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NUCLEAR SPIN AND HYPERFINE STRUCTURE MEASUREMENTS 
ON THE RADIOACTIVE ISOTOPES 110 In, 121Sn , AND 88Rb 

Michael Herbert Prior 

Lawrence Radiation Laboratory 
University of California 

Be r keley, California 

March 25, 1967 

ABSTRACT 

The atomic - beam magnetic -resonance technique has been used 

to measure the nuclear spin of 66 min 110In , the spin and hyperfine 

structure interaction constants a and b for 27 hr 121Sn in the 3 P1 
electronic state, and the a constant for 18 min 88Rb (I = 2). Values 

of the nuclear moments are inferred from the measured interaction 

constants. The results are: 

Isotop~ ~in, hfs constants 

110
In 

121,.., 
.:>n 

I = 2 

I = 3/2 

a= + 128.726(8) MHz 

b = + 32. 373 (12) MHz 

a = - 128.726(8} MHz 

b = - 32.374(12)MHz 

a = + 474.4 3 2 (6) MHz 

a = - 474.432(6) MHz 

Moments 
2 

X 

1-11 = - .0.699(7) nm } 4.72 

Q = + 0.08(4) barn 

1-11 = + 0.699(7) nm '~ 4.'06 

Q = - 0.08(4) barn) 

1-1 = + 0.506(5) nm 
I 

1-1 = - O. 5.0 6 (5) nm 
I 

1.00 

2.50 

Number of 
observations 

3 

32 

32 

14 

14 

2 
The X of the least-squares computer fit to the observations IS listed 

, 
for the two pos sible signs of the interaction constants. The figures in 

parentheses represent the error in the last figure quoted. For the hfs 

constants this is one standard deviation from the computer mean. For 

1-11 the error is 1% to allow for effects of a possible hyperfine structure 

anomaly. For Q the error is 50% to a.llow for inaccuracies in the 
-3 

calculation of < r > and the effects of Sternheimer shielding. 

". 
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A relativistic calculation accounts for ::;; 1/3 of the a for 

121 Sn and the remainder is attr"ibuted to the effects of configuration 

interaction. Second-order corrections to the hfs consta.nts are shown 

to be negligible for 121Sn. 

The nuclear quantities, except for Q, are In reasonable agree

ment with values calculated by using the shell model with an approIJl'iate 

residual interaction, provided one takes the negative sign for the inter-
. d 1 12.1 actlon constants. The qua· rupo e mOlnent of . Sn Inay aris e fronl 

polarization of the prqton core. 

• 
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1. ATOMIC THEORY 

The electronic state of an atom can be represented to a very 

good approximation as a solution to the SchrBdinger equation, 

JCljJ = E ljJ, 

where E is the energy of state ljJ and JC is the atomic Hamiltonian. 

This Hamiltonian can be written as the sum of a number of parts, 

The first three of the 

JC = Je O + Jet + Jefs + Jehfs 
1 

above have the form 

Je
O 

= 2: r~2i~ + U(r.)l, 
i L m 1J 

~- 2 " 

'z i 

Jet = 2: i~~ + u(ri)J + ~ 
! r. i t. i '- >j 

Je =2:~ (r.) [. s. 
fs ill 1 

(1. t) 

(1. 2a) 

2 
e 

(I.2b) 
r .. 

IJ 

(1. 2c) 

In Je each term contributes to the atomic energy E an amount which 

is les s than or approximately equal to the term on its left. That is, 

> 
EO > E1 l:::: Efs > E hfs . 

The major portion of this work concerns the form and effect of the 

smallest term Je
hfs

. Before entering into a detailed discus sion of 

Je
hfs

' however, a brief examination of the lar ger terms is in order. 

The term Je
O 

includes the kinetic ener gy of the electrons and 

their interaction with some general spherical potential U(r.). Because 
1 

U(r.) is spherical and depends only on the coordinates of One electron, 
1 

the orbital angular momentum quantum number 1 for each electron is 

a constant of the motion, as is the principal quantum number n, which 

determines the energy of a single electronic state. Thus the state of 

the entire atom can be specified by listing the n' sand l' s of all the 

electrons. Such a listing is called a configuration; for each configura

tion the total energy of the atom is different. The Pauli exclusion 

principle and the fact that electrons have spin s = 1/2 limit to 21+2 the 

number of electrons with the same nl. All states of different total 
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orbital L and total spin S angular momenta arising from the same 

configuration have the same energy EO. 

The term Je j removes the L, S degeneracy of the configurations. 

The first portion of X 1 merely shifts the level of a configuration, but ~. 

the second part, which represents the electrostatic repulsion of the elec

trons, splits the configuration into a number of different levels which 

are eigenfunctions of total spin and orbital angular momentum. These 

different levels, characterized by their values of Land S, are called 

terms. 

The fine - structure Hamiltonian, X fs ' is not diagonal with re

spect to eigenfunctions of L 
2 

and 82
, but is diagonal with respect to 

. -2 - - -
eigenfunctions of J , where J = L + S is the total electronic angular 

momentum op'2!rator. Thus each term which is (2L+i)(2S+i)-fold de

generate breaks up under the influence of X fs into a further set of 

levels which can be characterized by their eigenvalues of ]'2. These 

levels are termed m.ultiplets and are (2J+i)-fold degenerate. 

Finally, the X
hfs 

Hamiltonian, as is discussed later in more 

detail; couples the nuclear spin I to the electronic angular momentum 

J to split each multiplet into a number of hyperfine-structure levels 

characterized by different eigenvalues of F2, where F is the total atomic 

angular momentum F = f + J. Figure 1- 1 shows in schematic form how 

a single configuration is affected by each of the terms in X .. 

It should be emphasized that the action of each term in X is 

such as to reduce further the number of good quantum numbers avail

able to describe a state. Thus, even though one often describes a 

given hyperfine level, F, as belonging to the J multiplet of the LS 

term of the nlk configuration, it is not strictly true that J, L, S, n, and 

I are all quantum numbers of the system. In fact, for the complete 

Hamiltonian X the only good quantum numbers are F and the energy E. 

Thus the operator e
2
/ri2 in Xi can mi~ different configurations 

ni11 and n2l2 provided they hav·e the same parity .. The operator Je fs 
can mix terms of different Sand L provided ~S, ~L = 0 7 ±i; and Je

hfs 
can mix multiplets differing in J by ~J = 0, ±1. However 7 as is often 

the case, each term in Je contributes to EO a small amount 

compared with those terms to its left in Eq. 1.1, and it is then pos sible 

• 
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to treat a given term in JC as a small perturbation. This perturbation 

approximation is what is depicted schematically in Fig. 1.1. This 

approach is particularly valid for light elements (Z $ 50), where typically 

one has 

EO = 10 eV, 

E1 = 1 eV, 

Efs= 0.05 eV, 

Ehfs = 0.00005 eVe 

> For heavier elements (Z - 50) Efs often becomes an appreciable 

fraction of E
1

, and in this case one must consider the possibility of 

LS mixing by JC
fs

' Such mixing may be made apparent by large deviations 

of the atomic g factor. gJ' from the value predicted for a pure LS state. 

Despite the smallness of E
hfs

' the high-precision radio-frequency 

atomic resonance experiments sometimes detect the effects of the mixing 

of different J state s by JC
hfs

. The effects of this J mixing on the 

hfs energy levels are considered in more detail later . 
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Configuration Terms Multiplets hfs Levels 

LS 
~--- (2S+I)(2L+I)-fold degenerate 

n1 

.J 
-~- - (2 J + 1)- fold degenerate 

___ F ___ (2F +1) -fold 

'---....... ~========= degenerate 

'?I=_>[Ze2 
+U(r )1 +I: ~ 

I I' r l IIJ i>j r1j 

MU.3234S 

," Fig. 1-1. The effect of the inclusion of different terms in 

the atomic Hamiltonian. 

.. 
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II. THE HYPERFINE-STRUCTURE INTERACTION 

A. First-Order Theory 

Clas sically, the hyperfine - structure interaction (hfs) between 

the nucleus and the atomic electrons may be written as the intel,"action 

between the nuclear and electronic charge and current distributions. 

That is, 

(II.i) -~- (dT If dT 
2 2 n e 
c) -' 

where Ehfs is the hfs energy; P
n

, I n and Pe , J
e 

are the nuclear 

and electronic charge and current densities separated in distance by 

r ; and dT ,dT are differential elements of nuclear and electronic 
ne n e 

volume. The second term in EE is the large interaction of the electrons 

with the central potential due to a point nucleus of charge Ze; it is in

cluded in the first term and so must be subtracted to leave only the 

small hfs energy. 

It is convenient to modify the form of the third term of Eq. II.i 

by introducing the nuclear and electronic magnetizations M and M so n e 
that 

J' =V'XM 
n,e n,e 

This can be done because the two charge distributions do not de

pend on time, and hence by the equation of continuity, one has 

8p 
n,e -aT- = 0 . 

Substituting for J and J and performing some transformations with 
n e 

the aid of the theorems of vector calculus and the fact that M andM n e 

vanish at infinity, one obtains 

EM ~ ) J dr n r dr e 
-" 

(~ . M ) tv· M ) 
n e 
r 
ne 

4~JdT M 
2 n n 

c 
M 

e 
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One may now make. the substitution 
k 

1 
,--. r< 
'. k+1 --- G r r> ne k 

k k C (n) . C (e) 

where rand r> are the lesser and greater of rand r and the 
k < n e 

C are tensor operators of rank k related to the spherical harmonics 

Ykq by 

k /4TT 
Cq =,.f 2ffi Ykq · 

Th . Ck Ck . h d d e quantlty . IS·t e tensor ot pro uct, 

k k C • C :.: 

it will not be distinguished from the normal vector dot product, as the 

context in which the dot symbol appears usually indicates whether the 

quantities are to be treated as spherical tensors or Cartesian vectors. 

Thus one has 

E = M 

...... 
\ 

W 
k=1 

k 
r< 

k+1 
r> 

k k C (n) • C (e) 

4iT_f dT MM 
2 nne 

c j 

The important point about these two expressions is that they are of the 

general form 

'\ k k 6 T (n) . T (e) , (II. 2) 
k 

k k' 
where T (n) and T (e) . are tensor operators of rank k operating on 

the nuclear and electronic coordinates respectively. Because the hfs 

interaction may be written in this form, one may apply the powerful 

techniques of tensor calculus, developed first by Racah, for the evalua

tion of matrix elements of such operators. Before doing so, however, 

one must make the transformation to quantum mechanics by substituting 
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the appropriate operators for p and M in order to make explicit the 

form of the Tk. 
2 

Schwartz has shown that the correct quantum mechanical ex-
k 

pressions for the T are, for the electric' terms, 

Tk{n) 2:: k k = e gl r C (n) 

Tk{e) = L Ok (e) (II. 3) e gl k+1 ' 
r 

and for the magnetic terms, 

Tk(n) L - k k -2 - -
= fJ.

N 
{'i7 r C (n) . ( k gl 1 + gs s) , 

Here rand s are the orbital and spin angular momentum operators 

and gl and gs are the orbital and spin g factors 

(gl = - 1 for an electron, + 1 for a proton, 0 for a neutron); fJ.
O 

and fJ.
N 

are the Bohr and nuclear magnetons e1i/2m c and e1i/2M c . 
e p 

It should be pointed out that these formulas were derived under 

the assumption that there is no overlap of the electronic and nuclear 

wave functions. This is not the case for an electron in an s state 

(1 = 0), and the magnetic dipole (k = 1) tensors must be modified to 

1 fJ.1 
T (n) = - -1 T, 1 81T ~ 2 

T (e) = -3- fJ.O L,gs s4J (0) 
s 

(II. 5) 

~ 2 
The summation /s~ extends only over s electrons, and 4J (0) is the 

square of the electron I s wave function at the origin. This form includes 

the as sumption that the nucleus is a point with angular momentum 1 

and magnetic moment fJ.r That the nucleus is not strictly a point mag

netic dipole ac~ounts for the fact that for.different isotopes of the same 

element the magnetic dipole interaction is not exactly proportional to 

the nuclear magnetic moment. The extent to which this proportionality 

between two isotopes is not preserved is measured by the so-called hfs 

anomaly ~. This quantity is largest for atoms with unpaired s electrons, 

and is rarely larger than an effective 1% change in the nuclear magnetic 

moment. 
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Putting aside for the moment the evaluation of the Tk, one can 

see that the noncentral nature of the hfs interaction will lead to a 

coupling of the nuclear and electronic angular moment I and J to a 

resultant total angular momentum F of the entire atom. Thus to the ~ 

extent that the hfs mixes nuclear states of different I and electronic 

states of different J, I and J are no longer good quantum numbers. ,/ 

In the nucleus, states of differing I are separated in energy by thousands 

to millions of electron volts, and hence are little mixed by the hfs, 
-4 -1 

which rarely exceeds 2X10 electron volt (1. 7cm ). On the other 

hand, electronic states of differing J separated by 1000 cm -1 (0.12 e V) 
. -1 -6 

can be m.easurably mixed by a normal hfs of 0.033 cm (4.1X10 eV). 

This corresponds to a shift in energy of one part in 106 easily within 

reach of the atomic beam magnetic resonance technique, which can 

measure energy differences to one part in 10 8 or 109. Nonetheless, the 

J mixing effect is small albeit measurable in some cases, and it is for 

most purposes sufficient to calculate the first-order hfs energy for a 

state I I J F) , though one must remember that higher-order corrections 

may be necessary. The first-order hfs energy is then 

" I k k E hfs = lJ < I J F T(e). T(n) I I J F> . 
k 

(II. 6) 

1 
By use of a theorem from tensor calculus, the F dependence may be 

separated out to yield 
f' i 

E = ,--' (_1)I+J+F) I J F \ (J II T(e)kll J) (III T(ntll I) • 
hIs L-, i J I k ! 

k ", (II. 7) 

Inspection of the explicit forms of the Tk shows that the magnetic tensors 

have parity (_1)k-1 and the electric tensors (_1)k. Since the nuclear and 

electronic states are to a very good approximation, states of definite 

parity, contributions to Ehfs from even magnetic and odd electric ten

sors must vanish. Henceforth terms with k odd will be understood to 

be magnetic and those with k even electric. Furthermore the 6-j 

symbol vanishes unless k. is less than or equal to the lesser of 21 or 

2J. Thus, one has 2(min I, J) terms in Ehfs (F) and the same number 

of independent energy intervals Ehfs (F) - Ehfs (F'). Hence measurement 

of all the hfs intervals should allow determination of all the terms in 
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Eq. II. 7. For the work to be treated here only the terms with k = 1 

and k = 2 need be considered. 

The double-barred quantities in Eq. II.7 are the so-called re

duced matrix elements, and may be evaluated by using the Wigner-

Eckart theorem of tensor calculus, 
1 

J-MJ ( J 
= (-1) 

-M
J 

(II. 8) 

This is an important theorem because it shows that the matrix elements 

of any two tensors of the same rank operating on the same system are 

proportional to each other. Thus T1(e) may be written as 

1 -He J 
T (e) = --J-

where H is determined from 
e 

H = - J 
e 

(J II T
1

(e) II J) 

(J II J II J) 

Similarly, T1 (n) may be written as 

1 f-L1 -
T (n) = T I , 

with 

f-L = I (I II T
1

(n)-LLJl . 
I (I II T II I) 

For k = 2 one can proceed in a similar manner to write 

T
2

(n) = t K2, 
n 

T
2

(e) = t p2, 
e 

(II.9) 

(II. 10) 

2 2 
where K and P are second-rank tensors made up from components 

of the nuclear and electronic angular momenta I and J respectively; 

that is, 

I = ':f" ± 

[31; - 1(1+1)J ' 
3 1/2 

(8) (lz l±+I±lz ), 
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with a similar expres sion for p2 in terms of J. The t and tare 
n e 

constants of proportionality easily determined from 

and 

(II I T ~ (n) I II > = t n (II I K~ I II > 

(J J I T ~ (e) I J J > = t e (J J I p~ I J J > . 

For the nuclear part it is customary to define 

2 2 
Q = 2 ( II I r Co (n) I II > 

where Q is the nuclear quadrupole moment. Thus 

t 
n 

= 
eQ 

2I (2I - f) . 

For the electronic part the customary definition is 

qJ = (JJ I T~(e) I JJ> 

(II.11) 

(II.12) 

qJ is a measure of the electric field gradient at the nucleus due to the 

electrons. Then t is 
e 

t 
e 

It is customary to define the hfs magnetic dipole and electric quadrupole 

constants a and b as 

a = - (11.13) 

b = • (II. 14) 

6 
The constants are normally expres sed in units of 1 MHz (10 cps). Thus 

the effective hfs Hamiltonian including k = 1 and k = 2 terms is 

- - hb '" - - 2 3 - - ] 
JC(hfs) = ha I· J + 21(2I-1) J(2J-1) L3 (1. J) + "2 (I· J) - 1(1+1)J(J+1) . 

(II. 15) 

Because JC (hfs) is diagonal in F it is easy to calculate the hfs energies 

G/ 

E
hfs 

(F); one simply substitutes f· J = [F(F+1) - 1(1+1) - J(J+1)] /2 . ~ 
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B. Evaluation of the Electronic Matrix Elements 

To determine the nuclear quantities f.lI and Q frorrl the measured 

hfs constants a and b it is necessary to evaluate He and qJ in terms 

of the electronic wave functions. For H one has Eq. II.9, 
e 

H 
e 

= -J (J II T1 (e) II ~L 
(J II J II J) 

Using Eq. II.S, it is easy to show 

(J II Y II J) = [J(J + 1) (2J + 1)] 1/2 . 

From Eqs. II. 4 and II.5 one has 

1 ~--, r- -2 1 1 
T (e) = f.lo \ l 'V r C ( e }J LJ ns 

where ns and s 

C
1 r 

Because = 
r 

indicate summation over non-s 

T1(e) may be written as 

1 \' (r - 3) r T -
3(8 . rYIJ 

T (e) = 2f.lO s + -
L.l 2 i 
ns L r ..J 

and s 

16n 
3- f.lo 

where gs and gl have been replaced by -2 and -1. 

electrons. 

f""! _ 

ljJ2 (0), S 
!..I 
s 

(II.16 ) 

1 
To facilitate calculation of matrix elements, T (e) must be written 

as the sum of tensor operators which transform under rotations as do the 

spherical hannonics. All terms in T1(e) are first-rank tensors (vectors), 

but the third term is not in the appropriate tensor form. With some manipu

lation, using the coupling rules 1 for the C
k

, one can rewrite the third term 

as 

1 
so that T (e) becomes 

T1 (e) ~ 2 '"'0 ~ (r -3) [I -(10) 1/2 (. c 2
/]_ 1~" ~ S "hO). (11.17) 

For the quadrupole constant qJ one must evaluate the matrix element 

< JJ I T~(e) I JJ >. Using ~he Wigner-Eckart theorem II.S and the ex

plicit form for T~ (e), 
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one obtains 

_ [ J (2J - 1) .,1/2 2 
qJ - - e (2J + 3) (J + 1) (2J + id (J II T (e) II J) (11.18) 

By use of the theorems of tensor calculus and the explicit forms for 

T
1

(e) and T
2

(e). it is a relatively straightforward problem to calculate 

the angular parts Q{ the reduced matrix elements (J I I T 
1 

(e) I I J) and 

(J I I T 2
(e) I I J) for any electronic state IS LJ > arising from a con

figuration of one or two electrons or electron. holes. For configurations 

of more than two electrons (or holes) it is necessary to consider the 

various ways the electrons may couple their 1 and s angular momenta 

to the resultant Land S. This requires knowledge of the so-called 

coefficients of fractional parentage for the particular case under study. 

The atomic states studied here arise from one- or two-electron con

figurations and hence do not require this more general treatment. 

Evaluation of the radial i~tegral < r - 3) in the reduced matrix 

elements (J I I Ti(e) I I J) and (J I I T 2
(e) I I J) is not so easy as the 

angular part since, in general, precise radial wave functions are not 

available for the particular state under study. Fortunately, one may 

often avoid use of approximate radial wave functions by obtaining a value 
-3 

for < r > by one 0 r both of two methods. 

The first method relies on the fact that the magnetic hfs con

stant a is proportional t~ the product of (r - 3) and gr Thus, if one 
-3 

has independent knowledge of a and gI' one can calculate < r >. Often 

the proportionality of a and gI is used to calculate the gI for one iso

tope from its a value and the independent a and gI values of another 

isotope of the same element. Thus 

(II. 19) 

This formula depends onthe as sumption that the constant of proportionality 

between a and gI is the same for every isotope. That this is not always 

true gives rise to the small hfs anomaly effect mentioned earlier. 

it 



""!-' 

IIB, C -13-

The second method utilizes the fact that the spin orbit constant 
-3 S is proportional to < r >; that is, 

(II. ZO) 

where Zeff is an effective Z value seen by the electron in question 

and takes into account shielding of the nuclear charge by the inner elec-
3 

trons. Judd suggests that one take Z eff = Z - 4 for p electrons, 

Z ~ 11 for d electrons, Z - 30 for f electrons. The quantity H IS 

a relativistic correction factor and may be obtained from a table in the 

appendix of Ref. 4. Because of the uncertainty in choosing Zeff' this 

second method is less accurate than the first. 

C. J - Mixing Corrections to hfs 

It has been mentioned previously that Je
hfs 

mixes electronic 

states of different J. In fact, for the general matrix element 

{I J F lJ<bfs I I J IF> ' one has 

< I J F I JC hfs I I J IF> 

{' ... 
1+J +F j I JI F} k = 'kl (- 1) !.r I k < I I I T (n) I I I > 

The 6-j symbol shows that for k = 1, J states differing by ~J = 0, ±1 

are mixed and for k = Z those differing by ~J = 0, ± 1, ± Z. 
5 Woodgate has considered the second-order correction oE

hfs 
to the hfs energy, where 

OEhfs (F) = 
JI 

< I J F I JC hfs I I J IF> < I J I F I ~fs I I J F > 

. E J - E J, 

E J - E J I is the energy separation of the F level in states J and J 1
• 

He has shown that the corrections to be added to the magnetic dipole 

and electric quadrupole constants a and b are given by 

OA
i 

(J) 
oa(J) = -U-

ob(J) = 4 OAZ(J) • 

(II.Zi) 
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where 

/IKI\ (/JKJ\ II K i K 
\,-1 0 I) . - J 0 J) < I ;X (n) Ill) (J i I X (e) II J) 

, , 

and 

k k 
X < I liT 1 (n) II I> < I II T 2 (n) III> 

x 

Thus in second order an electric quadrupole interaction contributes a 

term to 6a(J) and a magnetic dipole interaction contributes to 6b(J). 

(II.22) 

Due to the large energy denominator E
J 

- E JI ' these corrections 

will be small, but in precise experiments they may be greater than the 

experimental error in measurement of a and b. 

D. Effect of an External Magnetic Field 

A magnetic field H will add to the atomic Hamiltonian two terms, 

3C = - g f.L f· H - g f.L J. H. mag I 0 J 0 

Because these two terms depend on the relative orientation of f and J 
with respect to the external field, each (2Ft1) -fold degenerate hyperfine 

level F will be split into 2Ft1 levels specified by the values of MF 

which run over the range -F to F. However, since the field exerts 

an external torque on the atom its total angular momentum is no longer 

a constant; that is, F is no longer a "good" quantum number. This 

can be seen formally from the Wigner-Eckart theorem Eq. II.S, where 
k 

J, M
J 

are replaced by F, MF and Tq by I z 
field direction has been chosen as the z axis. 

or J ; the magnetic 
z 

The properties of the 

3-j symbol show ~hat MF remains a good quantum number but that F 

levels differing by unity are mixed provided they contain a common 

MF value. 

,1, 
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The extent to which different F levels are mixed by JC 
mag 

depends on its strength relative to the hfs Hamiltonian JC
hfs

' Clearly 

two limiting cases exist; namely, JC ,<: <: JC
hf 

and JC > > JC
hf 

• 
mag s mag s 

By varying the magnetic field it is usually pos sible to put the atom into 

either of these limiting situations. In the first case one may treat JC 
mag 

as a small perturbation acting on the states IF M
F
). Thus I and J 

are still strongly coupled together and may be thought of as preces sing 

about the direction of F (Fig. II-1a.) Only the component of H along 

the direction of F then contributes to the splitting by JC This 
mag 

component HF may be expressed as 

Substituting this into 

one obtains 

where 

- _ (A· F) 
HF - F(F+1) F. 

JC and using the relations 
mag 

I. F = F(F+1) + 1(1+1) - J(J+1) 
2 

J. F = F(F+1) + J(J+1) - 1(1+1) 
2 

_ F(F+1) + J(J+1) - 1(1+1) 
gF - gJ 2 

F(F+1) + 1(1+1) - J(J+1) 
+ gI 2 

Thus at small magnetic fields the states I F M
F

) are separated by 

equal intervals gF!-La H . 

(II. 23) 

(II. 24) 

In the limiting second case one uses states ImI m J ) , which 

diagonalize JC . In this limit rand J preces s independently 
mag 

about the strong external field H (Fig. II.1b). Thus quantities 

r· J in JC
hfs 

are replaced by m
1 

m
J

. One has then 

JCmag = - g1 !-La mIH - gJ !-La m J H, (II.25) 

b 2 2 
21(21-1) J(2J-1) [3 m 1 m J 

+ (3/2)rn
I 

In
J 

- 1(1+1) J(J+1)] . (II.26) 



IID,E -18-

When JChfs and Je
mag 

contribute approximately equally to the atomic 

energy one may not use either of the approximations above, but must 

treat the problem exactly and diagonalize the complete Hamiltonian 

Je = Jehfs + Jemag . 

As a set of basis states one may use either the IF m
F

) or the I mr m
J

) 

Using the I F m
F

) set one must diagonalize the (21+1) (2J+1) - order 

matrix of the form shown in Fig. (II.2). This can be done in closed 

form for the case I = 1/2 or J = 1/2, yielding the famous Breit-Rabi 

formula,6 but for the general case one uses numerical methods and a 

digital computer to ·solve for the eigenvalues. 7 

E. Relativistic Effects on hfs 

The atomic Hamiltonian JC, Eq. 1.1, includes the effects of 

relativity only through the fine- structure operator Je
fs

. This operator 

is an effective operator which reproduces in the Schrodinger formalism 

the largest effect of relativity on the electronic state. A better approxi

mation to Je (excluding the hfs) is the many-electron relativistic 

Hamiltonian 

Je =:; [13. mc 
2 + a .. cp Z ~ ) + 

reI ~ iII i - r.' 
1 \..- 1 ) 

\' 
I....J 

i<j 

2 ;'" . 
~- >1- a . a \ 
r ij· i j j , 

where a: and i3 are the Dirac operators. 

consistent field theory for solution of 

8 
Grant has developed a self-

JC 1l\J=El\J. re 

The four-component wave function l\J is constructued from anti symmetric 

products of single - particle functions of the form 

where 

eR = nljm 

Y
lm

-
CT 

IS a spherical harmonic, 

(

Xl. p(r)/r) 
X l~: iQ(r)/r 

<j> CT a spin function with s = a and 
z 



lIE -19-

< .~ ljm lila m-a ), the Clebsch-Gordan coefficient; 1 and I' are related 

by 1 = j ±.~ when· l' := j + i; P(r) and Q(r) are radial wave functions, and 

in the nonrelativistic limit P(r) remains finite while Q(r) -'"' O. 

One may now distinguish two different corrections to nonrelativistic 

hfs caused by inclusion of relativity. One arises from the breakdown 

ofLS coupling (BDLSC) which occurs when ~fs ITlixes different non

relativistic LS terms. The second arises from the neglect of the four

component nature of the relativistic wave function when hfs matrix 

eleITlents are calculated. BDLSC can be allowed for by including different 

L.5 terms in the wave function; the amount of each can often be deter

mined by fitting the calculated g J' s, and term and multiplet spacings 

to the observed values. 
9 Recently Sandars and Beck have developed a technique which 

allows one to take into account the second effect of relativity while using 

nonrelativistic LS-type wave functions. They constructed effective 

operators for magnetic dipole and electric quadrupole hfs which, when 

ITlatrix eleITlents are taken between LS wave functions, yield correct 

relativistic expressions. These effective operators are of the form 

where 

rw
k = Tk(n) 

<1Vhfs eff 
k 

T (e)eff' 

k 
Teff(e) = 

(k kl)k (k kl)k 
P sUs 

(II. 27) 

(II.2S) 

(k kl)k 
The P s are coefficients involving radial integrals and are included 

(kg kl)k 
in Appendix (1). The U are tensors of rank k made up from a 

Ie kl 
tensor t s of rank k in spin space and a tensor v of rank kl in 

ks s kl . 
orbital space; t and v are unIt tensors; that is, 

With k 
s 

restricted to 0 or 1 for the ITlagnetic dipole hfs, there are 

three terms in 
1 . . (01)1 (12)1 (10}i 

T ff (e) contallllng U , U , and U . Sandars 
e _ _ 2 1 -

and Beck point out that these are proportional to 1, (s C) and s 

respectively. Thus one can write 
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'W 1 f-LI -
"""hfs eff = 2 f-LO -[ I 

,--' f_ - 3 
'),\l(r >01 

" 
- 3 "1 

+8 (r >10;'" (II. 29) 
j 

The various expres sions involve relativistic radial integrals, 

and they are listed in Appendix 1. Equation II. 29 is of the saITle form 

as the nonrelativistic JC 1 (see Eq. II.17 with the exception that here 
his 

different radial quantities multiply the first two terms, and the last term 

is present regardless of whether or not there are unpaired s electrons 

in the configuration. 
. -3 -3 

In the nonrelativistic limit, (r > 10 = (r > 12 and 
-3 

(r >10= O. 
There are three terms in T;ff(e) involving U(02)2, U(11)2and U(12)2. 

The first is proportional to 2, which is the only forITl found in the nonrela-
2 

tivistic T (e). The two remaining are peculiar to the relativistic forITlula, 

and in the nonrelativistic liITlit they vanish. 
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III. NUCLEAR THEORY 

The present theory of the nucleus is in many ways similar to 

that for the atomic electrons. The the,o-ry is not, however, so successful 

in calculating nuclear properties as the atomic theory is in calculating 

electronic properties. The comparatively poor performance of nuclear 

theory is due to (a) a lack of knowledge of the nuclear Hamiltonian and 

(b) inability to solve, to a comparable degree of approximation, the 

many-body problem. In the atomic case, the overwhelming force holding 

the electrons to the nucleus is the simple Coulomb attraction; this is a 

long-range force and it is easy to see how it can account for the binding 

of the electrons. The force between nucleons, however, is a very short

range one, falling off very rapidly as nucleons are separated by more 

than a few nucleon diameters. It is not obvious how such a force can 

hold a nucleus containing many nucleons together and still account for the 

fact that, to a large extent, individual nucleons seem to move independently 

within the nucleus. Since it is not possible at present to derive a successful 

nuclear Hamiltonian from first principles starting with the internucleon 

force, one uses an effective Hamiltonian which can account empirically for 

many of the observed nuclear properties. This Hamiltonian takes the form 

\' )~ JC =) (T. + U.) - ..J C. s, • 1. + nuc t.;-, 1 1 . 1 1 1 
. 1 1 

\" V 
.L.. ij 
l<J 

(III. 1 ) 

T. is the kinetic ener.gy of the ith nucleon and U. is a central potential. 
1 1 

The second term is the famous spin-orbit term; it must be included in 

order that the observed nuclear shell structure will be reproduced. The 

last term is the residual interaction between nucleons, and presumably 

includes all terms left out in the first two. The similarity of JCnuc to 

the atomic Hamiltonian, Eq. 1.1, is apparent. The difference contributing 

to (b) is that the spin-orbit term is not small compared with the first 

two terms, nor is the residual interaction always small enough to yield 

to a simple first-order perturbation treatment. 

1£ one neglects for a moment the residual interaction term in 

JC one sees that Schrodinger t s equation, just as in the atomic case, 
nuc' 

leads to a set of individual nucleon eigenfunctions and eigenvalues which 

can be specified by a principal quantum number n, an orbital quantum 
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number 1, and a. total individual angular momentum quantum nU.mber j; 

there is a (2j+1}-fold degeneracy in the energy of such a state corresponding 

to different projections m. of r On some z axis. Thus, each nlj sub-' 
J 

shell will hold 2j+1 protons or 2j+1 neutrons. The energy of an nlj 

subshell depends on the form of U. and C.; by picking these quantities 
1 1 

properly it is possible to obtain nlj eigenvalues which, to a large extent, 

reproduce the experimentally observed single-particle energy levels. 

Figure IlI-1 shows these shell-model levels for protons and neutrons; 

the small effect of Coulomb repulsion between protons has been included. 

(The usual convention of identifying 1 values by the letters s, p, d, f, g, h, 

and i for 0,1,2,3,4,5,6, and 7 is used.) One sees that large energy 

gaps occur after 2,8,20,28,50,82,126 neutrons or protons have been added; 

these are the so-called "magic numbers. 11 Nuclei with a magic nU1nber 

of nucleons are especially stable; those with two magic numbers exceptionally 

so. The existence of magic numbers is analogous to the closing of major 

shells in an atom, yielding the special stability of the hoble gases. Many 

nuclear properties exhibit pronounced changes as the N or Z passes 

over a magic number. 

It is important to emphasize the role of the spin-orbit term in 

giving the proper level ordering. Examination of the figure shows that 

the splitting between the j = 1+1/2 and the j= 1-1/2 levels is decisive 

for the pairs 1£7/2' 1£5/2; 199!2' 19 7/ Z; 1h11 / 2 , 1h9/ 2 ; and 

1i13!Z' 1i 11/ 2 • Each member of these pairs is in a different major 

shell; this is required to give the observed magic numbers. The level 

ordering shown in Fig. III-1 is not necessarily correct within a given 

major shell (between magic numbers); however, the division into major 

shells is correctly given by the JC ~ with zero residual interaction. nul.. 
There are two ways of dealing with the effects of V .. in JC • 

. IJ nuc 
The simplest describes its effect in terms of a set of coupling rules 

which are based on the large body of empirical data on nuclear ground 

states. Thus it has been observed that all nuclei with even Nand Z 

have nuclear spin (total angular momentum quantum number) I = O. 

Furthermore, a great many nuclei with N or Z odd have I and 

parity equal to the j and parity of "last-odd nucleon, " a single nucleon 

.,;. 
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Fig. III-l, Shell-model single -particle energy levels (spin-orbit 

and Coulomb energy terms included). 
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in the highest occupied level. On this basis, the extreme single-particle 

shell model (ESM) postulates that all nuclear properties are due to the 

last odd particles (one or two at most), all others coupling to an inert 

core with zero angular momentum. When both Nand Z are odd, the 

nuclear spin I may take on the values (j + j ) ~ I ~ I j - j I, where 
. p n p n _ 

j and j are the angular momenta of the last odd proton and neutron. 
p n 

The exact value of I in anyone case depends sharply on the effects of 

V... On the basis of the empirical observation that in odd-odd nuclei 
1J 1 

the odd-nucleon spins tend to line up, Nordheim 0 proposed two coupling 

rules: 

if j = 1 ± 
1 

and jn 1 
1 

then I = Ijp jnl 2" = + p p n 2 ' 

if = 1 
1 

and 1 
1 

then Ijp-jn i J p 
± 2 J = ± 2' I > . p n n 

In order for the ESM to account for the large number of nuclei 

with I = 1/2 in regions where high-spin subshells are being filled 

(e. g., 1 h 11 / 2 ) the pairing energy rule is postulated; it states that two 

nucleons paired to zero angular momentum in a subshell with large orbital 

angular momentum I' may have lower energy than 2 coupled to zero in 

a subshell with 1 < 1', even though the single-particle level for I' is 

higher than that for 1. Thus for 119Sn 1= 1/2 and the configuration 

(3s 1/2) 1 (1h11/ 2 ) 
4 

is lower in energy than (3 s 1/ 2) 2 (1h11 / r) 3, even 

though for a single particle (3s 1/2)1 is lower than (1h11 / 2 ) • 

The magnetic dipole moment of a nucleus in the ESM is easily 

calculated by use of·the free proton and neutron magnetic moments. For 

odd- N or odd- Z nuclei it is given by 

I-lnm 
f.l= 2 (I + 1) 

Fg
l 

[1(1+1) + l( 1 +1) - 3/4] 
I . 
" 

+ gs [1(1+1) - I( 1+1) + ! l} (III. 2) 

where gl = + 1 for a proton, gl = 0 for a neutron, and gs = 5.5856 for 

a proton and -3.8263 for a neutron; f.l is the nuclear magneton, 
nm 

f.l = e1i/2M c, where M = mass of proton. This formula yields the 
nm p p 

" 
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Schmidt values for the magnetic moments; these differ from the meas

ured values for odd-mass nuclei by as much as 400%. However, virtually 

all the measured magnetic moments lie within the two Schmidt limits 

calculated with I ::: 1+1/2 and I = 1-1/2. For odd-odd nuclei one can cal

culate the expected magnetic moment from the equation 

(III. 3) 

this yields 

\.l = --!.-- f,!· _I\.l E l 1(1+1) + I (I +1) - I (I +1)] + ~E. [1(1+1) 
2(1+1) l p p p n n . In 

\ 
+ I (I +1) - I (I+l)]}, (IIl.4) 

n n pp. J 
where I , fl , I , \.In are spins and moments of neighboring odd-Z and 

p p n 
odd- N isotopes. 

The electric quadrupole moments for anodd-proton nucleus IS given 

in the ESM byll 

r 
Qp = i!F~? (r

2
). L1 - ~l'-::'i-J ' (!I1.5) 

where n is the number of nucleons in the j subshell. For an odd-neutron 

nucleus in the ESM, the quadrupole moment is due to recoil of the charged 

d ·· . 1 b 11 core an IS gIven apprOXImate y y 

(III. 6) 

Observed quadrupole moments differ from those calculated in the ESM 

by as much as a factor of 20 or 30. Furthermore, it appears that odd

neutron nuclei have quadrupole moments equal in magnitude to odd-proton 

nuclei. There seems also to be a preponderance of positive quadrupole 

moments, whereas ESM predicts equal numbers of positive and negative 

moments. 

The deficiencies of the ESM theory lie in its neglect of the effects 

of the V .. term in JC • V .. is represented only through the empirical 
IJ nuc IJ 

coupling rules, which do a good job of predicting spins of odd nuclei, but 

do not contribute to the calculation of moments. V.. has much the same 
IJ 
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effect on nuclear configurations as e
2
/r .. has on atomic ones, that is, 

IJ 
V ij can mix different ESM configurations. This can be an important 

effect when one is considering matrix elements of any Hermitian operator 

0, such as the moment operators. Thus, if ljJO is the ESM state and 

V .. mixes in a state ljJ1 in first order, the new state is 
IJ 

where 

Q = 
(ljJ1 I V ij IljJo> 
-LS---E

10 
here ~E10 is the zero-order (ESM) energy difference between states 

tjJ1 and ljJO' Neglecting second-order terms in Q, one has 

thus if ljJ 1 is admixed only 1%, this corresponds to Q = 0.1, and if 

then a 20% change will result in the expectation value of O. 

It is important to pick the correct form for V... This form 
. IJ 

must be. consistent with the empirical coupling rules, since they are 

postulated to arise from its effect. V .. is expected to have a large 
IJ 

short-range part, since the free -nucleon scattering force is observed 

b h N A . d H . 12 h . d 1 to e sort-range. oya, rIma, an orle ave carrIe out ca cu-

lations for odd-mass nuclei using this first-order mixing of ESM con

figurations. The V .. they used was 
IJ 

V .. = [V (1-4"5. '5.)/4 + V
t

(3 + 45". ·8.)/4J&(r .. ) 
IJ s 1 J 1 J. IJ 

V and V
t 

are the singlet and triplet strengths and s. and s. 
s 1 J 

spin angular momentum operators for the ith and,i!:h nucleon. 

are the 

V .. has 
IJ 

zero range due to the delta function. Noya et al. used ljJO functions 

derived from both a square-well form for U. and an isotropic harmonic 
2 1 

os cillator potential 

tained V/V
s 

= 1.5, 

U. ex: r. . From free-nucleon scattering they ob-
I 1 

and determined V by fitting calculated to observed 
s 

pairing energies. Magnetic moments calculated agreed with experiment -to within :::::: 30%, except for the heavy nuclei (A > 150). Quadrupole moments 

. .:. 
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wer~ less successfully reproduced, agreeing to = 50%, except for the 

heavy nuclei, for which the observed Q' s are as much as ten times 

those calculated. This is considered good agreement for the Qf s in the 

light nuclei because of the large uncertainties in the measured Q' s. 

Another treatment of V.. is that carried out in the individual-
1J 

particle model (IPM). Here the matrix of V .. of the form used by 
1J 

Noya et al. is diagonalized when one uses as basis states all antisymmetrized 

wave functions arising from the unfilled configurations beyond a major 

closed shell. This treatment does not include the configuration interaction 

effects treated by Noya et al., and hence is not so succes sful at predicting 

moments. It does, however, predict more precisely than ESM the ground

state spins of odd-odd nuclei. Several authors 13,14 have derived coupling 

rules which predict the spin I of odd-odd nuclei in terms 

the odd nucleons. These are summarized:
15 

...., 
en 

~ 1 ±! 
cU p Z 
(J) 

~ 

j Particle - Particle-
_~__ --particle ___ hol_e ___ _ 

I=ljp-jn l 

1 ± 1 
I Ijp+jn l "2 = n 

or Ijp-jn I 

I = I j +j -1 P n 

I = I j +j -1 I p n 

I j +j - 2 I or 
p n 

of the s pins of 

One midshell 

I = I j +j I p n 

Here "particle-particle" refers to the case in which the proton and neutron 

subshells are both les s than half filled or both more than half filled. 

"Particle-hole" refers to the case in which either of the shells is more 

than half filled and the other is less than half filled. "One midshell" is 

for the case in which either the proton or the neutron subshell is exactly 

half full. 

It has been mentioned that in the region of heavy nuclei (A = 150), 

far from closed shells, the observed quadrupole moments differ as much 

as one order of magnitude from those predicted by the ESM augmented 

by the configuration mixing of the short-range V... For example, for 
17 5 1J -24 2 

71 Lu Noya et al. calculate Q = 0.44 barn(1 barn = 10 cm), whereas 

experimentally Q = 5.1 barns. The difference cannot be remedied by ex

tending the short -range configuration interaction treatment to higher order, 
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or by extending it to include the interaction between nucleons inside and 

outside closed shells. Present theory Seems to indicate that an additional 

long-range part must be added to V .. in order to account for the large 
IJ 

quadrupole moments. In addition, one must consider the long-range in-

teraction between the closed-shell core nucleons and those outside the 

core. The long-range portion of V.. is usually taken as proportional to 
2 IJ 

P (cos 8 .. ), the second-order Legendre polynomial. In the regions far 
IJ 

from closed shells such a long-range interaction leads to a static ellipsoidal 

deformation of the entire nucleus. Thus all protons may contribute to the 

observed quadrupole moment, not just those beyond closed shells. Further

more, odd-neutron nuclei have cores just as strongly deformed as odd

proton nuclei, and since there are far more protons in the core than out

side, one expects equally lar ge quadrupole moments for odd-neutron 
167 

nuclei. This is indeed the case, as exemplified by 68Er with 

Q ~ 10 barns. Because of the long-range portion of the residual inter-

action and the consequent possible ellipsoidal deformation of the entire 

nucleus, it is possible for the nucleus to possess rotational and vibrational 

as well as single -particle modes of excitation. The collective model (CM) 

concerns itself with the region between major shells where these collective 

excitations are most pronounced. It makes the as sumption that the rotational 

and vibrational excitations are much lower in energy than the single-particle 

excitations. This allows a separation of the nuclear wave function, 

l\J = X .,j.. • D 
't'vib rot 

where X is the wave function for intrinsic motion of the nucleons within 

a coordinate system fixed to the deformed nucleus, ¢ .b is the wave 
VI 

function describing vibrations about the equilibrium nuclear shape, and 

D is the wave function describing rotation of the deformed nucleus. 
r~ . 

For the calculation of magnetic moments in the collective model, one 

must include the rotational magnetic moment as well as the single -particle ,. 

contributions. This is expres sed in terms of a rotation g factor, gR' 

For a nucleus with uniform distribution of neutrons and protons, . one 

should have gR = Z/ A; no nucleus is perfectly uniform throughout and 

one usually must regard gR as a parameter. This work does not require 

extensive application of the CM and hence is not dealt with in detail. 
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There are a great many nuclei which are not so near closed 

major shells that the collective effects can be ignored 

[that is, p2(cos e .. ) left out of V .. ] or so far from closed shells that 
IJ IJ 

the collective-model assumptions are valid. In this region one can 

turn to the so-called unified model (UM). 

panded 

In this model the V.. is ex
IJ 

V .. =V(r.,r.)= 
IJ 1 J 

\' ", vl(r., r.) Pl(cos e .. ) . y 1 J IJ 

It is as sumed that the isotropic 1 = 0 term is incorporated in the central 

self-consistent field U.. Due to the static quadrupole deformations the 
1 

1 = 2 term is singled out and given special treatment. Because of the 

empirical behavior of the pairing energy it is assumed that the 11 2 

terms in V.. act only between particles in the same orbit. This re-
IJ 

stricts 1 to even values. Thus V .. becomes 
IJ 

V .. = v 2 (r., r.) P 2 (cos e .. ) t G(r., r.), 
IJ 1 J IJ 1 J 

where G includes all the higher-order 1 terms in V... It is postu-
IJ 

lated that G is a short -range correlative potential which is responsible 

for the pairing of nucleons to J = 0 in even-even nuclei and for the low 

energy of J = 0 pairs of single-particle states with large orbital angular 

momenta. In fact, G is postulated to have matrix elements only be

tween two nucleon product states of single -particle wave functions with 

the same j and opposite m. These states are called conjugate pair 

states. That is, only matrix elements 

(nljt, nlj- I G I n'l'j't, n'l'j'- ) 

are nonzero; + and - stand for m and -m. This type of pairing force 

is similar to that responsible for the existence of superconductivity in 

some solids, as was pointed out by Bohr ,Mottelson, and Pines in 1958. 16 

Because of this similarity the nuclear problem may be handled by the 

same techniques as used in the successful Bardeen- Cooper- Schrieffer 

(BCS) theory of superconductivity. The complete development of this 

theory is beyond the purpose of this brief survey; however, the important 

points of the procedure involve the following ideas. 17 
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(a) Only the pairing term G(r., r.) is included in the zero. -order 
1 J . ' 

Hamiltonian; the P2 term is treated as a perturbation. 

(b) The ground-state wave function for a j subshell is written as 

4J O =n 11 (U.!Oj) +V·ljm) Ij-m», 
jm>O J J 

where U. and V. are real positive constants; 
J J 

state with no pairs in the j subshell. 

21 OJ ) represents the 

Thus U. is the probability that 
2 J 

the j, m conjugate pair is unoccupied and V. is the probability that it 
J 

is occupied. 

(c) The concept of a quasi particle (j, m) is introduced together with 

quasi-particle creation and annihilation operators aIm and 13Jm A 

quasi particle is a mixture of a nucleon in state j, m and a hole in 
t t state j, -m. Here a. and (3. are given by 
Jm Jm 

b~ 
Jm 

a! = U. b! V. b. 
Jm J Jm J J-m 

t 
f3jm = t u. b. + V. b. ; 

J J -m J Jm 

creates and b. annihilates a j, m nucleon. 
Jm 

If the nuclear Hamiltonian JC including the G potential is 
nuc 

rewritten in terms of this quasi-particle creation and annihilation 

operator scheme, it turns out that if U. and V. are properly defined 
J J 

in terms of the strength of G, the number of nucleons present, and the 

single-particle (no V .. ) energy levels, the resulting Hamiltonian contains 
IJ 

no coupling between the quasi-particle states. This greatly simplifies 

solution of the problem. 

The results of such calculations show that instead of there existing 

a sharp-cutoff Fermi energy below which all nucleon states are filled 

and above which all are empty, as would be predicted by the ESM, the 

nucleons are distributed throughout the various single-particle j levels 

with probabilities given by the V~. This is in many ways equivalent to 
J 

the effects of configuration mixing as discussed earlier. 
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IV. THE ATOMIC BEAM METHOD 

An atom with electronic magnetic moment gJf.l.
O 

J and nuclear 

magnetic lTIOment gIf.l.
O 

I has energy dependent on an external magnetic 

field H, given by 

1£ the magnetic field is 

JC mag 
= 

large enough so that JC
hfs 

is small compared 

with JC , then, as has been discus sed earlier, one may write for the 
mag 

energy 

Emag = - gJf.l.O
m

J H - gIP'OmI H . 

1£ H is nonuniform, then a force is exerted on the atom in the z di

rection given by 

Because gI:::: gJ/ 2000 , it is a good approximation to write 

8H 
F z ::: gJf.l.O

m
J 8z 

Thus atoms with different values of m
J 

experience a different force 

when passing through a region of large W- and hence may be separated. 

In the modern atomic beam resonance apparatus, atoms pas s 

through three magnetic field regions in the form of a well-collimated 

thermal beam. For historical reasons the first and third magnets are 

labeled A and B and the second or center magnet is called the C 

magnet. The A and B magnets produce nonuniform fields with large 
8H 8H 8z In the so-called "flop-in" device, shown in Fig. IV -1, 8-Z- has 

the same sign in the A and B magnets. The C magnet, on the other 

hand, produces a uniform field HC' which can be varied in magnitude 

to suit the experiment. A beam is formed by heating the substance of 

interest inside a suitable oven and allowing a small fraction of the atoms 

to leave the oven through a slit-shaped hole. With all magnetic fields in 

the z direction, one can think of the beam as progres sing along the 

positive y axis and the oven slit as being along the x axis. Mter 

having passed through the inhomogeneous A magnet field, an atom 

with a particular m
J 

value has been deflected from its straight-line 
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aHA 
path by an amount SA which depends on m

J
, az and the atom IS 

velocity v. No force is exerted in the C region and the atom travels 

on a straight line until it reaches the B magnet. If in the C region 

it has been possible to induce the atom to change its state to one with 

magnetic quantum number -m
J

, then as it passes through the B magnet 

field it experiences a deflection SB opposite to SA' With proper de

sign, one can have SB = - SA' Thus, the atom experiences no net de

flection after pas sage through the apparatus, provided the transition 

m
J 

-+ -m
J 

can be carried out in the C region. If m
J 

remains un

changed, the deflections SA and SB add and such atoms do not reach 

the detector. 

An exception occurs in case m
J 

= 0 or v is very large. In 

these cases, atoms undergo no, or very small, deflections in either 

the A or B fields and hence reach the detector regardles s of whether 

or not a transition has occurred in the C region. They contribute a 

large background. These atoms are usually blocked off from reaching 

the d~tector by an obstacle placed in the B field whose width is slightly 

larger than the width of an undeflected beam. Atoms following the flop

in trajectories will pass around this "stop-wire," whereas the m
J 

= 0 

or high-velocity atoms will strike it. This increases the signal-to

background ratio for the device. 

The detector in the atomic beam device may be a hot surface 

placed at the focus of the flop-in trajectories; the impinging atoms are 

ionized and the ion current is collected and measured by an electrometer. 

This technique works well for the easily ionizable stable alkali atoms, 

Na, K, Rb, and Cs. Typical resonance signals yield ion currents of 
-11 

~ 10 ampere. For radioactive beam detection, the beam is collected 

on a surface placed at the detector location; the surface is removed after 

a collection period (typically 5 min) and the collected radioactivity is 

measured with sensitive counters. Minimum resonance signals yield 

~ 10 counts/min, although by careful counting for long periods one can 

measure signals as low as 1 count/min. A signal of 10 counts/min 

from an isotope with a half life of 1 hour means that the collecting sur

face holds about 1500 atoms; this gives an indication of the sensitivity 
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of the radioactive detection method. Usually with raq.ioactive detection 

a second surface is exposed to that part of the beam which is not focused; 

this surface is placed on one side of the center resonance surface and is 

exposed for the same period. The side-surface. radioactivity serves as 

a monitor of the beam level, and the resonance signal is taken as the 

ratio of the center activity to the side activity. This method cancels out 

any fluctuations in the beam intensity which, without such normalization, 

might appear to be a resonance signal. It has been empirically discovered 

that a clean sulfur surface has' a high colleCtion efficiency which can be 

uniformly reproduced. In the work here, the sulfur surface is attached 

to one end of small bras s pieces termed 1'buttons, 11 which slip easily 

into a loading mechanism at the detection end .of the bealTI device. 

The transition m
J 

-+ - m
J 

is induced in the C region by the 

introduction of a small oscillating radiofrequency field, Hr£" If the 

frequency of this rf field matches the Einstein condition 

hv = I E1 - E
Z 
I then it is possible to induce the atom to change its 

state from 1 to Z or vice versa. In addition to the Einstein condition 

there are certain selection rules which limit the observation of a partic

ular transition. The device limits consideration to those states 1 and Z 

which have opposite m
J 

values in the large A and B ~agnetic fields. 

FurthenTIore, the transitions are magnetic dipole M(1}, and hence must 

conform to corresponding selection rules. These rules are summarized 

in the table below. Distinction is made between the two limits 

(a) Ehfs > Emag and (b) Emag > Ehfs . 

M(1) rul~__ Machine rule 

Hrf normal to He (a) 

(b) 

H f parallel to H (a) 
r . C 

(b) 

I 
~mF = ± iI, 

I 
~m = ± 1 ) 

J 
~m=O 

F 
~m =0 

J 

", 
\. 
( 
\ 
I 

Transitions with ~m = ± 1 are called 'IT transitions, those with ~m = 0, 

a transitions. Note that the a transition at high He (b), is not ob-

servable, since the M(1) rule requires ~mJ = 0, which violates the 

machine rule. The .rules, above as sume that the atom interacts with a 



IV 

,. 

-34-

single rf quantum while passing thr9ugh the e region. For atoms 

with odd half-integral J states this 'Is all that is required, since the 

transition mJ(A) =' ± 1/2 t9 rrl;J(B) = T 1/2 is always available; there 

i~ no m
J 

= 0 state. For atoms with integral J > 0, however, it is not 

always pos sible to satisfY,the M(1) rules and the machine rule while 

interacting with a single rf quantum. Thus, the simplest n'lachine

allowed transition for such an atom is the mJ(A) = ± i to mJ(B) = '-+ i, 

which requires that two M(i) transitions occur in the C region. This 

double -quantum transition may require two different rf frequencies 

corresponding to the energy intervals m = + 1 to m = 0 and 
J J 

m J = 0 to m J = - i, depending on whether the intervals are equal or not. 

In the general atomic beam resonance experiment, one is interested 

in obtaining values for the quantities 1, a, b, gI' and gJ' In experiments 

on radioactive atoms, usually gJ is known froll'l work on stable isotopes 

of the same element and it is considered known in the discussion that 

follows. The normal procedure is to measure the unknowns in the order 

1, a and b, gr This order has the virtue that one can proceed at all 

times from a region where possible transition frequencies are well 

known into one where new information will be learned. Thus to measure 

lone sets the e field to a low value so that limit (a) is complied with 

and the Zeeman levels within a hyperfine F level are equally spaced 

by gF flO He' Since gI:::: ~goo' gF is given very nearly (see Eq. II. 24) 

by 

Thus observation of a resonance at frequency 

f.LO 
v = gF 11- He (IV. i) 

immediately implies a value of I, provided one knows the value of F and He 

He 1S measured by the observation of a resonance in a calibration beam of 

atoms whose constants are already known, thus 

He 
Vc h 

gF f.Lo 
c 

so that 
v 

(IV.2) gF = gF v 
c c 
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where the subscript c refers to the calibration isotope. F is restricted, 

of course, to the values ItJ down to II-J I in integer steps, and the 

machine selection rules usually limit consideration to only a few of these. 

There is always a spin-dependent low-field transition available within 

the maximum F level, F = ItJ. 

Having measured I, one continues to observe the AF = 0, Am
F 

= ± 1 

transition until its frequency begins to depart froITl the linear relationship, 

Eq. IV.1. At this point one is beginning to gain information about the zero-

field hyperfine intervals, because as HC is increased, JC begins to 
mag 

mix zero field states of the same mF' but of F I s differing by ±1. Thus, 

the two levels connected by Hrf begin to curve, and this curvature mani

fests itself as a shift in frequency from the linear low-field expression. 

Since the hyperfine intervals are linear com.binations of a and b, meas

urement of the frequency shift yields information on a and b. The ex

traction of a and b from the frequency vs C-field data is done by con~

puter routine. The routine, HYPERFINE, fits calculated frequencies to 

observed frequencies and magnetic fields by varying any number of the 

unknown quantities a, b~ gI' and gr The fit is a least-squares one and 

the best values and their errors are computed. Having obtained preliminary 

values for a and b from HYPERFINE, one can use them as input to 

another program which calculates transition frequencies and their uncer-

tainties at any value of H C One then does a new experiment at the 

highest H commensurate with acceptable uncertainty in the calculated 
C 

transition frequency. Typically, with radioactive atoms, one can tolerate 

an uncertainty in frequency of 5 to 20 times the expected line width of 

the resonance. Thus at each step in field one can expect to decrease the 

uncertainty in a and b by about 1/5 to 1/20. 

When the uncertainty in a and b has been reduced to the point 

that the corresponding uncertainties in the zero-field hyperfine intervals 

are tolerable, one can abandon the AF = 0, Am
F 

= ± 1 transition that has 

been followed to a moderate to high magnetic field (a few hundred gauss), 

and search at near zero HC for AF = 1 hyperfine transitions. The 

... 
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frequencies of such transitions, apart from a small correction due to 

the nonzero value of H , are direct measurements of the hyperfine 
C 

intervals, and serve to determine the final values of a and b. In

creased precision in a and b can then be achieved only through re

duction of the resonance line width. 

Direct measurement of gr is hampered by its smallness com

pared with gJ' nonetheless in the high-field limit it is possible to ob

serv~ transitions corresponding to .6.mJ = 0 and .6.mr = ± 1 provided_two 

or more rf fields are present in the C region. The gI-dependent 

frequency is then 

v. --
I 

The second rf frequency IS necessary to satisfy the machine selection 

rule, which is violated by .6.mJ = O. In some cases two different allowed 

transitions form a doublet whose separation depends only on gr Other

wise, gr can be treated as a free parameter in the fit of all observed 

frequencies and magnetic fields; this will require a great many observa

tions in order to obtain the precision of a single direct measurement. 

When gl has not been measured directly for the isotope under study, 

but has been, measured for some other isotope of the same element 

whose a constant is known, one uses the proportionality between the 

gI' s and a I s to determine the unknown gI' using Eq. II.19. 
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V. RESEARCH ON 110In ~ ~ .' t • . 
A. Production of the Isotope 

Neutron-deficient radioactive isotopes of indium (Z = 49) may be 

easily produced by bombardment of silver (Z =:47) targets with a particles 

(Z = 2, N = 2) accelerated in a cyclotron; the silver nucleus absorbs an 

a particle and emits several neutrons. The proces s i~ written Ag(a, kn)In, 

where k is the number of neutrons emitted; k varies with the incident 

a energy and may range from 1 to 6 as 

~ 100 MeV. 

E runs from ~ 25 MeV to 
a 

In this work it was desired to produce and measure the spin I 

of 110In , which has a half life of 66 min. Because there are two stable 

Ag isotopes, 107 Ag 52% abundant and 109 Ag 48% abundant, HOln may 

be produced in two ways: 

107 Ag (a, In) 110rn 

10 9 Ag (a, 3n) 11 0 In 

for E ~ 11 to 25 Me V, 
a 

for E ~ 25 to 45 MeV. 
a 

The silver targets were 0.010-in. -thick foils and were bombarded in the 

88-inch cyclotron at the Lawrence Radiation Laboratory. Because the 

targets contained two Ag isotopes and were thick enough to slow the a 

beam to below threshold for the (a, kn) reactions, several other radio

active In isotopes were produced besides 110In. Table V -I lists those 

produced and their half lives. Only those activities with half livesg-reater 

than 1 min are listed. 

A summary of the cyclotron bombardment data and resulting 

activity for the runs discus sed here is listed below. 

Run 

819 

845 

846 

E 
Integrated cyclotron Bombardment Oven 

a beam current time activity 
J...MeV) (fJ.A-h) (h) _(RiEl 

25 30.0 1.5 .8 @ 6 11 

45 83.0 4.5 80.'.:i: 4" 

45 55.0 2.7 40 r,;,\ 5" - 6" -\:-::-

18 
Ghoshal has studied the (a, kn) reaction yields versus E 

a 

for k = 1, 2, and 3. His data show that for a thick target with E ~ 25 MeV 
a 
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Table V-I. Indium isotope production. 

E a 
:- Process _(MeV)_ Half life ----

107 Ag (a, In) 110In 66 min 

107 A ( I) 110mr g a, n n 4.9 h 

11 to 25 

109 Ag (a, In) 112In 14 min 

109 Ag (a, In) 11. 2mIn 21 min 

107 Ag (a, 2n) 109In 4.3 h 

107 Ag (a, 2n) 109mIn 1.. 3 min 

15to 35 

109 Ag (a, 2n) 1HIn 2.81 days 

109 Ag (a, 2n) 111.mIn ~10 min 

107 Ag (a, 3n) 10BIn 58 min 

25 to 45 

109 Ag (a, 3n) 110 In 66 min 

109 Ag (a, 3n) HOmIn 4.9 h 



VA,B -39-

only the k = 1 and k = 2 processes occur to an appreciable extent. Thus 

only one activity with half life of the order of 1 hour, 110In , should be 

produced by bombardment with 25-MeV a 1 s. At higher E z 45 MeV, the 
110 a 

k = 1 and k = 3 processes produce In and the k = 3 process also produces 

~08In, whose half life is so close to that of 11°In that the two may not be 

distinguishable by decay analysis. The .k = 3 process, however, does 
110 

produce a great deal more In than the k::; 1.. 

After production of the isotopes in the cyclotron it was necessary 

to perform a chemical separation of the In from the Ag tar get. In 

order to protect personnel from the high level of radiation the chemical 

separation was carr.ied out inside a LRL junior cave, which provided 

2 in. of lead shielding. The target was dis solved in z 10 ml of a hot 

concentrated nitric acid solution which contained z 50 mg of dis solved 

stable In carrier. After dis solution, concentrated ammonium hydroxide 

was added slowly, a drop at a time, until the milky precipitate indium 

hydroxide was formed. The precipitate was consolidated by centrifugation 

and the solution poured off. The indium hydroxide was washed in water 

and recentrifuged; it was then dissolved in a m.inimum of dilute hydro

chioric acid. About 500 mg of powdered manganese was added and 

additional hydrochloric acid was introduced while shaking until the 

manganese had reduced the dissolved indium and it floated to the surface 

as a sponge. It was important that the hydrochloric acid not be too strong 

or the indium sponge might partially redissolve after the reduction. To 

prevent this pos sibility the solution was diluted with water as soon as 

the reaction was completed. The sponge was then removed and dried 

before being loaded into the oven for insertion into the beam machine. 

B. Formation of the Atomic Beam 

The electronic ground state of In is (5 P)2 P1/2' with a gJ of 

about -2/3. The nearby fine-structure state 2 P3/2 is separated by 

2212 ern -1 and has gJ ~ - 4/3. Typical oven temperatures for pro

duction of a useful beam was z 1300°C; at this teITlperature approxi-
. 2 

mately 200/0 of the beam atOITlS were 1n the P 3/ 2 state. Investigations 

. f bl 113, 115 d d b f ... h t w1th beams 0 sta e In, etecte y sur ace 10n1zahon on a 0 

2 
iridium wire, showed that resonances in the P 3/2 state were much 
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stronger than those in the 2 P1 /2 (by about, 5 to 10 times). This is be

cause, despite the low population of the 2 P3/2 state, its larger gJ 

allows stronger focusing of the atoms by the atomic beam device. Be

cause of this all radioactive resonances observed were in the excited 
2 

P 3/ 2 state. 

A carbon oven was used and was heated by electron bombard

ment to the desired temperature. The carbon slits were set to a width 

of ~ 0.004 in. Typical electron bombardment power ranged from 120 

to 200 watts. 

C. Measurement and Results 

To measure the spin of 11°In the technique described in Sec. III 

was used. Observations of the Zeeman transition in the hfs level with 

F = I + J were carried out at three C-magnet fields. The magnetic field 

was kept low so that the frequency of the transition was given by 

Eq. IV.1. Figure V-1 shows the results of a spin search (Run 819) 

carried out at a field of about 2.2 gaus s. Although the error on each 

point is rather large due to the low counting rates (maximum of 2.4 

counts/min above background) the I = 2 signal is significantly above the 

background level, as indicated by the points at I = 1 and I = 3. A small 

signal was expected at I = 7 due to the presence in the beam of 4.9-hr 

110mI h' bl' h d b M' 19 n, w ose spIn was esta IS e y arlno. 

The identification of the I = 2 signal as arising from 11°In is 

based on the following argument. The bombardment energy for Run 819 

was E = 25 MeV; at this energy only the (a, kn) reactions with k = 1 or 
a 

2 occur to any appreciable extent. 18 Thus the only expected activity 

with half life ~ 1 h is that due to 110In . If a button exposed at the I = 2 

frequency shows an enhanced radioactivity which decays with a half life 

of ~ 1 h, then one may reasonably assign the spin to 110In. 

To implement this identification a special I = 2 button was ex

posed, at the end of Run 819, for a longer period than those buttons con

tributing to Fig. V -1; this provided a high counting rate which would 

allow a decay analysis. The decay of this button (button NH) was com

pared with the decay of a normalization button (MW); recall that the 

normalization button receives a large sample of the unfocused beam. 
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Fig. V-1. Ii,oi.'-m Run 819 spin search at :::=: i .. 2 gauss. 
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Immediately after collection NH counted == 15 counts/min; at the same 

'time MW counted == 259 counts/min. The decay of these two buttons was 

compared in the following manner. 

If there is a number, k, of activities with half lives T, in the 
J 

atomic beam, then the activity on a resonance button exposed at a fre-

quency v which focuses the j = 1 activity is given by 

k 
A(t) = r

1
(v) exp[-t(ln2)/T

1
] + '~'o a. exp[ -t(ln2)/T.] 

i~1 J J 

where A(t) is the total activity and r 1 (v) the amplitude of the resonant 

T 1 activity, and the summation includes the background level of all 

activities given by the exponential decays of the amplitudes a.. The 
J 

normalization activity N decays according to 

k 
N(t) = .1')' n.exp[-t(ln2)/T.] . . " .. J J 

j=1 

It is clear that the background decay in A(t) is simply proportional to 

N(t); that is, 

k 
\' 

J= 1 
a, exp[ -t(ln2)/T.] = fN(t) , 

J J 

where f IS some constant. If f were known and the decay curves N(t) 

and A(t) were known, then one could easily extract the resonant activity 

as 

r(t) = r 1 (v) exp[ -t(ln2)/T 1 ] = A(t) - fN(t). 

It is easy to determine f when T 1 is the shortest of the Tj" One 

simply picks f so that the two curves A(t) and fN(t) agree over the 

region t > > T 1 (usually t ~ 3T 1 is sufficient). The abpve technique was 

used to extract from button NH that portion of its activity due to the K= 2 

signal. Table V-II gives the pertinent data. 

In this procedure f was deter:mined by a least-squares :matching 

of A(t) and fN(t) over the last three points (t ~ 257 :min). Figure V-2 

shows a se:milogarith:mic plot of r(t) vs t. A least-squares computer 

fit of the function r 1exp[-t(ln2)/T1 ] to the r(t) points yielded the results' 
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Fig. V-2. Decay of enhanced activity on r.Hltton NH of ' 

indium Run 819 .. The solid line is a least-squares computer 

fit to the data; the dashed lines indicate the error in the fit. 
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Table V -II. Extraction of resonance activity r(t) from 
comparison of decays of Run 819 buttons NH and MW 

-----
Counts/min 

t 
(min) A(t) oA(t) N(t) _~~J!L _ r(tl.. ~~l_ 

0.0000 15.2300 1.0954 258.9000 7.2553 6.5470 1. 5955 

23.0000 13.5500 0.8079 208.9533 7.3768 6.5421 1.2458 

54.0000 9.1633 0.6306 170.2764 4.7819 3.4526 0.9899 

89.0000 6.6633 0.5607 138.0304 4.1753 2.0340 0.8365 

122.0000 4.8300 0.5033 111.2000 3.3985 1.1005 0.7097 

154.0000 5.2300 0.5163 95.8000 3.1638 2.0170 0.6738 

187.0000 3.1966 0.4459 86.2600 4.0798 0.3036 0.6003 

219.0000 4.0966 0.4784 77.7620 2.9626 1.4886 0.5956 

257.0000 3.1966 0.3153 69.6379 4.0799 0.8611 0.4596 

320.0000 1.8079 0.2049 60.1388 2.8916 -0.2089 0.3476 

389.0000 1.0300 0.2054 33.1333 1.1170 -0.0812 0.2543 
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T1 = 68.2±15.6 min, 

r
1 

= 7.1±1.1 counts/min. 

This analysis lends strong support to the as signment of 1= 2 to the 

66 
. 110

1 -mIn n. 

Further evidence in support of the as signment of 1= 2 comes 

from the results of Run 845. Figure V-3 shows a plot of the resonance 

signal vs the rf frequency ata C-magnet field of 2.62 gauss. The 

vertical line labeled v indicates the predicted frequency (see Eq. 
2 co 

IV.1) for 1=2 in the P3/2 electronic state, assuming that the hfs in-

tervals are infinite (extreme low-field approximation). 

The lines at v + ov and v ov represent the uncertainty 
co 00 00 00 

in this predicted frequency due to the error (::::; 0.12 gaus s) in calibration 

of the C-magnet field. A small positive shift of the observed line from 

v is a consequence of the finite value" of the hfs intervals. 
00 

Figure V-4 shows a similar resonance plot at a field of 10.25 

gauss obtained during Run 846. Here the shift from v is increased 
00 

over that of Run 845, as was expected at the increased magnetic field. 

At the end of Run 846 again a special decay button (DR) was ex

posed in order to "obtain further evidence for identification of the resonance 

activity. This button I s decay was compared with that of a nonnalization 

button (DS) exposed to the unfocused beam. The analysis was the same as 

used for Run 819 above. The radio frequency during the exposure of DR 

was 8.251 MHz, i. e., the peak of Fig. V -4. 

Table V - III shows the decay data and extraction of the resonance 

activity for DR compared with DS. 

Figure V-5 shows a semilogarithmic plot of the points r(t) vs t 

of Table V-III. A least-squares fit of r
l 

exp[ -t(ln2)/T
i

] to the points 

yielded 

T 1 = 70. 1 ± 2. 6 min, 

r 1 = 278.4 ± 8.8 counts/min. 

It should be pointed out that the incident a energy for the bom

bardments of Runs 845 and 846 was ::::; 45 MeV. Thus 108In with a half 

life of ::::; 58 min was undoubtedly produced by the (a,3n) proces s. Because 
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Fig. V-3. Indium Run 845 resonance at % 2.6 gauss. The 

transition is (F = 3.5, M = - 1.5) +-+ (F = 3.5, M = - 3.5). 
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Table V-III. Extraction of resonance activity r (t) from 
comparison of decay of Run 846' buttons DR and DS. 

t 
Counts/min 

(min) -~~ oA(t) N(t) o N(t) r (t) ~.EJ!L 
0.0 493.9200 4.9814 7985.9148 42.1882 281.3483 9.4746 

86.0 239.6200 3.4785 4680.2311 31.6228 115.0400 5.8894 

190.0 120.3200 1. 7 514 2915,9514 25.1493 42.7022 3.4651 

335.0 61. 5700 1.2644 1884:.4506 14.5403 11.4090 2.3011 

788.0 21. 7450 0.7758 831.4717 16.0790 - 0.3873 1. 2147 

966.0 16.3206 0.4740 604.2282 8.4958 0.2370 0.8002 

1237.0 12.1700 0.4257 439.1889 4.7538 0.4795 0.6244 

2392.0 6 .. 9400 0.2783 249.5374 7.1396 0.2977 0.41.92 

3290.0 4.8683 0.2631 207.7401 3.5736 - 0.6613 0.3484 
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of the uncertainty (~ 10%) in the determination of the half lives of 108In 
110 

and In, one cannot conclusively state that the decay analysis of 
110 

only to In. The pos sibility Run 846 identifies the resonance as due 
108 

exists that In also has 1=2 and that the resonances of Runs 845 and 

846 F o V 3 V 4 b O 

° f 1081 d 1101 ° 1 , 19S. - - - , are corn inatlons 0 n an n signa s. Thus 

although the fit T 1 := 70.1 ± 2.6 min favors a half life of z 66 min over 

one of z 58 min, one must regard the results of 845 and 846 only as con

firming the existence of a I-h activity (or activities) with 1=2, and rely 

on the decay analysis of Run 819, Table V -II and Fig. V - 2, as establishing 
110 

that at least In has 1= 2. 

D. Interpretation of Results 

HO ln has an odd-odd nucleus with Z = 49 and N:= 61; thus it has 

one proton hole short of and 11 neutrons beyond the closed major shell 

Z = 50 or N= 50. The proton hole is in the Ig
9

/ 2 subshell, as indicated 

by the observed ground-state spin 1= 9/2 for all the odd-mass indium 
° 109 117 
isotopes In through In. The configuration of the last 11 neutrons 

° 1101 b k h f 109Cd h h h Z 48 d N 61 in n may e ta en as t at or , w. ic as ~ = an = ; 

109 Cd has been observed to have I = 5/2. The 11 neutrons are distributed 
110 

with five in the 2d5/ 2 and six in the 197/ 2 subshell. Thus the In spin 

1=2 probably arises from the coupling of a Ig
9

/ 2 proton hole and a 

2d
S

/
2 

neutron hole. The coupling rules for odd-odd nuclei given in 

Section III may be applied. Since g9/2 and d 5/ 2 both are cases in 

which j = 1+1/2, the weak particle-particle (same as hole-hole) rule 

predicts 1= 9/2+5/2 = 7 or 1= 9/2 - 5/2 = 2. The theory is ambiguous 

because of the nearness in energy of these two spin states; however, 

the spin of 4.9-h 110mln has been observed by Marino 19 to be 1= 7. The 
110 

theory then makes the as signment of 1=2 to the 66-min ground state In. 
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VI. RESEARCH ON 121Sn 

A. Production of the Isotope 

Radioactive 121Sn with -a half life of 27 h may easily be produced 

by irradiation of 33% abundant 120 Sn in the core of a nuclear reactor. 

Th . 120 ( ) 121 . 1 h b . f e proces s, wrltten Sn n, '{ Sn, lnvo ves tea sorphon 0 a 

thermal neutron by the 120 Sn nucleus and emission of one or more '{ 

rays. The cross section for the 120Sn (n, '{) 121Sn reaction is ~ 0.14 barn. 

One - gram samples encapsulated in quartz were irradiated for 3 -day 

periods in the General Electric reactor at Vallecitos, California. Many 

other activities are produced from unenriched Sn by the (n, '{) proces s 

on the other even-mass Sn isotopes. How'ever, calculations show and 

observation confirms that for a 3-day irradiation the crOss sections, 

abundances, and half lives are such that 27-h 121Sn is the overwhelming 

activity present during the first week after irradiation. After this period 

the residual activity is primarily due to 113Sn , with a U8-day half life. 

Immediately after irradiation the 121Sn activity is some 200 times that 

from 113Sn. 
. 14' 2 

The flux in the General Electnc reactor, ~ 1 X 10 neutrons/ cm / sec, 

produced ~ 0.5 curie per gram of Sn metal. 121Sn is a low-energy i3 

emitter, and consequently shielding and handling problems were minimal. 

Since the 121Sn was produced in metallic form in the unactivated 

stable Sn, no chemical separation or addition of carrier material was re

quired before the sample was introduced into the beam device. 

B. Properties of the Atomic Beam 

The electronic configuration of the ground state of Sn is 5s 2 5p 
2 

This configuration yields the five electronic states listed in Table VI-I 
3 

below. Also included are the separations from the ground Po state, 

the percentage of the atomic beam (at 1400 0 C) present [in each state, and 
3 

the electronic g factor, gr It is impos sible to deflect the Po atoms in , 

our beam device, and all work reported here was carried out in the ex

cited 3 p state. 
1 

The atomic beam was produced by electron bombardment of a 

tantalum oven containing a carbon crucible and lid. The Sn was placed 

inside the crucible, and the beam exited by way of a carbon snout, 
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Table VI-I. Sn beam properties. 

" 

Energy % of beam atoms 
-1 gJ(Ref. 20) State (em ) in state 

3 p 
0 

0.0 52.7 0 

3 p 
1 1691.8 34.8 -1.50110(7) 

3 p 
2 

3427.7 12.4 -1.44878(9) 

1 
D2 8613.0 0.131 -1.05230(8) 

is 
0 

17162.6 ::::: 0 0 
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~ 3/8-in. long, which passed through the tantalum wall and projected 

beyond the main body of the oven ~ 1/4-in. The end of the snout just 

passed through the loop of the electron filament; thus the snout end 
3 

was kept hot to insure that good excitation of the Pi state occurred 

and that no Sn would collect inside and block passage from the oven. 

The snout end had a 0.004-in. slit sawed in it to form the source slit 

for the atomic beam. 

Typical electron bombardment power was 160 to 200 watts. This 

produced side -button normalization signals of 300 to 900 counts/min 

after 5 min of collection. Resonance signals ranged from 20 to 80 

counts/min. 

c. Spin Measurement 

The nuclear spin I 0;i21s~as me~~~red by observation of rf 

transitions between low-field Zeeman levels in the hfs state with 

F = I + J. Because J = 1, a single transition changing m
F 

by ±1 in the 

C field does not satisfy the machine selection rule mJ{A) = - mJ(B). 

However, as was shown in Sec. IV, at low field the Zeeman levels are 

equally spaced by an amount hv, where 

f.lO 
v = gF -h-- HC 

Because the levels are equally spaced, by suitable adjustment of the rf 

field intensity, it is possible to induce transitions yielding 6.mF = ± 2. One 

of these transitions corresponds at the high field of the A and B magnets 

to the transition m
J 

= ± 1- m
J 

= +" 1, thus satisfying the machine selection 

rule for observation of a flop-in signal. Such double quantum transitions 

at frequency v may be observed with decreasing intensity as H is in-
C 

creased until the low-field approximation of equal-level spacing is violated 

by several resonance line widths .. 

Figure VI-1 shows the results of a spin search at HC = 1.25 gauss. 

The large signal at I = 3/2 is approximately 3.5 times the background level 

indicated by the two points labeled IIr. f. off. II The small signal at I = 5/2 

is due to the low-frequency wing of the 0.130-MHz full width at half maxi

mum I = 3/2 resonance. 
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Fig. VI-1. 121Sn Run 868 spin search at 1.25 gauss. 



VIC, D -52-

The 1= 3/2 signal was identified as due to 27-h 121Sn by fol

lowing the decay of the resonance button radioactivity for several days 

to establish its characteristic half life. Figure VI - 2 shows a semi

logarithmic plot of the decay. For the first 4 days the points fall on or 

near the line for straight 27 -h decay; after this the rate of decay slows, 

indicating approach to that of the prominent residual activity, i1S-day 
113 . 

Sn. The overwhelming activity on the 1= 3/2 button, and indeed in 

the entire sample, was 27-h 121Sn. 

D. hfs Measurements and Results 

Several different types of rf resonances were observed in 121Sn 

at various magnetic fields in order to obtain values for the magnetic di

pole and electric quadruple interaction constants a and b. These types 

are summarized in Table VI-II. 
o 121 3 

Figure VI-3 shows an energy-level dIagram for the Sn P 1 

hyperfine states in a magnetic field extending to 190 ga'us s. Indicated by 

vertical lines are the states connected by observed resonances. The solid 

lines indicate single -frequency Type I or III resonances; the dashed lines 

indicate two-frequency Type II or IV resonances. 

Table VI-III lists all the observational data. The resonances are 

listed in the order in which they were observed. For a Type I resonance 

the frequency listed is twice the applied rf frequency, since two quanta 

were required to make the transition. 

As with all atomic beam research, the philosophy used here was 

to proceed as much as possible from regions of rf frequency and C-magnet 

field where resonances had been observed into regions where they had not. 

Observations of new resonances allowed extrapolation to higher .magnetic 

field or to another type of transition, each time narrowing the error in 

a and b. 

The Type I resonance which had been used to measure I (because 

it is independent of a and b at low field) was followed up in magnetic 

field to approximately 35 gaus s (resonance 892A1); at this field the 

signal-to-background ratio had dropped to 0.5 whereas, at low field, it 

had ~een approximately 3.5. It was expected that this would occur be

cause of the breakdown of the low-field approximation of equal Zeeman 

~. 
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Fig. VI- 2. Decay of activity on I = 3/2 button IG from Sn 

Run 868. 



Table VI-II. Types of resonance observed. 

Quantum Number s 
r-------------------·--·-l 

Type Level 1 Level 2 Level 3 ~ 

I 

II 

III 

F,M
F I 

; 
i 

I F,MF 1 
i 
~ 
{ 
i 
; 

F,M
F 

F, MF±2 

F, MF±l F, M
F

±2 

F±1, MF±i 

rf Requirements Comments 

one signal at v = [E(1)-E(3)]/2h!Double quantum transition 
vanishes as field is increased 

two signals at v 12=[ E(1) 

-E(2}] /h 

and v 23=[ E(2) - E(3)] /h 

Two single -quantum transitions 
in cascade 

one signal at v = [E(i) -E(2)] /h i Single quantum transition 

IV F, MF F±1, MF±1 F±2, MF±2: Same as Type II Same as Type II 

;.. r.. 

< 
H 

tJ 

I 
\J'I 
~ 
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Fig. V 1-3. Energf-level diagraITI for the 3 P1 hfs levels of 27-h 

121Sn. The diagraITI is drawn for hfs' constants a, b < O. 
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level spacing. Figure VI-4 shows resonance 871D2; this is a Type I 

resonance at approximately 17.3 gauss. 

Because the Type I resonance was unobservable at fields much 

above 35 gauss, the Type II technique, involving superposition of two 

rf fields in the C region, was developed to allow observation of 

Zeeman resonances at higher magnetic fields. The technique required 

rf fields at frequencies matching the two energy intervals which make 

up the Type I double -quantum interval- -that is, one frequency corresponding 

to the (F =5/2, M =3/2) .-. (F =5/2, M =1/2)_ interval and one corre

sponding to the (F =5/2, M =5/2) - (F =5/2, M =3/2) interval. With 

the rf field intensities properly set, one then in effect has atoms 

making the Type I double-quantum transition (F =5/2, M =1/2) +- (F =5/2, 

M= 5/2); however, two different frequencie s were required to connect 

these levels with the intermediate M=3/2 level at fields above approxi

mately 35 gauss. 

The operation of the -Type II and Type IV two-frequency resonance 

technique can be understood qualitatively by considering an arbitrary 

three-level system, as shown in Fig. VI-5. It is desired to cause an 

atom in state A to make the transition to state C by superimposing 

the two rf fields at frequencies v 1 and v 2' It must be emphasized 

that in the experiments described here a single conductor carried the 

two rf signals v 1 and v 2 into the C-magnet field; thus they were 

superimposed in the space through which the beam passed. With P 1 

the probability that an atom will make the transition B to C or C to B, 

one can write for an atom starting in state A the following: 

Transition 

(c) A-A-A 

Normalized probability 
-r,

P1P2/lP1(P1+P2) + 2(1-P1) ] 

pill P 1 (P1+~2) + 2(1-1\)2] 

2(1-P
1
)2/[ P

1 
(P

1
+P

2
) + 2(1-P

1
)2] 

Only two-step processes have been considered, since they are 

the simplest which give the desired effect (A-B-C), and because it is 

pos sible by adjusting the rf field intensities to severely limit higher

step processes. It is desired to maximize the probability for occurrence 
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Fig. VI- 5. Three-level system. 
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of transition (a), since it is the only two-step process observable. If 

one assumes that P 1 = P z then it is easy to show that the (a) process 

has a maximum probability of 1/Z when P 1 = 1; (b) and (c) then have 

probabilities 1/Z and O. Hence under ideal conditions one can expect 

1/Z of the atoms starting in state A to end in state C when emerging 

from the rf region. Similarly 1/Z of the atoms starting in C will 

end in A. 

The implementation of the two-frequency technique required two 

rf generators, rf power amplifiers, a means of measuring the two 

frequencies, and a device for mixing the two signals before transmission 

into the C -magnet field. 

One generator was set to the predicted frequency v 1 for one of 

the transitions, say A --B, and the other was varied until a signal 

corresponding to the B-C transition was detected. This resonance 

was traced out with v 1 held fixed; once the peak of the B-C resonance 

was determined, "'z was set there and v 1 was varied to locate the peak 

of the A-B resonance. One could then set v 1 at its peak value and 

recheck the location of the peak of the B-C resonance by varying v Z' 

This process of hopping back and forth from one resonance to the other, 

holding one generator at the fixed frequency of its resonance peak while 

varying the other, could be carried out until the peak frequencies no 

longer changed; at this point one had located the frequencies of the 

A-B and B-C transitions at the particular magnetic field setting 

and could proceed to a higher field, using the new data to predict new 

starting values for v 1 and v Z. In practice it was found that one could 

locate the two peak frequencies uniquely with only one or two sweeps of 

each resonance. 

Figure VI-6 shows the Type II two-frequency resonances 89ZDC 

and 89ZDD observed at Z4.3 gaus s. At this field the two transitions 

(F 1 =5/Z, M1 =5/Z)-(F Z=5/Z, M Z=3/Z) and (F 1 =5/Z, M1 =3/Z)-(F 2=5/Z, 

M Z= 1/Z) are separated in .frequency by approximately 1 MHz. 

The Type II resonance~ were followed up in magnetic field to 

approximately 90 gauss (894DA and 894DB). T4ese observations 

narrowed the error in the predicted frequency for the low-field Type III 
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hyperfine transition (F 1 =3/2 , M1 = 3/2) ~ (F 2= 5/2, M 2=1/2) so that a 

search for it became practical. This is a single -quantum transition at 

low magnetic fields, and it was observed in Run 897 at fields of 0.9 and 

1. 3 gaus s. Figure VI -7 shows resonance 897 Ai. The resonance was 

observed twice to insure that it had the predicted dependence on ~ag

netic field. 

The F=3/2-.F:::5/2 hyperfine interval has the dependence on 

a and b given by Eq. 11.15 which yields 

lEhfs (3/2) - EMs (5/2)]/h::: - 2.5a - 1.25b. 

The Type III observations fixed the left-hand side of the above at 

362.280±0.040 MHz, thus yielding one equation in a and b. Independent 

knowledge of a and b however, was not sufficient at this stage to pre

dict the F:::3/2 to F:::1/2 hfs interval with enough precision to allow ob

servations connecting states in these levels. Hence the Type II resonances 

were pursued up to 183 gauss to reduce the predicted uncertainty in the 

3/2-.1/2 interval. Figure VI-8 and VI-9 show the Type II resonances 

900BA and 900BB obtained at 183 gauss. 

The F=3/2 to F=1/2 interval was measured by observation of a 

series of low-field Type IV resonances -the 901 resonances listed in 

TableVI~III. These two-frequency resonances were observed by using 

one rf field connecting the 5/2 F level to the 3/2 Flevel and another 

connecting the 3/2 to the 1/2. Figure VI-10 shows the rf circuit used 

for Run 901. The hybrid junction allowed approximately 50 db isolation 

of the vi circuit from the v 2 circuit while mixing the two rf signals. 

Figure VI-i1 and VI-i2 show the resonances 901BA and 901BB obtained 

at 2.5 gauss. 

Having measured the two hfs intervals, 5/2-3/2 and 3/2-1/2, 

a and b were uniquely determined in magnitude. A computer fit (by 

the routineHY PERFINE) of calculated frequencies to the 32 observed 

frequencies varying a and b yielded the results listed in Table VI-IV 
2 

together with the X of the fits. 
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Fig. VI-6. 121Sn Type II resonances 892DC and 892DD at 24.3 gauss. 

The levels connected in DC are (F = 2.5, M = 1.5) and 

(F = 2.5, M = 0.5), those in DD are (F = 2.5, M = 2.5) and 

(F = 2.5, M = 1.5). 
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Tabh~ VI-lIT. Observation..; on illSIl (32. observations). 

Crllibration isotope data 
c- Magnet field 

(gauss) 

Nan1e 

CS13l 

C~l 33 

CS133 

C5133 

CS133 

e5133 

CS133 

R 1385 

R 1385 

RB85 

HB85 

RB85 

RB85 

RB85 

RB85 

RB85 

RB85 

RIl85 

H 1385 

RB85 

RB85 

R B85 

RB85 

RB85 

RIl85 

RB85 

RB85 

RB85 

RBB5 

RB85 

!tH85 

RB85 

F)"(~qucl1cy 

(MHz) 

O"I3HO 

o. 9~90 

<.0130 

l.9<30 

6.0730 

&.9750 

8.~560 

<.3731 

14.2894 

16.7301 

11.5600 

11. ,600 

15.5459 

15.5459 

21.7466 

21. 7466 

31. 9065 

31. 9065 

45.0974 

45.0974 

0.4312 

O.6lRl 

70.1l77 

70.t~77 

98.1:192.7 

98.89l7 

0.9185 

0.9185 

1.1718 

1.1718 

0.9035 

0.9035 

Freq. 

(11Hz) H 

0.0250 1.2515 

0.0200 2.8247 

0.0180 5.7449 

0.0150 11.1796 

0.0180 17.2783 

0.0180 19.8310 

0.0180 25.1431 

0.0300 5.0645 

0.0400 29.91l7 

0.0300 34.8861 

0.0500 24.3052 

0.0500 .!4.305l 

0.0200 32.4779 

0.0200 32.4779 

0.0300 44.9888 

0.0300 44.9888 

0.0400 64.9741 

0.0400 64.9741 

0.0250 90.0lD2 

0.Ol50 90.0Wl 

0.0300 0.92>1 

0.0.100 1.3445 

0.0300 134.9826 

0.0300 134.9626 

0.0300 182.9667 

0.0300 182.9667 

0.0300 1.9650 

0.0300 

0.0200 

0.0200 

0.Ol50 

0.0250 

1.9650 

2.5056 

2.5056 

1.9329 

1.9329 

0.0714 

0.0571 

U.051l 

0.0426 

0.0510 

U.0509 

0.0508 

0.U638 

U.0818 

0.06U9 

0.1032 

0.10ll 

0.0407 

0.0407 

0.0599 

0.0599 

0.0775 

0.0775 

0.0465 

0.0465 

0.0642 

0.0641 

0.U5lO 

0.0520 

0.0482 

0.0482 

0.U641 

0.0641 

0.0427 

O.04l7 

0.0534 

0.0534 

ll1Sn Resonances 

Res. 
type 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

III 

III 

II 

II 

II 

11 

IV 

IV 

IV 

IV 

IV 

IV 

F 
1 

5/2 5/2 

5/2 5/2 

5/ l 5/2 

5/2 5/2 

5/2 5/2 

5/2 5/2 

5/2 5/2 

5/2 5/l 

5/ l 5/ l 
5/ Z 5/2 

5/ Z 3/ Z 

5/2 5/2 

5/2 3/Z 

5/ l 5/2 

5/2 3/Z 

5/2 5/2 

~/ 2 3/2 

5/2 5/2 

5/2 3/2 

5/2 5/2 

l/2 3/ l 

1/2 3/2 

5/2 3/2 

5/2 5/2 

5/ Z 3/2 

5/2 5/2 

1/2 -1/2 

3/2 1/2 

1/2 -1/2 

3/2 1/2 

1/2 .1/2 

l/Z ·3/2 

==== 

5/2 1/2 

5/2 1/2 

5/21/2 

5/2 1/2 

5/2 1/2 

5/l 1/2' 

5/2 1/2 

5/2 1/2 

5/ I. 1/2 

5/2 1/2 

5/ l 1/2 

5/2 3/2 

5/2 1/2 

5/2 3/2 

5/2 1/2 

5/2 1/2 

5/2 1/2 

5/2 3/Z 

5/2 1/2 

5/2 1/2 

5/2 1/2 

5/2 1/2 

5/ l 1/2 

5/2 3/2 

5/2 1/2 

5/2 3/2 

3/2 1/2 

5/2 ·1/2 

l/Z 1/2 

5/2 -1/2 

3/2 ·3/2 

5/2 .1/2 

FrequC'n<:y 
(MHz) 

2.0600 

4.7040 

9.7600 

1').2360 

30.3100 

35.0)00 

45.0500 

H.7000 

54.5000 

64.0500 

21.3500 

tl.'::OOO 

2R.S250 

30.4500 

40. i SUO 

43.9750 

60.9750 

67.5000 

tl8.8000 

100.2000 

362.6750 

362.H500 

148.5400 

167.1550 

227.0750 

l47.3650 

12:1.2:250 

363.6200 

121.5150 

363.9550 

12.3.32:50 

.161.5000 

Frcq. 

(MHz) 

U.0500 

0.0500 

0.0500 

O.lOOO 

0.0300 

0.0600 

0.0600 

0.1500 

0.2000 

0.1330 

0.1000 

0.0750 

0.0800 

0.0500 

0.0500 

0.0750 

0.0500 

0.0500 

0.200U 

0.1000 

0.0300 

0.0400 

0,0750 

0.0500 

0.0750 

0.0600 

0.0400 

0.0300 

0.0400 

0.0300 

O.O{)OO 

0.0150 

obs - "calc 
(MHz) 

·0.049H4 

-0.07754 

·0.03~55 

-0.10045 

-0.04311 

'0.03.342 

·0.00462 

0.07716 

0.25485 

-0.00215 

0.07818 

0.01026 

0.01462 

·0.01429 

·0.00460 

0.03993 

·0.019ll 

0.0490 I 

-0.09901 

·0.03509 

-0.00017 

-0.00913 

-0.00731 

0.00642 

0.03134 

0.03542 

0.01042 

0.00915 

·0.01491 

·0.00494 

0.03547 

0.00304 

Weight 
f:tctor 

5~. 5 

83.5 

96.3 

1.1.9 

103.7 

79.7 

77.2 

2B.9 

15.3 

10.8 

53.1 

62:.5 

ill.4 

233.1 

168.9 

99.0 

109.2 

85.6 

23.2 

70.R 

597.0 

417,3 

86.5 

107.3 

77.3 

93.8 

344.5 

377.3 

442.2 

608.< 

91.l 

1507.6 
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Table VI-IV. Results for 21-h 121Sn (32 observations). 

a b 1-11 
2 .. (MH~ (MHz) (nm) _.-L 

+128.726(8) +32.373(12) -0.699(7) 4.72 

-128.726(8) -32.374(12) +0.699(7) 4.06 
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The nUInbers in parenthesis indicate the error in the last figure, 

and in the case of a and b represent one standard deviation. The 

magnetic moments were calculated by using Eq. II.19 and the magnetic 

. moment and hyperfine structure constant a for stable 119 Sn with 1= 1/Z. 
21 0 2Z 

These quantities were measured by Proctor and by Ch1lds and Goodman . 

The values used were 

fl
r
(119sn) = - 1.04611(84)nm 

A{119Sn) = + 578.296(4) . 

Th 0 f 121S 0 k l at 11 f obI hf e error 1n flr or n IS ta en as -/0 to a ow or a pos S1 es 

anomaly, although Goodman and Childs calculate very small anomalies 
< 0 115 117 119 

(= 0.04%) companng Sn, Sn and Sn. No diamagnetic cor-

rection has been made. 

The difference in the X 2 for the two sign combination s is not 

pronounced enough to definitely choose one or the other. It is known 

from Childs and Goodman measurement of a positive sign fora in the 
3 P f 115, 117 , 119S d h ·k 0 f 115, 117 , 119 1 state 0 n an t e nown negative SIgn 0 fJ.r 
that a and fJ.r should have oppos ite signs. 

E. Origin of the a Constant 

The existence of a finite magnetic dipole interaction constant for 

the odd-mass Sn isotopes is of interest because in the simple nonrela

tivistic treatment the magnetic field of the atomic electrons at the nucleus 

given by He' Eq. II. 9, should be identically zero in the 5p2 3 P 1 electronic 

state. This can be seen easily by substituting numerical values into the 
Z3 0 n ZS+1 

formula below for the He 1n a 1 L
J 

Hund 1 s -rule state (maximum 

Sand L consistent with the exclusion principle): 

H = e 

where 

-Zfl o 
(J +1) 

r -3 I K 
(r ) lZ + 

Z r 
(2L - n) . I L(L+1)K 

n Z (ZL-1) (Zl-1) (21+3) L 

K = J(J+1) + L(L+1) - S(S+1) . 

3K(K-2) L(L+1) J1 l 
2 f ' 

There are two pos sible sources for a nonvanishing a in this case; 

they are relativistic effects, and configuration mixing by the Coulomb in

teraction e Z / r o. between electrons. 
IJ 

"--', 
/ 
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The contribution of relativity to the a was calculated by using 

the effective operator technique of Sandars 9 described in Sec. II.5. The 
3 i 1 state is not mixed by JC

fs 
with any of the other multiplets in the 

p configuration, since it is the only one with J = 1. This is borne out 

by the equality of the measured 3 Pt gJ = - 1.5011i(7) (Ref. 20) to that 

calculated for pure LS coupling gJ = - 1.50116. Thus, the BDLSC cor

rection to a should be zero for this state. The remaining relativistic 

contribution, a r , was calculated by using the effective operator 
1 

Hhfs eff of Eq. II. 29 and the formulas in the appendix, and is given by 

r r r r 
a =a01+a12+al0' 

where a~1 is the contribution due to the term in 1, a~2 that due to the 
- 2 1 r -

(s C) term, and a
l0 

that due to the s term in Eq. 11.29. In calculating 
r -1 

a the value of the fine - structure splitting constant S = 2171. 5 cm de-

termined by Childs and Goodman
20 

and Eq. II.20 with Zeff = 46 was used 
-3 

to determine (r > . The results are summarized: 

r 
201.6 MHz a

01 = , 

r 238.7 MHz a
12 = 

r 
11.0 MHz a

10 
-- , 

r 
- 48.1 MHz a = 

The above calculation was carried out with !J:.T = -+ 0.700 nm, and is in 
, 2C r 3 

agreement wIth that of Childs and Goodman for a in the P 1 state 
117 

of Sn where the only difference is I = 1/2 and fl.I = - 1.00 nm. 

The difference between the observed a = - 128.7 MHz and 

a r IS as sumed to be due to the effects of configuration interaction; 

- labeling this difference a
C

, one has a
C

::: a - a
r 

= - 80.6 MHz. Thus, 

configuration interaction effects are supposed to be responsible for about 
2 3 

2/3 of the observed a in the 5 p P state of Sn. 

Th f ' " ,~/ 1" h 3 P e con Iguratlon InteractIon e r _. can on y mIX In ot er 1 

multiplets arising from configurations oth~~ than 5s 2 5p 
2 

provided 

they have the saine (even) parity. Such states include those in the con

tinuum, and it is not clear how fast the resulting infinite sums converge 
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c 
in the expres sion for a. This, plus ignorance of the many radial 

integrals involved, makes calculation of a c extremely difficult. 

F. J - Mixing Corn~ctions to hfs _ Constan~ 

The effect of second-order hfs interactions On the 3 P a and 
.3 1 

b constants due to the nearby P z levels was calculated by using the 
5 

technique of Woodgate described in Sec. II.B. The radial integrals 

were those used in the calculation of a r. The results were extremely 

small shifts in a and b below the limits of experimental error. The 

shift in a is -60 Hz for the dipole -dipole interaction (k1 ::: k2 ::: 1 in 

Eq. II. 22) and a positive moment fl.
l

::: 0.7 nm, whereas the dipole

quadrupole shift (k1 ::: 2, k Z ::: 1) is + 19 Hz. The shift in b due to the 

dipole-dipole interaction is only -53 Hz. 

G. The Nuclear Quadrupole Moment 

It is pos sible to determine the nuclear quadrupole moment Q 

from the observed b by using Eq. 11.14, provided one can evaluate q 
2 3 J 

for the 5p Pi state. This can be done by using a formula (similar to 

that giving He) for qJ in Hund! s rule L S term with n equivalent 

electrons (or holes). The expression is
23 

::: ± r 3K(K-1) - 4L(L+1) J(J+1) "I [. (2l-n
2

) 1 (r -3> ' 
qJ L (2L-1) (J+1) (2J+3) J .. n(2l-1) (2l+3d 

where 

K::: J(J+1) + L(L+1) - S(S+1) . 

The positive sign is used with n equivalent electrons and the negative 

sign with n equivalent holes, where n < 21 + 1. Substitution of n::: 2, 

1::: L::: S::: J ::: 1 yields 
1 -3 

qJ::: 5" (r >. 
-3 

Substitution of qJ' using the value of < r > determined from 

Childs and Goodman! s value of S, and the observed value of b::: ± 3Z.374 MHz 

into Eq. II. 14 yields 

Q ::: ± 0.087X10-
24 

cm
2 

A relativistic calculation, using Eq II. 28 with k::: Z and the ex

pres sions in Appendix 1, yielded 
-3 

qJ ::: 0.219 (r > 
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This yields 

Q = ± 0.079X10- 24 cm2 

The effects of relativity are thus:::: 10%. 

It is difficult to assign an error to Q, since configuration inter

actions are known to contribute a large part to qJ in many cases and 

they have not been included in the calculations above. Sternheimer has 

shown
24

-
26 

that qJ may differ by as much as 50% from the single-con

figuration value in some cases. Thus, it is probably safe to say that 

IQI= 0.08±0.04X10-
24 

cm
2

. 

H. Interpretation of the Nuclear Spin and Moments 

The nuclear spin I ::: 3/2 for the grou~d state of 27-h 121Sn is 

consistent with a simple shell-model assignment of an odd neutron to 

the 2d3/ 2 subshell. 119 Sn is known to have I = 1/2 in the 'ground state, 

but it has a nearby (0.024-keV) 250-day metastable state, very probably 

with I = 3/2. The possible odd-neutron shell-model configurations for 
121 12 119 . 

o5n together with two suggested by Noya et al. for Sn are lIsted 

below: 

Isotope 2d 5/ 2 197/ 2 3s 1/ 2 2d 3/ 2 1h11 / 2 

11 9Sn (I=1/2) 6 8 1 0 4 

6 8 1 2 2 

121 Sn (I:::3/2) 6 8 2 1 4 

6 8 0 1 6 

6 8 0 3 4 

Some experiments carried out by Cohen and Price 27 . 1. Invo vlng (d, p) and 

(d, t) reactions on the stable 5n isotopes indicate that each of the three 

configurations above must be considered to be present (plus probably 

some others) in the 121Sn ground-state wave function. Cohen and Price 

were able to measure the quantities V~ of Sec. III, which give the 
J 

probability of finding a neutron in the state j for the even -mas s Sn 

isotopes 116 through 124; (2j+1) . V~ is just the average number of 
J 

neutrons in the j subshell; this quantity is given below based on their 

results for 1205n and 122Sn. 
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Average number of neutrons in shell-model states 

Isotope 2d
5L2 197L2 

3s
1L2 

2d
3L2 1h11L2 

120Sn (I::: 0) 5.22 7.12 1.22 2.20 4.20 

122 
Sn(I = 0) 5.16 7.36 1.38 2.36 5.64 

The above table indicates thc..~ .'" large number of shell-model configurations 

would have to be mixed in the nuclear wave function to successfully pre-
28 

dict the properties of Sn nuclei. T. T. S. Kuo et al. have dealt with 

this problem by using the quasi -particle transformation to diagonalize a 

shell-model Hamiltonian with a residual pairing interaction, and have 

succes sfully predict'e~ the transition from I = 1/2 for 119 Sn to I = 3/2 for 
121" 

~n. ~ 

The Schmidt value fb~ the magnetic moment of a d 3/ 2 neutron is 
~ . + 1.15 nm; the value calculated'Zy T. T. S. Kuo et al. 1S 0.99 nm, and 

is in better agreement with the ob~erved value of ±0.699 nm for 121Sn. 
\ 

It is difficult to imagine how this odd-neutron nucleus with I :: 3/2 could 

possibly have a negative magnetic moment despite the complexities of the 

nuclear wave function. Thus, althougl:t the measurements discus sed in 

Sec. VI. D do not distinguish between a 'positive and negative moment, it 

is felt that its sign is positive, and consequently that the his constants 

a and b are negative. 
121 

The Sn nuclear quadrupole moment Q:: - 0.08(4) barn 

(assumes b negative) may be successfully reproduced by the single

particle formula Eq. III.5, provided one assigns an effective gl of 

+ 1 to the odd j = 3/2 neutron (i. e., treat it as if it were a proton). 

This effective positive charge for the odd neutron is consistent with the 

value of 1.35 used by Kuo to reproduce the observed electric quadrupole 

transition probabilities in the even-mas s Sn isotopes. As signing such 

a charge to the neutron is an effective way of accounting fbr the polari

zation of the charged proton cor,e by the odd neutrons. The calculated 

value of Q is then -0.085 barn. The quadrupole moment of the 250-day 
119m 29 . Sn observed by Boyle et al. 18 also -0.08(4) barn. 
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VII. RESEARCH ON 88Rb 

A. Production of the Isotope 

Radioactive 88Rb with a half life of 18 min is easily produced by 

neutron irradiation of the 28% abundant naturally occurring 87 Rb. Two 
88 

reactors were used to produce Rb for these experiments. Most of the 

irradiations were done in the General Electric Test Reactor at Vallecitos, 

California, and the samples were flown by helicopter the approximately 20 

miles to Berkeley; this took about one half life. The most recent experi

ments, however, have used samples irradiated in the new Triga Mk III 

reactor, recently placed in operation on the UC campus. Although the 

flux of the Triga is estimated to be ~ 1/5 that of the GE reactor, one 

half life is saved between removal from irradiation and the beginning of 

the experiment. No loss of signal intensity was observed after changing 

to the campus reactor. 

87Rb was irradiated in 100-mg samples of RbF salt. The RbF 

was dried thoroughly and encapsulated in quartz vials for delivery to the 

reactor. The fluorine contributed no significant activity to the sample, 

since only 11- sec 20 F was produced and had decayed away by the time the 

experiment began. The principal activities produced besides the 88Rb 

were 86Rb with an 18.6-day half life and probably 134mCs with a 2.9-h 

half life. 86Rb is produced from neutron capture by 72% abundant 85Rb , 
134m 133 

and Cs was expected to be produced from 100% abundant Cs, 

which may have been present as an impurity in the RbF sample. 

That the observed signals in the experiments described here 

were due to 88Rb and not to some other activity was established by a 

decay analysis of all buttons exposed during each run. In addition, an 

especially careful decay analysis of the'type described in Sec. V.C was 

carried out for the peak button (AD) of the resonance observed in Run 879. 

Figure VII-1 shows a plot of the decay of the resonance activity on button 

AD; also shown is the least-squares computer fit to the points, which 

yielded a half life of i 7. 5±Z.4 min. 

In general, it was observed that during the first 45 min after ir

radiation the i8-min 88Rb was the predominant activity present, about 

3 to 10 times the long-lived background activities. 



VIlA 

40 ,...-----.-

10.0 

c: 

E 

> -c: 
:.l 
o 
o 

cu -o 
~ 1.0--

-c: 
:.l 
o 

(,) 

0.1 L.-__ --' ___ . 

o 40 

- '16-

,-- I 
Rb Run 879 

"
"-

r---

"- T. = 19.9 min 
"-'2 

"-
" " TL=17.5min 

2 

T,= 15.2 mIn 
2 

Time 

80 

( mi n ) 

120 

XBL674 - 2765 

Fig. VIl-1. Decay of enhar.ccd a.ctivity on bJtton AD of 

88Rb Run 879. The solid line is a lease-sql'.:l.res co.mputer 

fit to the data; tree dashed lines ir.ciicate the error in the fit. 



VIIB,C -77-

B. Formation of the Atomic Beam 

Upon delivery of the sample to the laboratory it was immediately 

opened and loaded into a tantalum oven together with some freshly made 

filings of calcium metal. An excess of Ca was used, usually 1.5 to 2 

times the RbF in volume. The RbF and Ca were mixed in the oven 

before it was sealed and loaded into the atomic beam machine. 

Once in the beam machine the oven was heated initially by electron 

bombardment and finally by radiation from a nearby tungsten filament. 

The electron bombardment served to heat the oven quickly so that the 

chemical reaction Ca + 2 RbF -+ CaF 2 + 2 Rbt could be initiated; once 

it had begun, only the radiation from the filament was required to sustain 

it. 

As a monitor of the ato:m.ic beam intensity a hot-wire surface ioni

zation detector and electrometer were used to observe the stable 85Rb 

atoms coming from the oven; this was in addition to the usual radioactive 

monitoring by the side buttons, and was used primarily to establish that 

the reaction above had begun and, by observation of rf resonances in the 

85Rb atoms, to check the setting of the C-magnet field throughout the 

experiment. 

The electronic state of Rb is (5s) 251/ 2 with gJ = - 2.0. This 

allows observation of strong flop-in signals because of the large change of 

atomic magnetic moment as m
J 

changes sign. 

C. hfs Measurements and Results 

Earlier work by Ehlers and Shugart 30 had established a nuclear 

spin 1=2 for 88Rb by observation of the low-field .6.F = 0 rf transition. 

Their measurements extended up in magnetic field to 15.05 gauss, and are 

included as the first four of the observations listed here. 

To establish continuity with the earlier observations, the first of 

the new Runs (879) was carried out at 14.87 gauss, and thenceforth the 

field was increased steadily until the error in the calculated a from the 

computer fit to the data was small enough to warrant searching for a 

.6.F = 1 hyperfine transition. 

Figure VII- 2 shows an energy-level diagram for hfs levels of 88Rb 

for a > 0 (1-1
1 

> 0). The .6.F = 0 "across the board" transition which was 
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followed up in field is indicated. Table VII-I summarizes the observa

tions made at all magnetic fields. Two observations were made at ~ 120 

gaus s (Run 888 and Run 908) with the e -magnet field in opposite directions 

to test for possible biasing of the data by a direction-dependent shift In 

the resonance peaks. Figures VII-3 and VII-4 show resonance plots 

from Runs 888 and 908. The signal represents the ratio of the short

half-life activity on the center resonance button to that on the side 

normalization button exposed to the beam at the same time. The amount 

of short-half-life activity on each button was obtained by taking the dif

ference between its counting rate immediately after exposure to the 

atomic beam and its counting rate at a much later time, after the f8-min 

88Rb had decayed away . 

.6..F = 1 transitions connecting the F = 5/2 and F = 3/2 hfs levels 

were observed in Runs 914, 916, and 922. Each of the observable 

F = 1 transitions has a unique dependence on the e-magnet field strength. 

The change in frequency of the (F 1 = 5/2, M1 = 5/2) ~ (F 2 = 3/2, M2 = 3/2) 

resonance between Runs 914 and 916, where the magnetic field changed 

by 0.47 gauss, served to confirm the assignment of these quantum numbers 

to this resonance. 

Figure VII-5 shows a resonance plot obtained from Run 922. This 

resonance is an unresolved doublet at the magnetic field of this run 

(He = 1.883 gauss), and measures the interval (F 1 = 3/2, M1 = ± 1/2) --- (F 2 = 5/2, 

M2 = "+ 1/2); at this field the two components of this doublet are separated 

by less than 1 kHz, or about 1/50 of the resonance line width. This partic

ular resonance is the most auspicious one of all the pos sible .6..F = 1 trans

itions for fixing the hfs splitting, because at low fields it is very nearly 

independent of magnetic field and hence should have a line width approaching 

the limit for the beam device. It is the most significant of all the measure

ments made, as is reflected by the large weight assigned to it in the com

puter fit (Table VII-I). 

The results of the computer fit to the data of Table VII-I by the 

routine HYPERFINE are listed below: 
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Table VII-I. Observations on BH Rb (14 observations). 

C-t-.'Iagnel field 
88Rb Re-sonanccs Ci!libration j sotoj.>c data (gauss) 

~-----~. 

Ft·pq. Freq. ,. -,. 
Hun Frequency 

F MI F2 M2 
Frequ€>llcy ()bs calc WC'ight 

No. Nanle ~- (MH".L H ~. 1 (MHzL (MHz) (MHz) factor. 

415<1 R H85 <.1500 O.OlOO 4.5902 0.0425 5/2 - 3/2 5/2 -5/2 2.6000 0.0750 0.0055 160.9 

.5l6a Rtl85 3.5000 0.0250 7.4559 0.0529 5/2 -.1/2 5/2 - 5/2 4.LZ50 0.0750 -0.0124 152.5 

540 il R 1385 5.1840 0.'0150 11.0129 0.0316 5/2 -3/2 5/2 - 5/2 6.3000 0.1000 -0.0015 9&,7 

547<1 RB85 7.1060 0.0150 15.0489 0.0314 5/2 -3/2 5/2 -5/2 8.7000 0.1000 O.Oll4 96.6 

H 79 RBB5 i .OlOa 0.0100 14.8688 0.0209 5/2 - 3/2 5/2 -5/2 8.5500 0.0400 -0.0208 570.1 

884 RtlSS 19.1&lO 0.0150 40.0063 O.O3()2 5/2 - 3/2 5/2 -5/2 l4.2000 0.0500 -0.0121 346.2 

887 RBa5 .37.1400 0.0150 75.0321 0.0286 5/2 -3/2 5/2 -5/2 48.6500 0,0750 -O.Oll,J 164.5 

888 Rtl85 61.5950 0.0150 120.()166 0.0266 5/2 ·3/2 5/2 -5/2 8S.l87S 0.0500 -O.Ol.3l 327. I 

908 R 1385 61.5650 0.0150 119.9633 0.0266 5/2 -3/2 5/2 -5/2 85.2875 0.0500 O.Ol40 3~7 ,2 

896 HB85 109.6300 0.0100 199.9802 0.0156 5/2 -.1/2 5/2 - 5/2 167.5750 0.0750 O.OOOl 167.6 

914 HBB5 0.7050 0.0250 1.5087 0.0534 5/ l 3/2 3/2 3/2 1188.7000 0 .. 1000 0.078l 10.2 

914 RtlB5 O. '050 0.0250 1.'5087 0.0534 5/2 5/2 3/2 3/2 1189.5000 0.3000 0.0352 9.6 

916 RBBS 0.9250 0.0150 1.978H 0.0320 5/2 5/2 3/2 3/2 1190.6000 0.3000 0.0796 10.5 

9l.!. HBBS 0.B800 0.0160 1.8827 0.034l 5/ l 1/2 3/2 -1/2 1186.0900 0.0200 -0.0008 2499,0 

From earlier work of Ehlers and Shugart (Ref. Ii)). 
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Fig. VIl-3. 88Rb Run 888 resonance at 120 gauss. The transition 

is (F = 2.5, M = - 1.5) - (F = 2.5; M = - 2.5) with the C 

field in the normal direction. 
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field in the normal direction. 
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88Rb Results 

lal :::: 474.432±0.006 MHz, IiJ.II :::: 0.506±0.005 nm, 

2 
1.00 for >0 

.,~ 

X :::: , iJ. I \ 14 observations. 2 I 

X .- 2.50 for iJ.I 
<0 j 

The error in I a I is 1 standard deviation from the mean. The 

magnetic moment was determined by comparison of the 
88 85 . 

Rb and Rb, usmg Eq. 1I.19 and the known gI of 
31 

used were 

a constants of 

85Rb . The values 

85 -4 
gI ( Rb):::: 2.93700 X 10 (Bohr magnetons), 

a (85Rb):::: 1011. 910797 MHz. 

The error listed for iJ.
I 

(88Rb) i.s 1% to include effects of a possible hfs 

anomaly. No diamagnetic correction has been Inade. 

D. Interpretation of the Nuclear Magnetic Moment 

The 88Rb nucleus contains 37 protons and 51 neutrons. The 

single odd neutron beyond the major closed shell at N:::: 50 most probably 

occupies the 2d 5/ 2 subshell. The nine odd protons are not so unambiguously 

placed, however. It is possible that they may be di.stributed in a number of 

ways among the 2P 3/2' 1£5/2' 2P 1/2' and 199/ 2 subshells. A simple pro

ton configuration which yields the observed spin 1= 3/2 for 87 Rb placed 

three in the 2P3/2 and the remaining six in the 1£5/2 subshells. Assuming 

that the same proton configuration exists in 88Rb , the observed spin of 

I:::: 2 must arise from the coupling of an odd 2d 5/ 2 neutron with an odd 

2P3/ 2 proton hole. This is in agreement with the weak particle-hole 

coupling rule given in Sec. III, which predicts I:::: 3 or 2. 

It is pos sible to calculate iJ.
I 

(88Rb) by using Eq. IlIA and the 

observed magnetic moments of 9
1

Zr (Z:::: 40, N:::: 51, I:::: 5/2) and 
87 . 91 

Rb (Z:::: 39, N:::: 50, I:::: 3/2). The values used were 1.11 ( Zr):::: - 1.3 nm 

and iJ.r (8 7 Rb) :::: + 2.8 nm, and were taken from Ref. 32. The calculated 

value for iJ.r (88Rb) is then -0.7 nm, which is in fair agreement with the 

observed value of ±0.5 nm provided one takes the negative sign. 
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The results of the experiments described in Sec. VII.B do not 

distinguish between the two possible signs for tJ.
1
(88Rb); the factor of 

2.5 between X 2 of the computer fits for positive and negative tJ.
1

' which 

favors assignment of the + sign, is not considered at all conclusive. It 

is barely pos sible that further experiments could definitely decide the 

sign of tJ.1' but this seems doubtful in view of the limitations in resonance 

line width (::::: 50 kHz) set by the beam machine in its current state and the 

short half life of the isotope. 

It should be pointed out that it is extremely difficult to calculate 

a positive magnetic moment of the proper magnitude by using Eq. lILA 

and observed magnetic moments for any of the other proton configurations, 

including those which do not predict the spin properly. The same holds 

when one assumes that the odd neutron occupies the 197/ 2 subshell; all 

predict either an extremely small positive moment, +0.04 nm, or negative 

magnetic moments ranging from -0.7 to -2.8 nm. It would seem that 

theory strongly requires that tJ.
I 

be negative. 
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APPENDIX 

1. Relativistic Correction Factors 

The ~(ksk1)k of Eq. II.28 for k = 1 and 2 are given 9 by : 

p(10)1-= 4 flO / 6 f 2 2 ] 
·3(21+1) 'II (21+1) ll(1+1) F ++ - 1 (1+1) F __ - 1(1+1) F +_. , 

2 flO(1+1) /51(21+3)(Zi-~-1") 
p(12)1 = (21+1) (21+3) (21-1) \j 3(1+1) (21+1) 

x [ -41(1+1) (21-1) F ++ + 41(1+1) (21+3) F - (21+3) (21-1) F ], +-

p(02)2 = e ;- 1(1+"1r~-""-'-"--'-~'" [(1+2) (21-1) R + (1-1) (21+3)R 
(21+1)\/ (21+3) (21-1) (21+1) ++ --

+ 6R+J ' 

r-'''f~-'-'''''''''-''''''''-"'''-''''----''''' 

P (13)2 = -3e I 14(1+2) (1-1) 1(1+1) [(21 1 3 ] 
5(21+1) \/ (Zi+3) (21+1) (21-1) -) R++ - (21+ ) R __ + 4R+_ ' 

-6e /-1(1+1~) 
5(21+1) \J (21+1) [- (1+2) R++ + (1-1) R __ + 3R+J ' 

where the F' sand R' s are given by 

F,o l = 
JJ 

-2 

Qla
O 

(K+K' +2) 

00 

-2 
(PQ' + QP') r dr, 

R .. , = r (PP' + QQ') r -3 dr. 
JJ ! 

jO 

The + or - signs are written for j ancl j' according to whether they 

are 1 ± 1/2; K = - (j + 1/2) for j = 1 + 1/2, and K= j + 1/2 for j = 1 - 1/2. 
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P and Q are the. relativistic radial wave functions, and QI and a
O 

are the fine-structure constant and Bohr radius. 

The F' sand R' s may be determined by using (r - 3) from 

Eq. II.20 multiplied by an approximate correction factor obtained from 

tables in the back of ~e£. 4. The appropriate factors are listed below 

according to the notation of Ref. 4. 

~~tegral 

F 

F++ 
F+_ 
R 

Rt+ 
R +-

Factor 

- F" 

-F' 

-G 

R" 

R' 

s 
- 3 9 The various (r ) of Eq. 11.29 are given by: 

- 3 
(1' )01 = __ 1~2 r 21(1+1)F + + 21(1+1) F __ + F+_I , 

(21+1) + 

-3 1 
( 1" ) - [-41(1+1) (21-1)F.

tt 
+ 41(1+1) (21+3)F __ 

12 - -3 (21;;)T 

- (21+ 3) (21- 1) F J +-

(1"-3)1 = !!Q~ l(I+2) F . -IF 
O.J (21+1)'" ++ 

- F ] + - . 



'" 

-88-

2. Constants Used in the Analysis of the Measurements 

(Refs. 21, 22, 31). 

f.LO/h = 1.399613 MHz/G 

M 1m = 1836.1 
P e 

85Rb g = J 
- 2.0023319 

f.Lr = 1. 34817 nm 

gr = 2.93700 X 10- 4 

a = 1011. 910813 MHz 

g = - 2.0025417 
J 

f.Lr = + 2.5641 nm 

gI = 3. 98994X 10- 4 

a = 2298.1579425 MHz 

119Sn gJ = - 1.50110 

f.LI = 1.04611 nm 

gI = - 11.394X 10- 4 

a ::: + 578.296 MHz 
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