) 7, (62 0, (0" 5%3)
. , . i - o

S0 ﬁhat the off-shell dmplitudenwould be-sepgrablé in incident
and'outgoingvfelativé momenta.. | |

We must stress that very liﬁfle ié known about tﬁé;off-
: energy-éhelivbehavior-of transition amplitudes. Perhaps the
- best experimentél test of the off-shell behavidr of ﬁwo—body
amplitudes is p;p bremsstrahlung, but the experimental data
is.SPérse'aﬁd rather difficult'to interpret. |

Throughout this papef we use the coh&entions of Goldberger
and Wé,tson,5 and uhits in which 4 = 2m = 1, so fhat k2 = s,
the c.m. eneréy._ For simplicity, we consider only the non-
relativistic éingle-channel'case. |

We commence, in Sec. II, with alreviéw and some comments
on the usual methods of caléulating off-shell amplitudes, in
' order to pr§vide background and motivation for our work. In
Sec. III we investigate representafions of the form
‘ta(p,p’;kz) = Fg(p,p';kz) t&(kg) for several previous approaches
to the calculatibn of off-shell amplitudes.u Finally, in Sec. IV,
we present a method of calculating the full off-shell amplitude

frdm a Cauchy formula incorporating the off-shell unitarity
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relation. We shall see that this allows the full off-shell
amplitude to be depermined (except, perhaps, for a subtraction
constant) in terms of the half-off-shell amélitudes and the
bound-state wave functioﬁs. Thus, in the absence of bound
states, the full off-shell amplitude 1s determined almost
"completely by experimental quantities, i.e., the phase shifts
and guasiphase parameters. We also obtain an approximation for
the off-shell amplitude useful when one partial wave dominates

the scattering.



e
IT. BARLIER APPROACHES TO CALCULATION
’ QF OFF -SHELL AMPLITUDES _ '

In fﬁe pbtential.theory>ap§r0ach to the calculation of
'Off-shell transition amplitudes, unitarify is enforéed by
putting'a'potential representing the force between the inter?_
écting particles into the Scﬁrbdinger’equatioﬁ or, equivalently; -
into thé Lippmann-Schwinger equation for the.transition ampli-
tude. Timefreveréal invariance isﬁensuréd by demanding thét ‘
the porential4havé'the symmetry ”Vz(p,iﬁ)ﬁ;lvz(p’,p). .Usually, -
a loéal bofential form or a non-local separable potential form
is chosen to parameterize the on-ghell data; This chosen form .
is fitted.numgriéally to thé on-sheil amﬁiitude,‘which can be
rexpréssed in terms of the expérimental phasevshifts; Then the
?oténtial form is inserted into fhe Lippmann-Schwinger equation;
which defines a uﬁique continugtion of the transition'amplitude

'

off the energy shell. ' Thus, the potential form completely determines

the fovshell behavior of'the resultihg amplitude, and assumption of
a poteﬁtiai form to fit the on-shell data implies assumption of

the off-shell behavior ~of the amplitude. This is obviously a
'highly arbitrary frocédure since many potential forms (some of
which may lead to very different off-shell behaviorS)can be usedv

to fit the on-shell data. All that can 5e done is to try wvarious
potential forms which fit the on-shell-data in, for example,

nuclear-matter or multiparticle-scattering calculations and see
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which form gives an off-shell behavior that coincides most closely

with experiment.

Potential theory is really onlf&a-pafameterization of

the scattering amplitude, because we have only a posteriori
knowledge of the potential. That is, the correct potential is
the one which leads to the experimentally measured tfansition
amplitudé. Therefore, at this stage in our knowledge, there is
no reason for preferring a local potential parameterizétion to a
separable potential parameferization when the separable potential
approach may be more convenientf

Also, within the usual potential theory approach to the
lcalculation of off-shell amplitudes, there is no convenient way
of isolating the different off-shell behavior given by two
‘different potential'forms, both of which fit the same on-shell
data.

The other main approach to the calculation of off~shell
transition amplitudes is the single-pole dominance model wherein
we assume that the gth partial-wave is dominated by a singlev
bound state or resonance pole. We say single-pﬁle dominance
because the introduction of more than one pole term in a given
partial wave leads to a non-unitary transition amplitude in this
approach.

Lovelace shows that the residues of bound-state or

resonance poles in the partial-wave transition amplitudes factor
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in the incident'and outgoing relattve momenta.j ‘Thus, in the.
vicinity of a bognd-state or resonance pole; we may write the
'transition amplitude in a separable ferm. When & single pole
dominates a given partial mame, it is frequently assumed that
the resulting separabie'form describes‘the-tranSition amplitude
for all enemgies in that partial-wave, although it is.stmietly'
true only for energies near the bound state or resonance energy.
Therefore, in the eingle—pole dominance modei we write

- tg(p,p';ke) 2 ) )

D&(k2)

where a&(p)t is the boﬁnd-state of'resemance form factor.  Also,
Dé(kg) is zero at tme bound-state or resenance pole and is
chosen sueh that t (p,n';kz)' satisfies off-shell uﬁitarity;
In the case of a bound state, the form factor a.(p) can te
related to the bound-state wave function in momentum space.

In particular,.Lovelacej notes that the on-shell transition

amplitude can be written in the (unitary) N/D form,

o 2y 4.2 :
8,07 = M /D, !
and
o 2 . 2
: dq. q° N, (%)
2 3
v - 1 - ) (2)
Pl )_ | %2 - q° + ie |

0
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s

Here Nt(kg) has only left-hand singularitiés and 'DL(kg) has
only right—hand singularities. ILovelace next points.out that
the off-shell amplitude has only a right-hand cut in 12 and
that the bound—state and resonance form factors a&(p) satisfy
dispersion relations in. p2 -with only a left-hand cut.. He

then suggests that the off-shell transition amplitude can be

written as

)

| - N (p%) N, (p'?)
£, (0,07 55°) [L : |

’ ~ (3)
D, (x%)
vhere D£(k2) is given by Eq. (2),'Erovid¢d that the partiai wave
is dominated by a bound state or resonance.

We obtain an identical form for the offfshell amplitude
by introducing a single term separable potential‘of the form
V&(p,p') = g£<P) gx(P') into the Iipmmn -Schwinger eéuation,
so that the introduction of a single term separable potential
~and Lovelace's form of the single—po;é dominance model are
completely equivalent. ‘Pafenthetically, it can be shown that
if we choose a single separable potential form g&(k) such that
gtg(k) = Bt(k?) where B&(kz) is the Born term in the integral
equation for N;(kz), then the LpgpmannfSchwinggr equation gives
a form for tz(kg) identical to that obtained in the determinantal
approximation to the. N/D~ equations. However, if we choose

gtg(k) = N&(kg) as in Lovelace's approach, and then fit the
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vresulting”fgim‘fér ‘ﬁt(kg)v fo the qn—shéll'experimentai data,
we will achieve aparameterization of N&(ke) in theigﬁggg
6n-shell'partialywave SCattefingsamplitude.

This apﬁroach has the drawback that N&(kz) mist be
of definite'sign for k° > 0 [gz(k) mist be real] to:avoid
~the inﬁrdduction of spurious.cuts into the amplitudé. Further,
" when we deman@ that Nz(kg)‘ be of définite sign for K2 > O;
we findvthat we éannot'réproduce a phase shift,thgf.changes
sign. It has been suggested that a sign-changing ?haée shift
" might be repréducéd by a single ﬁerm sepgrabie potential with
an explicit energy deﬁendeﬂce.v However, it‘is readily shown

that separable potentials of the form
- -1
V,(o,p"k%) = (k%) g,(p) g,(p")

do not lead‘to transition amplitudes that satisfy-the_reéuirements
Hof'analyticity and. unitafity. R
thice that the singie—pole dominance m&del is also only

a parameterization of thé on- and off-shell behavior of the
transition amplitude, because of the arbitrary assumption that

the form of the amplitude valid near a pole is valid at ali
energies. In addition, the ehoice of the form factors . az(p),
which determine the off-shell behavior, is quite arbitrary at

. our present state of knowledge. For~éxample,'the bound-state

'y
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form factors depend on the poorly known moﬁentumésPace wave
functions of the bound states.

The point of this review is to show that the available
methods for calculating off-shell transition ampiitudes lead,
in practice, merely to bases for the paramgterization of the
off-shell amplitudes consistent with the four general require-
ments we set down earlier. The theme of our work, then, is
that approaches which allow us to reduce the uncertainty in
our knowledge of off-shell scattering amplitﬁdgs by directly
- incorporating a maximum of experimental information into the
methods for calculating or representing these bff-shell amplitudes

will be valuable supplements to the present trial-and-error

approaches.



- -10-
TIT. SEPARATION OF OFF-SHELL BEHAVIOR

It seemé_worthwhile to have repreéentatiqns or parameter- .
izations for the off-shell partial¥wave transition amplitude of

Wy

the form tt(p,p';ke) = Ft(p,p';kz) tz(kg), where | Fg(k,k;ke) =1

. and time-reversal invariance demands that Fz(p,p';kg) = F£(p',p;k2).

The value of such representations is threéfold:-

.(a).-Théy‘enable us to. separate the off—sﬁeli behavior of the
transition amplitude from the on-shell beh@vior, which is better
known and mbre acceséible td:experimenﬁ.: That 1s, they perﬁit
us to study the off—Sheli.behavior of ampiitudeé independently,

to some extent, of their on-shell'behavior.
" (v) They allow us to include thezexperimental data from on-shell
tWo-body‘scattefing in calculations involving off-shell transition

amplitudes by writing

fe w5, stn s, (), (4)

for k2->‘0.' Thus, - we can take on-shell. two-body scattering
into.account4exactlz in such calcuwlations, and the only

approximation will lie in the treatment of off-shell effects
and the region x° < 0.

(¢) They permit us to compare the off-energy-shell behaviors



-11-

produced by.two different approaches ﬁo the calculation of
off-energy-shell amplitudes, both of whiéh‘yield the same on-
shell amplitude.. This would be useful in illuminating, for
example, the differences between‘the various potential forms
which have been used to fit the nucleon-nucleon scattering
data.

The sepafatidns are useful for k- > 0, where ty(kz)
is determined.by theléxperimental phase shifts. However, if
we aséume that the oneshe;l t-matrix is known from some other
" theory, the& are good for all ke.

the that, since one of our main aims is to isolate the
different off-shell behaviors given by two mefhods that yield
the same on—éhell amplitude, the explicit appearance of the on-
shell amplitude in somé of our expressions for the "separations”
is not an important drawback. |

Tt is clear that the off-shell factor F a(p,p' ;kg) ha.s
poles as a function of k2 at the zeros of fhe on-shell
amplitude 1t &(kg). This follows from the facts that if
te(kog) =0, tL(kE) cen be represented as

t&(kg) = t&’(koe) (1 - k02)

)

for k2 ~%k ., and

......
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Tn potential theory, the transition amplitude is obtained.
from the Lippmann-Schwinger-equation'- '

t,(p'5x%) =V, (0p") + | dd =i V,(p,a) t,(q,p" sk

2
2 . )
Jo. kK -mam +ie

| | ()

Now, suppose we know that _t&(kg) has' 'n zeros at values of
k2 denoted by kig. Let.us write the off-energy-shell factor .
Fy(p,p’;kg) in the form |
= oy Lo /R s s o
F,(p,p'3x7) = X, (p,p"5x7)/ T (k" - x7) . (7)
_ . 7 i1 . »
We obtain the following integral equation for XL(p,p';k2)’ directly:

from the. Lippmann-Schwinger equation:

v, (p,p") n
2 ? . : 2 2
X,(p,'5%%) = S—m— T (x" - x°)
t (x7) i=1
L .
! . .
N g° -
+ Ay v, (pa) X,(a,p"5k7) -
: JO‘ k™ - q + 1€ B s .
L : (8)
2 N 2 2
At values of k= near the zero of t&(k ) located at k° = kj 5

where t&(ka) can-be represented as té(ke) = t&'(kjg) (k2 - kjc),
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the inhomogeneous term in the integral equation (8) becomes

V&(P:P')

n .
— T (k2 - kiz)
tL’(k. ) i=1

i#J

[
-

J

while the full off-shell amplitude is

-,
X,(p,p"5x7)

- 2
't&(P)P,Sk ) = n

I (k2 - k,
. L

=1
if]

2
t
pLA(kj ) , for X% ~k,

P J

)

AFurtheimore, Kowalski6 has shown that the transition

amplitude is the solution to a non-singular integral egquation

obtained by Fredholm reduction from the Lippmenn-Schwinger

equation. This equation is

v, (p,k)
T, 2 _ L’ ‘ t . 2
v, (p,k) v, (k,p")
vV (p,p') - —= 2
A Vz(k,k)

00

+

+

2 2
dq A&(p,q;k ) tL(q,p';k )
5 _

where the non-singular kernel is

> [ ¥ (0,) ¥, (6,0)
)
A, (p,25%7) = ;5—%—55 LV%(P’q) - &V&(k,k)z |

2 2

(9)

(10)



~1ha

Kowalski also shoWs that the half-off-shell emplitude is

given exactly by tZ(p,k;ke) = fZ(p,k) tz(kg), where " fﬁ(?,k)
satisfies a hbn—singﬁlar integral equation with the kernel (10),

" namely, .

z(p,k) 4 (e e
g(P)k) = "Yj;i;y ’ dg Az(P:Qik )sz(Q:k)
0 . .

These equations are time-reversal invariant if,‘Vz(p,p’)v= Vz(p’,p).
'NdyesYlhag.shown that the zeros of Vz(k,k) cause no essential

problems, since k enters these equations only as a parameter

and not as a variable.. ' .

‘Let us write the half-off-shell amplitude tﬂ(p,k;kg) as
- 2 2, .
tz(P)k5k )A= Hz(P5k ) tz(k ) ’ (11)

where F3<P;k;k2) = HZ(Pskg)-»and‘ Hz(k;ke)‘= 1. If we cast the

half-off-shell factor Hz(p;ke) in the form

H(p5k") = n ,(p3k°) Hl(k - k, %), | (12)
. : i=1 . . '

we obtain an integral equaﬁion for hz(p;kg):

V,(p,k) . n ' o
2 AL 2 2 . 2 2
h ,(p3k=) = I (x° -k.%) +| dq A,(p,a:k7) h,(a;k7) ,
ALELS V(5 x) i1 i A ) | y)
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immediately from Kowalski's work. Also, if we insert Egs. (11)
and (12) in Eq. (9) and use Eq. (5) and Eq. (7) we find the

following equation for X&(p,p’jkg):

v, (2,k%)

2
t.

i}

L,
X&(p,p‘;k )

-

!
i=1 ' v, (p,%) v, (x,p") |
L

(2

s

2
- ki )

_(oo

2 2y
fj dg A, (p,a3k7) X, (a,p'3k%) .
0

We see that Xz(p,pfgke)‘"and hz(p;ke) satisfy non-singuler
integral equations with the same kernel. Less convenient
separations can be made by starting with Kowalski‘s6 Egs. (6)
and (7).

Finally, we present a way of determining Xﬁ(p,p';kg)
that does not explicitly involve the on-shell t-matrix. Suppose
we start with the Lippmenn-Schwinger equation (6) for the off-

shell amplitude. We also know that

.
2
& (k,p'5k°) = V,(k,p7) + | dg —— v,(x,q) t,(0,p"5%0) ;
A L 2 2 .. 2 A
; 0 k™ =g + i€
(13)
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so, if we multiply Eq. (13) by Vz(p,p')/V£(k,P'); subtract the

result from Eg. (6), and use Eés. (5), (7), (11) dnd (12), we

find
| v (p,p")
a2y 4 o2y
X, (p,2"%%) = 7,5 b, (p*5k%)
S dg — v, (p,q)
Jo kg-q2'+ie ¢

V,6,0") V,(5,9)
v ‘V‘?’(k;p’. )

o,
Xﬁ(q,p';k,) .

This equation,is valid for V&(k,p’) #.0 but, again, k aﬁd

zﬁn,enﬁer this équatidn oniy as parameters and hot as.#ariables,

S0 thg zeros of Vz(k,ﬁ') should nqt cause any essential‘problems.
To make the separations between experimental and theoretical

guantities complete in the expressions we have obtained thﬁs far

from potential theory, we must use t (kgj (obtained Ey solution

‘M

of the Lippmann-Schwinger equation with the model potential)
in the expressions for the off-shell facforé; rather than the
exgerimental model-independent t&(kz) obtained from the phase
shifts. | |

Although we have dealt in potential theory, with the
partial-wave t-matrix, analoéous derivatioﬁs can be made for
the partial-wave reaction or K-matrix that satisfies the

equation
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2
. ) 2
K, (p,0"3k%) =V (p,p') + 7P dg —5——5 V,(p,q) X,(a,p" k") ,
L O L k2 2 3 )
- q
Y .
where P indicates a principal value integral.
In a single-pole dominance model, or when a single term
separable yotential is inserted into the Lippmenn-Schwinger

equation, the off-shell amplitude has the form of Eq. (3) and

the separation is made simply by writing

v,%) w,(0®)]2

% (o, ';kz - t (x°)
(252" 5K7) Nz(k2> ()
2 g,(p) o gg(p')

t,(p,0"3x%) = 2, t, (x°) ACE

-In this case, the relation between the off-shell behavior and
the assumed separable potential form is particularly transparent.

It can easily be shown that any separation of the form
a2y 2 2
b, (sp'5k7) = F(p,p"5k7) £, (x7)

where F&(p,p';kz) is real, is constrained by unifarity to be

of the form

2 2y o 2y
F,(p,p'5k7) = H,(p3x7) H,(p"3%7) ,
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where H&(p;kg)_ is the multiplicative half-off~shellvfactorx
Watsoh8,has shown that the‘off-sheil amplitude.

ta(p,p’;kg) can. always be written in'poténtial'theory as
.2 2\ .2 »
t,(0,2"5x%) = N (p,p"5k7)/D, (k%) , : (1)

for p2 and ;p'g posifive. Here ﬁt(p;p';kg) ‘and’ Dg(kg) are,
respéctively,,operator.énalyticvandvanalyfié for ke' in the
complex plane cut from égro to infinity. In addition,-a}i the-
poles of" f&(é,p’;kg) in the varisble k° (for po;itive velues
of p2 and p’z) ‘must appear as zeros of Dﬂ(kg),f and
N%(p,p';kz):‘will have cut singularitie; for negative p2 and.
_négative p’g. Wong and Zambotti9 have expanded N&(p,p’;kg) as
a.sum of separable terms which preserve the correct analyticity 4
structure for Nz(p;p’;kz) and have shown that the rgsultihg
separable apprbximate amplitudé gives results reasonably close

- to the'cqrresponding local potehtial amplitude. Also, it is
xnown that if the potentiaivis assumed té be separable, the
iippmann-Schwinger equafion always reduces to a set of algebraic
equafions, and- the solution éan be‘displayed in closed form. .If

we consider a two-term non-lccal separable potential of the form

T,(00") = a E,(0) £,(01) = Ay b (R) B (2')

.....

wheére A and A, are constant and Vz(p,p’) has the symmetry
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required for time-reversal invariance, it can be shown that

the off-shell t-matrix has the form (1L4) with the same general

analyticity properties. Such a separable potential is

needed in a partial-wave where the phase shift changes sign.
The obvious separation to be made for an amplitude of

the form (14) is

(15)

2
tL(P)P' 3k ) =

AThe single-pole dominance and single separable potential
approaches are special cases of this more general approach.
This‘separation is no more complicated for computational use
then the usﬁal apbroaches in which an off-shell amplitude in the
general N/D form is used. We simply use the form (15) when

x° >0 and t&(kg) £ 0, with tt(kz) obtained from the ex-
perimental phase shifts. Then, when K2 <0 or t£(k2).= 0

we revert to the usual form (14).

Multiparticle scattering calgulations are frequently done
by fitting the on-shell data with a potential theory or a single-
pole dominance model. Then the resulting off-shell amplitude
is inserted into the multiparticle scattering equations. In
the range k2 < 0, where the on-shell amplitude is no more

accessible to experiment than the off-shell amplitude, one must

2 "
use the method originally chosen. But, for k >0, we suggest
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the ﬁsé of the'separation proposéd herein,_so thatvthe experimental
on-shell two-body date in the form of phase shifté,can be included
in the calculations, thus taking on—shéll two-body scattering
effects into account exactly. It is also possible that one might
insert the~known.on-shéll scattering data and some convenient form
for the parameterization of the off-shell effects into a
caiculatioh involving off—shell.amplitudeé.' We might then fit

_the result to experiment and thereby obtain a parameterization

of the full off-shell amplitude in a given partial wave. We
further suggest theﬁuée of these separations to expose the differences
in off—energy—shgll behavior produced by various methods for
calculation of the transition amplitude which have been constr*acﬁéd
so that they yield the. same on-sheil results. Such a comparison .

may be made by'plotting the half-off-shell factors
2 - 2
H,(p3k") or  h (p;k%)
vs p and ﬁhe éymmetrically'off-shell factors

| 2y 2
F,(p,p;k")  or X (p,p3k7)

.....

vs p at glven values of k2. Alternatively, these factors can

be studied as functions of p = p2 - kg, where p measures the

~ distance off the energy'shell.‘
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IV. DISPERSION RELATIONS FOR OFF~-SHELL AMPLITUDES

J

The.non-dynamical'constraints of anélyticity and unitarity,
coupled with the-assumption that t&(p,p’;s)' goes (at worst)
to a constant as |s]| » ®, allow us to derive dispersion
relations in the ehergy variable s = ke for thé full off-shell
two-body partial-wave transition amplitude tz(p,p’;s). We
‘will show later.that ta(p,p';s) goes to a constant as |s| - =
within the framework of potential theory, but for the moment
- we will take this as an added assumpfion, since we do not wish
to introduée any dynamical postulates at this time.

Let us consider a pértial-wave in which there are XN
béund states at eﬁergies S =-5. We know5 that the residue
Rn(p,p') of the gﬁh bound-~state pole can be factored as
Rn(p?p’) = an(p) an(p'), where the bound-state form factor
satisfies an(p) - - (sn + p2>-Wn(P) and Wh(p) is the bound-state

wave function in momentum space. We then obtain the following

once-subtracted dispersion relation for tz(p,p’;s):

a (d) 2 (') /s -5, N\
. n n : 0
t&(p,p’;S) = tg(p,p’;so)_+§: s T s <:i P j)
. ) n n n 0

N In t&(p,p’;é)

rsmsg) T W TE A
) O SO

a , (16)
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where the subtraction has been made at s = 5o with Sy on
" the physical sheet of the complex energy Riémann surface.

If we make theISubtraction at SO'= 0, ‘we find

. a(p)a(n'>
t,(p,p"58) = #&(p,p';o) + 2L_ s+ s, <: ;>

n

Im tﬁ(p,p';é) . gg
(& -5) £

A lo

(7
0
. The off—shell unltarlty relatlon (1) tells us thet the subtraction
constant t (p,p 50) -is real provided thé half-off-shell émplitude
t&(p,sl;s) is finite for all p when s = O.

| | If, however, we assume that Im tz(p,p';s) ~ 0 as 5 > e
along theafeal axis, we can make the subtraction at S = ®

whence

| L E: 2 (p) a (p")
t,(psp"ss) = £, (0,07 52) + . S s,

Im t,(p,p"36) .
. R R

(18)

and 4t&(p,p';m) is real by'assumption.
Let us cbnsider the possibility of making the subtraction

at the position of a bound-state or resonance pole at s = sp.

The residue of the pole will, of course, factor in the form

/
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R(p,p") = g(p) g(p'), where g(p) denotes the bound-state
or resonance form factor. The resulting once-subtracfed

dispersion relation is

' \ —a (p)a(p) ,/s-s -
t (p,ptss) = + ERLERY E: 2 ke p )
L v S - S 5 + s -s_ - s_J
o) n n n D

£

' (s - sp) ” Im t£<P;P'3§)
M f (E-s) (€ -5

~~
}_.l

\O

S

0

- The plus sign in the first term holds ifv sP i1s chosen as.a
bound-state pole, in which case the sum in the second term is
" over the remaining bound-stéte poles. The‘minus sign in the
first term is appropriate if sp 1s chosen as a resonance pole.
The sign difference between the bound-state and resonance cases
ariées because the bound-state and resonance poles are, respectively
inside and outside the large circular contour (indented to exclude
the right hand unitarity cut) on the physical sheet of the complex
energy Riemann surface, which was used to derive the dispersion
relations (16) and (19). 'This is becalise the resonance poles
1ie on the second sheet of the ehergy variable s, Jjust below
the physical region, which is reached by approaching the rgal
s axis from above in the first, or physical, sheet.

Let us consider the dispersion integral term in Egs. (16)

through (19). We shall have to digress slightly to discuss
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some-propefties of the half-off;shell amplitudes. - Since
%L(P;k;ke)‘= tt(k,p;kg) by time-reversal invariange, we need
- only discﬁss thq formérf Kéwalskilo‘has'shown, from timej
reversal invariance aﬁd the‘ofoShell unitarity relation that

we may always write
2 2y . .2
b, (okskT) = H, (p3kT) ¢, (x7)

M has shown that, based

with H&(p;k%) real. In addition, Sobei
~ on the same general'ccnSideratioﬁé of unita%ity; time-reveﬁsal
invariance, and conservation of angular.momentuﬁ and parity which
allow us to.make the.phaSe sﬁift repreéentation;of the on-shell
amplitude; the half-off-shell amplitude can always be represented
by | |

6, (o) = - B el 5, ()] 4 (077
The real.quasiphase parametér @%(pgske) is such that
Ai(k?;kz) = sinnaa(ke). Usipg the expression (4) for the on-

shell amplitude, we find

+

| t&(p,kskg) = [4%(p2;k2)/sin sz(kzjl u&(k2> )

whence
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" (p;k°) = z>(p2;k2)/sin 6&(k2) .

L I

From the off-shell unitarity relation (1), we have

2, KoL D 2.2 L2
Im b, (p,p'5%°) = - 5 xH(p5k7) [£,(x7)] H (p'5x%) . (20)
If we use Eq. (4), we find
- N - Sy~ Y- 2 y 2

In t,(p,p"3k%) = - = HL(_P’k ).sin® 8 (%) H (p'3%%) (21)
or

, P2y L 2 2.2 2.2

;I-m t&(P:P 3k7) = n A&(P 3k >'AL(P k) . , (22}

Now, we iﬁsertvthe off-shell unitarity relation (1), or one.

of its variations (20.) through (22), into the dispersion relations
(16) through (19). Notice that, if we have a separable re-
presentation or approximation for the miultiplicative half-off-
shell factor H&(p;s) of the form H&(p;s) = a&(p) B&(S),

the diépersioﬁ integral term in Egs. (16) through (19) will

be separable in incident and outgoing relative momenta. In

fact, Eq. (19) will provide, in this case, a representation

for tL(p,p';s) that is a sum of separable terms.
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Therefofe, bésed only on the non—dynamicallassumptioﬁsv
'of'anaiyticity, unitarity, and asymptotic behavior; we have
' shown that the N1l off-shell transition amplitude. t&(p,pf;s)
is determined b& the half—off-shell'scattering date and bound-
state and fesonanée form factors, at least to within a subtracﬁion
constant. This is in contrast to the earlier methodé; vwherein
we had to assume Vﬁ(p,pf) to obtain tL(p,p';s) _[of else assume
t&(p,p‘ :5)) and ther; try the resulting transition amplitude in
calculations»fo See if wewhéd the'correct form for tz(p,p’;s),
Notice that this dispersion theoretic apﬁroaéh'is valid for all
values of s, including s < O; Iﬁdeed; if we had the requisite
haif-off-shell-scattering data, we might use the dispersion
relationsito assess thg validity of épprqximating t;(p,p’;s) by a
bound-state or resonance pole.

‘Now we would like to introduce a new approXimation to the
off-shell trénsition amplitude based on thié dispersion theoretic
apprééch;, First,_let us note that the partial cross section ‘is
given by o, = (24 N 1) %ﬂ sin® Sﬁ(s).' Unfortunately, the
partial cross section cannot be extracted from experiment unless
a phase shift analysis:is done. Howevér, suppose thé &th
partial'wave dominates the scattering so thaf cE(s), vhich
denotes the total elastic cross section, is given by

OE(S) ~ cz(s). Then, we find that
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L2 s
sin 5&(S> ~ m O'E(S) 3

which, with Eq. (21), yields

1

- g2

2" (22 + 1) H,(pss) op(s) H,(p'38) . (23)

Im.fz(p,p’;S) =
Thus, in the case where a given partial wave dominates the
scatte?ing, we may insert Eq. (23) into our dispersion relations
and find that the partial-wave amplitude in the dominant wave
. is determined by the total elastic cross section, the quasiphase
parameters, and bound-state and resonance form factors, at least to
within a subtfaction constant.

We hope to apply this approximation to the low—energy'
plon-nucleon interaction, which 1s dominated by P-wave scattering.
In that case, the P-wave multiplicative half-off-shell
factor Hl(p;s) and the nucleon and 3-3 resonance form factors
can be determined from Chew-Low theory.5 Additionally, the
Chew-Low theory tells us that Hl(p;s) factors as
Hl(p;s) = a(p) g(s). If we subtract at the nucleon bound-state
pole, Eq. (19) then leads to a two-term separable approximation
to the off-shell xN +transition amplitude in the Pll wave.
Similarly, subtraction at the 3-3 resonance pole in Eq. (19)
leads to a two-term separable approximation to the off-shell

P75' pion-nucleon t-matrix.
J
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We may estimate\the validity of this approximation on the
energy she;l by choosing an energy at which the phase shift is
known and using ﬁhis phase shift to obtain 'tﬁ(s) .from Eo. (4).
We may then use our approximation (23), which gives

im tﬂ(s) = . oE(s) y | , (24)

1 o
since H£(325$) 1. Equation (2k) can be inserted into the

dispersion relations and the resulting value of tt(s) can be
’ compareé with the value known from phase Shift analysis.

This single ﬁave dominance model is slightly more general
than the usval approximation in which a transition amplitudev
is gpproximated by a singié-pole in the dominant partial wave.
| It is hoped that such a scheme will be useful for approximating
transition amplitudes for tWo—particle'scattering'processes for
which phase shiftvanalysés ha&e ﬁot been carried out.

Let us now assume that we are operating within the dynamical
framework of potential theory. The Lippmann-Schwinger equétign (6)
- shows that .tL(p,p';s) e-Vz(p,p'), which is constant as a function

of s, when s - * . In other words, the Born approximation
becomes exact as we go ﬁo very high energies. Then; the
Sugawara-Kanazawalg theorem tells us that tz(p,p’;s) - constant
asa Is] - o in anyvdirection in the complex plane, Justifying

our assumption on the asymptotic behavior of tp(p,p';s) in

potential theory.



-29--

We have shown that, in potential theory,
t&(p,p'5m) = V&(p,p'), which is real when Vz(p,p') is real.
~ Thus, when we deal with a real potential, we have
Im t&(p,p’;kg) 50 as k° - w and we may use Eq. (18).
Incidentally, when Im t&(p,p‘;kg) ~0 as k- ;.m we may

et p =p' and use the off-shell uwnitarity relation (1) to

[ez]

]

ind

- -’21 k ]tﬁ(p,k;kg)lc»o a5 k° o« .
In potential theory, the half-off-shell multiplicative factor
H&(p;s) which appears in Egs. (20) and (21) is calculated |

from Eq. (12). If we have reason to believe that the phase

shift in the 4th partial wave does not change sign, and

the partial wave contains at.most one bound state, we may hope

to parameterize the partial-wave scattering amplitude by inserting»
s single term separable potential inthe Lippmann-Schwinger
eguation. We may fitvthe separable potential to the scattering

length, effective range, and bound state binding energy, if

any. In this case

v, (p,p') = ng,(p) g,(2"), H, (pss) - g&(p)/g&(s%)'

o™

and Eq. (18) gives a representation of t&(p,p’;s), which is

g sum of three separable terms.
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V.. CONCLUSION

We'have,attempted'to reduce the uncertainty in our
knowledge of off-energy-shell two-body paftial—wave transition’
amplitudes by introducing representé.tions for, and a method of )

-calculating, these amplitudes that directly incorpbpate as

ruch experimehtal data as ‘possible into

the determination of
these amplitudes. It is hoped_that this approach might lead to
mofe detailed and accurate knowledge of the off—énergyéshell

. behavior of transition amplitudes. This knowledge would be
useful for constructing good approximations to the.off—shell
amplitudes for use in the multiparticle scattering calculatioﬁs
which depénd on these amplitudes for input. Also if we had
detailed numerical information on the off-shell amplitude
t&(p,p’;s) we could‘ﬁse this information as input to the
Lippmann—Schwiﬁger equation and sol&e for éhe potential

Vﬁ(p,p’;s), which gives the experimental amplitude} This

'exggrimentally determined potential might belcompared with the

relevant limit of some more fundamental description of the forces

between elementary particles.

<
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