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BISE--A TWO-VERTEX KINEMATIC PROGRAM
Harold Hanerfeld

Lawrence Radiation Laboratory
University of California

Berkeley, California

March 28, 1967

ABSTRACT

BISE is a two-vertex kinematic least-square program written spe-

cifically for fitting events of the type

(7 o

Kp-3x"
v

{p )

+

T n

This report is a complete description of the mathematical formulation on

which the program is based.
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BISE--A TWO-VERTEX KINEMATICS PROGRAM
Harold Hanerfeld
. Lawrence Radiation Laboratory

University of California
Berkeley, California

March 28, 1967

BISE is a program (FORTRAN-MAP) for the kinematic reconstruction
of certain types of bubble chamber events. The routine was written specifi-

cally with the following event types in mind:

Kp~ >t {

w0

i

pr’
{ mtn

The main innovation in BISE is the simultaneous solution for all the
variables--measured and unmeasured variables and Lagrangian multipliers.
It has been the practice to solve the system of linear equations by partitioning
the matrix obtained in the least-square technique. The partitioned system is
then solved by a matrix inversion and sequence of matrix multiplication.
Difficulties sometimes arise, as the matrix to be inverted may be singular
or near singular. This known defect has in turn been treated by methods
which themselves were not completély satisfactory. A second fault in earlier
programs was the use of poor numerical methods, leading to inaccurate
results. Methods such as matrix inversion by Cramer's Rule were used to
solve a system of linear equations. By solving the complete system of equa-
tions and using a good numerical technique for the solution, both difficulties
-are avoided. Further, the algebraic simplification also simplifies the pro-
gramming. '

Another innovation in BISE is related to the question of when to accept
a set of values as the solution to the least-square problem. In theory a
solution exists when it satisfies exactly the system of equations (in general
the equations are nonlinear).

In practice the solution is fourd by iteration with a linear system of

equations which approximate the exact equations. A desirable solution is one
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which is both sufficiently accurate for our requirements and consistent with
the accuracy of the data. In BISE we require that a solution satisfy the exact
(nonlinear) equations to the degree of accuracy desired and be consistent with
the errors in the measured varia,bles,' v

When necessary, BISE directs the iteration by introducing bounds on
- the momentum of the particles and by step cutting. This may be necessary
when the variables are not in the neighborhood of the solution.

-The analysis of 2 decays is made difficult by a number of things--
the presence of unmeasured uncharged particles, connected vertices, and
most of all by the difficulty in measuring the short Z connecting tracks. A
number of practical decisions were made for dealing with this last condition.
These include treating as unmeasured the monientum of the Z. The initial
guesses for the momentum of this track are the result of the zero-c solution
(equal number of unknowns and constraint equations) to the constraint equa-
tions at the second vertex. In the zero-c fit, the expression for the momentum
is a quadratic equation whose radicand frequently is negative. Physically
this occurs because the momentum is in a region where only one solution to
the qua,drati"c exist59 but because of errors in the measurements the radicand
becomes negative. In this case sett’iri'g the radicand to zero leads to a satis-
factory initial guess for the momentum. ' ‘

BISE has been used to reconstruct some 7000 events., Chi-square
distributions, cross sections, and scattering-angle distributions compare
well with known results.

' Although applied to = décays the techniques used in BISE are not

limited, and could be used as the basis for a more general program.

©
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DEFINITIONS

The variables that are measured
The measured values of x

The variables that are not measured
The Lagrangian multipliers.

The constraint equations

The values of x,vy, €, F at iteration k

The error matrix associated with x

OF
gx(x’ y)

The transpose of F

Momentum, azimuthal angle;, dip angle, energy
of particle whose track is number i,

Direction cosines of track i

UCRIL-17473

The length of the track which connects the production to

the decay origin

The sum of XZ and the product of the constraints and

their Lagrangian multipliers.
Symbol for approximately

Symbol for a definition

Component of P perpendicular to the magnetic field

Component of P parallel to the magnetic field
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FORMULATION

“Hx-x*) and which

We wish to find %,y which rni-nimi.ze'(x-xm)T U
satisfy the constraints F(x,y)= 0. We use the technique. of introducing

Lagrange multipliers €, and set

M = (xx™)T U x-x™) + 2 F(x, y) © e

The equations that must be satisfied are then

_ oM _ _.-1 m, T :

0= 5o ° U “(x-x )+FX€, (1)
_ oM _ T

0= == - Fe (2)
_9M

O_'B:E = F . (‘3)‘

In general. F 1is not linear in x and y, and Egs. 1, 2, and 3 are not
easily solved. To avoid nonlinearity F is approximated to first-order terms

. . s : i i
by expansion in a Taylor series about x7, y:

F(x,y) = B,y (eoxd) B ) + oy By,

Mz (xfxm)T U ™) 4 2[F (e, vh) + (xe-xh) Fx(xi, v + (y-y) Fy(xi, 8 T
. We now obtain the linea,;' system
0 = %—i—d = Un.i(x-xm) +‘F;‘E(xi,yi) €, (4)
0 = %;1\4: F; (xigyi) €, (5)
0 = _g_l\éi: F(xiv, yi) + (x-xi) F};(Xi, fi)+ (y—yi) Fy_(xi, Yi). (6)
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Multiply Eq. 4 by U, and then, rearranging 4, 5, and 6, we have

X + UFg(xl,yl) € = X_rn,
FT ¢ - 0,
Yy
: ) R ioi i id i
FXX+FYY ) = L -EEL YD) +FX(X’Y)X+FY(X:Y)Y’
or iT [ T f— " —1
I 0 UF X X
X
Tl (7)
v Yy
F! F! 0 € | -F+F x4 ENy
X y | . X Yy A

If x,y, € satisfy the convergence criterion we have our solution. If

not, x,y, € become candidates for x1+1, yl+1, €1+1, and the iteration continues.

Solution of the System of Equations, 7

There are many packaged subroutines which solve systems of linear

equations such as Eq. 7. The problems of maintaining accuracy and speed

of solution have been studied by numerical analysts. Roughly speaking,

Gaussian elimination and partial pivoting provide a means for attaining speed

and accuracy.
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EVENT TYPES CONSIDERED

We consider events of the typ'e

K_p Z+ m w0
0 -
l_» p T T o
- +\ .
and Kp-— X' rr
|. b o
. Tl'+ n

For convenience we number the tracks as indicated in the diagrams.

The connecting track is numbered 4 at‘ the production vorigin and 5 at the
decay origin. The following discussion rélates to the case with the T at the
first (l)Ariging_ the other bevi-ng,a, simple modification within the progra;rn°

| The coordinate system used is consistent with the variables thaf have
been measured , that is, é. right-handed system with the azimuthal angle
measured in the positive sense clockwise and the dip angle « measured in
the positive sense from the z axis.

The following relationships exist:

X. = sinea. cos B. . = cos a. cos B.
i i 51’ gl i B1’
. = -8in «. sin B. . = - cos . sin B.,
My i 61’ nl i 61'
V. = CcOs «a., §. = - sin ¢.,
i i i i
2 2
E.= P .+ M
i i
We set o, = a..
: 4 5

‘We set the error in the measured value of [35 equal to that of 64,
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Measured Variables

The measured variables x are

P19 ais 619 sz az: 629 0!43, B4y l35’ P69 a6) [36°

Unmeasured Variables

The unmeasured variables y are

Py, a3, B3 Pys Py, Poy aqg, By

Constraints

F1 through F4 and F7 through F10 are the energy-momentum con-

straints at the production and decay origin respectively.

F5 and F6 are constraints upon the connecting track. F.5 constrains

the connecting track momentum by its length L,

5 /24
F5: P, - = 0.

Where L is a measured quantity and taken to be exact; k4, k5, ays a5 are
constants which arise in the approximation to the range-momentum tables

(see Appendix II). A more sophisticated approach might treat LL as a measured

variable with an error,

F6 constrains the azimuthal angle, B, of the connecting track over L:

K K K L
3 Bg - 55=[<’;r>4 f‘*(;?) ¥ (;r)s (3

Here P’L is the component of P along the perpendicular to the magnetic field;
K=3%x10"" H, where H is the magnetic field in gauss.

(K.L | designates evaluation at the midpoint of the track., (See Appendix III.)
P

The dip angles, ay and ag, are set equal throughout the program.
This relation is not treated as a formal constraint.
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THE ITERATION -

From Eq. 7 we see that it is necessary to evaluate F, Fx’ FY at each

stage of the iteration. These expressions are computed as follows.

F The equations of constraint

4
F1: ZPi)\i-P1)\1: 0
i=2
4 7
F, Zpipﬂ-P1p1—0 F, P.X -=P5)\5—0
i=2 i=6
4 ' 7
F3 ZPlvl-P1v1:O F8 ZP1H1 PSHS_O
i=2 i=6
4 7
F4 Ei - Ei - proton - F9 Zpl Vi© P5V5 =0
1= i=6
a,5 1/3.4
k5P5 + L
FS: P, - k4 =0 F1O E6+E7-E5:0
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-P/E,

0
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Fg is the matrix

%! M3 V3 P3/E;

Pyby Pang Pgdy 0

Pyuy -Pyhy O 0

Ny by vy P,/E, 1 £ 0 0

0 0 0 0 SR VR
M Mg
Pibr  Pong
Pakg -Pakq

Initial Values for y

Initial values for P5, P7, Ty [37

of the energy-rhoment_um equations at the decay origin (F7,

The initial P4

énergy relation (constraint F5)°

from F F F

1 2 3 and the value Qf P4 obtained above.

Let :
(5 + 24 - 1)
M = 5 and cos-66 =\

then (see Appendix I for derivations)

P_ =

2 2 2.2 2 2
MP6c0566+(E6 (M —M5[E6 —Pécos 66])

UCRL-17473

0
Vg P./E.
Vo P'Z/E7
P,6, 0
0 0

are obtained from the zero-c solution
Fg: Fo.
is obtained from the length of the Z and P5 by using the range-

Fio:

The initial values of P3, s, [33 are obtained

)1/2

5 2 2 2
, E() - P6 cos 96

“See Appendix III
**See Appendix II
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From F we have
10
o 5 5 1/2
P7= ((ES'Eé) 'M7) ’
from F9,
oea. - 5"5 " Fe%
7 P7
1 P?2 1/2 i (if cos a, < 0 then
o, = tan -1
7 2 a- = a, + 1T/2),
(P5v5 - P6v6) 7 7
Pop, - P
-1 575 656
and from F,, F,, B, = tan -
7 8 7 <P5>\5 - P6X6>

(determine correct quadrant for B; from P\, = P, sinag cosfy =Pghg - Pé)\é).
P4 is determined from P5 and 6 by the Range-Momentum Relation.

P, = PR(P, + L)) D

4
FromF1, FZ, F3:
Pahy = Pyh - Py, - Py iy,
Pawg = Py - Pouy - Pyuy,
P3v3=P1v1—P2v2-P4v4,
we have P (P, )2+ (P )2+ (P V‘)Z 1/2
31373 3H3 373 ‘
From cos a, = P3 v3/P3
p 2 \ 1/2
we have o :‘r;a.n—1 ’ > -1
3 7 2

(Pyvy - Pyvy - Pyvy)

(if cos az < 0 then @z < 0 then oy =gt T/2),
and B —tan_i[Pipi ] PZHZ —P4M4}
3 P1)\1—P2)\2—P4)\4

(determine correct quadrant for Py from P3)\3 =P; sina, cos[33:P1)\1—P2)\2—P4)\4).
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Frequently, because of inaccuracies in the measured values the dis-
¢riminant in the expression for P5 becomes less than zero. In this case we
set the discriminant to zero, solve for cosfy, and use-it to'determine Pg:

, 1/2

. 2.2
P, = (M. E[ - M%)

Ms
M
CALCULATION OF ERROR MATRICES

. . . S . .
When the iteration converges av‘nd. a solution xs, y is obtained, we

wish to know the error matrices associated with the solution.

We define
U(xs) as the 12X 12 error matrix of the measured variables,
U(y®) ~as the 8 X8 error matrix of the unmeasured variables,

U(x®,v®) as the 12X 8 error matrix of the measured variables
correlated with the unmeasured variables,

The error matrices are then obtained from the formulas
s s T
U(xS) - 8Xm U 8xm ’
o0x 9x
s s \T
S o bS]
uy) = (L5 ) U (s )
0x 0x
s _ s\ T
U(ij YS') _[8x U 2y ]
: 8 x™ 9x

: s s
The 12X 12 matrix 8x } and the 8 X 12 matrix 8y are obtained
8xm ax

from Eqs. 7 by differentiationand solving the 12 systems of equations so

obtained: : sT BXS ’
I 0 UFr — {1
x m
ox 1
T 5 s
0 0 F° b ol,
¥ 9x
s 365
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where I is the 12X 12 identity matrix. In practice this last calculation
is no more difficult then solving a single system of equations, as the solutions

of all 12 systems of equations proceed simultaneously.

CONVERGENCE, DIVERGENCE

Before the first iteration the constraint equations are nearly all sat-
isfied. This is because of the manner in which the initial guesses are ob-
tained. Ordinarily the initial guesses are not in the neighborhood of the
solution, and the result of the first iteration is to change those variables which
will reduce the constraint equations, which are least satisfied. This often
results in considerably increasing the sum of the constraints. We allow this
to happen on the first iteration, but require all subsequent iterations to reduce
the sum of the constraints when itis greater than 0.0005 BeV/c. When an
iteration fails to reduce that sum we cut in half the increment by which the
variables had been changed last. This last step may be repeated several
times.

During the iteration, problems sometimes occur for angles near zero
degrees where there is a jump discontinuity; care is taken to avoid introducing
errors because of the discontinuity.

Because the momentum of the sigma is unknown we allow it for this
experiment to range freely between 1.7 BeV/c and the momentum it must have
to produce a track of the measured length, resulting in a sigma of zero mo-
mentum. In the first three iterations we allow any of the particles to assume
a negative momentum. After three iterations we assume that a negative mo-
mentum implies that the event interpretation is wrong and this interpretation
is terminated.

Ordinarily we allow ten iterations for convergence to be attained.
However, when a solution lies in a steep valley it may take more iterations.
To allow for this possibility, at the end of ten iterations we test the sum of
the constraints. If it is sufficiently small, less than 0.005 BeV/c, we allow
the program to continue for up to five more iterations. |

We say the iteration has converged when

10
Z |F;| < 0.0005 BeV/c (7)
i=1
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and x5 - K< e < 0.0001,

.|yk - y¥ 1 < €' = 0.0001 (8)

for all x and y. Equation 7:assures us that each of the Eqs. 3 are satisfied
to less than 1/2 MeV/c. As the measured values of x, (x'") are less well
‘’known than the converged values of x in Eq. 8, continuing the iteration with
the intent of further reducing XZ will not increase the acéuracy of the result.
Although Eq. 6 satisfies Eq. 3 to second-order terms, Eqgs. 4 and 5
satisfy Eqs. 1 and 2 only to first-order terms. Equations 8 are meant to
keep these first-order terms small. From Egs. 5 we can show that the con-
straint €4 dominates €15 €55 €3- Likewise €10 dominates €75 €go. 69.
To make certain that the first-order terms in Eqs. 1 and 2 are as small as .
desired oné‘ needs only to examine the result of multiplying €40 €50 €¢s €49

by the number ei defined above.
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Appendix I
SOLUTION OF THE ZERO-CONSTRAINT PROBLEM

For the zero-c solution we confine our attention to a plane region.

The energy momentum relations within the plane are

E,=E, +E,, (I.1)
P6 cos@6 + P7 cosf, = _P,Sy (1.2) =
P6 si{166 + P7 sine7 = 0. (173)

From Eqs. 1.2 and 1.3 we have
(P, cos0.)% = (P, - P 6,)°
7 CcO 7 = 5 - 6 cOoSs 6) ]

. 2 .
(P7 sinf.) " = (-P6 s1n66)2
2 2 2

P7 = P5 + P6 -2 P P6 c0596
From Eq. I.1 and the above we can write
2 2 2 2 2 1/2 2 2
P7 -l-M7 -P5 +M5 -2E6(P M5 +P6 +M6,
2 2 2 2 2 2 2,1/2 2
P5+P6-2P5P6cos96+M7_P5+M5-2E6(P +M ) +P6+M6
2 2 2
E >+M 1/2 5 "M%~ M + P.P, cosf
6 (Fs ) Z 556 057
MZ o+ M -ME
Let M = 2 9 Coseé = >\5 )\.6 + lJ..5 H.é + v V6

5
Th E P2+M MZ-I- ZMP P 0 + Py P2 26
en 6( ) = 6 Cosfy g COS O,

2 2 2 2 ; 2. .2 2
PL(E[ -P. cos”,) - P,2MP, cosh, + E/ M. - M" =0,
: 2_2 2 2 2 2, .2 2. 11/2
P. =
5 2 2
6

2. 2
i MP, cosf, * E/jM -M

E(;Z - P62 cos 66

(I.4)
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If in'Eq. 1.4 we have {Ez M2 - MZ(E 2. P2 cosZB <0, we are in
6 5 Y76 6 6/

a region where there is onlyone possible real solution for the momentum.
The negative radicand is caused by errors in the measurements. As an

L™

expedient we proceed as follows:

20 .2 2.2 2 2
E, (M~ - Mg (E6 - P, cos 96)] =0, | .
2 .2 2
cosZG ) Mg E; - M
6~ 2 2
M P

Using this value for cosZG6 together with Eq. I.4 we obtain

M '
s 2 2 2,1/2 t
P; = 31 (Mg E/ - M) . | (I.4)
2 2,2 2 2
When M" - Mg (Eg - Pyl cos™8y) <0
, 2 2,2 2 2. .. .22
we have M <.M5 (E6 -..P6 COS-..Qé)-< M5 E() s

so that P

!
5 in Eq. 1.4 is real.
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Appendix II

THE RANGE-MOMENT UM RELATION

There are tables of range vs momentum for T (and other particles)
in hydrogen and helium. When plotted on:ln.s:lnpaper they may be:
approxima.ted over tabular intervals by line segments. Having chosen line
segments which cover the range of momentum of interest, we use linear
interpolation to obtain range-momentum values.

Within a line segment we have InR = a ln P + In k, where a is the
slope of the segment and ln k its R intercept when extended, so that R = k P2,

We distinguish the production origin by the subscript 4 and the decay
origin by the subscript 5:

R4 1/8.4 a.5
P-’-}.—‘_E: , but R4—k5P5 + L,
so that
a 1/a
k. P 5+L 4
575
P4 N\
4
F5 may now be written
ag 1/a4
k. P + L
P - 575 0
4 4
from which
8F5 .
BP4
ag ——ai -1
8F; 4 [kgPg "+ L)%4 k5aP ag-1
8P5 ay k4 k4 575
a.5 1/8.4
k. P + L
agl 5 5
v kgag Py Ky . (11.1)
T kya, P a
474 5 5
k5P5 + L
k
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We maintain the distinction between k4 and k5, ay and ag, since
they will be different when the line segment approximations to the range-
momentum curve are overlapped by the length and momentum of the =. In

practice Eq. II.1 is evaluated.from

: a, 1/ay 1 .55

' The coefficients a and k are obtained from line segment approxima—
tions to the In - 1n plot of the range-momentum table.
A sample calculation of a and k- follows. From the range-moméntum

table we have

for PBeV a = 0.1360260, k = 0.142689,

for R a = 0.451137, k

0.536981;

In 0.536981
0.451137

cm

In (0.536981) - In (0.451137) _ - 3.64254
In (0.142689) - In (0.1360260) 1o (0-14268F) ) ’
[o-rss07s ]
K = 0,,4511373 s 0.451137 - 645.8492.
(0.136026)°" 3-64254X1n (0.136026)

Over the region of interest to this program the table on the facing

page give the values of a.and’k for .Z-in hydrogen.
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Table of coefficients derived from straight-line approximations to the In-In plot of the range momentum relation
for © in hydrogen, InR=aln P+ Ink,

R

2 k Py P, Ry 2
:3.5248191 482,2912636_ 0.0576100 0.0604250 ~ 0.0206200 0,02%3960
3.5364522 498.2963028 0.0604250 0.0633760 0.0243960 0.0288770
345497488 516.9136047___ . _ .0.0633760 ... _  0.0697190 0.0288770 0,0405140
3.5630673 535.5781403 0.0697190 0.0731250 0.0405140 0.0480190
3,5708517 546.5946655 0.0731250 0.0766980 0.0480190 0.0569370
3.5784602 557.3787918 0.0766980 0.0804460 0.0569370 0.0675370
3.5863379  568.5551224 . 0.0804460 ___ _____ 0.0843770 0.0675370 0.0801400
3.5928719 577.8147049 0.0843770 0.0885010 0.0801400 0.0951280
3.5997364._._ 5871.5127563. 0.0885010 0.0928270 0,0951280 01129580
3.6060463 596.3912201 0.0928270 0.0973650 0.1129580 0.1341730
3,6115735 604.1189728 0.0973650 0,1021260 041341730 0.1594210
3.6170271 611.6828156 0.1021260 0.1071210 0.1594210 0.1894770
346223669 619.0227127 . 0.1071210_.__ . . _._..0,1123610 . 0.1894770 . 0.2252620
3.6274482 625.9371109 0.1123610 0.1178580 0.2252620 0.2678760
3.6321437 . .. 632.2533340 ___ __ 0.1178580 0.1236250 0.2678760 0.3186330
3.6354420 636.6278152 0.1236250 0.1296770 0.3186330 0.3790970
3.6397792 642.2931061 0,12967170 0.1360260 03790970 0.4511370
3.6425469 645.8492966 0.1360260 0.1426890 0.4511370 0.5369810
3.6458180 . 649.9759140_ 0.1426890__ _ 0.1496800_ 0.5369810 0.6392850
3.6484967 653.2910538 0.1496800 0.1570160 0.6392850 0.7612210
_3.6499877 . 655,0969315. ____  0,1570160..._. . .. 0.1647160 0.7612210 0.9065690
3.6525124 658.0866776 0.1647160 0.1812780 0.9065690 1.2864100
3.6537282 659.4544449 0.1812780 0.2093370 1.2864100 2.1764100
3.6526224 658.3151474 0.2093370 0.2196380 2.1764100 2.5938200
3.6508673 656.5661240 02196380 0..2304550 2.5938200 3.0914700
3.6488654 654.6398315 0.2304550 0.2418140 3.0914700 3.6847600
3.6454240 651.4495163 0.2418140 0.2537460 3.6847600 43920100
3.6420336 648,4275055 0.2537460 0.2662790 4.3920100 5.2350300
3.6375838 644.6207047 0.2662790 02794460 5.2350300 6.2397400
3.6321095 640.1373596 10.2794460 0.2932820 6.2397400 7.4369600
3.6256474 635.0832825 0.2932820 0.3078240 7.4369600 8.8633100
3.6183358 629.6357040 0.3078240 0.3231100 8.8633100 10.5622000
3.6100820 623.7917862 0.3231100 0.3391820 10.5622000 12.5853000
3.6004103 617.3026581 0.3391820 0.3560840 12.5853000 14.9935000
3.5894596 610.3617935 0.3560840 0.3738650 14.9935000 17.8592999
3.5775609 603,2581787 0.3738650 0.3925740 17.8592999 21.2683001
3.5637577 595.5223389 0.3925740Q 0.4122670 21.2683001. 25,3213999
3.5485949 587,5746689 0.4122670 0.4330020 25.3213999 30.1379001
3,5319611 579.4507294 __0.4330020 _ . 0.4548420 30.1379001 35.8586001
3.5134336 571.0544586 0.4548420 0.4778550 35.8586001 42.6487002
3.4930125 562.5076218 0.4778550 0.5021150 42.6487002 50.7026000
3.4707869 553.9601974 0.5021150 0.5277000 50.7026000 60.2480998
3.4462171 545.3278656 0.5277000 ..0.5546980 60.2480998 71.5518999
3.4197519 536.8884659 0.5546980 0.5832000 71.5518999 84.9254999
3.3908122 528.5753784. 0.5832000 0.6133090 84,9254999 100.7320004
3.3594520 520.5332870 0.6133090 0.6451350 100.7320004 119.3929996
3.3255547 512.8568649 0.6451350 0.6787980 119.3929996 141.3969994
3.2892241 505.6886406 0.6787980 0.7144290 141.3969994 167.3099995
3.2500769 499.0753555 0.7144290 0.7521740 167.3099995 197.7840004
3.2082130 493.1605644 0.7521740 0.7921890 197.7840004 233.5660000
3,1634959 488,0499344 0.7921890 0.8346490 233.5660000 275.5130005
3.1161063 483.8874435 0.8346490 0.8797430 275.5130005 324.6020012
3.0658518 480,7817802 0.8797430 0.9276820 324.6020012 381.9430008
3.0128419 478.8724213 0.9276820 0.9786960 381.9430008 448.7900009
2.9571103 478.2980461 ~ 0.9786960 . _ 1.0330420 448,7900009 526.5589981
2.8988322 479.2050438 1.0330420 1.0910000 526.5589981 616.8349991
2.8380527 481.7484818 1.0910000 _1,1528830 616.8349991 721.3899994
2.7749839 486.0904427 1.1528830 1.2190350 721.3899994 842.1910019
_2.7098022 492.4064980 __1.2190350 _1.2898390 _  842.1910019 981.4160004
2.6427800 500.8781738 771.2898390 UL 3657170 981.4160004 1141.4600067

2.5743159 ___ S11.6811981 0 1.365T170 0 1.4571380 @ 1141.4600067 _ 1324.9600067
2.5042764 525.0993729 1.4471380 1.5346220 1324.9600067 1534.7599945

_2.4336700 541.2206879. 1.5346220 1.6287430 153447599945 1774.0000000

2.3622147 560.4183960 1.6287430 1774.0000000 2046.0299988

1.7301410
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Appendix III

DERIVATION OF THE CONSTRAINT F

L,
We have 64-B5=S;) Eds,

PJ‘= = c Bp= Kp,

where PJ' is the component of P along the perpendicular to the magnetic field

B. When P is in BeV and B in gauss, the constant ¢ = 3X 1077,

Then »(34 - BS = S;L —EE— ds .

The integral is evaluated with a three-point Simpson's-rule approxi-

mation,
2h h
Sh f(x) dxz'g- [£(0) + 4 £(h) + £(2h)].
<0
Therefore
K K K L
F;-vﬁ-ﬁ-—+4——+—> =0,
6 4 5 _<P1’>4 <PL> <PJ' 5 )
where KJ_ indicates evaluation at the middle of the connecting track. For

a sigmapdeca,y theintegral may be accurately approximated by using the
trapezoid rule. This would simplify the programming and the derivations.
However, as the Simpson's-rule approximation might be useful in some other
event type we continue its use here.

K is computed at the midsection of a circulat arc, L, joining the

production and the decay origin. For the sake of symmetry we compute Pas

ay L 1/a_ ag [ 1/ay
- Ky Py -7 kgPg "+ 3
P=1/2 = + K,

(See Appendix II for the range-momentum relation.)
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P’L

We wish to find the component of P along the perpendicular, L, to
the magnetic field. We assume that the coordinate systems are parallel so

that directions are the same in both systems.

We find the direction cosines of the
field B in the Z, P plane:

)\B: sin @ cos (3,

kg = - sina sin B,
Vg = cos a,
_ BSUBR _
where tan « = BSUBY and 3 = BP"
Then _
cos ¢ = (P- B) = sinaP cos B sina cos B + sinap sin B sin a sin
tcosap, cosa = sinap sina + cosap cos a= cos(ap - )
= % -
=Yo) ) (ozP ), B
and sin.¢ = % (sin ap €O8 @ - cos ap sin a).
We choose O0<¢<m sothat sin¢ =0.
P
Then we have
P (sin o BSUBZ - cos o BSUBR)
Pl - |Psing] - | P P ,
B
or
B _ B2
pl P BSUBZ sin ay, - BSUBR cos a

P P
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8F6A 8F6
Computation Ofé-l_f—’ 75
4 5
K K K L
64 ﬁ5‘[ J_>+4< J_>+ L)j‘?{)
oF 0 PT/4 \P p- /5
We have 6 = .
opP 0P ,
4
K
<PL )4 K, 0P} K, o|P2 P‘uz‘i/?
Now 9 - 4 4 _ 4 4 " Py
’ 9P = T —— ° T
4 (P4) 9P, (p4) 2P,
- T TIhe 1 ° 13
Fa)” 7 ()
E .
. : 5 PJ' _ _
and 5 — . _ K 1; ;35
“ )
Since
a4 1, 15_ ag L 1/a+
= “4P4 7 kgPs T3
P=1/2] + 51/2[13 + P,
k . i .
' - +
it follows that
a 1 N
: 4 LAY 4 \
op 1 (NP4 )P M e M P T
9P, 2a_ k_ kK 474 = 5 T .
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T N
L 4
P = = k,a P P
so that %P = - :IE-J_—3—P>< 1/2 k4a4 41:3 -a
4 ® LA 4 p*
Finally we have
24
8F6 K P >R P k4:a4 P4 P_ I
5P - - P a| 6
4 (P < ) k™ a 4 p*
In like manner it follws that
ag
OF, %575 2KP kgag Py = P, L
8P5 i 3 —J.‘3 kJr a, P5 a, 6
P5 : P P+

Magnetic Field Calculation for the 25-Inch Bubble Chamber

We compute the magnetic field by the polynomials given in the Trilling-
Goldhaber Group internal report TG-74 written by J. L. Brown. The co-
ordinate system used in this report is at the center of the magnet.

Let the coordinate system in which the measurements are given be

primed and the magnetic field coordinate system be unprimed.

Then x' - 50)/2.54 in. ,

v - 50)/2.54 in. ,

3

=
(
(z - 37.3)/2.54 in.,
(x24+ Y 2)1/2 9

H N <X
1

We rewrite the polynomlals given on page 4 of TG-74 -

as follows: let r /z =t, letz = w;

9 = 770 = 1,

Z
12 = Fz2 = (-2+41),
w Z
L1t = Fza = (8/3 +4-8+ 1),
w
1.6 _
—f, = FZ6 = (-3.2 + t(24+t(-18+1))),

€
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1 .8 _ _ 128 256
;Zfz = FZ8 = { 35t (- = t(96 + t(-32 + t)))),
1 .10_ _ 256,640 800
Ffz = FZ10 = ( 3+ t(-——7——+ t(-320 + t(—§—+ t(-50+ t)))H)),
1 .12

1024 ., 1024 5760 e
—w%—fz = FZ12 = (G5 + tormt t27+ H(-1280 + £(600 + t(~72 + 1))))))

then

B_(r,7) = BSUBZ zag+ wla, FZ2 +w(a, FZ4+w(a, FZ6+wlag FZ8

8

+ wla, g FZ10 + wa, ,FZ12)})))),

L% _Fr2=2,
Iz Ir
1 % pra- - 10,4,
rzw’ r 3
1 .6 o o
51, = FR6=-9.6 + t(%24 + 6t), . .
rzw .
1 .8 _ 512 ’
3 fr = FR8 = - =5t t(7.68 + t(-64 + 8t))
Irzw
1 .10 ,
. = FR10 = 20.317 + t(-182.86 + (320 + t(-133.33 + 10 1))
TZW
1 .12 -
g 7= FR12 = - 26.597 + t(365.71 + t(-1097.1 + t(-240 + 12 t))));
Trzw

then Br(.r, z) = BSUBR

= rz(a,2 FRZ + m(a4=FR4 + @(,qé'FR6'+ o;(a8' FR‘.8'+;w(_a'f1'OFR1O + Qariz_ FR12)))))-.
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The Coordinates of the Midpoint of 1,

Let A, u, v be the direction cosines of line D joining (x4,y4, z4) and

(x5,y5,25).
(%, Vi 25)
By definition, ‘ PZ)
' L
Xo =X Ve -V Z_ - %
75 4 B 5 4 _ 75 4
)\—- D —_ }J,— ——-—]j-—-ﬂ—» vV = D — D

Where the length of

| (%40 Y4 24)
D= ((xs—x4)2 + (yS-y4)2+(z5~z4)2>1/2 .

The equation of the line tangent to L at (x4, V4 24) is found from the equations

Mg My V4
N )\4
Then X=o=2 X, -2, 5 (III.1)
4 : 4
Mg Py
and Y:——z+y - Z —
vy 4 4 V4

The equation of the line joining (x4, Yy 24) and (x5, Vg 25) is given by

N N .
X= =2+ X, -2, = (I11.2)
vEGEtyy -2 G

The equation of the plane containing line III.1 and III.2 is given by

Hg Ny N Moo Mg Mg (III.3)
N S TS B O AN P A Sl b
4 4 4 4 4 4 ,

Collecting terms, we define A, B,C,E

A C, C

p..-. N v v A N
(L. X__‘{(__i_ﬁ)yﬁ_i(_i_ N, (M oa)
V4 v V4 V4 1% V4 4 v V4 1%
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Simplifying the expressions, we have

R A A
Cp+Co=C=r- g gt = =77 35 * 7T
4 Vs VeV W4 s 4

Ve o Y 4 Vy v 4 N 4

From the above we may write Eq. IIL.3 as_

C R SIS

A B C .

or (Vi = wvy) (5 = 3540 + (Vh = Wy - yg) + Oyp - myM) (2 - 2

where A, B, C have been redefined,
The coordinates of the midpoint of the chord

joining (x4, Yy z4) and (x5, Vs z5) are

40 Y4 %4

. ., D Y4t Vs
Ym = Y4 = 2

_, . D _ Pg T Zg
“m ~ %4 zV- 2
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We wish to find the equation of the line R in plane III.3 which is perpendicular

to the line joining (x4, V4o z4) and (x5, Vg z5) at the point of (xm, Vot zm).

Let the direction cosines of line R be £, m,n,

then IX + mu + nv = 0.

R passes through the point (xm, Yo Zm)’ so that

R is the plane III.3, so

Ax + By+Cz = E, where A = (vH4 - I.LV4), etc.
¥From the above definition, '
m(x - xm) m(z--s.zm)
g = ——-———-———( - ) s n = —————( = ) ’
Y = Ym Y= Ym

and from the orthogonal relationship,

(x -x ) (z -2z_)
Am +mupt+tvm M- o,
v - v, v -v,)
giving AMx - zm) + wly - y-m) +v(z - zm) = 0, 111.4

Also, x_, y_, z__ 1isin the plane IIL 3.
m’ “m’ "m

Ax + By +Cz_ =E,
m m m

so that Ax 'X‘m) + By - ym) + Clz - zm) = 0. I11.5
If we eliminate z - z_ from Eqs. II1.4 and II1.5 we have

(\C -vA) (x - x_)+ (uC - vB) (y - y_) = 0

_ _ (uc - vB)
or (x—xm)”— - T%“:IT (y ‘Ym)°

Eliminating (y - ym) from Egs. III.4 and III.5 we have

B - pA) (x—xm) +(vB - pC) (z - zm) =0
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or (x —»xm) = - %\7—5—_’% (z -z ).

X - X - z -7z
m Y~ VYm m

Now, (MC VB) (WA-XC) B-pAa) '’

then we have

pnG - vB _

o 2. 2 y
.. |J,0\4|J,—p,4>\) + v()\4v -/\v4) )\4(M + v )”)\(H4I~H‘ v4vv)
- N N - N

.
Ng(1-2T) -Meos g - NN Ny -\ cos¢
T N - N

vA -\C _ M4 " HcOs@

mE N - N ’
. NB-pA vy - v cosd
- N - N
Since
PR 2+ 2+ 2
> 2 > 4" cos ¢) (p4-_|¢cos¢) (v4—v cos ¢)
1=4"+m +n = > s
N
NZ =1 -2()\4)\+ p4p+.v4v) cos ¢+ coszcb =1 - coszq) = sin2¢
and N = sing,
which gives
, . )\4-)\cos¢ m_p4—pcos¢ 1’1—1/4—vcosq>
N sind ’ - sing T sing
Since
cosd = (AN N+ put v, v)
©oTe e for 0<¢ <5 ,
. 2,.1/2 2
and sing = (1 - cos ¢) s

The length of track between (x4, V4o 24) and (x5, Vs 25) is L. The following
relationships exist for ¢:

L
Re =~

21>
1l
Fl™y
|
Ho
<

and sin¢g =

w3



so that ¢

We have d

"
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%sinqx
R - R cos¢ = R(1-cos ¢) =Z:‘>L(1—cos ®)

We wish to find a point (X,y,z) on the line R at a distance d from

(% Yn? Zm)?
<
y

z

The tangent to the circle at %, y, z, is parallel to the chord (%, ¥,24)-

(x5, Vi z5), so it has the same direction cosines.

We wish to find the sin and cos of the dip angle at X7V, z.

By definition,

so that

A =

T}

Vv =

sin o cos B,
- sin'@ sin B,
cos a,

cos a = Vv

sinE:+N/1—v2 .



This report was prepared as an account of Government
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A. Makes any warranty or representation, expressed or
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or usefulness of the information contained in this
report, or that the use of any information, appa-
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with the Commission, or his employment with such contractor.






