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ABSTRACT 

The two-particle Feynman graph, usually described as a function 

of energy and momentum-transfer, is correctly used as a potential in 

Schrodinger's equation after the graph is described as a function of 

momentum and a radial parameter. 
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A current procedure in calculating the S matrix for elastic 

scattering of various elementary particles is to unitarize the Feynman 

amplitude for the scattering process via Schrodinger's equation. This 

procedure is meaningful only if this unitarization is done correctly. 

The amplitude for the scattering process is written as A(s,t), 

where t is the. momentum transfer and s the center-of-mass energy 

defined by 

= + 
n n 1/2 

(pC. C.) + m2 
( 1) 

Here ml and m2 are the masses and p2 is the momentum-square in 

the elastic-scattering process. By means of Fourier (or Laplace) 

transforms with respect to t, one obtains an amplitude as a function 

of r, the radial parameter: 

V(s,r)= § (A(s,t»). 
rt 

Treating s as a parameter, one solves the Schrodinger equation 

[_ 1: V' 2 
J.l r + V(s,r)] 'If = If- 'If , 

J.l 

where J.l is the reduced mass, and K2 is the energy eigenvalue. A 

partial-wave reduction can be made and the familiar set of partial-wave 

amplitudes calculated. 

This is clearly incorrect: For example, a nonrelativistic 

reduction of equations ariSing from minimization of the Action of the 

free Lagrangian for the two scattering particles would yield the 

homogenous Schr~inger equation, 
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If one includes interaction with the virtual particle fields, Eq. (3) 

is obtained. 2 In Eq. (1). p then "means" 

The - sign is used, because the operator vF is not yet defined; 

however s. is clearly not a parameter, but a function of the momentum 

of the scattering particle. 

Such a problem has recently been solved for the nucleon-nucleon 

1 interaction mediated by one-meson exchanges. Detailed calculation of 

nucleon-nucleon scattering over a range of 0 to 3l0-MeV incident 

laboratory energy, as well as detailed calculations of the deuteron 

and of nuclear matter were entirely successful. Besides giving 

encouragement that an understanding of nuclear forces is in Sight, 

these cal:culations also illustrate the importance of exact treatment 

of momentum-dependence (arising from the nonrelativistic reduction of 

Feynman amplitudes) and the incorrectness of treating such potentials 

in an energy-dependent manner •. 

The nonrelativistic procedure is stra:tgntf6I'wa;rd:~'5. One· collects 

all polyno~ials of p f~om spinor factors of the scattering particles, 

and expands;·a;;J .. l::.)energy:;:,factors: :,:" .. 
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J.. 
~ 222 

El = (K + ml ) ~ 1 + 
2m

2 + 

1 

( 6a) 

and 
. 2·' 2 t ~. 

~2 = (K . + m2 ) ':! 1 + 
2m 2 + ... 

2 

. (6b) 

.Then all powers of K higher than ~ a~e dropped. These results are 

clearly only valid for K/m« 1, where m< is the lesser of ml 

and m2 • Even though this is a severe restriction for such processes 

as 1fK .... 1fK , at least the problem will be done correctly. If one 

admits some rather questionable mathematics, higher terms of the 

expansion (6) might be used in the following treatment. 

Now one solves 

[- : 
The potential term is made Hermitian; V is symmetrized in particles 

1 and 2, and if is symmetrically treated: 

ifw > ~ (ifw + wif). (8) 

There is no problem in solving the differential Eq. (8). However, if 

V is to be useful, it should be applicable to other physics problems 

(such as three-particle scattering), most of which are understood in 

integral-equation formulations: 

w(Kr) =¢(Kr) + J'9J I G(K, 
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¢. is the solution to the homogenous equation, G the Green's function 

solution, ~nd the arrow implies t~at. 'Vr , operates on ",(Kr'). 

After a partial-wave reduction, one has 

= 

For a scattering problem one can write 

v t(r', '\Jr') "'t(Kr'). 

(10 ) 

( 11) 

where respectively j.(, and n
t 

are Bessel and Neumann functions, and 

r< and· r> are the lesser and greater of rand r'. Integration by parts 
·now allows V~to operate on Gt • 

The'pnase shift for tlie scattering problem, corresponding to 

standing-wave conditions, is 

(12) 

where 
. i5.(, 

in·e· sin 5,(, , which is the matrix element 

obtained for the outgoing wave solution. 

Eq. (10) becomes 

.; . , , ' . 
.,:'. 

Notice that for 

. ;;f i '-
. ,1,"If possible, as was 

I 
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done in the, nucleon-nucleon case, it is most desirable to first project 

the invariant helicity amplitudes of the Feynman graph onto a complete 

set of eigenoperators of the etgenfunctions 'Ir t • 

Cutoffs should be made to insure thatV(r,V') is an analytic 

function over all coordinate space. Then there is no problem in 

integrating by parts in Eq. (10). As G t is composed of polynomials , 

sines and cosines for the scattering problem and polynomials and 

exponentials for the bound-state problem, the resulting equation is 

no harder to solve, numerically, than one with a potential given as a 

simple funqtion of the radial parameter, - r • '. For the nucleon-nucleon 

case, it was found convenient to solve the radial form of Eq. (14) by 

matrix inversion (the diagonal elements of the matrix to be inverted 

do not equal zero, so that a. 'pivot' 'element need not be searched for) 

using ,three 10-point Gaussian quadrature meshes. Coupled equations, 

(as arise from tensor forces for nucleons) ,were similarly treated. 

As was, mentioned, proper treatment of momentQm-dependence is 

essential to solve the eigenvalue equation: (10) jsolutions' of the integral 

and differential equations agree only if the momentum-dependence is treated 

correctly. 

The potential 'as defined is nonlocal: 

where Veff is a function of just rand r' , (involving Sines, cosines, 

or exponentials). Only for two-body problems, for 
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F(r','V ,) 
- r 

. .' . . 

-' : d2 Id2 - ' .• 
=W 2 + 2 W , 

dr, dr, 

is this not true. - Here one obtains 
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(r() 

which gives a local potential. In Eq. (11) ~ :orie hasL
2 = t( t + 1), 

and', -r?ts taken for the scattering problem, and. +a
2 for the bound-

-state problem. 

: , , 
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