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ABSTRACT 
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The theory of se~uential decays of an unstable system is 

studied. Examples include the se~uential emission of two or more 

photons by an excited atom which reaches its ground state via one or 

more intermediate leveis} and the decay of an unstable particle into 

other unstable particles. To describe these phenomena} a factorization 

of the Green's function is introduced. This leads to a simple} and 

intuitively obvious} description of se~uential decays. It also makes 

possible an assessment of the accuracy of this description. 
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I. INTRODUCTION 

We consider the quantum mechanical description of a system 

undergoing a sequence of decays. An example of this is provided by the 

de-excitation of an atom radiating in sequence two or more photons. 

Other examples include the study of angular correlations in successive 

nuclear decays and the decay of an unstable daughter in particle physics. 

Previous treatments of these phenomena have tended to be 

heuristic or have introduced approximations at the outset which have 

obscured many of the subtle features of sequential decays. In this 

. paper we shall apply the Green's function method used by Goldberger 

and watsonl for single:"step decays to a general description of multi

step decay processes. Somewhat related techniques have been used by 

. 2 ') 4 
. Reff} by KrolJ, and by Goldberger and Watson for specific cases of 

two-step decays. An alternate formulation of the decay problem has 

been given recently by Mower. 5 His method treats as "closely coupled" 

all the states involved in a decay. This leads to the algebraic problem 

of inversion of a matrix whose dimensionality is the number of states 

considered. Our method takes account from the outset::of the time 

ordering of sequential decays. 

The value of the Green's function approach lies in the fact 

that it gives a rigorous formulation of multistep decays in which the 

usual description bya product of Breit-Wigner resonance factors is 

a natural first approximation. This is not true of ordinary (e.g.) 

Rayleigh-Schrodinger) perturbation methods. Correction terms depenJing 
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on the ratio of leve1w1dths to 1eve1sp9.cing maY,be estimated in a 

straightforward,.way. "Qua1itative stat~ments about. the time dependence 

of the decay may be' obtained from the analytic: behavior of the Green IS'" 

,'.' •. 4 
function. . 

We begin with a collection of some relevant results of the 
. . '. .... .. r 
Goldberger-Watson formulation of decay processes •. A physical system 

: is assumed to be described by a Hamiltonian H •. This is written as 

.' H = K + V, where V is responsible for transitions between eigenstates 

. .; 

:.: .•.. 

. e ,g" , '., a a 

. ' . ".:,". 

.... ,K 'f1:. ..... II:; .' e : f1:., •• o .•.. 

. .'. ' .. :". 

. .~. . 
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·· ... ·Let us.~ow suppose.:th~t at.,time >t·;"O.-the systemisin.a discrete 
.: . 

(1.1) 

~,:;, state g' .•. We wish to calculate the probability that flttime . t. it 
a . :" .' 

·':·wi11 be found in a small domain of continuum states' This 

. ".' . probability has.the form' 

. '.' 

',:.' 

..' where the sum extends' over .the domain of states in q,uestion. For. 

.:,exp1icit evaluation .we shall write', this as 
• <:,' 

.. 
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E' == (1.3 ) 
b 

in terms of the density, dPb of states per unit energy interval. The 

Cluantity ~ b in ECl· (1.2) is defined as 

1 
2rci 

dE 

where G(E) is the Green's function 

and the contour C2 extends from +(0 to -00 and lies above the 

real E-axis. 

The Green's function G can be written in the form 

= F g G , a a 

where F satisfies the eCluation 

F == 1+ 1 P VF) 
E - K a 

with 

P - 1 -' !I. ) 

a' a 

!I. + 
-' ga ga a 

(1. 4) 

(1.6) 

(1.8 ) 



That is, 

state g. a 

-4-

Ais the projection operator onto the initial discrete 
a 

The quantity G in Eq. (1.6) is 
a 

G (€) = (ga' G(E) g ) a a· 

= [€ - € - R (E)] -1 , 
a a 

expressed in terms of the diagonal matrix element. 

of the transition operator 

R - V F • 

The matrix element ofG appearing in Eq. (1.4) can be 

expressed in theforml , . 

1 
= 

where 

!p .. :§) 

(1.10 ) 

(1.11 ) 

(1.13 ) 
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To evaluate the asymptotic transition probability 

-:dP 
b 

= lim 
-t~oo 

(1.14 ) 

1 we note that the expression (1.12) has no singularities in the upper 

half E-plane. The contour integral (1.4) may then. be evaluated, as 

explained in Ref. 1, by lowering the contour at +00 below the real 

axis onto the second sheet of Gba(E). In the limit t ~ 00 the 

only significant contribution to rb comes from the pole at G = Eb 

and we have 

lim 
t~ Q) 

= 

-iE t 
b 

e 

Equations (1.2) and (1.3) now lead to the result that 

dP 
b = 

The quantity Ra(E: b ) has the form 

where D andr are real and r ~ O. Indeed, when there are no 
a a a 

channels into which the decay can go other than that represented by 

the 
1 

~ ? we have 

(1.15 ) 

(1.16) 

(1.17 ) 
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.. 
In this case the probability of finding the system within the energy 

range ~ to .~ + d~ is 

r a 
2rc 

It is instructive to check our calculation by integrating 

(1.18 ) 

(1.19 ) 

Eq. (1.19) over all ~. to show that r dPb . = 1. Using Eq. (1.18) 
. ..) 

we'find that 

1 
2rci 

( [ . 1 J d\ . ~ - €a - Ra (~) 

'1, - € a

1 

- Ra * ('1,) 1 

= lim 2!i J dE (ga' ( € + ~11 - H 
11 -O(~) t' € _ 

1 
i 11 - H ) ga]' 

=J 9-€ [(ga' 5 ( € H )gJ: . 

= 
.. L (d€ 5(€ - €,,) I (~)I.' g ) 12 .. ., 

."J 

)I. J a 

= 1, 

where the ~)I. and €)I. represent a complete set of eigenfunctions 

and eigenvalues of H. .When the states b are stable, but other states 

than ~ are accessible to the decay process we obtain instead of 

.. 
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Eq. (1.18) the result that 

Pb < 1" 

which is physically obvious. 

(1.21,): 

When the states b are themselves unstable" so that further 

transitions will take place from b to lower states" our discussion 

leading to Eq. (1.16) is still formally valid" but not very useful 

because in this case dPb = O.'To see this" let us consider a hydrogen 

atom which was initially in a 3D state" corresponding to g • a In 

interpreting, gb to correspond to the 2P state plus an emitted photon" 

we see that dPb = O. That is" prior to time t = oo~ the atom will 

have undergone a subsequent transition to the is state. In this 

case it is clear that 

(1.22 ) 

We shall be concerned in the remainder of this paper with the 

adaptation of the above formalism to a study of sequential decays. 

Although our discussion will be g~neral" it will be helpful on 

occasion to thirLl{ of it as applying to the case of an excited atom 

decaying through a series of radiative transitions until it eventually 

reaches its stable ground sta~e. 

In Section II we shall obtain a formally exact factorization of 

the Green's function, of which Eq. (1.6) represents the first step. 

This will be applied in Section III to the description of a "unique 
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seCluenc~" of·decays; by.which we mean a seCluence for which each intermediate 

level of the parent system is known. In Section IV we discuss th~ 

accura,cyof the approximations by which a simple description is possible. 

In Section Vwediscuss an "ambiguous seCluence"ofa.ecays, for which 

the transitions lead to mixtures of states of the parent system. 

Final·ly, in Section VI we introduce generalized "Lee models" for which 

almost' exact s~lutions to our eCluations maybe obtained. 
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II. FACTORIZATION OF THE GREEN'S FUNCTION 

The description of a two-step decay reviewed in the preceding 

section will now be generalized. We consider a physical system which 

decays from some initial state through a setluence of states to a 

final stable, lowest state. This "system" is supposed to emit some 

form of radiation with each tra~sition.6 The states in the setluence 

will be written as ga' ~ ,···gb ' gd. Following the notation of 
1 n 

Etl. (1.1), these are assumed to be eigenstates of the Hamiltonian K 

Here 

and 

." 

Kg· = 
d 

(2.1 ) 

is the initial state in which the system is at time t = 0 

the final stable state. The complete Hamiltonian for the 

system is,as in the last section, written as H == K + V, where V 

is responsible for the transitions. Because of the term V in the 

Hamiltonian, at times t > 0 the system will be in a mixture of the 

states (2.1). 

To take explicit account of the radiation emitted, we write 
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ga = ill f..O ' ,. ex 

g = ill 'f.. , 
,bl ~l Ql 

,~ = illf3 f.. , 
n n ~ 

gd = ~ f..Q 
, (2.2 ) 

Here we have indicated,the discrete internai states of the decaying 

system by u ,uA i" ·u~ • 
ex ,1-'1' v 

Continuum states of the emitted radiation 

are indicated a's ,f..Ql'f..~·', ~f..Q' The "vacuum state" with respect to 

emitted radiation is ,',f..O' The energies of the internal states are 

written as w, wI' "'W , w~. The corresponding energies of the ex n v 

radiation emitted in each transition are 

€ 
a = 

= 

w , ex 

U 11-, • "U ,u. 
l' en, Thus, 7 

Since the final state gd is assumed to be -stable (steady) we can' 

supplement Eqs, (2:~1 r with 

"R g = 
d 

(2,4) 

valid at t ~ 00 in the transition amplitude. [Strictly speaking, 

the eigenstatesof R include scattered waves of the emitted radiation 

;.. .~'~: ' 
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and coupling to many states ill. As we see from Appendix A, the 

emitted radiatiOn does not overlap the system at late times, so 

scattering can be neglected.] 

We desire. the transition probability dPd that; as t - 00, 

the system will be observed in some set of states d. As in Eq. (1.2), 

we have 

= 

where the sum over states d is equivalent to a sum over some desired 

range of the continuum states ~Q' As in Eq. (1.4), we have 

= lim 
t-oo 

1 
2:rri 

dE 

where G(E) is given by Eq. (1.5). Since the states ~Q form a 

continuous set, we may generalize Eq. (1.3) to write the sum on Q 

in Eq. (2.5) as the. multiple integral: 

du • 

Here dPj 
[j =,1,2, "'n] is the ,density of states per unit energy 

of the radiation emitted in the transition to the state u/3j 

is the corresponding density for the last transition to Uo . 

and 

(2.6) 

dp 



To evaluate (2.5) we continue the process of factorization of 

G begun with Eqs. (1.6),and (1.7). In .doing this we must recognize 

'explici:tly, that with each transition the system may decay into a 

, 'linear' combination of several states 93 [For example, an atom 

may radiate from a pure state 0: into a mixture of states ill[3' 

'differing in the azimuthal angular momentum qu.antum number. ] We, are 

thus ledtosy.pplement the projection operators (1.8) with an additional 

s,et into which the decay may go: 

1\.1 = 2:: 1
, 2:~ I, 

~l ~l 
t , 

[31 Ql 

A = 2:! I~ ,~ gb 
t (2.8 ) 

n 
, 

[3 , Qn 
n n n 

I\. = L~ g' gd 
t 

d Q 
:d 

Here the sums over the Q 1 s rna,y be chosen for convenien:!e. We shall, 

suppose for ourapplica:tions 'that these sums extend over all directions 

of emissi'onof the radiation and over those energies well on each side 

of each resonance line . From our study in Section IV of the accuracy 
, 

- of the resonance approximation we shall see thai;; the range of energies 

covered by the Ilrojection operators should not be too much greater than 

the line widths. The reason for this is that transitions "off resonance" 

should be absorbed into the transition operators. The corresponding sums 

over [3 ••• [3 . in Eqs~, (2.8) extend ov~r those states of the system into 
1 n 
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which transitions may go" as restricted by our assumed observation on 

, the states .g~. We have" appropriately" assumed in (2.8) that the 

final observed state 125 is unique. In addition to the projection 

operators (2.8) we shall find it convenient to define 

El -I-A" 1 

E = L- A ". n n 

Ed = 1 - Ad " 

P = 1 - A 
" a a 

PI El P 
" a 

P2 = E2 P , 1 

P - E Pl' n n n-

We note that A j Ak = 5 jk Ak " where A j and Ak are any two of 

. the projection operators in Eq. (2.8). 

We begin with Eqs. (1.6) and (1.7). The operator F can be 

written in the form 

F - F(l) (F1 + I)" 

Fl - Al (F - 1)" 

(2.10 ) 
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where cqnsistencyevident1y re~uires that 

To evaluate Fi' we define the transition operators 

Then; on inserting the first expression (2.10) into the right-hand 

.side of E<l. (1. 6))· we find that 

l' 
.-

E: - K 

Solving this for Fl gives us 

The <luantity 

= A . 1 
1 A (1·) 

[J (1) R 
E: - K - It\. 

is the solution of the e<luation 

(2.11) 

(2.12 ) 

~. 
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1 + 1 P1 V F(l) . 
E - K 

(2.14) 

To see this, we first note that F = E1 F + A1 F. This relation and 

the second. of Eqs. (2.10) permit us to obtain from Eq. (1.7) the 

equation 

1 
= El + E - K 

substitution of the first of Eqs. (2.10) and use .of Eq. ·(2.14) lead to 

since 

El F El + 1 P V F(l) (F + i) 
E - K 1 1 

E1Fl 

Next, 

= o. 

we write 

F(l) - F(2) (F
2 

+ 1); 

F2 - A (F(l) - 1), 2 . 

R(2) == V F(2) , 

~(2) == A R(2) A 
II\. 2 2' 

(2.15 ) 

(2.16) 
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etc. Proceeding as before~ we find that 

F2 
1 

11.2 
""' (2) (2.17) , R (2) 
R , 

€ - K -

and 

F(2 ) 1 + 1 
P2 V F(2). (2.18 ) - ' 

K E -

We can evidently 'continue this factorization until we obtain 

finally.·, 

F" =F(n) (Fn + 1) (Fn_l +'1)~"(F2 + 1) (F
l 

+ 1), 

R(j) 
= 

1 + 
1 

(2~1.9) 
E - K 

for j. .. = 1,2,' ~ ·n. 

The operators ~ (j) (j = 1, 2, ~ • ·n) are undesirably complicated 

here, since in general they may contain matrix elements for scattering 

of radiation emitted prior to or accompanying the ~th transition. We 

can eliminate this as follows. First, we define the "vacuum expectation" 

(that is, vacuum with respect to the emitted radiation) as 
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~ (j ) 2::' 2:' I' (Ao U r3 ' .. : 
A(j) 

A.o uf3) = R v , 
r3' . r3 j 

Q
j 

. J J 
J 

X t 
A.Q. 

t 
ur3 ' .. u 

A.Q. ' r3 j J J J 

where all sums extend over the states of (2.8) defining A. • This 
J 

:(2.:20) 

corresponds to that part of for which the emitted radiation does 

not interact again with the system (in F.). Then 
J 

~ (j) 
s 

~ (j) - ~t (j) 
v 

represents the portion of ~(j) which describes scattering of some 

of the emitted radiation. 

Equation (2.21) lets us write 

A. 
R(j) F. = J 

J E - K - WI- ( j ) 

A. 
R (j) 

= J 
(j ) ) 

E - K - Qv 

where 

We note from Eqs. (2.20) and (2.23) that 

(2.21) 

(2.22 ) 

(2.23 ) 
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~ (j) 
= v 

(2.24 ) 

since the second term inEq,. (2.23) vanishes when there is no radiation 

to be scattered in the final' state. ' 

We anticipate that for· many applications the second term in 

Eq,. (2.23) is negligible and one t,an take 

, R (j) ,~ RU), 

The assumption of an interestingly long-lived resonance will often imply 

a weak. perturbation V. In suchacaseJ:'re,s~attering of emitted radiation 

will be unimportant ~ ,It is of course to be observed that :'rescattering 

, ,of radiation emitted in the ~th transition can formally occur in 

Eq,. (2.19) from any R-operator to the left of the F. that emits it. 
J 

(An advantage of the wave packet picture is that the tendencY,for emitted 

radiation to escape is more clearly seen.) We· shall neglect this re

scattering of radiation. An 'estimate of the error involved is made in 

Section IV. 

Some further insight int'o the significance of the in 

Eg. (2.22) may be gained as follows. For the calcula,tion from 

Eq,. (2.23) the q,uantity . ~ (j) corresponds to a II self energy. '~ For 
, v ' 

a long-lived state we might expect ~ (j) 
v 

to be negligibly small 

. . , . I ~ ';' '.' .( ',' • ' . 



-19-

everywhere except in the explicitly. written propagator ( ") -1 
(E - K _ ~~ J ) 

v . 

in Eq. (2.22) . (The operator A" 
J 

restricts us to energies very close 

to the energy shell.) If ~ (j) may be omitted when one is calculating 

( ") A(" 1) R J and R J- ) we have 
v 

(2.26) 

as is shown in Appendix B. A more· complete discussion of relations 

among the R-operators will be given in Section IV. 

Eq~ation (2.19) .represents the fundamental result of this paper. 

In the subsequent sections we shall show how to apply it to the analysis 

of sequential decays. 

In using Eqs. (2.19) to describe sequential decays we shall 

make three approximations in the calculation of dPd [Eq. (2.5)J: 

(1). The "one" terms in the quantities (F
l 

+ 1)) (F2 + 1)'" (Fn + 1) 

will be neglected. This neglect forces us to consider only transitions 

that go through the "resonant states." Since the neglected transitions 

are not associated with small resonance energy denominators) we expect 

their amplitudes relative to the resonance transitions to be of order 

r 
6w· ) 

where r = o(IRI) is the width of the resonance t~ansition and 

6w is some characteristic energy of the decaying system. 
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(2 ) Res cattering of radiation once emitted will be neglected. This 

approximation is expected to be valid when the lifetime of a state is 

long compared 'Wi:fu flight time of the emitted radiation ±'rom the parent. 

system • 

. . (3) The third approximation is not essential'to our theory) but a 

convenience. In this approximation we suppose that relevant matrix 

elements of the transition operators' R (j) can be treate::l as constants 

over energy intervals of the order· of the level widths. It is anticipated 

that the relative error resulting from this approximation will be given 

.byan expression of the form (2.27). 

These approximations will be discussed farther in Section IV. 
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III. UNIQUE SEQUENCE OF DECAYS 

In this section we discuss the application of the theory of 

Section II to a "unique sequence" of de·cays. By unique sequence we 

mean to imply that the observation made on .the state d is sufficient 

for us to infer that each of the sequence. of intermediate states wf3) 
1 

W ,"'w is unique. For such a decay we can then replace Eqs. (2.8) 
f3 2 f3 n 

by the set 

A == ga g t 
a a 

11.1 == [' gb 
t 

g~, 
.Q 1 

1 

A == ~' gb 
t 

n ~ ~n n 

Ad == If t '(}.l') gd gd ' 
Q 

where there are no sums over internal states. An example of a·unique 

sequence would be the decay of a hydrogen atom from the 3D (j == 0) 
z 

to the 2P (j == 0) to the lS state. Observation that the polarization z. . 

vector of the first photon was parallel to the axis of quantization 

. would ensure thi s • 

For a unique sequence the quantity 

the simple form 

IR (j) 
v == 

R. (j) 
J 

\?l (j) ofEq. (2.24) has 
v 

(3. 2 ) 



"'J" 

',', , 

>' 

" . '.' 

. . .' .' 

I," 

:' : ~ 

,,",.! 

. ': .:~.,' . 

. '. '.' 
, ,. -22 .. 

where' R
j 
(j) : :i.s the complex number' 

" , ',' ,(j)' 
- , (1\0 u~. ' R , 1\0 u~,). 

J J 

,Eq,uation(2 .22) now reads 

'F - A. 
j J 

'.,;. ' 

. , 

:, ' . .' .... : ';, . 

,1 , 

E-K~R.(j) 
J , ' 

(j) 
R, 

(3.3 ) 

(3.4) 

',,'" ',', ., ", >;",: -', To illustrate our results:, ,we consider first the special case 
, ' 

of 8.: three-level transition a -+ b
l 

_ b 4 d,' where d is stable. 

For this caseEq,. (2 .19) ,reads " 

'.' . 
(1) , , 

F =F,' (F 1 + 1-). 

·Use.ofEq,s .(1. 6), (1. 9), (2.12), (2.14 ),.and (3.4 ) gives us 

Gba;(~)' (~, G ga)'·' 
1 

Rla 
(1 ) 1 

- = 
_ 'R (1) -R (E) , 

E - E 
E - ~b a a 

1· ,; :. 

Gd'(E} - (gd' G ga) a ," 

1 (1) " 1 R
la 

(1 ) 1 
= R

dl
· 

_R"(l), - R E - Ed E - E 
E .. Eb a ,a 

. ,1 

1 R (1) 1 (3.6) 
+ . . 

- R 
. 

E - Ed' da' E - E 
a a 

" ' '.r .• ' . ~~ :. /' ' •• 1 •• ,' 

. ' 

t 
:1' 
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R (1) '(' E) , 
la - In deriving 

A 
Eq. (3.6) we have set Rdl = Rdl This is correct) since for the 

d (/-.Q) /-.Q) = 
1 

final stable state + 0) which implies that, g' 
d 

K) (1) = 0 
\\"\s • 

,The second term in Gda above comes from the "1" term in 

Eq. (3.5). The quantity' R(~~ has no virtual states "b" and so 

describes decays which do not pass through these resonance "states.'.' 

In accordance with approximation (1) made at the close of Section II) 

we shall neglect' Hda (1) in G, . 
Qa 

The second approximation made at 

the close of Section II implies that we neglect in Rdl (1) any matrix 

elements which describe scattering of the radiation "emitted by 

The probability of finding the system in a state ~ 

at time t is given by Eq. (1.2)) where now 

C(b(t) 
1 J' ',dE -iEt 

Gba (E) = 21(i e 

°2 ' 
-i(Eb +Db)t - r t/2 

b (1 ) e e Rla 
~ - (1 ) 

E' - E + Rl - R 
b a a 

-iCE + D)t -r t/2 a a a 
e' e 

E- E + R (1) - R 
b a 1 a 

= 

R (1)" 
la • 

Here we have evaluated the contour integral" in a simple two-pole 

approximation, appropriate for long-lived states) as described in 

Ref. 1. We have also wTitten 
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R ,'( E, + R ) ~', R ,'( € + IL (1,) ,}\ 
" ,'a' a a 'a " , b -0 

r 
~ D-~i ~, a 2 'J 

< R (l)(€ + R ), ~ Rl(l) (€b' + R, (i)), 
' ' l' ,a a ~o 

r ' 
D ". b 

=. b.-· l '2' 

,. ;. 

8 
is therefore 

D )t] a ' 

. (3. 8) 

We. seetha:tthe expression (3.8) vanishes at ", t -? 00 J as was 

, conj ~c:tured in Sect.ion:I.' 

, The conditionsu,nder which 

wilL b.e .q.iscussed in Section DJ. 

r dU
l a 

The probability. that as t·4' co we ·find the entire system 

'in some rang~ of stable states d is given by Eq. (2.5); where now 

, '. (1) 
-[recall that we have agreed to set Rda ~ OJ: 

: " ," ,{ .. " :', .. ' 
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dE 

R (1) R (1) 
. dl la 

- E a 
- R ) a 

(3.9) 

Here we have used the second of E~s. (3.6) and have deformed the contour 

onto the second sheet of Gda~ as described in Ref. 1. Our notation here 

is such that 

Rdl 
(1 ) lim Rdl 

(1 ) 
(Ed +.iTJ)',. -

TJ-O:C+.) 

RIa 
(1.) 

lim RIa 
(1 ) 

(Ed +. iTJ)~ -
TJ-O(+.) 

(1 ) (1 ) r 
Rl lim Rl (Ed +. iTJ ) D - i 

1 
- ~ 2~ 

TJ-O(+) 
1 

r 
R lim R (E, +. iTJ) D i 

a (3.10) - - 2~ a 
TJ-O(+) 

a Q a 

where D ~ DIJ r ~ and 1'1 are real and 1'. 1'1 are positive. In 
a a a' 

evaluating the contour integral above we have noted that E~. (2.4 ) 

. implies that Gda (E) has a pole at Ed on the real axis and no other 

poles on the real axis (barring accidental degeneracies). 

On substituting (3.9) into Eq,' (2.5) .. and on using E~. (2.7); 

we ob:tain 
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. T' 
. ·1 

. dPd···. = . 2rc 

Hwhere' 

r' a 
2rc 

r' 'a 

r' 1 

-

-
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d~ du 

r 
IR' (1)1 2 

2rc .j'dP1 la , 

2:rrf dp 
." (1) 2 
IRdl I·· 

1

2 , 
- R . ' 

a 

Let us suppose our observation 'on the state d restricts the 

energy .of the first emitted radiation ·to the range u
l

. to ,u
l 

+ du
l

, 

'. ," 

but does not restrict u.· The probability of this is obtain.ed by 

. integrating (3.11Lover all ·u . When 

.... < < 1 , 

dE 

' . 

. d R (E) . a < < 1 .. , 
dE 

etc.~we may treat R
1
(1):'Ra" r '1,,' .and r a , as constants in (3·11). 

r(This . is the third 'approxirnationmentioned at. the close of Section II) . 

. , Then". using E<ls. (2.3), we obtain' 
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This has the Lorentz shape of ECl~ (1.19), but of course contains level 

shifts D and widths r for states .a and b. 

In deriving ECl. (3.14) we have w..ade all three of the approxiw..ations 

mentioned in Section II. First,we neglected the "non-resonant Tt R 
(1) 

'da 

term in ECl. (3.6). Second, we m.ve neglected in (3.6) res c:attering by 

(1 ) 
Rdlof radiation emitted in the first transition. Third, we treated 

Rl (1) .and Ra as constants when.integrating over u. in ECl. (3.11) to 

obtain (3.14). The error arising from these approximations will be 

investigated in Sect.i()n IV. 

Let us now consider the seClueDce of (n + 1) transitions 

a ..... b
l 

..... b
2 

........ d through the states (2.2). The expression (2.5) 

gives the probability of finding the system in a given set of states 

d as t ~ CD. In this case ECls. (2.6) and (2.19) lead to the result 

e-
iEdt 

R (n) R (n) ••• R (2) R (1) 

= dn nn-l 21 la 
-(E------E---~R~(n~·)-)~(=E~~--E--~~-~R~~(rn~-~l~;-).-.-.-(E----~E----R---)'· 
. d b n . G. bn-l n-l d a s-

n 

where we again make the first two approximations mentioned in Section II. 

The R's here are all evaluated at the energy Ed + i~ in the 

lim ~ ..... 0(+). Following the notation of EClS. (3.10) we write 

(j ) r. 
R. D. - i J - -, 

J J 2 

r 
R D i a 

- - 2' a a 

(3.16) 
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for j = 1,2, 0 0 on... Also, as in E<ls 0 C3 .12)', .we define 

(' . 2 
r l = ··.2:rrJdP IR(I) I 

a ° 1 la ' 

rl~ = 2:rr J d Pj +l · IR. . .(j+l)1 2 
j = 1,2, 00 on _ I, 

. J J+IJ . ' 

rIo .2:rr f dp 
I . (n) 12 . 

= Rdn ) n 

where the notation of E<l. (2.7) has been used for the sums over states. 

On inserting (3.15) into E<l. (2.5), we obtain the probability 

dPdothat the emitted radiations are in the intervals 

r' r' r'. 
a 1 n 

- . 2-n- dul " • dUn du 2:rr 2:rr JL 

IE - E d b 
n 

R en) 1
2 ••• IE - E 

n .. .. d a 

Let us s,-\ppose .. for example, that·only one of the energies .. 

s?y uJ' is measured. The probability that this energy lies in the range 

u . + d u.·, irrespective of .the other .energies~ .is obtained by a a· . 

integrating (3.r8) over all the other energies. Again we assume that 

all the resonances are sufficiently narrow that we may neglect <luantities 

of the.·· order of (3 .. 13) and that R.···R (n) r' . ··r as constants 
c a' n ' . a' n 

(our third approximation) ... An elementary integration now gives us the 

probability 
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(
rr \ (rr \ (rr \ 

n \ 1) a I -r;:) .. "\ S \ r;:-) 

(r (5 + r (5-1 ) 
X",..-, ---'---------~--=-----~ 

(u(5 + w + D - w - D 1)2 + ~ (r + r 1)2 (5 (5 (5-1 (5- '+ (5 (5-

Except for normalization) this agrees with Eq. (3.14). 

In deriving Eq. (3.19) we have made the same three approximations 

:that were made in the derivation of Eq. (3.14). 
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IV. DISCUSSION OF APPROXIMATIONS 

In this section we shall discuss the accuracy of the results 

obtained in the last section. We shall also study the relation between 

the quantities' (3.16) and (3.17). 

The exact ,expression for 

our approximation) is 

r d ) for whi'ch (3.15) represented 

E -
a 

( , 

(4.1 ) 

Here all functions of € are eva~uated at E = Ed + i~ in the limit 
-

~,~O(+). 

The first approximation is that of replacing (4.1) by 

-i€ t 
e d v ' H(n) F F "'F - ') (€ - E " , ,gd) n n-1 1 ga, d a (4.2 ) 

This approximation is conceptually straightforward. It corresponds 

to neglecting transitions which are not resonant and which should not 

lead to sharply defined energies (to within the widths r) for the 

emitted radiations. Estimates of the relative contributions of non~ 

resonant contributions can sometimes be<obtained with dimensional 

arguments for ~ w in (2.27). When this is not the case) a specific 

calculation must be made. An example of such a calculation is given 

in Section VI. 

Using Eqs. (2.22)) we may rewrite~ (4.2) in t.be form 
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R (n) R (n) ••. R (2) R (1) 
d nn-l 21 la 

e 
-iE t 

d n 
(4.3 ) 

The s~mation here is over intermediate states contained in the projection 

operators' A "'A of Eqs. (2.22)} but is restricted by the fact that 
1 n 

is a discrete state. If there were no .rescattering of once emitted 

radiation} the intermediate states in (4.3) would be unique and this 

would reduce to (3.15). Thus: we can write the expression (4.3) as 

~d = ~d (3.15) + ~d (scat). (4.4) 

Here ~d (3.15) represents the quantity (3.15) and rd(scat) the 

contribution from rescattering;, 

For estimating the magnitudes of the two terms in Eq. (4.4) it 

is convenient to render these dimensionless with multiplication by the 

t ,l/:2 h D fac or D ) were is the weighting factor (2.7) of final states g' : n 

D. = ot:}, ou •.• op ou op ou • 
'~.:L 1 n n (4.5 ) 

To get an order-of-magnitude estimate} we write [see Eqs. (3.17)] 

ou. ~ r. } 

J J 

r' . ~ op. IR .. (j)12 
) 

J J JJ-l 

r ~ IE E - R.(j)1 ( 4.-6) -., 
j } 

J J 
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, 

. etc. This permits us to estimate the magnitude of (3.15) as 

lr(r' .' \ 
~\ 
. r J' . n 

.which is consistent withECl. (3.19). 

Let us estimate' o/d (scat) by supposing that the radiation 

einittedin this transition to state (l)~0" is r~scattered\. by the 

nuantity. R (I') The characteristic magnitude of ·this 'can he 
':1. 1'),-1 

obtained.by supposing it to be the ~ (I') [see ECl. (2.23) ] . That 
s 

is) we supposeR (0") .. to "emit" radiation of energy u' cr while. 

(})v (I') scatters this into its final.observed state with energy u 
s 0" 

Using the arguments which led to the estimate (4.7)) we are led to t'he 

expression 

D1/ 2 ~d(scat) 1. f d u' dp' tR.s 
(I' ) 1 

~ Cd r 0" 0" _ EO' - R y- EO I' 'Y 
.' . '. 1/2 

R (I') 

1 R ( cr) Bp Bu" ~ Bp Bu (r ' a) (4.8) 
(0") 

, 
0" 0" Y 'Y r 

EO - EO' - R a, 
cr cr , 

where the integral over u' 
" 0" 

is of course restricted to the narrow 

range of energies spanned by the states in A 
cr 

In the denominators 

, above we have the energies 
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E' = W + U' + U + ..• + u 
o t30 0 0-1 1 ) 

E' = W
t3r + u + ... + U' + ... + u

l ) / r 0 

Er W
t3r + u + ... + U + ... + ~ . (4.,9) r 0 

There are v + 1 r - 0 + 1 energy denominators in (4.8). 

In doing the integral over . du' we thus encounter o (v + 1) poles. 

wnen the expressions (3.13)) etc.) are small) we may estimate ((d(scat) 

by supposing these to coalesce into a single pole of order (v + 1). 

This gives 

?( d (scat) "'=< 

x Bp Bu 
o a 

1 
VT 

Bp y 

( 
. d ' J p 0 

(4.10 )' 

The only sum over virtual states now is that explicitly indicated by 

the integral ~dP'o. To simplify our expression it is convenient to 

define a mean width r by the equation 

r r ... r 
o 0+1 y-l 

This lets us write 



(4~ 11) 

where. b..w 'is'a characteristic energy, such as was introduced in· 

. Eq. (2.27),which ,we take as representing the derivatives in (4.10). 

To continue, let us suppose the radiation emitted in the 

transition to ill ' is a single particle. . Then, 
, t3 (J .. 

... : "" 

J dp' (J 

I il)k' a k 
2 

- (J 

= ,-
du' v 

, 
. (J (J 

(4.,12 ) 
.. 

where· k is its momentu:m and v . its velocity. Now, the cross' 
(J (J 

sectiop for scattering this radiation is 

J dp'.(J 

This, along with (4.11), lets: us finally express Eq.,. (4.4) in the form 
,. 

1 ,~, + , (4.13 ) 

where 11: = 
. :(J • 

-1 k .• 
(J .. 

Emitted radiation may also be scattered by theoperatorR (y) 

[see Eq. (4~8) ] . We estimate this for the largest contribution, vhich 

occurs for y = (J + 1. This is [ve use perturbation theory] 
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D
l
/

2 
'Yd (scat) 

1 
- . 

E - E ..;. R (y) 
y 'y 

(alpyla) 
x Vya E - E" , 

J dP'a du' 

Vaa' 
E -

a 

E' 

5u 
y 

1 

- R 
( a) 

a a 

(4.14) 

Here R (a) 
a'a-l emits radiation into a state a' • This is scattered 

to a state a by V , • . . ao Because of the projection operator P
y 

this must involve a transition to a "distant" state (J)'t3o of the parent 

system. This lets us write E - E", ~ 6 w, as in ECl. (4.11). Finally 

V,o can be written as R,o(Y)' since it emits radiation into the state 

,. All of this lets us put (4.14) into the form' 

I 

[D
l
/

2 Yd (3.15)] 

On identifying Vaa , with ~ (r), we see that this has just the form 
s . 

of (4.11), with v = 1. Thus, our estimate of (4.11) is generally valid. 

The result (4.13) may be understood qualitatively as follows. 

Radiation emitted in the transition to state (J)t3 d leaves its source 

'with a "flight time" 6t = 6w-l • The probability that within the 

time 6t there will be v other radiations emitted, 'l-rhen they are 

emitted at random and with a mean rate -1 r 



I 

when r 6t < <1. The factor (a /t.2)1/2 ~epresents the probability \: a a 

amplitude t):1..at scattering will actually occur. 

For the special case'of dipole radiation emitted by an 

excited atom we may estimate 6w· from the explicit matrix element 

. to be 6w I'::l u , the energy of the photon. Since r!u is a very a . .' a 

small quantity for atomic transitions, we see that the correction 

term in (4.13) is small indeed. 

We have now seen that the three approximations described at 

the close of Section II and used in our analysis all require the 

smallness of a ratio of the form r/t;w, where r is a level width 

and 6w is a characteristic energy of the system. To estimate the 

order of this ratiO, we must of course consider a specific physical 

system. 

We turn now to a study of the relations between the r' . 
J 

',' 

of Eqs. (3.17) and the rj of. Eqs. (3.16). The argument which 

led to Eq. (85b) of' Chapter 8, Ref. 1, permits us to write 

= lim 
'I1~O( +) 

. t· 
2:rr (rt.. R (j) (€. + i'n) 

\Lbj'd 'I 

(4.15) 
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When we know that.the transition is a unique sequence, and there are 

no alternate channels, so the states gbj+l follow the ~j' we 

might be tempted to write 

I" . (j) 12 
R. 1 . J+ ,J 

To see the relation with Eq. (3.17), we consider 

/\ (j) 
Rj +lj = 

= . (j+l) ( ) 
(~bj+l V F Fj +l + 1 gbj 

= [R (j+l) 
j+l ] 

"R (j+l) 
. (j+l) + 1 j+lj 

E - Ebj+l - Rj+l 

1 

= R· (j+l) 
j+lj 

It is evident from Eq. (4.17) that the expression (4.16) vanishes. 

The correct rj does not of course vanish if there is a-finite 

(4.16 ) 

( 4.17) 

transition rate from the state gbj' The error made in using (4.16) 

is that the gbj+l's are not eigenstates of H, so a transition into 

these states is meaningless, other than as a transient phenomenon. 

When the final state is the stable state gd' then Eq. (4.14) 

may be used. In this case the level shift 

R (j) 
j+lj 

= ~ (j+l) 
j+lj This tells us that 

R (d) 
d· vanishes and 



, , -38-

T = r' ,n n (4.18 ) 

[When there are alternate d~cay channels, from the s;tate ,gn } Eq. (4.18), 

is of course no longer true.] , 

An approximate relation between the r. -':, and the r ~ " may 
, , J ' J 

be eat3ily obtained. ' We illustrate this for the quantity r} for which " a 

we 'expect r > r' a a 
if there are decay routes through other channels 

, than that of the From Eqs. (2.10) and (2.12) we have 

= (€sa' V F{l) (F
1 

+l)ga) 

R (1) R (1) 
, al la 

(4.19 ) _ R (1) (€ ) + 
a d 

where the sum on Q
l 

is limited pythe projection operator A
l

• The 

te~m R (1) contains no virtual states g and thus describes decay 
a b 

1 
, through alternate channels. When our "small parameter" 

indeed ri.egligible, as we have been assuming) R (1) :::::: , al 
, 10 

This permits us to obtain from Eq. (4.19) 

r a - 2 

- 2 Im [R (l\€ )J +2~ 
a d 

r/i;,+~ is 

[R
la 

(l)J*. 
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On·: ne.glecting contributions of order r/!:fr, we obtain 

with similar relations between r 1 and r\, etc •. 

The physical interpretation of Eq. (4.~o) is obvious: 

(4.20) 

r is a 

the total width of· the transition from g ,while r' is the partial a . a 

width of the transition through m~. This is completely consistent with 
1 

Eq. (3.14).' On integrating that equation over u~ we obtain 

(4.21 ) 

This·is just the probability that the decay goes through the sequence 

of states . m~l" 'm~n' ,mt) prescribed by our observations on the state 

gd • 
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V. AMBIGUOUS SEQUENCE OF TRANSITIONS 

When the three approximations mentioned at the close of Section II 

areValid,the description of decay through an ambiguous set of states 

is straightforward.' In this case there will be more than one term in the 

'" sums over ~n in some of the projection operators (2.8). Then the 

quantities at (j) in Eq. (2.22) contain matrix elements coupling the 
v . 

. states contained in A .• 
J 

Ofteri these non-diagonal elements of . 1{ (j) may' be neglected}. v . 

. however. (An example is provided by the case of an atom falling through 

a level consisting of a set of degenerate states differing only in 

~agnetic quantum number.) When this is possible, the treatment given 

in Section III needs but little modification. Instead of Eq. (3.15), 

we have 

\(d = 

-ie: t 
d e 

Here we have written 

. etc. 

R 
(j) 

~j 

:(e:e: - R (n)) ... (e: - e: - R ) 
\( d - ~n ~n. . d a a 

) 

(5.2 ) 

= (,\' '" R (j) '" '\) . 
\!'-O'-"~j , . '-V~j 1'-0 }. 

Let us apply Eq~ . (5.1) to the case of a three-step transition' 

a ~ b
1 

-+ d, where there are two levels = 1 and AI - 2 
I-' 1 - of the 

system at the intermediate step. Let us also suppose that we observe 
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the angle of emission of the particles radiated in the two steps, but 

not their energy. The probability dPd is then 

dP
d 

= J.:' IWd
l2 

Q. 

= . dr: dPl J d~ dU2 ICYd l2 

(21\ )2 {IR (1) R (1) 12 
dp dPl 

dl .la = r a r l 

IR (1) R (1)1 2 * (R (l)R (1» -, r(R (1) R (1» 
d2 2a l dl la d2 2a J > + + r l + r

2 
. + coCo ! 0 

r
2 

. 
- i (D - D ) J 2 1 2 

Here 

R (1) D - i 
r l 

= 2' 1 .' 1 

(504) 

R (2) D ..; i 
r2 

= 2' 2 2 

etc. 

When r
1 = r2 and Dl = D2, ECl,. (5.3) reduces to the' 

expression 

R . (1) R (1)/2 
dt ta · 

This is of a form familiar in the theory of successive angular 

1 t " 11 corre a ~ons. 



'. 
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We illustrate, finally, an e:Xampleforwhich off-diagonal 

matrix elements of . (\l (j). must be kept, using the model just described . v . 

of a two_state second level. We write / . 

Rla 
(1) 

= (UJ. .~Q ' 
R(l) 

ga) , 
'1 , 

Hl 
(1) 

= (UJ. R(l) ) , UJ. , 

R12 
(1 ) 

= ( . (1). .. , R(l) ~) , ' 

etc. We also write 

etc. Then Eq. (2 ~22 ) provides the coupled equations 

_ R (1)] (1 ) (1 ) '. 

[E - El Fll ~ R12 F12 = RIa 1 ' .. 
(5.6) 

[E E2 
_ H (1)] F . ..; R2l 

(1 ) 
. Fll = R (1 ) - ,. 2 12 2a 

which may be solved algebraically for Fll and F12 . From there we 

find for 'C(d the expression 



R (1) R (1) R (1) 
d1 12 1a 

E . _ R (1) 
d E2 - 2 

_ E _ R (1) 
_ 1 1 

+ R (1) R (1) 
d11a 

+ same term with ."1" and "2" interchanged 

It should be noted that for·such decays the simple Lorentz line 

shape can be replaced by a much more complex line. 
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VI. G ~ERALIZED LEE MODEL 

To illustrate and clarify the theory: presented-in the preceding 

- 12 sections, we consider a model analogous to Lee's field theory. In 

the model, the perturbing-potential V connects only successive steps 

in a se<luep.ce of scalar photon emissions, -a ~ bl ~b2 ~ ••. - d. 

Thus, we re<luire 

(gb _, V g ) -. v(kl ) 
1 a 

(g., V g._ (._)- = 
~b3 ~b 2' 

(6.1) 

Here ·gb
l

' ~2j etc. are restricted toa narrow_range of photon 

energies about the resonant value. All matrix elements of -V vanish 

unless they are of type (6.1) or the Hermitean conjugate. 

For a three-step cascade we have: -

Rdb 
(1 ) 

Vdb --

Rab 
(1 ) 

Vbd 
1 

Vdb = 
€ - K 

Rda 
(1 ) 0 -

~a 
(1) 

= ·V ba (E<luation 6.2 continued) 
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1 
R = V· 

(1) Vba aa ab 
- K - ~b E 

(6.2 ) 

and thence 

1 1 1 
G· = Vdb (1) v.. 

da E - K K - ~b 
ba E - K - R 

E - a 

. Thus, the "one" terms of (2.19) do not appear, and only the resonant, 

sequence contributes to the decay. It is easy to, extend this result 

for cascades of any number of steps. Of course, the absence of transitions 

skipping one ,or more.steps follows directly from the construction of V. 

,The calculation of Gda is reduced to quadrature unless ~b (1) 

contains rescattering terms. Because of our artificial requirement 

that V vanish except for transitions near the energy shell, rescattering 

may occur only if the two photons in state gd have nearly the same 

. energy. Then we see 

= 

+ 

E - W - k - q + i~ d ' 

e(k')e(k) v(k') v(k) 
E - w - k - k' c 

~ (1) + 
1 

~ (1) (k' k) 
'-s N>I'",V' 

(6.4) 

where e(k) is a unit step function which vanishes for k outside 
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the range of ~ included in 

Following the argument of Sect,ion IV, we may estimate the 

. rescattering correction to . Gbaas 

, 
l 

v(k) 
E - - k -fJ'l(l) }Vb ~I: 

[l +10 (k) xL 
E-W. -<\{' 

. a a. 

l 

(6.5 ) 

The correction is given to lowest order by 

x - - 2rci 

= - 2i reb -? d). d~' ·'.tn {k'. V(k' )Jlk'=k (6.6) 

= - i r T • 

The characteristic time· T _ (ijk:)+,r is analogous to the "delay 

. time" .which is familiar in discussions of scattering problems. l3 Recalling 

for the photon. The quantity r = 2 d .tn v/dk is a measure of the size 

of the decaying system. In general, we expect· r :s l/k) since k is 

a characteristic frequency of the system,and the maximum possible 
. - - - - -

frequency, for components traversing a distance r with the velocity 

of light, would be simply, kmax ~ l/r. Thus, we conclude} 

I. 

rescattering = 0 (~), 
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in agreement with the general conclusion of s~ot~op IV. 

We turn now to the estimation of off-energy-shell effects. 

To do this we broaden the definition of our Lee model potential, 

allowing v(k) to be different from zero over a range of energies of 
14 

the order wa - wb • Then we have) from (4.20), 

r = r! - 2 1m (it (1) (w) _ r! + r It 

a a a a a a , 

(1) 
= J d3k 

2 .·e(k)J ~. v(k) ~1-
a (21L )3 E - w - k - (2b 

(1) - , 
b 

Iii (1) =f d3g, . v( qJ2 
b (21L )3 E - w - k - q + iT} 

, 
d 

0
b 

(1). where we,neglect rescattering terms in ~L The decay rate for 

virtual states far from the energy shell is 

J d3k r " (w ) 
a fa ,= (21L)3 

2 v(q) 
x 

.('W
a
. - w k Re [) (1)\2 + ('1m (0. (1),2 b - - \'La i) 'Lb I) 

The projection operator 1 - e allows us to neglect 

e (k) J 

in 

(6.8 ) 

the denominator, so that r " 
a 

is given accurately by ordinary second-

order perturbation theory. For simplicity, we have treated the photons' 

k and q as distinguishable, but Bose statistics could easily be 
;vJ AN 

taken into account. 
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Neglecting the variation of:'v ,with ~, we may estimate the 

decay rate 'r ,whenw
b
" is much greater than w,' so that resonant 

a . a 

intermediate states are excluded. Neglecting k in the denominator 

of,(6~9)" we have 

16 (~a 1 )2' (w w ) '2 
r r " a ,d 

(6.10) :::::: = 15 r , 
a a wb :n: 

where /' is the decay rate'for the resonant sequence in the case 

w - W :::: - wb - wd • Thus, the decay rate in the' absence of resonant 
a, b 

intermediate states is" suppressed by a factor of order r/u, with 

-1 
u 

On the other hand, even wherl wb . lies between wa and ,wd ' 

there will still be anon-resonant contribution r " ' to ,the total 
a 

decay rate r a 
We estimate r " a 

for 'w - W = w- w with a ,b b d 

'taken to vanish when' 'Iw - w- kl, exceeds Ar (A » 1): , a b 

r " a 

This gives 

r " a 

l 
2:n: 

1 
w - w a ,b 

, 

+'0 . , 
yT 

, a 

(6.11 ) 

, (6.12) 

" 
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The term r/~A simply compensates the effect of truncating the 

contribution r' defined as resonan~instead of integrating the a 

resonant energy factor over ~ intermediate energies. Thus this term 

should be om:itted when r '; is evaluated, as in (4.20), by replaciJ:1..g 
.a 

the resonance factor with a delta-function. The second term, 

-8r2/3~(wa - w
b

), comes mainly from the reduction in two-photon phase 

space at the extrem:'e values of k •. Combining (6.7) and (6.10), we 

have verified for an explicit model the result 

(6.13 ) 

where u .is given by a typical photon frequency. 

The Lee model permits us to see in a simple example the 

importance of proper order of operations in the factorization of the 

Green's function. Consider the problem of inverse decay: Given a state 

ga containing one photon, what is the probability as a function of 

time to observe the state ~ with no photons, and a higher internal 

energy (w
b 

> wa )? 

Having phrased the question thus, we are tempted to write 

(gb' G ga) 
1 L v(k') G (k', k), (6.14) 

E - ill k' a 
1"1"< 

with 

G (ki k)' (gb" 
1 

gb) ::: 

K - \\la a "'N\' I«'( E-

(6.15) 

<Ra (~,,', !) ::: 
v(k') v(k) 
E- wb 
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Note that (6.14 ) yields a meaningful expression for the transition 

rate . -2 Im (g , R g ). only if g. is taken as a, normalized state 
a a . a 

.. . 

illa ¢ C,~), where cp(].;) . is a wave packet for the photon. Otherwise one 

is speaking of a transition from an ~ unnorrnaIizahJle: state of definite 

momemtum to the normalized state 9)' ,and the rate for this is 

undefined. These considerations do not affect the following discussion, 

but should be kept~ in mind for appl.icatioI'j.s· of the Green's function 

formalism. EvalUation of (6.14) is difficult, since (6.15 ) shows"that:_';, 

the pole at € = Wb.is spurious, and the inversion required to 

evaluate· G is a non-trivial operation. However, we may approach 
a 

, . . . , 

the problem ina different way. It is easy to see that in our model, . 

as in any theory with time~reversal invariance, the Green's function 

is symmetric, 

where the . states g- and 
a 

ga . and .~ , and the last 

Thus, we may replace (6.14) 

= 

. with 

- L 
k 

"""" 

= (6.16) 

&.. have opposite spins and momenta from 
b 

equality in (6.16) is special to our model. 

with 

1 
k + .v(k) ul 

€ -w a k + iT) 

1 , (6.17) 
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What we have done is simply to obtain the Green's function for a ~ b 

by transposing the G we already know how to compute, that for the 

decay b ~ a • Needless to say, even if time-reversal invariance did 

not hold, we could carry out the factorization for inverse decay by 

using transposed F operators obeying .. 

== (6.18) 

. We conclude that, in general, the factorization of G should proceed 
. . 

from "top". to "bottom" of a cascade, even fbr inverse processes. 



* 
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. APPENDIXA. DECAY INTO WAVE PACKET STATES 

It'is sometimes helpful incdescribing ~ decay process to 

specif'Y./ the state 'of the emitted radiation with wave packets ~ For 

example, the use of wave p:l.ckets makes it easy to see that Eq. (2.4) 

is .valid at times such that the radiation has escaped from the parent 

system. 
, . 

To illustrate"we consider an atom in the initial state ill ex 

'. ,which make's a transition to the state ill
f3

, emitting a photon of definite 

polarization. The wave packet state is taken to be 

(A.I) 

where is a photon eigenstate of momentum k and L 
V'/V"I p, r , 

corresponds 

wo" ""''' 
components of momentum very close to p, 

C • r .......... to a photon having centered 

at r, in position space. A typical final state is then ..,... 

= (A.2 ) 

The decay probability is given by (Eq. (1.2), this time with 

dE e-
iEt (93 "K' G(E) illd)· 

~"A. 

(A.3 ) 

.As t -+. Q), we have 



tJ/ . J 3 . ik·r 
IS b· = d k a* (~ - g) e 1'1 HI 
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-i€ t 
k 

·e 
€ - E 
k a 

Here we have written Ek for the energy of the state ro~ ~ and 
"'" 

Rka ·for the transition matrix element into that state. In the 

(A. 4) 

following we shall assume that the R's are slowly varying so that 

~ R (E) and pa p ~t (E ). 
a p 

We now consider two cases. First, suppose the time duration· 

T of the wave packet pulse at a given point in space is long compared 

to the lifetime of the decay (or, equivalently, 6Ek < < r). Then .. at 

times t > > T, we may evaluate 'r b by using the approximation 

Here 

1\ 
Ep + C P • (k - p) 

NY MI 

Wec p t) 

to obtain 

€ 
P 

e 
-i€ t 

p 

E 
a 

. J. 3 ik·r -ix· (k-p) 
w(~) _. d ~ a* (~ -~) e M 1<'1 e -w -w '" 

is the complex conjugate· wave packet in position space. 

(A.5 ) 

A natural choice of wave packet amplitude for studying decays 

would be a function obeying 



w(x) -, o· x < <Ut . ~ 

w(:x) = 1 X > > ~ , 
"'VI. 

.where R is a .distance significantly greater than the size of the 

atom. With the choice (A.6) the transition amplitude (A.5) is non..;; 

vanishing only when the photon has completely escaped from the atom 

'and cannot:; interact with it again •. ThU::3, (A.5) is equivalent to 

Eq. (1.15)' for ct'»tPl,' 

(A.6) 

Let. us now turn 'to a .second . case, appropriate to certain meson 

decays,. in which the wave packet. of the photon or other decay product 

~s a narrow time resolution (compared to the decay life-time) but still 

a broad spatial resolution (compared to the dimensioris of the decaying 

system). To obtain the appropriate limit of (A.4) we use 

co 
-1 

i J d 
iXor 

X. = or e J. 

0 (A·7) 

X = €k - € - \it a (€k) - € - € I , 
a k a 

- - "-

and again evaluate.the ~IS at k = P to obtain 
hoJ "w 
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ik·r e· ......... f.\¥ 
-iE (t-T) k ' 

e 

X e 
-iE' T 

8. 

f dT e 
-iE, ! T 

a w{c(t - T)P) 

(i/c) 

Here,r e(t) 

Ai 

o 

e 

\ 

-iE t a 
e 
-i(D-ir/2) (t-r .p/c) 

is the Heavisidefunction 

e(t) = 1, t > 0 

,\' = 0 ,t < 0 

e(t - r.£/c) 
IW 

'and W is a wave packet of mixed argTh."Uents in momentum and position 

- P.· ,~.L) 

peaked about A 
k. k . P = 

,1/ ' - >'YW 

The time dependence of 

e 

in agreement with intuition. 

a*(k - p) 
,..". 'W-

P and, ~J. 

I <t b l2 is 

n(... "":j' \ -~ u-r· n c) 
\ li".t" ' 

AA 
x - x . p p ::: J:J.. - ~ '('rl. 

given by 

. 



.' . APPENDIX B. DERIVATION OF EQUATION (2.26) 
, , 

. ..' , .. '. . .., 

,When we can ignore the difference between (j) ~" ,and 
's 

in Eq. (2.23), we can write this as 

1 

€ - K-

, Now, 

'/\,(j-l) , ,:1 !\R(j"',l) 
R ' V +V- p, l' 

a J-

V , 

where a - €- K.lf we substitute the right-hand side of (B-1) 

into this, we have 

/\R(j-l) = ,V + 

0(') ~w J 

= V + [1+ ~l. (j) 1,~] [R (j)- V + <R (j) a! V] 
s, a _ ~ (J), .', s 

s 

= [1+ (\t' (j) , . , s 

Here we have used our assumption that 

setting 

& (j) may be neglected in 
v 
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tR (j)l R(j) A 
S a - <R (j) . j 

S . 

~ R (j) .. 
S 

1 <R. (j) 
(:) (j). s • 

a - \i"\. 
S 
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