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ABSTRACT N
The discontinuity equations are derdved for all singularities
of multiparticle scattering functions that enter»ﬁhe portion of the‘
physical region lying below the four-particle threshold. These
equations, which are the precise statements of the Cutkosky formulés,
are calculated directly from the unitarity equations. The only’

analyticity properties used are those obtained from the S-matrix

macroscople causality condition. That is, the scattering functions

are taken to be analytic in the physical region except on positive-¢

Iandau surfaces, around which they continue in accordance with the

well-defined plus-ie rule.
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" The proﬁlem of'finding discontinuity formulas has been
examined ea?lier in the S-matrix ffamework‘by Gunson,2 Stapp,3 and
Olive.u Their approach has Been essentially to verify, within
qertain approximatidpé, thg éonsistency of certain conjectured
'discbntinuity formulas. Certain normal-threshold discontinuity
formulas have béen defived by Hwa using crossing, and working to
lowest ofder.5 ‘ |

More recently Léndshoff and Olive6 have derived the discontinu-
_ity-acrdss the singuiarity of the triangle diagram of the 3 - 3
amplitude in the physicél region, and thelr method has been applied
by others7'lo to singulaiities associated with various other diagrams.
The method of Landshoff and Olive is, however, quite complicated. It
requires a détailed invéstiga£ion of specific‘features of Landau
cufves, an examination of the properties of certain integrals, and a
tracing of patﬁs of‘continuation, and it depends on delicate cancella-
tions of various terms. Also iﬁ_requires a complete enumeration of
the "genération” and."regeneratioﬁ" mechanisms of the singularity, and
ﬁhis is not easily obtained except in the siﬁplest cases, Finally each
singularity is;aléeparate,problem.

In the present papér we develop an alternafive method for
calculating the discontinuities of the (connected part) physical-région
sfattering amplitude M+. This function has singularities only on
'positive—avLandau surféces, and it can be continued past these ih
accordance with a well-defined plus-ie rule.ll"l2 The discontinuities

around these singularities will be obtained in this paper directly from
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the unitarity equationsvﬁhrough manipulations that bringvthese
equations into a form that displays explicitly the appropriate

discontinuity funcfion. Specifically, a unitarity equation is

. converted, using unitarity, into the form

s T +RE), (@)

where T(D) vanishes on one side (called the unphysicai side) of

the positive-o Landau surface 'YY\+[D] associated with the Iandau

diagrem ‘D, and R(D) 1is known to have a minus-ie continuation

~around ,YW\+[D]. ‘That R(D) hes a minus-i€ continuation around

WTY[D] meens that the function R(D) 1is carried into itself by a

continuation around ﬂN\+[D] in the sense opposlite to the sense that :
carries M' into itself. Since T(b) vénishes on the ﬁnphysical 
side of ﬁ%\+[D]; the function R(D)- constitutes an explicit expression
for the continuation of 'M+ around \ﬁq+[D] in the minus-ie sense,
and (1.1) displays T(D) as the discontinuity of M around 1Y) (D].
In this first arficle a bubble-diagram notation is set up that
facilitates manipulétions of the unitarity equations. Various results
needed from eaflier worle coﬁcerning the analytic structure of bubble-
diagram functions are.summarized, and a - general theorem fundamental to

our approach is pr0ved. The method is then exhibited for the special

cage of 3 = 3 reactions below the four-particle threshold, and we

- .obtain the discontinuity formulés for every physical-region singularity.

The results for the 5-5 2 and 2 - 3 reactions can be obtained -
fromvthese formulas by regarding an appropriate pair of external lines

as a single line.
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:The results in the 3 > 3 case ere’easily_scmmarized. lel
thecpositiveea Landaussuffaces belovcthe fccr—particie'threshcld ere
centained inlfhefscrfaces correspondihg.tc ﬁhe setvofﬁdiagfems showh:
in Fig; 1 togeiher with thosevcéteiﬁed'from ﬁhese diagrams'byathen;ﬂ-f:
procedpre explained'in the caption., [The otheryﬁossiblevLéndau

diagrams, some of which-are shown in Fig. 2, .give no additional -

%!

. L ma  a : Gy e Ll
surfaces ano hence can be 1pnored 1 The dlscon+1nu1ty szzM- ‘ardund

S,

the Iandau surlace fVﬂ ] for eny one of these dlagrams !D is .

expressed as an 1ntegral over a product of a set of functwons cons1st1nﬂ

of one ph . cal scattering amplluude (Lhe connected part of Lhe S5

5

mabrix, whicn is diagrammatically‘represented by a plusgbubble) for{
each veruei\ Vn of D .and oneAfunction 'an. for each palr of
vertiées (V Vﬁ)ﬂ If there 1s no elemenoary llne seément4 L
‘directly ccnnecting Vhl to V " +hen F ; is unloy. IL egactly
one. L, d_i%;:ec't;y_ comnects vn to V. ,' then F_ _is_

-

2ﬁ.5(p32:- ﬁ%e) e(pjo). *If.two or - three lines Lj directly connect,
) Vn’ to. Vm’ tﬁen F ¢ ois a functlon deflned 1n terms of phy51cal

scatterlng abp11tudes by a. Fredholm 1nuegra1 equatlon. o fﬂ L
:. The rules giving the dlsconulnuluy can be expressedlin,thegv-'

diagrammatic form

At v

iy A S———— = - . R .




where the left-—inand diagfé,ms denote the..part of a Iandau diagram .D

that connects Vn to» Vm',“with all the l_ines not ‘directly éonnecting
Vn to Vm ’suppx.*essed. ‘.The right-han@ diagrams denote the corres-
ponding part of the‘ joubble-diagram function thét glves the discontinuity‘

4 .
across_m [D], with the F box representing an . Thus, for

v example, the discontinuity of M+ across 'YYV[DJ, where

D= | 7 (1.3)

" is represented by
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T(D) =

(1.k4)

. But if thé diagram has two-particle closed loops, as does for
example

1 4
;@' o ‘- \&///é$\\\'
D= Y

)

(1.5)

. -,"A_j . N }

: o . 2 5 ;
then, according to (1.2), an F box is added for each of these.
Thus the di

o -k - ' .
scontinuity of M  around the ILandau surface corresponding
to (1.5) s given by

(1.6)
wé

also obtain formulas for the discontinuitles across
various- classes of singularities.
of M

For ‘example, the discontinuity
across the class of ILandau surfaces that correspond tc all
diegrems of the form

o

¥



/\<5< | ’K& | (1.7)

P

plus all diagrams that can be contfacted to a diagram of this class

is given by

Here the Pi bar restriCts the sets of particles represented by
the lines it intersects to sets having a sum of rest masses greater
than a given mass Mi . A similar resulﬁ is valid for all diagrams-

~ that can be contracted to a diagram of the class

P

. (1.9)

/

TEe.results_deSc:iBed above are derived strictly from the
" o ) physical-region unitarity equations. They provide a complete
solution of_the.problem Ofiphysical-reéion discontinuities below the
four-particle threshold. If one admits also the so~-called extended
unitarity equations, then it can be shown that the functions an
convert the scattering funétions upén which they operate to theilr

values on other sheets.
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’ " The present work deals only w1th the singularltles lylng in
”the ohy51cal reglon. One ultlmately wants to have dlscontlnulty

bf'iformulas also for s1ngular1t1es lying outside the phys1cal reglon,

A;'but the ev1dent 1n1t1al step is to establish the results first in

€

‘ the phy51cal reglon, where the unltarlty equatlons apply. On the

" basis of earlier workll it 1is assumed that the phy51cal-reg10n

's:‘51ngularit1es are, conflned to the union of the pos1t1ve-a Landau '

v.surfaces, and that the phy51cal contlnuatlon around these 51ngular1— .
lt tles follows the so-called plus—lerules. - The ex1stence of the
';cunphy31cal contlnuatlons via minus- 1€ rules is proved by us1ng
| ';‘Fredholm theory, apart from poss1ble zeros of the Fredholm denomlnator
It is poss1ble that the posltlve-a Landau surfaces ‘corres-
v'dpondlng to two dlfferent Landau dlagrams are 1dent1cal Indeed, if
stwo Tandau d;agrams-are_ "equivalent"”, then therr»Landau surfaces
'.;:are.certainly identical.' [Equlﬁalens diagranSvarevdiagrams havdng o
,:the same.set of vertices and tne same set of masses Mo The ﬁaés

;'u is defined,_in the positive~-@ case, to'be the sum of the rest
S nm . : : .

" masses of the set of particles Y om associated with the.set of

. lines Tom that directly comnect vertex v, to vertex_'Vﬁ .1 It
:fdis asstmed ‘in the‘present work that the positive-¢ Iandau surfaces
.corresponding to basic inequivalent diagrams are nonidentical. The
diagrams of Fig. 1 and those obtained from them by the procedure of
, U 33

the caption are all ba31c dlagrams. [Generally, a.bas1c dlagram is
one such that the a's are unlquely deflned at some p01nt on the

. positivefd Landau surfaces. The diagrams shown in Fig. 2 are not
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basic.] This assumption allows us to consider separately the
discontinuities associated ﬁith different.sets of equivalent'basic
diagranms. | | |

It is possible for a positive-o surface té coincide with a
Landau éurface associated with «'s of mixed sign.llL A second
assumption used in the pfesent work is that there is no cancellation
between mixed-~o singﬁlaritieé and positive-a singularities. That is,
it is éssumed that in the unitarity equations, and equations arising
from them, the singularities aésociated with positive-a Landau
surfaces will cancel among theméélves{‘as will the singularities
associated with the mixed-c dlagrams, even though these.singularities
may happen to occur at the -same point. vThis seems reasonablé:' Since
singularities in the physiéal region can occur only on positive-0
s. ~Taces, it would be unnatural for singularities associated with
mixed-¢ surfaces to contribute tQ the physicaléregion discontinuities,
 even though a mixed-o surface might happen to coincide with a positive-o
‘surface. This assumption allowé us effectively to ignore the
singularities associated with the miked-a surfaces.

The validity of fhe aséumptions described in the preceding

- two paragraphs really should. be proved, but this is not attempted here.
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3. Il;_ﬂBUBBLE,DIAGRAMS_AND LANDAU DIAGRAMS
The ba51c quantltles in th_s dlscusslon are bubble-dlagram -

Hfunctlons. These functlons are functlons of scatterlng functlons

‘ ;tbat can be represented by bubble diagrams.

_ A bubble dlagram B is a collectlon of leftward- dlrected

. line segmentS‘ Lj and 31gned c1rcles called bubbles. Each bubblev

has at least one llne 1ssu1ng from it and at least one line

]f termlnatlng_onvlt.- The»bubbles are partially ordered by the requife- L

ment that abbUbblevon'Which a line terminates stands_left of the

bubble fromvwhich this line issues. A line of B that issues: from

~ some bubble of B and also_terminates on some bubble of B is

. calied an internel line of B. The other lines of B are called

. external.

A circleAwith a plus sign ins 1de represents the connected

- part of the S matrlx for the process obtained by associating initial

" particles with’lines.that terminate on the bubble and final particles

“with lines that issue from the bubble. A circle with a minus sign-

inside represents the complex conjugate of the connected part of the -

,c S matrix for the transpose (initial € final) of that process. vThat
vis, the leftward¥directed lines‘tbatvterminate on a minus bubble are
'associated‘with finalbparticles, and the leftward-directed;lines

- issuing from the bubble are associated with initial particles.

Spdn'variables will be ignored.15 Then each line Lj is

associated with a variable (pj,tj), where tj is an index specifying

L d
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a type of particle (electron, proton, positron, etc.), the mass of

—

which is Hy E H(tj)’ and. P, is a physical momentum-energy
vector satisfying é,e = u,g and p.o > 0. |
: J J J

The bubble diagrem B represents a corresponding function
MB(K’;K"), vhich is just the product of the functions represented
by thg bubbles of B, with the understanding that there is a sum
over fepeated indices (variables) of these functions. In particular,
for each internal line Lj of B tﬁere 1s a sum over all particle
types ﬁj. And for each value of tj there is an integration over

all physical values of the corresponding momentum vectors pj. Thus,

each internal line I, of a bubble diagram corresponds to a factor

J

L
d p.
X | o ex 9(pj°) prj?‘ - ue(tj)] ) (2.1)
tj (2x)

s

where a covariant volume element has been chosen. ‘The integration is
restricted so that topologically équivalent contributions are counted
only once, as is discussed in Appendix A.

' Occasionally we shallwish to restrict theAsum over tj
assoclated with internai lines to a sum over.partiélés having a gilven
rest mass. Then the line Lj will be labeled by an integer, which

is regarded as specifying a particular wvalue of the rest mass.

N

b/ B 1, 3 3, [ L ]
The argument (X';K") of M (X';K") is the set of variables
assoclated with the external lines of B. The lines that issue from

bubbles of . B are associated in a one-to-one fashion with the varia

of the set X' = (p', t
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~on bubbles of;:B'lareAassociated in a ~one-to-one faShion with the '

l)

‘rllnes are also called the outgolng and 1ncom1ng llnes of B

. variables of the'set' K""'= 1(P£’ £l ;‘°:P"; t”)': These two sets of
' respectlvely.‘j'
Bose statlstlcs 1s assumed throughout Then the cluster

idecomposmtﬂon of the S matrlx 1s expressed by the equatlonl

S(KK) Iz M%v y. o e

BeB (K' ) ‘

e

:HEre B +(K';Kﬁj 1s the set con51st1ng of all bubble dlagrams that -'.
‘have only plus bubbles, have no internal llnes, and have external
vllnes spe01f1ed by_ (K';Kf).i That is, the sum 15 over all dlfferent
tlways of connectlng the spec1f1ed set of external lines to columns of{
f;plus bubbles. Only topologically different diagrams are regarded as
ffdnfferent reorderings of llnes on 2 given bubble, or reorderlngs of
3 the bubbles do not glve addltlonal ‘terms (see Appendix A).

The function S(X';K") is represented by a'box w1th‘e.plus
vsign'inside. hA box wlth.a minus sign insidevrepresents the complex

. conjugate for the trahspose'of the process. Thus an example of (2.2)

~is the equation
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it
+
o

N
il
¥
i
~
i

where the sums are over all topologically differenﬁ.ways 6f éqnnecting
the specified set of external lines to bubbles having thé indicated
numbers of iﬁcbming‘and 6utgoing iines. Sbme'bubble'diagrams always
vanish bylvirtue of conservation lgws and mass constraints, and these
have been omitted. For éxample, each nontrivial bubble ﬁust connect
to at ieast two incoming and two outgoing lines by virtue of the
stability conditions on the pﬂysical‘masses. Trivial bubbles are
bubbles from which just one line issues and upon which Just one line
terminates. The function corresponding to a trivial bubble is defined
to be the inverse of (2.1),

b |
(2x) " 87 (p! - p") (%! - &)
r S xr S — . 1" 1"
= 5(P£.) tl: ; PS) ts); (2~l“)

2rt 8(p!° - 1w2) o(p:®)
xr r r

where 8{a -Db) = 8, for discrete indices. Since (2.4) nolds for

all trivial bubbles, the signs in these bubbles can be omitted. Often

the trivial bubbles themselves will be omitted.
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The connected pert of the S matrix is defioted by

o s e e et ey n o e e e e = 4 o e g e’ 4 A« s 24 o it e eyt bt v s ki - el s I S PO

(K3 KN=ML e @5)

. B e R

More generelly;>the fuhction}represented by a bubble with the _.
symbol o inside is denoted by MG(K';K").’= Mnmc.v

Unitarity is written in box notation as

+| -0 =7 - fp=711 (2.6)

The externaivlines eépreﬁfiatevto the process in question dre'
.erepresented Ey sﬁaded.étrips. There'is.a'sum over all possible
1:numoers of llnes cros51ng the interface of the rectangles. Some=-

" times these lines are indicated by writing the left side of Eq. (2. 6)

as

+VI -7 =7 - T + - 2.7)

* where the shaded strlp between the boxes represents the sum over '
-all possible numbers of llnes. The right side of (2. 6) is zero

unless m 1is equal to n , in which case 1t is given by
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8(K':K") = B(K";K')

), C(2.8)

n :
LI e(en b by
iwhere the ,d are the. n! permﬁtations on n objects. The last
term in (2.3) is the bubble-diagram representation of i for the
case n = L, |

We often need to subtract from the 8 matrix the identity,
.the connected part of the S-matrix, or both. The remainders are

‘denoted by special symbols:

L
i

4

(2.10)

I
\\{
|

M w=17 W -7Mim .9

Z ZEZQ‘Z-ZIZ—'@’, (2.11)

where g commoﬁ label inside the boxes and bubbles of each equation

i

has been suppressed.
It was shown in Ref. 13 that all singularities of bubble~
: _ N
diagram functions are associated with Landau dlagrams. [ A Landau

diagram D i1s a set of directed line, segments Lj and a set of
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vertices Vh.‘ Fach vertex dontains end points of thrée or-mbre
_:lines Lj, and no vertex ddntains both end points of any one line.
Denoting the leading and trailing end points of the line segmenﬁ i ~

L, by the symbols. Lj+ and Lﬁ—’ respectively, one can characterize

the diagram D by the set of numbers ¢, defined vy

e = 1 i L e v,

“or

Jn : v o J n
€. = 0 ' otherwise.

Jn
‘Each line Lj of D 1s associated with a particle of type

. tj and mass “j . If’particlesgof type _tﬁ'_carry aj units of an

additively conserved quantum number "a', thenlthe.conditiohs'
2 a, € = O (211 n) (2.12)

are required of D .
‘The lines I, of D are characterized as being incoming,
outgoing, or internal according to the following rules:
L, is incoming if € 20 forell m,

Lj is outgoing if ejﬂ £ 0 for all n,-

Lj is internal otherwise.
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The incoming and outgoing lines of D are called external lines.of
D . A line tha£ 1s both incoming and outgoing is called an unscattered
line.' |

A connected landau diagram is an arcwise~connected Landau
diagram; A trivial Landau diagram is a connected landau diagram with
no internal lines.l8

For each Landau diagrem D there is corresponding landau
surface’yn[Iﬂ. The surface 4&\{33 is the set of variables

(p., ti> asgssociated with the external lines of D via associstions

. b, . o 2,1
IJ.@v(pJ, e ) ( .3).

that satisfy the (loop) equations

- - o 2.14)
.z: Gy Py Mo 0, (all ). ‘( )
J .
the mass constraints -
2 -2 . =
p," = T, (11 3) - (2.15)

and the conservation laws (2.12). A particular case of (2.12) is

the momentum - energy conservaticn lew

Y D, € = O (211 n) (2.16)
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In Eq. (efih) njf:'isathg'algebfaic.number of timeé the.Feynman"
‘lpop T passes.a%oﬁé line< L5. in the_positive sense,.and thg »aj"
'associated'wifh eaéh intéfﬁal line Lj 1s a nonzero number. - The
aj associated with the e#ternal Lj play no role, and gan be set.
equal to‘zero}i Each_'psw‘ig a real energy‘- momentum vector with
; Pjo > 0. The farﬁ of fWT)[D]1 that can be realized with all .a's
positive is denote@_byjiyn+[D1; |

A connéctiQn:ﬁéfwéen Landau diagrams and bubblevdiagrams is
.::set up ﬁsingvthe folldwing terminology. - A Iandau diagram D R |

__corresponding to'a bubble b isa D withlits-external lines ih one=-

“to—one cqrrequndeﬁcélwith the iines of b . The inébming lines of aD :
are to éofrespond_to the lines terminating on b, and the outgbing"

1' lines §f vD. are fo-correspond to the lines issuing from b 'The:interﬁal
.lines of a D ,ébfrésbonding té a bubble b will be said_toklie
':'inside b.: “ | |
| A D' Bf is'a Landau diagram_ D' that can be construéted by:v
replacing each pohffivial bﬁbble b of B bya correspénding '
connected diagrém .ch, whiéh might be simpl&-a trivial poinﬁ‘vertex

Ly

q

Vo. This ch 1s required to be such that 'Yﬂf[Dc is nonempty.

. Lines containing only triviel bubbles are replaced by lines cdntaining

no vertices. - - : ~ : C . .
A contraction "D 2 D' of a Landau diagfam D' is a Landau
diagram D that can be'obtained by shrinking to points certain of -

the internal linés‘ Li' of D', and then removing all those lines

L., of the resulting diagram for which Lj+ and Lj- coincide.
J .
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The diagram D' 1s considered a trivisel contraction of itself.
A D>¢B isa D such that for some D' ¢ B, D is a

D o D’;_ The phrase B supports D means that D is a Do&B.

Thus, for example, the bubble diagram B of (1.4) supports the
ILandau diagram D of (1.3). Thie “erminology is used in the next
section to describe the locations of the singularities of bubble-

diagram functions.
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'III. LANDAU SINGULARITIES, STRUCTURE THEOREMS
' FOR BUBBLE DIAGRAMS, AND THE ie ' RULE

~ In this séctiéﬁ we Suﬁmarize some ﬁertinent results obtained
eariier fegarding the 19&§tion'and nature of singularities of bubble-
diagram funétibhé,ﬁ B

Acéordiné to bhe first'Structure Theorem of Ref. 13, thé'

singularities 'o_f MB(K’;K") [divided by (En)LF s (s 'pj -2 'p::j')]
for any connecfed 3 are confined to the closufé of the unién over
nontrivial DD & B of the Lahd.au surfaces M [pl.>7
A concreté repfééentation for the surface YN\[D] is now
described.l9 | |

' The geomeﬁric significanée of the loop equations is that the

~set of momentum-enérgy‘vectors
‘A, = oo, p, | (3.1)
Tit together to form a momentum-energy space diagram D that is

topologically equivaleht to the diagram D. That is, fhe.directed

internal line‘segment' Lj of D leading from a vertex m %o a

vertex n (i.e., S -1, € = 1) is mapped to the four-vector
v = -'. = ) | . 02
Aj  . @ - %; 'ejr @, | (3.2)

of fL where a% is the four-vector from some arbitrary origin to



!

“D1l-

the vertex ¥V _ of D. The allowed values of the w ~are those

values such that each vector (w - @ ),6.']€. l = .0, P, €. le. [
A : n m’ T in T jm J5 Tin' Tm
is positive timeliss, negabive timelike, or zero, according to
whether aj e*n!Ejm’ is positive, negative, or zero. This is Jjust
| J i -

the reguirement that Pj ‘be positive timelike. A typical diagram D
is shown in Fig. 3.

Fach diagram D corréspbnds to exactly one poipt on 'Tﬂ[DJ,-

and each point of W\[D] corresponds to at least one diagram D.

The correspondence is glven by the mapping function

| w -~ W '
g l0) = L 2Ty - (5.5)
- © mEn o - :
n
where
_ e e (3.4)
"o %: g ey €m0l 0y

 and vhere the denominator is “the Lorentz length

‘l(l)n - Cb;nl ‘E [<wn h wm_) (wn - wm)]l/g . | (3'5)

This length 1s necessarily positive for Fom % 0, since @ o=@

is Timelike in this case. The terms where Mnm = 0 do not contribute

The vector gq occurring in (3.3) is the total outgoing

momentum at vertex Vh,



;'where the sum over

-

o0

T A R

e T ome, e

‘runs over the corrgsponding‘to'external )

‘Vflihes of D. The Landaﬁ_surface M (D] depends on the external

l”pj »only‘thrdugh these combinations qn."If no external lines are .

" Aincideht on vertex Vh, thénv-qﬁ is required to vanish. If exactly

R V ' P T Y- ,' .
‘ o - .- one external line:s is incident on Vh then a, 1is required to

. satisfy the corresponding mass constraint.

S ': SR Equation (3.3) is obtained by first’using the conservation law

R (2.16) to cohvert (3.6),to*a sum over internal lines of D and then

using (3.1) and (3,2):
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m;én 'Tin -eiml

dbsérﬁed'that for a given internal i;'only‘twofvalues of

‘m give a nonzero eim’ and that these two eim have opposite signs.

From (3.1) and (3.2) one obtains



e, | u.‘ :
S 1, : | (3.8)

e -] |
IR “Rhe L)
which combines with (5.'7) to give (3.3):

(@ - @)y

DN ) S

o, |
. ; n i
m;én int 1 2 !wn‘- .‘coml oy
. o . (0 - o), -
) Z; Z l€im S1n % e . (3.9)
m#Fn 1 | Iwn - com] o,

A point g(w) of MID] such that the first-order variations
& q = (90¢/dw) 8w generate th’e"tangent space to M (D] at q(w) is

called a simple point q(w) of W[D). If "MID] is considered as

a surface in q = {q_n} space, then the tangent space. to ’YT\[D] at

a simple point - q(w) of M\ (D] 1ies in the linear menifold defined

by
-0 = glw)w, .- (3.10)
where
o2 ae = 2y oMo = 1)
9.0 = ¢ Qe = 4, wnu = o(g). (3.11)
n n, U
This follows from the fact that, at o' = w,

dolq(w')y0] /' = 0. (3.12)
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Equation (5.12)'is readily'vérified by substituting the right side
.of_(B.B)_intov(B.ll).ahd tékiﬁg the parﬁial.derivative with réspect
to a_éomponenf w’éu of _w'f The vector  is, in this sehse, a :" :fs-
normel vecter to M) [D] at & simple point q(w) of M D).

The mapping q(w)» is not one-to-one. All values of
vfhat are related by chaﬁgés of the origin or by rescaliﬁgs of the
o, give the.samev o(w), and afe called equivalent. It is convenient
to fix the ofigin b& reguiring z:c%n = 0. Then liés iﬁ the
same manifold as 'q, which is.restrictea by §:<¥n = 0. due to
momentum~energy conservation. The‘scaling can bevfixedAup to a
single sign by reguiring that

I D

o :
§: Polo= 1.
n' - in ‘ Ia:LE:Ll :

n>m - i : ‘ v int 1

i

' As élready mentioned, tﬁe First Struéture Theorem asserts
,that'thé singularifigs_ofl.MB(K'gK”) = Mﬁ(K)' for any connected B
-are confined to the élOSure 6% the union ovér nontrivial D2 C;BF_Of
the ILandau surfaces ﬂﬁq[n]. Lét this union be denoted by ’ﬂﬂB. lA

simple.point of '¥nB-

is a point such that a complete neighborhood
" of K Vin. ’YﬂB- is generated by an arbitrarily small néighborhood of
some unigue (up to equivalence) point w, for some unigue nontrivial
D > < B. According to tﬁe Secbnd Structure Theorem of Ref. 13 such
N point cannot actually be & singularity of Mg(K) unless D can )

be realized by taking all:_aisqi 2> 0, where Ny is the sign of the

~ bubble inside which 'L:.L lies, or is zero in case Li does not lie
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inside any ﬁubblé Qf B. 'That ls, we can require the oy of‘lihes
Li of Do &€B that lie':".n plus (minus) bubbles to be positive'
(négative), but ’thev oy Qf lines of D> B  that are also lines
of the original bubble diagrem B are allowed to be either positive v
or negative.éo 1 o

, According to the Third Structure Theorem of Ref. 13 the
functions MB(K)  lying.on the two sides of the singularity surface
at‘a simple point K of ’nﬁB are boundary values of a single
function analytic near X in the upper-half. o(K:K) = ola(k),w(X)] |
plane, provided at least one line of the corresponding D> & B lies
inside somevbubble b, of B. The signvof o is fixed th:ough (3.1)
f'ahd (3.2) by the requirément o -ng > 0, which has force only if at
least one }ine Li' of D 1lies inside some.bubble b of B.

In accordance with the Second Structuré Theorem we may

coﬁsider the signs of the e to be restricted by the condition
di ni > 0. Then thg singﬁlarity at a simple péint of qT]B can be
classified as elther a positive-¢, negative-o, or mixedja singularity,
according to whether the various o corresponding [via (3.1) and
(3.2)] +o the siﬁgularity are all positive, all negative, or neither
all positive or all negative. Thus if B COnsi;ts of a single plus
Eubble, then all its singularities are positive-o singularities, but
if B consists of a siﬁgle minus bubble, then all of its singularities
are negative-¢ singularities. The' positive-o and negative-o singularity

surfaces correspbnding to a diagram D both occupy the same position,.

qﬂ1+[D], but the sign of o(q,®) is opposite, and hence the two
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céntinuaﬁioﬁs pass into opposite half plénes. A continuvation in
accordance_vith the rules for gbing around a positive-o singularity
will be called a continuvation according to.the plus-iec: rule, .
 whereas,a continuvation in accordance with the rules for going around
‘a negative-o sihgularity will be called a coﬁtinuatioa according to
the minus-ie - rule. |

The function ¢(K) "appeariﬁg in o(X:K) = olg(X);e(X))
i1s the expression for the e, in terms of éxtérnal vectors given in
(5'6>'. One can aléo write q as a function of the internal vectors

p;, asin (3.7). This gives, again via (3.2) and then (3.1),

G[q<pi))w1 = ok qn<pi).wn
.n

= ZE: = €1n Py Py

n int i

V = Z p; - 4 (@)
int i
i}

- . V) . .1
= S A pi(a) (3.13)

int i

The vector pi(w) is a real positive-energy vector satisfying

2 2 , e . .
pi(w) = 4, . Hence the minimum valve of pi~pi(w), when the
. . s . 2 2 .
real vector pi is restricted by P, = My and i >0, 1is
- e . .
precisely n.° = pi(w) . pi(w). Thus if all the ay are positive

then we have
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A'U'[q(pi);wl > olafp, (@)l . | S (3a1b)

. That is, the function 'o[q(pi),w] takes its minimum vaiue at
p; = D). |
Equation (5 lh) has several 1mportant consequences. Consider
-any Landau dlagram D The "physical reglon of D is the set of
all points in the space‘of external fariables such>that there is a
‘set of real pi' essociated with the,internal liﬁes of. D hfor wﬁich
. the mass constraints (2.15), the energy condition ,pio > 0, and the -
conservation laws (2.16) are satisfied. Equation (3.1L4) says that
for any w corresponding to a.point en »ewﬂ+[D]_ the entire physical'

~region of D, consldered as a region in q space, lies on the

‘ﬂpositive side of the hyperplane o(g,®) = olg{w),w], except for the
‘point of comtact ‘g = gq(w). This fact was first noticed by Pham. 12
It tells us in partlcular that the points of Wn -are necessarily

on the boundary of the phy51cal region of D (é result that is not
always true on. ’nn[D] - 7“ p]) end moreover that ofq,w) increases
(rather than deereases) as one moves from outside the physical region
to inside the physical region at the point gfw). It follows from
this thet the continuation according to the plus-ie rule around any
positive-o singularity is such that it passes ihto the upper half
plane in any variable =z for which 8 g = (3q/dz) Bz moves the
point ¢ from Tﬂ+[D] intblthe physical region of D when O z

is real and positive. That is, the requirement that 8 ¢ = 8 q-w
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‘be positive for positive & z implies that (3g/0z).w > 0, which

fneans that for Im & 2z > 0 .one has
8Img = w+.«Im &g = o . (3§/02)-Im &z > 0.

. Thus, the conbinuvation according to the plus-ie rule always goes
) : ( g . ys g

into the upper half pla‘he of & variable that is increasing as one
movés into the physical region.
The Landau.diagram D C B obtained by replacing each dbubble

b of B by a point vertex V' is denoted by D°. The function M

is not generally continuable past the singularity at AqY) [DB].
Indeed, the above result shows that the function MB vanishes on

one side of 'YY\+[DB]

but not on the other side. These two sides
are called the unphysical and physical sides, respectively.  The
function M:B evidently has both po_sitivve—oz and negative-o singulari-
g +p B ot ; - =
ties at Y\ [D”], since the constraints oy >0 allow for D

with either all -(,xi~ positive or all negative, since all the n; are

Zero.,
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IV.. DEVELOPMENT OF THE UNITARITY EQUATTION
FOR THE 3 - 3 SCATTERING AMPLITUDE

- Suppose the center-of-mass energy E of the initial (or final)

rarticles is below the hfparticle threshold. Then the connected part
 of the unitarity equation (2.6) for the 3 - 3 amplitude can be

written in the form

+HD=£ RT3 e o

The ummarked summation signs in (L4.1) and in the subsequent equations

refer to the externsl lines (incoming and outgoing). Those that will °

et

"be marked "i" or "f" zrefer only to incoming or outgoing lines,
respectively; ‘These'sums are over all topologically different ways

of connecting the_specified'set of external lines to the rest of the

bubble diagram. For example, the last term in (L4.1) has nine contribu-

~tions, whereas the fifth term has three:

e b e i PR

25@35 ZZDEG_:
=KE-+ EE}?+£E (n2)

tams e i st e
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The external lines, reading from

top to bottom, represent fixed

variabigs (pj, tj), but the internal lines are subject to the A

summation convention of Sec. IT unless it 1s restricted by explicitly "

Jabeling an iInternal line by an integer.

we obtain

Thus, for instance, we have

E: —_— ;(53;5 ’ —— '
- ..E.{.Z +a°.+:£ ‘ (M.B)
. ‘ , :
where the number r on an internal line restricts the summation to
particles of a fixed mass 1 .
Postmultiplying (4.1) by
J+E=g+E -
FESNY o Y.
2,2‘__0__ +.z:@: . (b 1)
' ——0— O
and simplifying byf means. of two-particle unitarity, L
NONESNONES , o)
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T ZIE 5 s - z;f
(R TR O T2 52

(4.6)

[A detailed discussion of combinatorial questions is given in

Appendix A. Our rules aré such that the products of functions

~ represented by diagrams such as (4.1) and (L.4) are always represented .

simply as the sum of the topologically distinct diagrams that can be

~obtained by combinihgithe diagfaﬁé in the natural fashion. "By product

we mean, of course, matrix product; there is an integration (2.1)

over the internal lines. ]

Again using (4.5) we may write

EE*-Z& EE
;;ﬁ—z- e
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.'"‘Applicafion of (L.1) to the expression in the left parentheses gives

c:.z, ;;; B -
+zc-z @:@ z =)
—z T+ TP zfm s

There is an equation similar to.(h.8) but with the right.plus bubble

connected to'the_upper'two linés;.,Substituting that eqpatibn;finto

the last two terms of the right side of (4.8), we obtain

e s umte .+ rmhe S bagend e bie, + o e maapn e sm L ais e

[T A —

EB@@@&@ @E
+“: =02 (2% I)
D N

TN 7“: )
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Bquation (4.9) can be iterated by substituting the right side of (L.9)

into the last two terms of the right side of (4.9). Tterating n -

- times, we end up with thé equation
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. where
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. Substltuulng (M lO) 1nto (h 6) we obtain for any positive 1rteger m

s Hn + G + C + R = 0, R "v(”-ll) )

o e o smmnkm + e S i o

ROR + % +A:@&a:+3’ & '+ ':& :& S e |
ﬂ?g;ziﬁ\'; M,..‘f_\_@; ).

LXK coe

(4.12)



-35-
V. DERIVATION OF DISCONTINUITY EQUATIONS

A. Discontinuities Across Singularities Depending on a Cross-Energy

Certain Iandau diégrams D are such that every continuous
curve within D ‘coﬁnecting»any‘incoming line to any outgoing line
_mﬁst rass fhrough-one aﬁd the same vertex V (see Fig. kY, The
Landau surfaces corresponding to such diag?ams can depend on the
‘-totai energy and on the various.subenérgies; but with a suitable
1choice of variables they are independent of all cross-energy invariants.
Landau surfacés ™Min] ébrresponding:to diagrams D of this type will
be called surfaces of type A.  Singﬁlarities not lying on surfaces of
type A will be called‘cfoss-energy éingularities; Thé discontinuity
equations for all cross-energy singularities of M%B Acan be obtained

directlylfrom (h.ii) and the structure theorems.

 The singularities‘of the various termé in (ﬁ,ll) must cancel.
Since M;B is regular at'points not lying on 7“+, the singularities
of Hr 4ot s+ 3? corresponding to a's of mixed sign (mixed-cr |

singularities) mustvcéncel among themselves at these points. As
discussed in-the introduction, we éhall assume that this cgncellation'
T among mixngQ éingulérities holds true also at points. of 'Y“+, We
valso aésﬁme that,the'surfaces Aﬂ\+[D] corresponding to inequivalent
basic diagrams D ‘a;e nonidentical and consider points lying on a
single one of théée surfaces.

By virtue of the firsﬁ.assumption, we can, in deriving the
. discontinuities of M;5 s ignore the miied-a éingulgrities of the

various terms in (4.11). According to the First Structure Theorem
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Fa)

the singularities éf P “are confined to the.unioﬁ over 7ﬂ [Dj"o+
‘the nontrivial Do cB. Considér Pirst G . [We sometimes use the.
same symbol to denote both the bubble diegram end itS‘functiOn;]lrif
-'ahy ohe of the diégonal lines of Gn is contracted to give 7D, £hen f
:» .Yn[D]v is of type A, This is bécausé.ﬁhe only allowed diagfaﬁs in
fthe 22 bubbl»s must have, as a consequence of Lhe stablllty and
.-_the positive- (or negatlve ) o requirements, both incoming lines
‘termlnatlng on- & common vertex and both ouugOLng lines 1ssuahg from = -
fa common vertex.; On the otnev hand, if any of the hor17ontal lines -
rof Gn is confracted, then the two diagonal lines lying above or .
"below this horizonfal line must also be confracted, as a conééquence
of the landau loop equationsvénd ﬁhe positive- (of négati&e—) 2 |
( requirehent. Thus, all the posiﬁive% (5;;555aﬁiveé} O cross-energy
,singularities of Gn égrrécnond to diagrams D in which none of thét'
(exp11c1tly appeavlhg) llnes of G are contracted.: But for |
sufflcﬂently large .n, the Tﬂ+[DJ for such a D does nof énter'
the region below the fdur~particle threshold, [This was proved in
} Ref. 22' by proving.that f@r suffiéiently'large n the classical"
_ point-particle multiscatteringvprocess pictured By D is dynamically
Vimpossible.] — |
A similér'argument shows that‘ﬁHn can have nd positive-
'(dr negative-~) 0 cross-energy singularities, prévided .n ‘is taken
sufficiently large,- |
The diagrams Do <B for MBe. Rr_l have, for the Iandau

dlagrams ch cofresponding te the 3 - 3‘ or the 3 - 2 minus
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vabbles,_either:g pointvvertex Vb 'or‘a nontriviael diagram with
internal lines. Iﬁ the former casé MID] is .of type A. 1In the
"f' o | latter case, the faét;thaf D contains some line that lies inside
a minus’ bubble means thatvthe di of ét 1east_éne~line of 5 mﬁst
be negative. Since all oy must have the same sign, this universal
sign must be negative. Thus, the  o of the Third Structure Theorem
that defines the continuation past this singularity of R? is the
.négative éf thé o éssbciated with the:Same singularity of M;3'
That is,.the continﬁation.around this singularity of VR? follows
the minus-ie rule. |
We may ﬁow.derivezthe discontinuityv§f M;5 .across the
singularity corresponding o the Iandau surface Tﬂ+[D] associated
'vwith any diagramv_D that ﬁay bé formed‘by.contracting to points

‘the bubbles of & bubble diagram . B, having labeled lines that

D

- represents a contribution to Cg. For example, the diagram

(5.12)
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According to the remarks at the end oP Sec ﬂoﬁ iII the term

, T(D)_.= D

ic* a 'Lhreshold t@rm presont in (4.11) for points on :
 {;the physicai side of :-Yﬂ [D], but dbsenu on the unphy51cal 51de

'If one tales Eq. (4 7{) on the unphyDLCaJ side ‘ana conbinues around
:;'the singularlty in accordance_wmth {the minus-ie ruie, then R, is
continued into the éame funéﬁién R?' that occurs on ﬁhe physical
side of the €7YT[D]; by virtue of the Third Structure Theoreh.-
However; the function M;5 is cénﬁinued foits velue underneath the
- cut (or underneath the pole). This continuation is denoted'By
.MBB(D ). ’The remaining terms a;e hot _singular af'the point in
questlon and are therefore continued 1pto the same functlons that
occcur on the physical side of WD D]. Thus, the difference between
the conbinuation of (L.11) from thé-unphysical side and (h.12)
. evaluated oh the physical side‘of_ XYF[D] gives simply |

AD M;5 = +3 . M§5 (D’) = M?D = .T(D)- (5f2)

That 1s, the discontinuity around the‘singularity'surface-'ﬂﬂ+[D]
is Just MBDJ
' The essential point in this method ié that the expansion of

+
Mys

' . I . . <
question that are not in M35 itself are contained in a "threshold

be such that all positive-o contributions to the singularity in

term", which is a term that contridutes on only one side of the
singularity surface in question. This is the key poinﬁ of this parer.

. o ' .
The surfaces YY) [D] considered above are not the only
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positive-or Landau surfaces that are not‘gémfyﬁe A. Other D's‘éah
be obtained'by inserting somé'internal structure in some of the plus»
fubbles of a bubble diagram corresponding to a term of Cn;- Tﬁe.
stability and positive-o reguirements, together with the totai—

energy limitation, allow the insertions -only of chains of the form

0« XOOOOKKK (5.5)

whefe fheviandau equétioﬁsvréduire that'the sum of the masses of each

- link of the chain bé fhe.same. Since the Landau surfaces corresponding
to such a’ chain db nbt-depend‘oﬁ the number n 21 of closed'loops, we
cén,rwithﬁut loss of generality, limit the chains to a singlé closed

loop. Then, we obtain, for instance, the lLandau diagram

(5.4)

D= 3 2 ,5

In order to.obtain the.discontinuity equatioh_fdr the.cut
:starting at 7n+TDl], and also for latgr use, we nbwléast'the unitarity
equation into a form where only the scattering amplitude itself and a |
Ithreshold ferm have a positive—a singularity correéponding to'a.given

normal threshold. Let us introduce the decomposition
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m m m BRI
’ where the Pij (or Qi) ‘bar restricts each of the ‘sets of pe.rficles o
corresponding ,te 't‘le lihes intersected by the bar to a set havihg a
sum of rest masses. greater than or equal £0 (or smaller than ) a glven
mass M. Us:.ng (2 9) and (5 5) we can write (2.6) in the form
o @ Z—:—:Z = - 5[k
- . (5.6)

W
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Denoting the center-of-mass energy of the incoming narticles by B§,
we see that only the second term on the right side of (5.6) contri-

butes below E .= Mi' We define the 1 box by the equation25

5 - Q, SR
| @Jr@f' %Ei% O '(5-»8.><- 

_ for both E < Mi and tE > Mi' [In this equation; and'those that
follow, E is assumed to be below the four-particle threshold.] An i
box is.relaﬁed to 1 bubbles invthe same‘?ay as a plus box is related

to plus bubbles. Thus, we have

L = —o—» | G
mff :' 2:1-6)'_' +2X , (§.9b)
gy = I@ ',. (5.92)
J4iC = @: , (5.9)
== ‘_: =O=: }:Eka%, .(.5-.9e)‘_
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'  The functions repvesented by the i bbbbles will be denoted by
M (K""')T These functions depend on the mass Mi assoc1ated W;th.'-
Qi; The 2 -2 i bubble in (5.9%) is defined by the'requiré&' - .f - o,

vanishing of the wvarious alsconnected pa“ts 01 (5 8) - The

disconnected rart equation .

TCr. T .« T a0 b

. is equivalent to  : - N L

:@[+ Tr | *511722@ =o (51) |

e it ety e s 2y

if the mass 'M’; associated w1tn the Q':‘ of (5 ll) is related to
. o ss ; o b =. ~
.the mass M, a55001ated.w1th the . Q, of (5.10) by M', . M, “i ,
Wherel b, s the rest mass of the spectator particle in (5.10).
It is shown in Appendix B that (5.8) can be solved for -
CM(KT:XT) by using Fredholm theory and thaet M (X':K") has a minus

e contlnuatlon past the normal threshcld 51nbular1ty at E = Mi-

" This result follows formelly dlrectLy from the 1terat1ve solution

T — - - e v et e 5 e pmraoey i X et e ot o e



~where the subscript C indicates the connected pert of the expression

- in parentheses. Tor example, in the 2 - 2 case (5.12) becomes

Q; Q; Q;

Tr=0Or - e - T 6

Let B  be any term on the right side of (5.13) and consider the

normal threshold corresponding to the lLandau diagram D

XX, G

2

where Myo=opg Qg. Becausé of the_‘Qi projections any D><B
must have negative @'s associated with its lines. Then the Taird
Structure Theorem prescribes a minus-ie continuation past the
singularity of M3 at 'Yﬁ+[D].i Thus each term on the right of
(5.13) must follow a minus-ie rule past'thi; normal threshold.
Similarly, it foliows from (5.12) that M%B has a minus-ie

continuvation past the normal thresholds corresponding to the diagrams

©—

B XK, oW

2

vhere we put Mi equal. to ul_+ Ry + p5 Qr, by + Hys respectively.

These results can be made rigorous by using Fredholm theory in place

of (5.12), as is shown in Appendix B.
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‘From (5.6) aﬁq (5.8) we ob’cair_lglL

e Temen s i e s

R -y
| ¥
7 -
and also ; .3 _

(an)

| Comparing (5.16) and’(5.i7)_we,obtain |

1“%{

i

TRCI
(T 4 - )
{13

(5.18)



-45-

In Appendix C we show that

o Q; o Qi ' ’ :
ZE} - ZLH;_Z o (5.19)
Using (5.19) one obtains also (5.18) with the i box and plus box
" interchanged on the left.side; and hence also ' 4 -
v : , % ' P . —_—
LE= . em

Tt follows from (5.11) and (5.19), end from (5.18), (5.20),

___ﬁ, - «¢an‘1 (2.9), that - _ e

=+ EC=-eOmn =-0ner . G

T e e =T Y |

EOREORE 0202 020"

(5.22)

| In (5.22) only the first term on the left side and the threshold term
-on the:right'side.haﬁe a positive~-o singularity corréSponding»to the

o . - i} L
diagram (5.14) where M, = b + oy, This shows that MéE is the
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M (D), where D,

VNP, A Ut VY.V G U V0O SO SO

ke

.“:contlnuaulon of Még below tbls s1ngular1ty and that the dlscontlnulty

is the right’ 51de of (5 22)
Returnlng now to the problem of the dis cOntinuity arOdndv

;. s def;ned’ln’(5.h), we use (5.22)'to expand the

_relevant term T of. Cé as follows:

- — o i,_ ¥ :I]:;;ZE ST
- 3SARS = B3NS 3 5 o
ﬁ.@ 00 O O - (5.23)

. hSetting M, équaltto; pi + p2; we see that the flrst term of thls '
 expansion has a minus iec contlnuatlon past the surface Wﬂ 1 for
' Just the same reésbh7that' R -does. The second term has 1ts threshola"

. - + . )
at "ﬂ\[Dl] Thereforo we obtain in’ the same way as before the

discontinulgy equatlon-
NG . ), L (5.2b)
- ADl s (D, ), o (5.24)

T(D,) = I&I g)‘—t_J— +f (5 o5

The meﬁhod given above can be generalized. Any set of

inner plus bubbles (that is, plus bubbles not standing at the extreme

right or the extreme left of the bubble diagram) of eany bubble diagram
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T cdrresponding toa term T of Cn can be replaced by closed

-loops,'while'the‘remaining plus bubbles are contracted to points. The

corresponding‘discontinuity of M;5 is then given by T with every

plus. bubble corresponding to}a'two-particlevclosed loop replaced by

L P : : !
5 ' ! ] :

OO Sk Ok} Ol e

with the index 1 referring to the sum of the rest masses of the

two particles in the two-particle closed loop.'

B. Discontinuity Equation for Normal Singularities in a Subenérgy

To derive the discontinuity of M;5 'across  7n+[D2] where

we first write the first and fifth term of (%.1) in the form

F ST - X - T

P,

.+-E§::EEEE + E]IIE;&; * E!IIHIE;EE . (5.28)

Substituting (5.28) into (4.1), postmultiplying the result by



- - o : (35 ” - .‘ ‘:. sfi , -

S=dm
and using (5.21);.we thaiﬁ , ;- - o R S
} +R RS
)  whére
+2+z;z>( =.3m)
MD »
EO=SE 0=
Again setting M, equal to p + ue;'wé see25 that the only

'j"terms of (5.30) that can‘éupport D, with all o's positive are the

rirst and the second. Thus we obtain®
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C.

Discontinuity Eciuation for the Ice-Cream-Cone Diagram

To find the discontinuity of M;B across ‘M7 [D

we first substract (4.1) from (5.30), and obtein -

- where

(5.33)

.. Wwhere

RZE(EEI @:@

+Z Z:QE)(__‘“_):

+ Gna ‘m

)

(5.35)
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. The dlagram R cannot supnort D wnth ull o s p051u1ve

Substltutlng (5 54) into the SeCO“Q term of (h 6) ve see 25 that the

: only terms of (4.6) that can support- Dj' w1vh,all_ a's ,p931tlvelare

+ B
M33 and-v—T(DB) .where

5 :
. i |
T;(_~D,3,)E (5.36)
_is a threshold 'te_—:;rm._.lv Thus e obtain ! -
A s T o BT

- D. “Discontinuity,Equation for»thé‘Extended:Icé—Cream;Cone'Diagram;

CbnSider_the'Lahdau'diagfamﬁl

SRR

(5.38)

000
c 0 o°

o e o n

. " ) . ) . . v ] 2 ‘
Substituting (5.34) into the second term of (k.11) we see.5 that the
~only terms of (H.ll)'thét can support D), with 2ll a's positive are

M;3 ghd ‘—?(Du),'whére

¢
(
I
°
°

_{
L
$SD
Sna®
H
l
. X
041~' =
. —:- c’
[¢3)
-4
(8]
ol
<%
.Y o
o 6 95 o
[,
\
O
o
N
b |
Pan)
I
N
O
~

(-]
>
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is a threshold term,ﬂ'It.therefére follows that . .

AD MB) Du) | | (5.40)
Slmllarly, by combining (4 8) and (4.6), or (h 8)'and

(L. ll), and then substltutlng (5. Bh), we find that the discontinuity

of M35 correspondlng-to the dlagram

M/O\ﬁm )

is given by

TR T |
S 5 9
q+} WZ
6 10 "%~ :
\\ - - 0 - 5.9, 6+4_m. (5.14)

Any set of simple inner vertices (defined in the caption of

Fig. 1) of any of the diagrams (5.38) or (5.41) can be replaced by

~a corresponding set of fWo—partiéle closed loops. Then the corre-

sponding discontinuity of M;5 “is given by (5.39) or (5.42) with

-every plus bubble corresponding.to a two-particle closed loop replaced

by the expression (5.26).
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g, vDiscontinuity Eqﬁation‘for'Normal Singularities in the Total Enérgy'

The problem ié to find'the'discontinQity of YM;B,

57

around ..

L Xn+[D ] aﬁd_;W7\+[D6jjlﬁhere -

' Ds- ><z—‘><°“d Ds:>©< .
o 3 5 .

The -i (or F) box was defined in (5.18). ' By virtue of (2.9

. this definition is equivalent to

G.15) .

)

It then fgllows frbm,(5;18) and (2.11) that -

Y%- Z=%F %
=% %+ %417 ., (5.10)
' The conﬁectedfpéff éf tﬁe'leftvside of (5.4h) is denoted by
| //o = M~ (K';K”), (5.15)
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SO RO RO~
PP
N ee_
3 OHQ- A+ E . Ge

. Using (5.20) we can write the connected part of (5.18):in the form

DR = O oDm ¢ (oK),

which gives

=10, :_@ '+<PI -+ )C , (8

where the subscript C  indicates the connected part. Substituting

- (5.47) and (5;M85 into - (5.L46). we ob#ain



P, P '
JRCRT T
v_where ' . L 5
(5.50)
R
¥ )
L]
C
For the'special" case of three ingoing and three outgoing
- particles, the terms on the right side of (5.49) are given by

i P; PP

)==OIEO:2=:0=
P. p. P

F0==0=201E02:0=:0
+ THCGE - TCE ew

e
N6
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and
= E@E Z I@uz =y
- R RR O (5.52)
E - . R R A .
+ :5: :g: pOm NOGgIC
:@:»‘*‘ o+ D e
Equatlon (5 22) is used to obtain the fifth term of (5 52)
The only terms in (5. h9) that: can support D5 or D6 with
all oa's p051t1ve are M35 and the first term on the right s:Lde.25
'Thus, weé obtain K : v
ne
+ v_( . - . - v ) Lo .
ADS M33 = - +\E -~ j/ + - . ,(5.55)
and .
o R R S
Aoé M_3'3-— ﬁ) e GE , (5.54)
N “ if.  where we set M, equallﬁév.“i + Ho % “5‘ in (5-55)‘andveQual o

by t Mg In (5.54) and we assume ?hat by + oMyt ok # Hy b
For b + uy + by =l U the dlscontlnu;ty BCrOSS m [95]

7n+[D61 is given by'



: PP B T - P Pr
E0=10ME O=2 1 =: O£ O 2520
. .Pi v . Pi. , .. . (5.55.)
RN A el O Y s 0
EQ:=s RIS O TEOEI==O=x

t e e e

F. Discontinuity Equatioh for the .3 ~>2 and 2 - 3 Amplitudes .

Thef‘an'E and 2 -+ 3 amplitudes have no physical-region
singularities_depénding on é’cross-eﬁefgy.invariagt.. The discontin- v
uities of'these amplitudes;across‘fheir.singularitiesvgre given by
formulés complétgly énélogous £0 those obtained for the 3= 3

 amplitude except for the chenge in the external lines.

G. Equivalent‘Diagrams

The Laﬁdau‘Sgrfaéés”cofre5ponding to equivalent (but not
.identical)>diagraﬁs‘coiﬁcide. The discqntinuity formﬁlas givenvby
l_ the rules (1.2) of the introduction have partially teken this into
“account, since a'suﬁmatién over all particles of the same‘méss Mi

i

m

implied for a line labeled with the number r . However, the sum
of the rest masses, M, + M,, of the particles in a two-particle
cloced loop may be equal to the sum of the rést masses, M) + M+ M% ’
of the particles in a %hree-particle‘closed loop;: or it may be equal
to the sum of the'rest"maSSesz My + My ; with My # M, of another

set of particies corresponding the the two-particle loop. The rules



(1.2) do not_cover.suéh'
section the possibility
the results cover ﬁhese.

- the more general rule

- =57-
cases, In the defivations given in this
of equivalent diagrams is not excluded, and

cases also. They give, instead of (1.2),

These rules are equivalent to those-of (1.2), if there are_noﬁ

. equivalent diagréms of the_type Just mentioned and provided the

M, corresponding to the bar in (5.56) is set equal to the appropriate

sum of the masses occurring in (1.2).-

It is understood here; as 1t is in the discontinulty formulas

derived in this section, that the bubble-diagram funhctions on the’

right side are evaluated Just above their threshold..‘We shall see

in the nexfsection'that

if this restriction is relaxed, then the

~rule (5.56) can, in some cases, give the discontinuity across a whole

set of cuts.
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.VI: DISCONTINUITY OF THE SCATTERING AMPLITUDE
AROUND SEVERAL cUTS
E The merh'od,l-used in Settion V to derive the discontinuity of
ZLM;3 vacross_é.singié‘ﬂa?d?u Su?faCe caﬁ'be generalized'to éive'the‘?-’:
discontinuity acress s:e‘.veral"Landau!surfaces.2 |

Consider the set of Landau diagrams -

(6.1)

" where the unlebeled iuternal lines correspend tovall possible types
of'particles that'are'compatible with the conservation and mass

i-constralnts and Whlch satlsfy the requlrement that the sum of the

pfmasses of the partlcles correspondlng to the lines cut by the Pi

bar be greater than a»glven‘mass M . The only terms of (5.30) that
e-can supporu axLandauidiagram of the set D7 with a1l o, positive
r are the flrst and the second 22 On the unphy51cal side of all the
N-Landau surfaces Wﬂ [D ], Eq. (5.30) is M35 +R = 0. If thls
~equation is contlnued to a point that lies on the physical 51de of

v all the Landau surfaces ’n\ in such a way_that R is continued’

7 1

" into itself, then M;B_'is continued around '1n+[D7) according to a-
" minus-ie rule and_ihte'a function denoted by M;5(DT)' Subtracting
the continued equation from (5:30), we find that the discontinuity

M;5 - M;3(D%) iS.again given by the right side of (5.32).

T T



- -59-

A éimilar argument, based on the formulas of sﬁbsection V.E

fshowsvthat the_discontinuity of M%BI across the_set of Iandau

has ﬁo mixed - singulafities corresponding to ,D9 or to the contrac~

tions of D This restriction is imposed because the Third Structure

9.
' . : o oy :
Theorem cannot be used to continue the right side of M55(D9) = MBB-T(Dl)'

_into itself around such mixXed-o singularities.

! surfaces corresponding to the diagrams
"' A o T ,
DH% o
is given by o
. (6.3)
- The same procedure also works for nohnbrmal'siﬁgularities.
- Consider, for instance, the sét of Landau-diégrams
- (6.4
- : g + ey | N
The discontinuit - D across the set of all cuts that
| e y Mz - M5(Dg) ecross th
- begin at the Iandau surfaces 7n+[D9] is given by the'function';T(Dl)
. defined in'(5.25), provided we remain in the region where ~M35(D9)



v
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. Finally;'let'ﬁs'eXamine the total discontinuity of 'M;B
across allfnormal'threShblds in the total energy or in a subenergy.
' Consider the setrbfAdiagrams . R o
{3 . XY, e

"where the nnlabeled ihternal liﬁes correspond to‘all_possible-types
of partiéles»that aré éompatible-with'the conservation and mass

constrainté.ikThis set is composed of the subsets .

. } e
9<j>€} 6

where we choose Mi Ain éuéh a way that E = Mi is the energy
corresponding to the lowest normal threshold lying within the physical

"reglon of M;5' (Thus, the nérmal thresholds corresponding tc the

e = e bt A I vt S+ ik e pasio ! v e P
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diagrams LD’io lie outside or on the boundary of the physical

region of M ) We define

55 | . . - .

+ = | Qi Q .
M0 =+ F - . (6.8)
‘The argument which led from (5.46) to (5.49) also works if we
. replace -1 by a minus sign and omit the Pi bar in these formulas.
.Then, Eo. (5.49) becomes
= —RrR’ ' ’
 Tr- TECE - FE. e
where

L
2

Fe(Cr oS e
| | | . (6.10)
2O DN ).

On the unphysical side of the set of singularities corresponding to

. D'lO we see that



oMy (o= HRE, 6a11) .

where we havevused;(6;9): If this equation is continued to a point

. which lies on the physical side of the surfaces .Wn+[Dl vin-sudh

! o
a way that,thevright7side of the egquation is,cqnﬁinued into itself,
then M;B(D’iof) ‘is coﬁtinue&‘below the cuts cdfrespondihg to

] - " . F‘ ". ~ . . i ) o - 25 . . .
ﬁW\[D 101 gnd_lnto a function denoted by 'M35<Dlo)' Subtracting
_the continued egquation from (6.9) we obtain - '

. * - ' . v .
Mgz T Myg(Dyo) = °° o (6a22)

 Equation (6.12)_gives diécontinuity of M;3 across all the Landau

svrfaces TN [D j. pfoﬁided M (D7) can.Be regarded as a
e 10 ; 33\ 10 - - ’
) continuvation of M%B to some unphysical sheet.
With a'similar ﬁroviso, we find that the total discontinuity
across ﬁhe siﬁgularities corréspbnding to the diagram .
( D, = /ﬁ\ v - (6.13)
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. is given by

Equations (6.12) and (6.14) can be regarded as just definitions of

4o + - . - P '
MBB(DlO) and M55(Dll)’ respectively. ihe.nontr1v1al aspect is the

. result that these functions have minus-ie continuations around the

normal threshold.’Yﬂ+[D”lo] and ’ﬂn+[D"11] = 'Yn+[D7], respectively.

: +. +‘ -y _ — RO v ' 614
) M33"M33(D“)' @ . ( )
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Appéndix A; - Combinatorics

1. Cluster Decdmposition of'the S Matrix

For bosons the cluster decomposition property of the S matfixw

is expressed by

Mk k') = LMK - (ada)
and
L Np_ B ) _ v
M (KK = T M (K3 KT ) L A.1b
_p< _’__),v el {Miﬁ ps ps)- o _ _( )3-

The'sum'over p -is a;suﬁ o&er all'partitidns of the set of variables
(K'; K") into qisjéiﬁf subsets. The set of variables (K’p; ;'K”pé)
'jis the gﬁh sub;eﬁ of . the ,Eﬁh vartition. The Qﬁh partit;on has
_éltogeﬁher '-NP sxlb'ééts, and the first partition,' p =1, ‘is the
unique partition with. Np =1 and K'j, =K', K'j; =K'
The cluster aecdmposition is graphically_repreéented in terms

.éf bubble diagrams. A bubble with a plus sign inside represents the
connected part, Ml(K’és 3 K”ps); of the S.matrix M(R%S : Kgs)'
Then . M(K'; K") 4is represented by a sum of terms each of which is a .
column of plus bubbleé. (The sét of bubbles includes trivial bubblés,
which are bubbles conneéted to Just one initial‘ahd one final line).
A Counting is important. There ié precisely one term for each
topologically different ﬁay of connecting é column of plus bubbles tov

the given set of external lines specified by (X'; K"). The topological

structure is determined cdmpletely by specifying the grouping of the

t
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external ;ines info‘subsete.'_The'lines of each indiﬁidual'subset
<K§s 5 K;s) ‘of external lines are drawn as"emerging from 2 single
bubble. Two diagrams that differ only in the ordering of the bubbles
in the coiumn are not topologically,different. Similarly, two
diagrems that differ only in the ordering of the lines emerging from
any given bubble are not topologically diffefenf. This latter fect
allows us tovaiways draw the diagrams so that the lines emerging from
any given.bﬁbble never cross. However, lines emerging from different
blbbles may croes; A_typical term wili thus have a structurevlike

that shown in Fig. 5.

2. Counting the Intermediate States

The unitarity equation is

52 Mx'; K) MI(k") = 8(K'; K'). - (A.2)
K . ’ -
Here X = (pl, 5.5 p2"t2"-"Pn’tn) is a set of variables
Vj = (pj, tj)' The sum over K includes & sum over all n. For

each n, each of the n indices tj is summed over all possible‘

“values. . And for each value of tj there is an integration over all
s o 2 2_ 2 '

values of D, satisfying p,o = kT = (tj)f The states are

lebeled by unordered sets K. That is states labeled by sets K

that differ only in the order of the variables of K are not counted

“as different. Thus, one must either restrict the range of integra-

tion by some normal ordering convention, as in Ref. 15, or divide by

ni. Let us temporarily adopt the latter method, 5o that there is no



-66-

restriction on the range of integration. Then the summation on the

~left side of (A.2) can be written in the explicit form

n T
E: 1 . '
= n -

S Jd=1 1

™

2

IDu?’lﬁ

o ’ . 'dhp
2, 2 o)
) —% 2n 8(py7) 8(x,

' ' o) 2
x . -

xdp99<>< w2
z;;;ﬂ 7t o) D - n

. ‘ (4.3)

Here n dis the number pf lines in the intermediate state, and T is
the number of types of particles. The momentum pj is assoclated
with lihe_ J and alsoc with the type variable 'tj and can therefore
‘be written as p.(t.). | |

' When we transcrlbe uwntarl ty (A.2) into bubble notation, e
find that topolovlnelly indisti ngul shable diesgrams occur. That is,
even though the individval M functions‘aré expressed as a sum of
topologically different diagrams, the topological rroduct of these
diegrams contains diagrams that are not topclogically different. The
topological étructufe of a contribution to the product is specified.

by specifying first which subsets of the set of outgoing variables

1

"K' are grouped together (i.e., are attached to a common bubble) and

which subsets of the set of incoming variables X' are grouped

together. [The various variables of K' and K" are alweys
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 considered as distinct and identifiabié. One can,ifor instance,>take
T all théf bj in X' and K" +to have different fixed values.j The
various groups of incoming and outgoing variables can be labeied.by
. indicesv i and 1, respegtivelyﬂ These indices 1 and f label,
then, the bubbles»éf tﬁe right and left columns of the product;. It
is important'to ﬁote that this labeling does not refer to the position
of the bubbles in the coiumn but rather to the sets of external lineé
connected to these bubbles.

The number of lines conneqtingAbubble. i to bubble £ ié
called .Nfi' The topologicai s£ructure is specified‘by these numbers -

N

£17 together with the specifications of the subsets of incoming and

-outgoing lines laﬁeled by 1 and f.

Bubble diagrams of the samé tbpological'structure'give
exactly the same bubble-diagram-functions; Thus, the product on the
left of (A;Q) can be expressed in the form | |

B

, F(K’ K") = Z _cBl\_/lB(K’; X", . .(A.h)

 where the sum is over all the topologically different bubble diagrams
" B contained in the topological product of the two boxes. The-

coefficient ¢ for a diagram with n internal lines is NB/nﬂ,

B
where NB 1s the number of dilagrams tdpolOgically equivalent to B
~in the topological-product of the two boxes, and the factor ‘l/hl

comes from (A;5)f The bar on M° indicates that, contrary to the

convention adopted in the main text (see below), the regions of
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integration are not.restricted by any ordering convention, but are

“as giveh in (A.3). We shall show immediately that

=
i

:nz/n(ﬁfi)!,A'j ~‘_~f R (A-5) ,

This result gives

cB:_‘fil/ﬁ(Ngi)l; - ;f"  1 - : f (A.6);'

"'thelproduct being over allfpaiﬁs. (f,i). As usﬁal one tékésr QI':Vl.
io‘dérive (A.B) ohe firét 1a5eiérfhe_intermeaiaFé lines in -
_accordance Withﬂfheir.topdlogiqél:character:“'Each line ié labeled'
by a unique triple '(f,i,m);fwhere.'f_ and i label the final and
1initial bubblesAﬁhat the line joiﬁé,-and for anyvparticularvvalues of
f and 1. the m .in (f;i,m)ﬁ,ié an index that~runs from: 1. %o
Npi énd specifies the.pafticuléf one of these‘ Nfi lineé. There

ES

'is also the index 'jv that runs from 1 to n, and identifies the .

.m veriables of K = {py; s Dy t2,-’-,pn; t ).
For definiteness, one may specify that thé ordering of the

»lines of any box reading from top tbvbottom is the same as the |
“ordering‘of the associafed vériables of thé corresponding seﬁ K.
Thus, j‘Specifies the geometric location of the intermediate line Lj’
reading from top to bottom of the box. The index m .of_ (£, i,'m)' ' ‘
- may also bé cqnsidéred to specify the positilon, reading frpm top to

.bott§m, of line (f,i,m) relative to the other lines of the set of
that jdiné bubbles i and f. The condition imposed

llncs Pfi
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earlier that linég attachéd to a given bubble do nbt croés within
the box(iﬁsures that the ordering of the lines of oy 1is-well-
defined; the relative_ordering within one box of any set of iines of
: ffi is the»same'as tﬁe ordering of this set of lines in the other
box. This gondition thaf the ordering of the lines Pfi be given .'
by m ‘is, howe&er, the‘énly restriction on thevorderingvof the
invermediate lines; one reédily confirms that the verious intermediétg
lines, as identified,b& their topblogical indices (f;i,m), can occur
in any possible order (reading from toﬁ to bottom), subject only to
this conditidn'tﬁat the relative ordering of lines in the various
setls Ffi be in.aéqordance with the index m. Thé term coming from
“each of thése élIOWed orderings is a different contribution to the
product (A.2). ‘Thus;’in this product, the number of different contri-
butions that are topologiéally equivalent to a'diagram‘ B is Just
the number of differeﬁt'allowed orderings of these intefmédiate lines.
This is jﬁst the total-npmber of érderings nl- divided by the product
of the number of orderings within each éet 'Tfi' Thus we obtain (A.5).

In the text it was specified that the region of integration in
the definition of bubblefdiagrém functions ME be restricted so that
contributions from topologically eQuivalent diagrams are counted only
once. In the derivafion of (A.@) no such restriction dn the range of
- integration was imposed;'and the corresponding functions were written
as 55. These two'functions are related by the factér QB' The point

here 1s that the various lines of a set of lines conneéting_a glven

pair of bubbles are regdrded as‘fopologically equivalent. Thus, in
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computing MB, the integration region is restricted sc as to include

only one of the set of contributions obtained by interchanging the

‘lines of such a set. This restriction on the domain of integration

in the definition of the functions MB eans that the Eﬁs-in' (A.ﬁ) o

\

‘divided by I N.;t is just M?. Thus, in place of (A.l4) one obtains
P K7) = X MP(R's KT (8.7)
- B , .

The notionAof tépological distinctness hasvbeen applied on two

differént levels: When iﬁ (A.B) or (A.T) we say the sum over diagrams

- B is over topologically different diegrams B, we are considering 3B
to be simply a colleétion of lines and bubbles joined to give a

geometric figure; the lines are not yef assigned particular variables.

Bul when for a fixed B we say that the integretion region defining

‘.

B . R . : . . e
M~ 1is restricted so that topologically equivalent diagrams are
counted only once, then we are considering variables (pj, tj) to
be assigned to the lines. This separation into two levels is

evidently axbitrary.

The proof given above can be shortened and extended to products

of arbifrary numoers of boxe by'arguing as follows. In the integra-
.tion.corresponding to the sum over the set of intermediate states, one
is supposed toicount-only Qne.of the set of possible contributions
obtained from the various possible reorderings of the variadbles. A

reordering of variables corresponds to a reordering of the lines

associated with the intermediate particles. Thus, the ordering of the
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intermediatevlines can be consideredvto be completely irrelevant; the
intermediate lines can be identified by the>ﬁalue of the associated
vafiables alone. For every way of connecting the various bubbles of
- The- various adjacent.columns by lines, and assigning a fixed variable
to each line, there is at least'onércontribution to the overall
function. We néw define diagrams with fixed variables attachedlto
each line to be topologically equivalent if and only if they can be
made ldentical by some reordering of the various-bubbles within the
verious columns. It then follows thatvthe contributions from-tWO
topologically equivalent diagrams should not both be counted. For
they must both arise from contributions to the individual boxes that
are tbpologicallylequivalent,;and hence identical. On the other hand,
ho two contributiéns‘that,aré not topologically equivalent in this
sense caﬁ come from a single set of contributions from the various
boxes. Hence the restriction to topologically different diagrams
leaves one with preéisely one complete set of indépendent'contributiéns,
The coﬁsequence of thisvargument is that the function corre-
éponding to a product of any number of functions S and Sf>‘With
the intermedilate sumé defined aé in the unitarity.equations, is
represeﬁted’by thé function MB, where B 1s the natural topologicél
product of the boxes representing the individual functions .S and S?.
One can Jdecompose the various boxes into suﬁs of terms represented
by different columns of bubbles; The natural topologicél product
" does not include diagraﬁs that are topologicaliy equivalent in the

sense that they différ only in the ordering of bubbles within a
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 Column or by the ?ath”followéd by intermediate lines. [Only the end
:poipts of the lines aré significant.]v For eéch diagram B of the'_‘f

.ﬂnatural ﬁopological prdduct there is one term MB{} In éValuating

 this'term thevintegratioﬁ'is-restric%ed soithat”tépbiogicaliy
-equivelent contributidﬁé are dpuntgd precisely once, where now each :
 line is.identifig& by a{ﬁa?iab;e (tj pj).
" 3. Example

In the ﬁain.tgxt-thé'combinatorichuéStiéns ére_automatically_
rtaken.care of by thé use. of fﬁﬁétions ‘ME; the restriction on the
 ranges of integrations_ofiﬁﬁese funéfions-ﬁakes everything éorreét._
' To exhibit the COmbihatérié questions resolved by this notatioh, and
té'cohfirm our-bésig‘formﬂlés,vwe rederive the formulas of Sec. IV
starting directly fromlEqs. (A.l); (A.é), and (A,B}, and uéing,
instead of the fuﬂcfiénS' ME rather the funcﬁions MB,‘Which»have 
‘no restriction.on thevdomain,of'integration.,

First cbnéidéiafwo-particle unitariﬁy; The two-particle
box is given by. | |

PRI e

I— % 3 _ 1 3 1 —O—3 |:8>C3'
2 — :--,-4_2_:@4+ 2—O—4 *o -4+ (A.8)

In (A.8) the incoming and outgoing lines are identified redundantly
" Dboth by an integer and also by the vertical position of the external

end points. In the remainder of this appendix we will suppress
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- the integer and use only the latter method of labellng Below the

three -particle threshold we obtaln

L= 4 (O30
+‘ +x .% m
+ TEIDCH DO DEX)

I — + DC, (A.9)

where the factor 1/2! comes from (A. 5) [This factor l/él_ does
not appear in the equations of the text because there the dlagrams

" represent always the'function Mf whéreas in this'section>fhey
represent the functions . ] Equation (A. 9) is ev1dently in
agreement with (A.L4). The last two terms on the right side of (A. 9)

are equal to the identity -
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, + o z*"zl'nz +'Z:E?_E.‘

I e S ool T et

where the summation-signs are interpreted as in Section IV. The
disconnected parts of (A.12) are equal to the identity by virtue of

(A.11), so that the connected part of (A.12) vanishes.

Ik :Z___ (A.10)
S »
‘so that the connected part of the unitarity eguation is" -
g » — 1 — s )
Gr + :@:—’.E;I“E@'_'——ET o (A1)
By a completely analogousvprocedure we obtain,'aftgr :
_iéombining'various ferms,
S+ |-E=g+H-E+3+ -~
am oy aman — —t s e
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To obtain (4.6) when there is no restriction on the range .

" of integration, we postmultiply the connected part of (A.12) by

3! °

+ O

(A'l3)

- Consider, for‘inStance,’the postmultipli¢aﬁion of the nine dumbbell

terms of (4.12),

Dol G el v ), )
by the 6 + 9' %er@s éf

‘The result of the multiplication is
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The last two terms combine to give

et Sont ony s s eIt e 1y o A9 s

S ZZ =
S L, B e (A
| Similarly, the postmultiplication of the terms '
| ‘ ' » I e “na
"3 +W ) o)
Cof (A.12) by (AlB) ‘give's R . _ v »
- | ‘ ‘ .
T o= . (A.19)
These results check W:Lth (4.6) if we take account of the factors
‘! that relate NB o M.
4 .
Using (A.ll) we obtain

S+ Y o

f

(A.20) e
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Substituting the unitarity equation

TATETETE

STOECE + SRS

Equzisions (A.20) and (A.22) check with Egs. (4.7) and (L4.8) of the

- text if the factors 'Nfil relating M3 to..M3 are considered.

The remaining equations of Section IV now follow from the

equations already derived and pose no combinatorial problems.

PSS UV NN
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‘,.Appendix B. ’Déterminatioﬂ df M;(K';K”) Usiﬁg Fredholm'ThéOry29_

-i

The M (K’ K" ) are de;lned vy (5.8). "Lét us first assume

_ that B < M o Then a comparlson of (5 8) and (5 6) ShOWS that -
. . . ' - ’ _ . . . , ) -

N A/

'(B.lj_

e e i

Thus, (5 8) can. be wrltten 1n the form

ond bhat (5 19) st hold '

Q; '
} % o L “
o=~k -4k . oo
Let us nov postmultiply (B.2) by _
X 6
e vt e C- - o e ey e+ i . e g e ,.4.,"_;.*5.,.__.._._....*........,. e e e
and go through exactly the steps that led from (5 h6) to’ (5 H9) “but
‘ maklng the replacem nts
4 ->'i,r ~i 5>.+; P, = Q - o (B.14)
" ... Then in place of (5.49) we obtain.
e~ P Q , S
OO0 B .
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where

§§%}

I

“«

Tr),

c

s f | Q4+ o
-ofOE - TEECTTR) . e
. . . . C. "

o _
7z R - @ (

The connected part of (5.8), premultiplied by Q s can be

written in the form

N\
Ng

Q. Qi ) |
zZ-( )z zz%:f]:::}ZV .

N

. V(B.fi

N

N
N

Y

RN .

4+
N ;

X

AR
~—

H
N

A

R

’y (.8)

where



The kernel of _.’che\‘ ;'.nt.'e.grai.equation (B.8) is given in' expl'ic'it.'form_

v
-80-
by the eguations . -
IxE = =HE v 2
: R
E = SCE 3
S Q-
JKE = :@:
o L e ‘ ,
and P
Tk = 4Or .

L
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The delts function appearing in (B.10) combines with the

remaining terms of this equation to give a pole with a plus-ie rule.

This follows from an'argumentp similar to that used by O0live, except

that one uses (5.21) rather than (4.5) to combine the residues of the

30

poles. The contour of integrafion can be distorted away from the

51 hus Eq. (B.8) can be

remaining singulariﬁies of the kernel.
solved for M (K';K") through the Fredholm formula.
Using Eq. (5.21) we can express the right side of (B}8).in

the explicit form

b
|
a)
-
]
ol

[

y :_@: - Z :E@:, (5.16)

and
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L1

R//u.—. :“""_—_Q: o . ' _ ’ v (B';lT) o

e e s e e ey e e g et e i o e g gt oy i 1 3 s

 We suppose that (5.21) has been solved alreadyffor: M22 '
'and uhau this solutlon nas been substﬂtuted in (B. lh), (B 15), and

_(B.l6). aS’well’as in (B.10) and (B 11). It is then seen that the

- - Fredholm. solutlon of (B. 8) expresses MBB" 5, and Mfe .1n terms “_f”

- of bubble-diagram functions all of Wthh follow a mlnus ~ie:

ﬁprescrlpulon at the normal two- or three- partlcle threshold at

B = M, . T+ then follows5 that the solution I\f (K' K" ) of (B 8),

- and moreover Eg. (5.8) itself, can be analytically COntinued»fromb

L EL M. to E >7M by follow1ng a minus-ie rule..

The orlglnal restrlctlon to "B < M. ; 1 whlch we used to Justlfy

(B. 2), enualls that the set -of 1ncom1ng partlcles and the set of

]“outg01ng partlcles each have a sum of reé:masses less than M . Thus

- these sets are, in effect, cut,by a Qi bar,; 'Hence the Fredholm

soivtion of (B.8) is an explicit expression for. .

DRGNS [

m o o '(B-1.8)

—— mien ey e

for E %:Mi that has a minus-ie rule for continuation past the

“normal threshold at E = Mi."In Appendix C we will eniarge upon
this result and show that Eg. (B.8)<determines also M (K';K").

(That is, the ‘Qi'-bars can be omitted.)



@
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The fundamental result established above is that the physical 

‘scattering function has a continvation past the normal-threshold

singularity in the minus i1e sense, apart from possible poles

~coming from the vanishing of the Fredholm denominator. :Discounting

the possibility that these poles become*d_ense,5 we obtain, using

' the same arguments that led to the Third Structure Theorem, the

result that all terms in (5.8) cah be continued in the minus—ie

sense around the normal threshold at E = Mi; Thus,ithis equation

can be regarded as valid on both sides of E = M, with MK K"

a. function that has a minus-ie  continuvation around the singularity

at B = M..
i
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. ‘APPEhdiXEC;;QPToof.of Equation (5.19) - =

In AppehdinB_wé shéwed>that the equatioﬁ '

H— - s RN B
. - - - . ——

‘valid forv Ef<fM'v éan be. analytically continued to thé region -
CE> N We now show tha Eq.-(5.19) is:a consequence of (C.1) and

_ the dezlnltlon (5 8)

It follows from (C l) and (5 8) that 'V

et

INLA
i

 and

, - (c.3)
- énd also ﬁhat _ o o o | :
o j"_ R Qi Qe QP

21 — P ':_ <’,‘7 + - if- %"% ’ (C.ll-)



J
7 |

'1 ,Comparison.of the right sides shows that the left side of (C.2) is

equal to the left side of (C.3), -and that the left side of (C.4) is

~equel to the left side of (C.5). Using this result and Eq. (5.8)

“as well as

- we obtain
and
° (C'7)
Since the right'sidés_ére equal, so are the left sides, and hence
~ the proof of (5.19) is completé; _ »
Since Eq. (B.8) was_bésed on (5.8), (5.19), and nothing else,
. we see that (B.8) can be used to.determine - ‘
. PP 9P P9 5
Z : 2. Z : v 7




Q. _Q ‘
(c.9)
Alt ernatlvely.r we' can determlne the quantlules (c.8) in terms.’of "
: (0.9)'by d:Lrectly uslng (58) and (5.19). Thus, we may write
Q; p" .
@ @ {2—? L,
ARaC e T G
@':—@ 4 -] - (c.11)
rd i , : 
| R+F R R RGP |
¥ -0y - 'O
o o | (c.12)
R i b
T
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" Appendix D. The Fnﬁ as Sheet Converters

Thexrighﬁ-sideé of the discontinuity e@uations gi#én ih the
. prévious sections aré_expfessédzin'fermS'of plus buﬁbles and F
' boxes. Thesé boxes-afe‘défined in terms of physical scattering
amplitudes. by 'Fredholiﬁ-intggfél equations. It is shown in this -
,apﬁendix thatxfhe effect of applying a (nontrivial) F . box to_fhe.
physigal\;éaﬁtering am?litude is to convert the lattér fo its value
on tThe unphysidal'sideofa'certain cﬁt. Thisjfe;ﬁlt aliows'one £0
-express the diséoﬁtinuity formulas in all cases considered in fhis
’.paper in terms of the_scattefiné amplitudes evaluated_onbvariéus
sheets, instead of'in terms of'physical amplitudes.and F boxes.
The proof depends, howevér, on the so-called extended unitarity
equations. |
In the'maiﬁ.text'webhave been careful-to‘use'only-bhyéicalv

tnitarity equations; In particular,_the various momentum vectqrs
 are alvays real,',apéi't‘ f'errr.l'infinites:‘Lmai variations needed in the
‘continuation around'Léhdau singularities. This restrictiohvmegns
that the unitafify:equations below a certain thfeshold in the total
energy at E = Mi hoidvonly if'fhelsums of the resﬁ maésés of thé
. initial and final particles are both less than Mi' There are similar
regtrictions on the ﬁassesvbf subsets of.initial and. final particles
associated with subenergies. The equations obtained if one reléxes
._f ese conditions are cailed‘eXtended unitarity équations, Their

Njustification within the S-matrix framework is discussed in Refs. 13,
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'VFBO,'and 33, In tnls appendlx these extenaed unltarltv equatlons are

assumed without further comment.

Consider: first the set of Iandau diagrams - : o -
D= s (p.1)
- From (5.22) and-'the fact that M, has a minus-ie continustion
past WT\ ',vweVebtain
.: :®: :.: Z (D 2)
DA
(2 '-—"@EI)BGI 0-2')
, where ) : ' . _ _
@ = m: (D), -~ (p.3)
———.—_— = Mpp Vel e o 0 AD2)
:Thls qerlvatlon depends on the assumpulon that the reglon E < M N
;-contains physical points.l That is, within the framework of the
_physical Tnitarity eouatlons, the derlvatlon of (D.2) and (D. 2‘) v -

is only Justified if the set of 1ncom1ng partlcles and the set of

outgoing- particles. each ‘has a sum of rest masses smaller than Mi'
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This restriction can be represented by placing Qi bars on the
‘external lines."By virtue of the extended unitarity assumption,
uhls restrlctlon can be dropped, and one obtains as spe01al cases

of (D.2) and (D. o ) the results

and
P -
Similarly, using the results of Sec. VI, we find that
2

"where ' : -
+ Y= .
o= IR

Next consider the set of Landsu diagrams

V(D;6)
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The dlscontlnulty around the set of Landau surfaces '\m 13]. _ijs‘
derlved accordlng to the me bhOd of Sec. VI by not:mg that the
o connected part of (5,18)_ can be written in the form
P '
|_ v :
. . e <
ﬂ“ZEZE Z :G)::O,(D.e)
- where only the first. four terms can support a diagram:of the set'
leB with all o's. positive. Thus we obtain , —
: i U VU SPUUPN. S

ﬁ
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where : : = S N

~— 3 '
= Mz3(D5), | A(D‘lo)

Using similar methods we can establish the mofevgenérél
fesults
W = % + ;— | % ' ‘ . (D.ll)
and - _ S o
P P, L

<D 2R E1O IS

Formulas (D.4), (D.h! ) (D 5), (D 11), and (D.12) can be
.suDSbludted on the right 51de of uhe various dlscontlnulty equaulons
.derlved earlier. The F boxes are thereby eliminated, but_the

- scattering functions are evaluated on unphysical sheets.
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Appendix E. Proof of the Absence of Certain Positive-o Landau

_ Singularities in Certaianubble—Diagram Functions

'3 In this appendix we prove that;certain sets of'bubble.diagrams

3'occurl1ng in the equatlons of the main text and in Appendlx D cannot'

'suppo U certain Landau dlagrams with all a S p051t1ve, We say that

g

“a bubble dlagram B cannot support a dlagram D w1th all ao's

' p051t1ve 1f and only ar. M? has no 51ngular1ty surface 'Yn

vThls meaus, speclflcally, that 1f the 51gns of the a's. are

_restrlcped in accordance w1th the Second Structure Theorem, then the

,Landau equaulons for D:DCZB have no poolulve—a solutlon.

' Még occurring in. R

Conslder flrst uhe Landau dlagram D2 deflned in (5 27)

a'pand the set of bubble dﬂagrams R deflned in (5 31). .Let each

T

| be replaced by the rlgnt side of (5 13).

. Since we are'interested only in Landau diagrams with all a's -

- positive; all minus‘bubbles in ' Rl' can be replaced by point vertices.

Ther the function Még can also be replaced by a p01nc vertex since

 none of the internal lines shown in the right side of (5. 15) can be ,

'ﬁa line of 'De. 'It"is seen by inspection that no term in Rl’ except

- possibly contributions_of the type

e e e e ———g —— e et e -
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2

the internal lines in (E.1) stand for a specific set of;integefs.) .

" can support ‘D, with all a's’ positive. @he, letters labeling

“Cleaflylthe bubble’diegram. Bg':cannot.support ‘D2 with all a's
.'positivevifrline_”mf ie<con£racted. Thus, this line must be éné of
the t&o'internai{}inee‘ef. Dg.f;The othef line of 'Dé canncf‘ce ’i,
‘.1because of the‘p:ejeccion Qi;v,Nor can the remainingbline opr2

 de line - j (ef k)'~fcr,che resﬁlting Landau lodp'equatiocei

efaj.?j f dthm =c o} caﬁnbt be satisfied wich ail va'e. eﬁd’ell‘°

pro positive._ Flnally, the second. llne of D cannoé be an internal '

line of the 5 - 3 plus bubble because the stablllty requlrement
would tnen force one: final eXuernal llne to emerge from the rlght—

‘hand vertex_of DQQ contrary to its def;nltlon. Thus all the'

possibiliﬁies ere”elimineted, and Bg.'cannot support Dgﬂ with all
o's pcsitive.l_Henceeneither can Ry v
Next consider therdiegram D, defined in (5.55).'—After

'carrylng out- the substltut;ons snec1;1ed in section V. C., we see by
‘inspection that no +errn of (lL 6), except MBB, T(D ), and. p0351bly

COﬁCrlbuulonS of uhe type

can support D, with all a's'lpositive. Line m of B5 cannot

5. _ .
“be contracted andemust be line L of DB' Then applying the same
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A argumgﬁts”'o above, we conclude"baf_,B3 cannot supporu D5 with
all o's poSitive; Similar ar gumcnus can be made fof‘the.éxteh;é@'
dce-cresm cone diagram.

Consider next the dlagvam Dc. .défined in '(5.1.15), The

3 -3 'bubble occurring in (5.52) cannot support Dy 'wj.‘th; 2ll

o's positive.. This follows by COﬂ°"d ering the right side of (5.12),

All the budbbles of B can be contracted to points. Line m nmust
evidently a2lso be contracted if one is to obtain D5. Cne then sees

Jo

that any way of Di ing out three internal lines of 3B sucn that
tqe conu*actﬂon of all others leads to a diagrem with the structure

. .of D_ 1is such that tbese Lnr lines are cut by the same 0, bvar

D_, and hence 3B cannot suppert D, with all o's posi

2 N JORTER) . [
The 3 -3 bubble cannot suprort the last dlagram, Do..
on the right side of Ea. (D.7) with 2ll o's vpositive. To see thi

Rt



_95_

consider again the typical term B Evidently .DiB cannot be
_obtained if " m ig contracted. Thus m must become one of the
two interhai'lines:of'lDiB. The second one cannot be £, because

“the Laﬁdau,eQuations afe not then solvable with positive. aj’s and

005, Thus the second line of Dj, must be line k of By. Then

13

B. cannot support with all «o's positive because of the

5 8 D3
:reStricﬁions impdsed by thez Qi bar. Similar arguments show that
the last.tWo.tefms‘pn thebleftlof (D.8) cannot support DiB with
all o's posiﬁi&eg
| Becauﬁevﬁinus bubbleé'can be contracted td pointS, We‘see—
that no ter@ on the rigﬁ%.side’of (G.io)‘can support a diagram'of'

the set Dio' with all o's positive.
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- Fig. 1. The eléméhtafy‘diagram;iof the.:B 4.5‘ amplitudé be;ow the
four—particle'thresh;ld{ Allvpositivé;a.Landau surfaces for the

3 = 5 eanmplitude beiév the four-?article threéhdld are confaihed in
the union pf the positivé4a Lendau sﬁrfaces,correéponding'fo the.sét
of diagrams consisting of (1) the set of elementary diagrams; |
(2) the ‘set ofvréélections of elementary-diagrams; and (B)Fthe set
of diagrams:obtaihed_from diagfams of thesé two sets by replacing
any set of simple'inﬁer vertices by single twdeparticle closed
loops. Simple vertices are vervices directly connected to no other
vertex by more.than Qné line. Inner vertices are vertices not
standing on the ektfeme right of left of the diagrem. The seéond
figure in (e);containé a single two-particle closed loop. Thé,

apalogous part of the first figure in (e) is called a three-particle

closed loop.



(d)

SOOOOOK
o (e) o

XBLE74-2510

- g, 2, Varioﬁs Landau diagrams corresponding to Landau surfacési
contained in the Iandau surfaces of fhe diagréms descfibed in Fig. 1.
A diagraﬁ coﬁtainiﬁg more thén‘one 2 - 3, 3 - 2; or‘ 3,»'5 Vertex,
such as one of the above diagrams (a)kandv(b)z corresponds'to a
Landau surface that.is confined to the surface corresponding %o one
of the diagréms (e)»of Fig. 1. The diégréms (¢) and (d) contain

two ”independent parﬁé” that are diégrams described in Fig;”l. lThe
»Landaﬁ surfaces of the full dlagrams afercdnfined te the intersections
of the Landau suffacesicbrresponding to their indepenaent_parts. The
Iandau suiface céffesponding.fo the chain of twq-particle closed
loops (e) is confined to the Landau surface correSponding'to the

single two-particle closed loop ih_(e)'of'Fig. 1.
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I

- Fig. 3. Figure.(a) gho%s aldiagraﬁ D, and Fig» ﬂb)vshows a corrés-
ponding D 'Wiﬁh all;;a’s :posiﬁivé.v In diagram kb)'poéitiﬁe
energy vectars péin§ left. The comdition thet all o's be
,posifive,‘toégtﬁér wit£ the ehérgy-conservaﬁibn law,»ensureé.that
the)diégram;_ﬁ {ﬂag(the;fphysipal”‘ofaering, with energy'flowiﬁg
into thé fighﬁfmost»veféex _Vi ‘and Qut.of.thé left-ﬁost verﬁéx Vh,
If %he signs_offéhe!.d}é are all revefsed, then_the felative
positions‘of ihefveftiéeé of the new 3 dre obtéined.ﬁy refiécting

diagram (b) through the origia O.
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which must pass every path céhnecting any initial line to any final

line. A path connecting lines is required to connect internal

points of these lines.
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5. Diagram representing a typical term Mp of the M function

in (A.la).

g. 4. An example of a Iandau diagram containing a vertex -V throughb



This report was prepared as an account of Government
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