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. * GRIBOV·POMERANCITUK POLES IN SCATTERING AMPLITUDES 

Stanley Mandelstam and Ling-Lie vlang 

Department of Physics and Lawrence Radiation Laboratory 

University of California, Berkeley California 

ABSTRACT 

UCRL-17489 . 

It is shown that the argument· of Gribov and Pomeranchuk 

for the existence of fixed poles in the J-plane at "nonsense ll values 

of J goes through in the presence of cuts, even though their argu-

ment for an essential Singularity then fails. Such poles have no 

effect on the asymptotic behavior but, in cases where the contri-

bution of the third double-spectral function is large, they v1ill 

invalidate both the Schwarz super-convergence relations and the 

presence of dips in the asymptotic region. A Regge trajectory will 

not choose sense or nonsense at a point where it passes through an 

integer of the wrong signature. 

Research supported in part by.the Atomic Energy Commission and in part by 

the Air Force Office of Scientific Research, Office of Aerospace Research, 

under Grant No. AF-AFOSR-232-66. 
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I. INTRODUCTION 

"' In a well-kn01'1n paper, Gribov and Pomeranchukl pointed out that a 

partial-wave amplitude necessarily has singularities in the J-plane at 

"nonsense'! values ofJ) i.e., at all negative integral values ofJ, and at 

positive integral values satisfying the inequality J < max(A.,A. f
), where A. and 

A.' are th,e incoming and outgoing total helicities •. They examined the left

hand cut of the partial-",ave amplitude in the s~plane, and showed that it had 

a pole as a function of J when J assumed a nonsense Value. A sense-nonsense 

matrix element would have a one-over-square-rootsingularity.2 It might 

therefore be expected that the whole amplitude ifould have a pole in the J-plane. 

However, a unitary amplitude is bounded for real sand J, and it cannot have 

a fixed pole in the J-plane. Grjbov and Pomeranchuk showed that the amplitude 

therefore has an accumulation of poles about nonsense values of J, or, in 

other ",ords, an essential Singularity. Such Singularities only occur at inte-

gral values of J of the wrong Signature, at odd integral values of J for even-

Signature partial waves and at even integral values of J for Odd-signature 

part ial wave s • 

It was subsequently shmln by Mandelstam3 that the arguments of Gribov 

and Pomeranchuk must be modified if cuts are present in the J-plane, and that 

the essential Singularities do not occur on the physical sheet of the J-plane. 

Renewed interest in singularities at nonsense integers has recently 

4 arisen as a result of the Schwarz superconvergence relations, 'fh:i,ch i're shall 

mention- below. Jones' ~nd "Teplit-z5 have '~uggeste-d that a pole is present even 

"Then there are cuts in the J-plane. They gave arguments which made their 

suggestion very plausible. 
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In this note ~'Te ";'lish to point out that the arguments of Gribov and 

Pomeranchuk for poles (or one-over-square-root singularities) at nonsense 

integers go through even in the presence of cuts. We thus confirm the suggestio1 

of Jones and Teplitz, but "re believe our arguments to be simpler and more 

rigorous than theirs. We shall contrast our argument for the pole with the 

subsequePJt arguments for the essential singularity, which fails in the presence 

of cuts~ 

We begin by reminding the reader that a fixed pole in the partial-

''lave amplitude at a nonsense value of J "'ith the wrong signature has no effect 

on the asymptotic behavior of the amplitude. He shall not restate the .reasons 

for this fact, which have been given several times beforeo In essence the 

full amplitude acquires zeroes both from the factor associated with the 

nonsense value of J and from the signature factor, these zeroes cancel the 

pole in the amplitude and in the factor l/sinrrJ. The infinite accumulation 

of poles around nonsense values of J with the wrong signature does contribute 

to the asymptotic behavior. 

T.he absence of poles in the scattering amplitude at the values of J 

under consideratiop. ,,;ould place a restriction on the scattering amplitude, as 

was pointed out by Schwarz. He showed that the superconvergence relations in 

the crossed channel ''lould then be valid for the left- and right-hand cut 

considered separately. He attempted to fit such relations by truncating at 

low values of the energy and found that the relations were not satisfied, even 

in cases where the 'compiete su:per';c6n:vergeric~·relations·held~ 

Another restriction imposed by the absence of poles at nonsense 

values of J with the wrong signature is the existence of "dips" in the 

asymptotic behavior. Arbab and Chiu6 have shown that a Regge trajectory does 



-4- UGRL~17489 

not. contribute to the asymptotic behavior of the scattering· amplitude at a 

value· of s where it. passes through an integ~r of the wrong signa.ture and 

chooses nonsense. They were then able to explain several striking minima in 

the high-energy·· scattering data. We shall show that the. residue associated 

'VTith a Regge traj ectory has a pole as a function of s at the point where the 

trajectory passes through an integral value of Jef the wrong signature. As 

Jones and Teplitz pointed out, it then follows that the contribution to the 

asymptotic behavior is not strictly zero. . vie may. still have a minimUm· if 

effects due to the third double-spectral function are small. 

In Section 2 we show that a scattering amplitude with a third double-

spectral function has a p61ebut not an essential singularity on the physical 

sheet of the J-plane at the integers in que~tion. This section really contains 

nothing new, and its reasoning is, implicit in previous papers on'essential 

singularities and on cuts in the J-plane. Nevertheless,we feel it worthwhile 

to go through the reasoning, with emphasis on the points under consideration, 

in the interests of clarity. In Section 3 we examine the residues associated 
'. 

'VTith a Regge trajectory at a point where the trajectory passes through an 

integer of the wrong signature at which nonsense states are present. We show 

that the nonsense-nonsense elements have poles in s, and the sense-nonsense 

elements haveone-over-square-root singularities in s, at such valUes. 

Residues associated with all trajectories have a similar behavior, and,the 

distinction between those which choose sense and those which choose nonsense 

no longer 'exists at an integer ·of the wrong signature.. In Section 4 'VTe add 

a fevT concluding remarks, withs,pecial reference to the significance of "dips." 
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2. THEGIUBOV-PCr.1ERANCHUK POJ.J: 

We now show that the discontinuity of a partial->-;ave amplitude across 

the left-hand cut in the s-plane has a pole in J at nonsense values of the 

wrong signature. j- .: What we 

shall give is nothing more than a re-statement of the argument of Gribov and 

Pomeranchuk, but we sh~ll emphasize that it is true even in the presence of 

cuts in the J-plane. We shall contrast this argument i'rith the argument for 

an infinite accumulation of poles on the physical sheet of the J-plane, which 

is invalid in the presence of moving cuts. 

The discontinuity across the left-hand cut in the s-plane can be 

expressed as the sum of tyro terms. One is an entire function of J, the other 

is given by the formula 

where Atu is the third double-spectral function, q the center-of-mass momentum, 

and the e~/I,I I s bear the same relation to theWigner d~/I," s as the Legendre 

QJ,s do to the pJ,s. The ± sign is positive for even signature, negative for 

odd signature. The function e~, has a pole at a nonsense v~lue of J (or a 

square ~ootpole fqr values of J Sl:\,t isfying I /1,'1 ~ J < 1/1, I or vice versa). 

Thus ~/I,I has a pole at a nonsense value of J. The two terms in the curly 

bracket of (2.1) add when J has the i'lrong signature and cancel when J has the 

right signature. It fol101-rs that the partial-wave amplitude has a pole at a 

nonsense value, of J .. rith the wrong signature.', For values ofs 'suffici~ntly , 

small in magnitude the third double-spectral function is known exactly, and 

the t-integral in (1) does not vanish. If the left-hand cut of an amplitude 
I 

has a pole in J for a range of values of s, it can be Shown that the complete 
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amplitude has such a pole.' 1'he remai.nder of the left-hand cut and the right-

hand cut cannot give a cancelling contribution except possibly at isolated 

values of s. 
, ~ . 

It is' now easy to see that the argument goes through even in the 

presence of cuts'. We begin at a value of J sufficiently far to the right, 

where cuts play no part •. Equation (2.1) is then valid. We can nO~T continue 

analytically inJ, and the left-hand side will continue to be given by (2~1), 

,'lhich is an analytic function of J. The only way in which' such a conclusion 

could be altered "Vlould be for another cut in the s-plane to move onto the left"! 

hand cut as J is varied. ,Hm"ever, the motion of cuts in the s-plane was 

studied in reference 3, and it was found that the moving cut did not overlap 

the left-hand cut as J was varied from a large real value to the first nonsense 

integer. 

Let us now ccntrast this argument with the argument for an infinite , 

accumulation of poles. Gribov and Pomeranchuk argue that a unitary scattering 

amplitude is bounded when sand J are real ",ith s above threshold,and that it 

can therefore not have a pole at a fixed integral value of J. . They show that 

the right-hand discontinuity of the amplitude has an infinite accumulation of 

poles around the value of J in question. This argument of Gribov and Pomeran-

chuk, unlike the original argument for the first pole, involves the right-hand 
, 

cut in the s-plane. Nm.,r the moving cuts in thes-plane do overlap the right-

hand cut as the value of J is decreased to the integer in question. The 

unitarity equation in the form Im a '= ka*a cannot therefore be used if J is 

real and sufficiently small, and the argument of Gribov and pomeranchuk breaks 

do'\m. 
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Our cO,nc;Lus:.on is thus that a scattering amplitude with a third 

double-spectral function possesses simple poles 'at nonsense values of J "II1ith 

the wrong signature, but no accumulation of poles. 

Having shot·Tn that the scattering amplitude has a pole on the first 

sheet of the J~plane, we can eas:i,ly find its value on the second sheet by 

unitarity. 7 When J is equal to the value under consideration, the fixed 

unitarity cut and the moving cut in the J-plane will both lie along the real 

axis starting from threshold. The amplitude on the second sheet of the J-

plane wiJ,.l correspond to the amplitude between these blO cuts in the s-plane. 

Now the change of the amplitude across the fixed cut in the J-plane is still 

given by theunitarity condition 

(2.2) 

where thekinematicai factor k is defined to be positive just above the fixed 

right-hand cut on the first sheet, and therefore negative just below' the cut 

on the first sheet. If ,.,e first consider a negative value of J, w'here all 

states are nonsense states and all matrix elements of a l have a pole, we see 

from (2.2) t'hat 

J=n 

There is thus no singUlarity at J=n. ' At a value ofJ where sense and nonsense 

states are present~ the matrix elements involving the nonsense states ,.,ill 

have the 'behavior (2.3), ,.,hile those involving only sense states will have an 

arbitrary'finit~" value (unless R~~ge': traject6fy 'passes through: J~n on the 

second sheet at the value of s under consideration). There is no Gribov-

Pomeranchuk essential Singularity on either the first or, the second sheet. 



-8- UCRL-17489 

" 

We thusconfjrm the suggestions of Jones and Teplitz regarding the behavior of 

a(s,J) on the second sheet. 

3. SINGUIARITIES OF THE REGGE RESIDUE 

We now show that the residue associated with a Regge trajectory has 

the behavior 

A I'::! C 
""'ss 1 

1 
f3 I'::! C (s-s )-~ 
sn 2 1 

,'( )-1 
~I'::! c s-s ,,' nn 3 1, 

(3.1a) 

(3.lb), 

(3.lc) 

where sl is the value at which the trajectory goes through an integral value 

of J of the wrong signature.· The subscripts sand n refer to the sense and 

nonsense channels respectively. 

Our method will be to examine a case in 'l'rhich the third double""' 

spectral function is small, so that terms involving the square of the third 

double-spectral function may be neglected. The result will then be a direct 

consequence of those already established. By working with an example with a 

small third double-spectral function we are able to avoid complications due 

to cuts in the angular-momentum plane, since diagrams with cuts contain the 

third double-spectral function at least twice. We can therefore use the 

unitarity condition for non-integral J 

(3.2) 

",here the subscripts 1 and 2refe~ to the .first and second sheets in the s-

plane. If we were working to 'second order in the third double-spec'tral function 

'l're would not be able to use Eq. (3.2). 

To first order in the third double-spectral function, we may write 
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where the sllpe:r.-scriptsrefer to. theo!,der of smallness in the third double .. 

"spectral·.function .• 'Let,use~amine th~"f~r'~t term ?'i (3.3). : The factoraiO) 

, i"ill·h~ye:·!i:R~&g~J;)"q;L~a~&·~:"o:r~):.':.< .' ...• ;\~, .. ,:-., 
.', ' :' ,', -!", .. ~".. ::, ,-;. 

!. CO)'···., ..•.. :,...;;~:, (o} :.,<. ' . '. .' "'" ',: .. ,' " 

a1 (s,J)';'~J~Ctf:J +~on-sin~\llar.ter~ . 
" .. 

Since there is no thi'rd double.~spectra.l function involved in ~(O), the elements 
, '.. . '. ,', ~ .. 

or 

·~{O) -c 
., ss .-1' 

' .. ~(O) -c' •. (s-s)~·', ···.~JO),_c (8-S ) 
. sn ' 2, -1 ' , ..... , I-'nn . 3. 1 

. " ~(O),,:,c,-r(s_s ) .. ,' P..' .• s(nO.) -c t(s~s .)t 
. ss ,1.1· I-' "".2·' '.' 1 

~CO) _ C r 

nn. 3 

(3.5a) . 

(3.5b) 

Thequa;n~:t~~' .a'~~) (s,JJ;wi1J.·:have;rid,~olE;at; ~·o:(.sJ,since' we are on the 
, .. . . ." . ' 

second sheet irt'the s-p~ane, but 'itwill have' the behavior .. 

a'Cl ) ~c"-: a (1):...: C "(j-nf~a (1) _ c: lI(j_nf1 
". 2.'~'~:;·i,l ".' , 2sp . '.' .. ~',;':, ". 3nn ., 3, .. 

Thlls ; .qlllb~ii~¢,~q"'i$.$) 2(3: q); . ,,;.Iiiq<l. tbat', ,., 

. vlher~ .' 

or 

Equations (3 •. 8a) and (3.8b) correspond to (3.5a) and (3.5b) respectively. 

Since the amplitude a(s,J) on the second sheet in the s-plane has no pole at 

, , 
., 
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J = Ct(s), we can conclude from{3. 7) that the amplitude a(s,J) ~>n the first 

sheet has a pole at'J= exes) whose residue f3 has the behavior (3.8). 

Finally we can consider the second term of (3.3). The reasoning 

just given shows that the first factor ail \ s ,J) will have a pole at j = ex( s) , 

and the residue of the pole will behave as indicated in (3.8). iThe second 

factor a~O)(s,J) will have the behavior 

a(O) .... c'l! 
,2ss 1 

a(O) .... C'l!(s-s )t 
2sn 2 I 

,(0) C'll' a .... 2nn 3, 

W'e then find that f3 (lb) behaves like f3 (la) ~ By ),lse' of"thefactorization 
theorem, we then see that f3nn must have a pole at s=sl in higher orderS. The 
alternative that f3ss has such a pole is excluded by the reasoning of reference 
3, which shm'ls that there are no fixed powers in the aSYInptoticbehavior. The 
factorization theorem is valid in the presence of cuts, as may oe shmln by 
analytiC continuation from high values of J. 

We can easily see by reductio ad absurdum that the singularities 

contributed tof3 by the two terms in (3.3) cannot cancel against one another. 
i 

, ( 

For, if we assllIlle a cancellation, we conclude that the f3 corresp'onding to the 
f 

f · t f t t ( ) f" at., h 'd f t ~rs ac or in he second term of 3.3 is' ~n~te~J=n. T e secon ac or 

again behaves as in (3.9). Thus the second term of (3.3) gives a contribution 

to f3 which is finite at j=n, and the singularity of the first term cannot be 

cancelled. 

We have no proof that the singularity of the Regge residue does not 
, ~ 

cancel through some mechanism as yet unknmm.' However, in the absence of such 

an unknown mechanism the f3's would be expected to behave as has been indicated 

above, 

tude do 

and we have no reason to believe that a cancellation exists. 
,~ 

It should be emph'asized that multiple poles of the scattering ampli-

not occur at the values of J under consideration when higher-order 

terms in the third double-spectral function are taken into account. (We are 
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assuming that no elementary particles are present.) This foliows from the 

reasoning of Ref 0 3, ",here it is shown that the corresponding terms in the 

asymptotic behavior are absent. It is important to mention this point, since 

one familiar mechanism for the cancellation of a. pole is the occurrence of 

multiple poles in higher terms of a perttITbation series. In such a case the 

pole may move from its original position 1'lhen the series is summed. Sueh a 

mechanism does not occur in our example. 

We thus conclude that ~ has a one-over-square-root Singularity, sn 

and ~nn a pole, at a value of s ",here a traj ectory passes through an integer 

of the wrong signature. The residues ~(l) have such a behavior whether ~(o) 

has the behavior (3.5a) or (3.5b), so that there is no precise distinction 

betlveen traj ectories which choose sense and those ''lhieh choose nonsense at an 

integer of the wrong signature. There may still be an approximate distinction 

if effects due to the third double-spectral function are small. 

Another point Horth mentioning is that the Pomeranchuk trajectory 

now does contribute to fo~ard Compton scattering and fO~'lard photo-production 

8 of transverse vector mesons. It had been pointed out by Mur and by Abarbanel 

and Nussino~ that only nonsense states contributed to these processes, so 

that the nonsense wrong-signature dip reduced the contribution to zero. 

According to the reasoning of this section, the contribution is no longer zero, 

and the difficulties pointed out by Mur no longer exist, even if cuts in the 

J-plane are neglected. 

4. CONCLUDING REHARKS 

We first observe that the scattering amplitude does not have any 

effecti ve singularities at integral values of J of the 'Ylrong Signature with 
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nonsense channels~·· We .could redefine the scatteringainplitude with an extra 
"." 1·" " " • .". -, . .. . l' . 
factor (J-nf2 in a sense-nonsense element. and a factor (J-nf ina nonsense- . 

nonsense element. Such an amplitude would normally be finite at .J=n~ A zero 

in the amplitude would correspond to a restriction, a pole to an observable 

term in the asymptotic behavior. 

One must nO~l re-examine the significance of the experimental "dips" 

in the asymptotic behavior of scattering amplitudes at momentum transfers't'lhere 

the Regge trajectory passes through an integer of the wrong signature. In the 

presence ofa third double-spectral function the term in the asymptotic 
. . 

behavior associated with a particular Regge pole will no longer contain a zero 

at such a point. Nevertheless, if the effects of the third d"uble-spectral 
.. minimum not too far from the point in question. 

function are not too large we might still expect a diP with:aA' If the 

contribution of the third double-spectral function is large, one >-rould expect 

the cuts in the J-plane to give appreciable contributions, and one >-lould not 

expect the scattering amplitude to have a Regge asymptotic behavior. One 

might therefore conclude that dips should still be present in an amplitude 

vThich has a Regge asymptotic behavior. One v10uld probably expect ,dips in some. 

channels and not in others, but, if they occur in a number of cases at the 

expected values, one would be just ifiedin explaining them in the usual ,'ray. 

The gross failure of the Schw'arz super-convergence relation, while it may vTell 

be due to truncation at too Iowa value, should be taken as a warning against 

a consistent neglect of effects of the third double-spectral function. 

We should like to acknowledge stimulating cor~espondencewith J. 

Schwarz, as well as discussions with G.F. Chew, J. Finkelstein, and C. I. Tan. 



-13- UCRL-17489 

FOOTNOTES AND REFERENCES 

1. V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters g, 232 (1962). 

2. Throughout this paper we shall regard an amplitude as free from singulari- . 

ties at an integer J=n if the sense-sense and nonsense-nonsense elements 
, 1.. 

are finite while the sense-nonsense elements behave like (J-n)2. A 
I . . 

singular amplitude will be an amplitude where the nonsense-nonsense ampli
. 1 

-1 --tudes behave like (J-n) and the sense-nonsense amplitudes like (J-n) 2. 

Though we shall not mention the distinction each time, a behavior of the 

latter type is always implied when we speak of poles at J=n. 

3. S. Mandelstam, Nuovo Cimento 30, 1148 (1963). 

40 Jo H. Schwarz, Princeton preprint. 

5. C. E. Jones and V. L. Teplitz, MoI.T. preprint. We do not regard the 

arguments of Jones and Teplitz,as a proof of the existence of a pole, since 

a pole in the kernel of an integral equation does not necessarily ~nply an 

essential singularity in the solution. One can choose the inhomogeneous 

term in such a vray that the essential singularity disappears. 

6. F. Arbab and C. Bo Chiu, Phys. Rev. 147, 1045 (1966). 

7. Our argument at this point parallels that of Jones and Teplitz in their 

N/D formalism. 

8. V. D. Mur, Soviet Physics JETP 11, 1458 (1963), ~ 18, 727 (1964). 

9. H. D. I. Abarbanel and S. Nussinov, Princeton preprint. 



'-' 

This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
m1SS1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

8. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




