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INELASTIC SCATTERING AND NUCLEAR STRUCTURE 

Norman K. Glendenning 

I. INTRODUCTION 

The scattering process is one of the most powerfUl means of investigating 

nuclear structure that we have at our disposal. Here I shall attempt to review 

the theory of inelastic scattering and its applications to the study of the pro-

perties of individual nuclear states. 

The nature of the experimental obserVation can be described as follows. 

Abeam of (ideaily ) monoenergetic particles, let us for the moment say protons, '. 
is fired at a target of some pure isotope. A counting system has been set up to 

record both the number of particles that are scattered at var~Qus angles, and 

their energies. A counter at a particular aI1g1e will record having seen . , 

protons in discrete energy groups, corresponding to excited states of the target, 

and then a continuous energY'spectrum of protons correspopdingto the 

closely spaced levels at high excitation in the nucleus. It is actually the 

description of events leading to the groups of protons corresponding to individual 

nuclear states of the target that we are interested in. 

The intrinsic structure of the lower lying states of a nucleus generally 

can be thought of as not differring very much from that of the ground state. Those 

.that do, .lie at a much higher energy. That is to say, only a very few degrees 

of freedom are involved in the excitation. The relevant degrees of freedom may 
. 209 

be those of a single nucleon, such as in Pb which has a doubly magic number 

of neutrons and protons plus one extra neutron. The lowest half dozen levels or 

so differ from each other, essentially, only in the state of the odd neutron. On 

154 ". 
the other hand a nucleus like Sm is strongly deformed and its . low lying spectrum 
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suggests that these levels all have the same intrinsic nucleonic structure and 

correspon¢l. merely to different rates of rotation of the system. This again, vieWed,: 

in those terms, involves only the few degrees of freedom associated with the 

rotation. 

In cOP..sidering what physical process is involved in causing such a minimum 

sort of rearrangement, one is imme,diately led to consider a direct interaction 

between the projectile and the. degrees of freedom in the nucleus that have been 

changed. In the Pb209 example the interaction would be with the odd neutron. In 

I . 

the deformed nucleus case, with the part of the nuclear field arising' from the 

deformation. 

Are there.competing mechanisms? Perhaps a compound state was formed which 
" , 

subsequently decayed to the observed levels. This is always possible. However 

if the bombarding energy in the experiment is sufficiently high, there will be 

so many states to which a compound state could deca~ that the probability of decay 

. ,to anyone o:f' them is very small. TOmake the'contribution of, this'process 

small, we therefore shall consider only bombarding energies greater than, say 

15 MeV, which, 'in a medium to heavy nucleus places millions of levels in competition" 

with the ones of interest, as far as decay of a compound state.is· concerned . 

. The measurements at various angles1 of the number of particles in each 

energy group,yields the differential cross-section for exciting each level. In ~ 

a gross way, the angular distribution of scattered particles from a given energy 
,J( 

level reflects the spin and parity of the level, or more accurately the spin and 

.. parity that was exchanged between the scattered particle and the nucleus in 

making the transition. This is because the particle must scatter in such a way 

as to obey the various conservation laws including angular momentum~and this im-

poses restrictions on the directions into which it can scatter. Just how ~irectly 
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the exchange of angular momentwn and parity is reflected in the ane;ular clistribu-

tion depends on several circumstances. Let us for a moment consider some typical 

single-particle states whose wave fUnctions we knovl have various forms inside 

the nucleus, but which all have similar exponential' forms outside. ,These will be 

occupied by various numbers of nucleons 'and in such combinations that the nuclear 

wave functions are orthogonal to each other. Excitation of the nucleus from one 

state to another implies making the necessary rearrangement in the way in which 

the single-particle states a~e occupied. Inside the nucleus, because of the various 

forms of the single'particle wave functions, one transition will be characterized, 

in general, by a different radial density, than another. However in the exterior 

region all the radial 'densities will look similar to each other, aside from their 

normalization. Nm~ it is known that when a composite particle, like an alpha, is 

scattered from a nueleus, it is mainly sensitive to the conditions in the exterior 

region. Hence its angular distribution will b~ quite ipsens'itive to the details 
\ 

of the structure of the states but will depend essentially only on the angular mo-

mentum and parity transferred. The relationship is quite simple when the state, is 

excited directly from the ground state, but, is less direct when cascade transitions 

through intermediate states compete with the direct transition, as we shall see 

later. Even though the angular distributions of strongly(~bsorbed ;articles are in-

sensitive to interior details, the magnitude of the cross secti9ns, which depend 

on the normalization of the transition density in the tail, are by continuity con-

nected to the interior conditions. 

In contrast to this situation, scattered nucleons can penetrate the interior 

of the nucleus and consequently their angular distributions may be quite strongly 

"modulated by the interior structure. Experiments using nucleons Clearly are less 
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suitable for determining the spins and parities of levels .. But they "Would be more' 

appropriate than composite particle,s for studying the detailed nucleonic structure 

of nuclear stat~s. 

Since these lectures are concerned "With the use of inelastic scattering .in 

investigations of nuclear structure , it' is appropriate to mention 'What particular 

aspects of this process supplement other means of investigation. First it is clear 

that only the simplest prope~ties of nuclei can be inferred essentially directly 

from experiment. The position of energy levels is an example. For more complicated 

properties, such as the nucleonic structure,of the energy levels, this is not so. 

The structure is not an observable. But it influences and reflects itself in 

observables. The approach therefore j,s to construct a model of the nucleus, and 

from the model calculate various observables. It should yield an energy spectrum 

\ 

in good agreement "With observation. But since the Hamiltonian is stationary at 

its eigenstates it is possible that the energy levels of the' model nucleus '"Will 

come out in good agreement "With observation even though the "Wave functions may be poor. 

They can be subjected to further tests by calculating additional properties such 

as electromagnetic transition rates. Ho"Wever the "Wave length of radiation emitted 

in the decay of a nuclear state is very large, 

A = 27rc 
m 

so 'that the radiation is 

2nhc 1000 
tim IV TIm (Fermi) 

, .... j 

rather insensitive to radial details of the nuclear structure. 

Of course the selection rules are very important in a spectroscopic sense ,in de-

termining gross properties such as spins and parities. Moreover the intensity 

does depend on the coherence involved in the nucleoniclrearrangement, in undergoing 
! 

.. 

, , 
(II 

I 
! .' 
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the transition from one nuclear state to another, which if constructive leads to 

the enhanced transitions commonly referred to as collective, or if destructive 

leads to hindered rates. These are important additional properties that a satis-

factory model must reproduce. But even these properties are not highly sensitive 

to the particular microscopic details of the states involved. In any case it is 

clearly desirable to have a means of probing finer details than is allowed by the 

E.M. transitions. Inelastic scattering where the momentum transfer, 0 = k - k' , w. .... .... 

can be quite large, in general provides a finer probe, being sensitive to distances 

Or '" l/q. This sensitivity will register itself in the angular distributions which 

moreover will generally involve several multipoles in contrast with electromagnetic 

transitions, which are usually dominated by one. 

Quite aside from the question of detail in radial distributions, scattering 

of various types of particles, offers a means of exploring various aspects or com-

ponents of the nuclear field that exist by virture of the spin, isospin and tensor 

components of the nucleon-nucleon force . 

. During the last few years powerful theoretical techniques for handling the 

nuclear many-body problem have been developed, which have permitted a fairly de­

l 
tailed description of nuclei in certain regions of the periodic table. In this 

way the collective and "single-particle" states are described on the same footing 

in terms of their nucleonic structure. While these detailed descriptions have 

succeeded fairly well in explaining the energy levels,and to some extent electro'­

magnetic transition ra'tes and their systematics in certain regions of the periodic 

table, it is important to have the. additional checks that a detailed comparison 

. w,;l.thscatter:i,.ng data can provide. 
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II ." COUPLED CHANNEL AND DISTORTED WAVE METHODS 
" .. :~~-

The typical situation in attempting to extract nuclear information from 

a scattering experiment is the following. We have available a certain model of '~ 

of the nucleus which provides wave functions for the nuclear states. Let HA 

denote the model Hamiltonian for the nucleus of mass A, whose internal coordinates 

we shall often denote also by~. We have available its eigenfunctions: 

(1) 

We want to determine whether the description of the nucleus provid~d by this model 

'is consistent with a,scattering experiment. 

For the system comprising the nucleus and the scattered particle, let us 

say a proton, we therefore take the Hamiltonian 

(2 ) 

where T is the kinetic energy of the proton, and V is the interaction of the 

proton with the nucleus. If the nuclear Hamiltonian H ' were written in terms 
A 

, of collective coordinates, then these would 'appear in V, whereas if we had a 
, , 

,more fundamental description of the nucleus in terms of the nucleon coordinates 

, ~ , [i' 1.i' thr n iV, would be a sum of' two-nucleon potentials. 

In any case" it is natural to seek a solution of our scattering p+oble~;\' 

'defined, 11-;:j.th appropriate boundary conditions, by 

, .' 

"t .' 
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II 

in the form bf an· expansion in·terms·of. the nuclear 'Wave funG!tions <!>cX.r(~)' since 
, . 

"We "Wish to determine theirappropriatenessfor·describing the.nucleus. 

To this end introduce the spin-orbit functions for the proton 

(4 ) 

.... . "Where ~ denotes the polar coordinates of rand - 11 is the spin function for 

the proton. Since 'We no"W have many quantum numbers to keep track of, let us de-

note by c the 'Whole collection of quantum numbers "Which define the intrinsic 

state of nucleus and proton and their relative angular momenta before the collision, 

'cl == aJ £sj 

and by c' some other state of intrinsic or relative motIon that may be achieved 

asa result of the collision. Using the spin-orbit functions for the proton, and 

the nuclear 'Wave functions <!>aJ we form the functions of total angular momentum 

I and parity n 

namely 

rf, MI (r,(j,A) 'f'cn __ _ (6) 

Im terms of these 'We now write an expansion for a solution of (3) having given 

parity and total angular momentum n and. I. 
i \. 
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1 ",' 'C7;TI(' )'A, M( .... A) 
- L..J u' r 'I-' rO' 
r c' c ' c '7TI -' -' -, 

'. 
. .,'. 

I have put ac == aJisj on the state functions, ':Y" and on the radial function 

u(r) to remind us that the initial state of the system corresponded to the 

nucleus.in a definite state 'CXJ (the ground) with an ind.dent proton.; having 

angular momenta Isj. 

There are two improta'nt approximations implied when we write the expansion 

(7). Since it always contains the proton as a free particle, we are neglecting 

any specific effect on the inelastic channels that we are interested in, of re-

actions such as pickup. The expansion is in terms only of the elastic and inelastic 

channels containing the proton. Moreover we neglect exchange of the proton with 

one in the target, which may take place, 'either by virtue of the indistinguishability 
, 

of identical particles or by the exchange nature of the forces. • )n 

As to the first approximation we may note. that the elastic and inelastic 

processes typically represent the largest part of the direct cros~-section. We 

may be prepared then to treat the other channels implicity·through use of an 

absorptive part in the diagonal matrix elements of the interaction. 

The neglect of exchange is less well founded, but is presumed, on the 

strength of overlap arguments, to introduce little error particularly for suf~ 

ficientlyhigh bombarding. energies. 

\ . 

, . 
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·2 
Coupled equations .. Inserting now the expansion (7) for ':¥, into the 

Schroedinger equation, (3), and making use of the o:rthonomality of the functions ¢, 

(
n, M.' rn, M) 
'f' C f 7T 1 I t I 'f' c7TI = ~I' ~I (8 ) 

we obtain, for each total angular momentum and parity I,TI of the system, a set of 

coupled equations for the radial functions u(r).of the scattered proton. For each 

channel c l they have the form 

I 
(T I + V I ,(r) - E I) u I (r) c c c c c 

I 
L: V I lI(r) u lI(r) 

c"*c I' C C C 

where 

(10) 

Ec = E - EcxJ 

with E denoting the bombarding energy. Finally 

(¢ I . I(r,A) lV(r,A) I¢ II I(r,A) 
C7T -- -- C7T --

(11) 

denotes an integration overall internal coordinates and the polar angles of ~, 

leaving a function of radius r = I~l. It is of course diagonal in TI and I, 

and independent of M, since V is scalar. All the functions u should be 

understood to have the additional common labels shown in (7). 
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As it. stands, the system of equations is still infinite in number so that 

Vie shall make a . further approximation: of all the inela stic channels ~leading to 

bow1d Or continuum states of the nucleus, we.shall keep only those terms in the 

expansion (7) vlhich correspond to states baving large cross-secU.ons, plus any 

others which may interest us. NoVi the system of equations i.s finite in number, 

and solvable numerically with a computer. We shall have to discuss the approxi-

mation we have made in considering only a few of the many .channels. In particular 

Vie shall see in what way the finite system can be mOdified so as to include some 

of the effects of the' channels that were expH~;Ltly eliminated. This will be 

taken up in the next section. 

Now let· us discuss a little v,hat is involved in numerically solving the 

coupled equations. Each function' u is subject to tviOboundary conditionsj one 
c 

is at the origin 'where the functions must vanj.sh. Actually the behaviour in the 

vicinity of the origin is that of a spherical Bessel function. This fact can be 

used in numerically integrating the equations on a computer) so as to avoid a very 

. bad starting condition that could cause the solutions to grow in magnitude beyond 

the range of the computer, as the integration progress tolarge~ radii. So starting 

the:.integration very close to the origin with an l.nfinitesimal value for the function 

in the incident channel, one would guess its slope to be that of the appro-

priate Bessel functions. Of course the point ~s that we will not knovl the actual 

slope unti+ we reach the exterior region where the second boundary condition applies. 

In the exterrbr region, where the::. nuclear potentials have fallen to zero, 

the equations become uncoupled and are just the equations whose solutions" are 

related to the Bessel functions in the case of neutrons, and Coulomb functions in 

the case of protons. Hence 
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u ~aF +~G 
c c c (12) 

where F and G denote the regular and irregular Coulomb fUnctions. In 

the absence of charge they become 

p = kr 

It is actually more convenient to use instead of F and G the combinations of 

these functions which asymptotically behave like outgoing and incoming spherical 

where 
2 ' 

T] = mZz' e /¥lkJ and (J 
f 

is the Coulomb phase shift. 

a0nditions now can be stated precisely. In the.channel c 

(14) 

The boundary 

there are both 

incoming and outgoing spherical waves at infinity,corresponding to·the 

fact that there is an incident wave in this channel. However in all other channels, 

there are only outgoing wave s. ·Hence we require: 

. . c ; I . 

(

k )1/2 
u ~.. I k r -'- S 0 k r c' cc'c c( c) k

c
" e'e c,e c' ) 

In general the integrated solutions will have both incoming and outgoing 

waves in all channels at infinity because the integration had to be started at 

the origin. Therefore a linearly independent set of solutions must be generated. 
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Let us. number the various channels c' by 1,2, ,'.; .N'with;l 'de.noting the target ". 

channel c.(There will b~ o~ly one' target chann'el fo~ given In when the target 

has J=O .. This cas~we'now;,.specialize to for simplicitY,6f.notation~)Let us· place 

two subscripts ort .each solution. The one. will denote the. channel number just.mentioned 

and the other which of N different initial condi tioris could be chosen for the 

integration. Thus ~p will denote the kIth channel of the system solved according 

to the boundary condition numbered p.These conditions we can choose to be 

. {fKrllp+l 
l~m uk (r) =2£ +l)! !, 
r-7O p p 

. 0 

, p - k 

.,,' 

p'i k 

'and the derivative of this function. Thus the behavioUr of the solutions is such 

that all but one channel function has zero value and slope at the origin. By 

solving the system N times with the boundary conditions p = 1, ... N we' generate N 

distinct sets of solutions, some linear combination of which satisfies the required 

boundary conditions at an arbitrary exterior point R. This is expressed by the 

linear algebraic equations 

a l ull 
+ a u12 

+ ... aN ulN 
+ 81 O£ + 0 0 = Ir 2 1 1 .. ' 

a
l

,u
21 

+ a
2 u22 

+ ... a
N 

u2N 
+ 0 + 8 0 .... 0" = 0 

2 £2' , , 
(18) 

. . 
a1 ~l .+ a2 ~2 + ... aN ~ + • 0 + 

. where ail functions are evaluated at . R. Writing down also the derivatives of 
. 

these equations would yield' us 2N equations which can be solved for the N .',' . 
,of ' •• 

. ,; . 

"I, 

o 

, ).1 
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coefficients a and the N scattering matrix elements S. From the latter the 

cross-sections for exciting each of the nuclear states can be calculated. 

It may be n9ted that the number of coupled equations far exceeds the 

number of nuclear states considered. This is because c labels not only the 

nuclear state aJ but the angular momentum of the scattered 'particle. Thus if 

the total angular momentum and parity of the system are I,TI then corresponding 

to one nuclear state of spin and parity J TIa there will be scattered particles,', 

of all angular momenta 2,j. satisfying the conditions of Eq. (5), of which there 

are in general 2J+l (when J < I, as is so except for the lowest partial waves). 

Thus for each angular momentum and paritylTI there are 

N = 2: 
states 

(2J+l) 

channels, where the sum is over the states of the nucleus. The experimental 

conditions correspond to a beam of particles incident on the target,which is a 

superposition of many angular momentum states. They range from 2=0 up to 

some maximum value, given approximately by 2kR, where R, 'jJs,;the 

rad.ius beyond which the interactions are effectively zero. FQr each .1. there 

are,two.j states"therefor~ithe total number of differential equation to be 

solved is about 4kRN
2 

. 

Distorted wave Born approximation. A modest scattering problem for 20 

~I MeV protons scattered on the nickel isotopes, and taking into account the lowest 

6 or 7 states involves solving about 20,000 second order coupled differential 

equations in the method described s:pove. It is not surprising the,refore that 

. until recently the problem as stated above was solved only to first order in the 

interaction V. This is called the distorted wave Born approximation and was first 

considered by Mott and Massey in their classic book on scattering, and was first 

applied to nuclear problems by Horowitz and Messiah and by Tobocman and Ka~os.3 
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Referring to Fig. 1, transition.s which lead from the ground to an excited' 

state occur in first order in V, whereas other' transitions leading back to the 

ground or connecting excited states, Occur Only in second or higher order. There:" -' 

fore, to first order, .the differenti~l equation, of the system (9) which refer 

to' scattering on the ground state have ,no source term on the right, while those 

referring to excited states have a single source term corresponding to the direct 

transition from the ground. Thus to first order the coupled system (9) becomes., 

(Tc + VI cc -E )uo 
== 0 c c 

(T .+ VI 
.c' c' c' 

(target channels) (19a )' 

(excit~d state channels) (19b) 

-. 
The'superscript "zero" on the solution to the first equation will serve to re-

mind us, whenever it appears, that it is a solution to an uncoupled equation. 

The subscript c refers· to those channels which have the nucleus in the ground 

state, and the projectile in anyone of various angular momentum states £j, 

while c' refers only to excited states of the nucleus. The system is much 

simpler than before, since each excited state is coupled only to ground state 

channels. Hence each excited state can be considered separately from the others 

in this approximation. Therefore let. c' for the remainder of the discussion 

denote the nucleus in a particular excited state aIJ'. Consequently the various 

channels c ' refer to various angular momentum states of the projectile £'jl, 

while the nucleus is in this definite excited state. 

! 
I 
I 
I 
I 

I 
I 
I 

I 

I 

. I 

I 
I 
I: 
I 
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The equations could be solved numerically as before'. This would involve 

solving for each fj, f'j', four second order equations. However the solution 

can be obtained more simply by solving two uncoupled equations and then evaluating 

an integral. This is what is referred to as the distorted wave method. 

To obtain this solution to the problem we introduce the Green's function 

corresponding to (19b) 

1'12 
( T + VI - E ) G (r r') = - 1=>( r - r ' ) c' c'c' c' c', 2mu 

This Green's function can be constructed from particular solutions, 

o 
uc " of the homogeneous equation 

(T + VI 
c' c' c' 

(20) 

0, and c 

(21) 

which are respectively irregular and regular at the origin "and have the assymp-

totic forms, for chargeless particies 

Oct -7 exp i (kc,r ':" f'7r/2) (22a) 

2io , c 
- e 0c' 

io , 
= - 2 i e c sin (k ,r - f' 7r /2 + 0 ,) c . c (22b) 

(For charged particles, see Eq. (14)). Here 0c l is the phase shift produced by 

V , " The normalizations have been chosen for later convenience. The desired c C 

Green's function is 

. , -1 D . 
G ,(r,r ) = 2"k u ,(r<) ° ,(r» . c 1 ,cc 

c 
(22c) 

where r< denotes the smaller of r,r' 
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In view ,of, (: 21 ).i t ,obviously" satisfies 
. "'. ~ ~ 

(~Q}" except at r = r' .. For this 

singular point we. can make the proof by integrating the ec;tuation over r from 
\ ~'. ~ , 

r' " - oto r I. + 0, and finally use the value of the Wronskian of u 0 and ° that. 
c c 

can be obtained from (21:) a'nd,(22). 

Now we can show by direct substituti0n· into.,. (19b) and using (20) 

that 

u ,(r) = 
c 

is a particular solution Of,,' (-19b) . It is in fact the desired solution because 

goes to infinity it has outgoing waves onlyl.whichcorrespondS to the 

physical ~onditions: 

as r 

u ,(r) ~ 
c 

2m 
112 

0c fer)' fOO 
2ik I , c 0 

__ _. (' ~)1/2 
Sc' c 0c I (r) 

kc ' 

where we have written 

S~IC = 
I' 

- 2m 1 

112 "'\1 k k I' 

" C C 

00 

(24a) 

This 'is the distorted wave Born.apj)roximation to the, S·-matrix.~; In this approxi­

mation, :it .can b~obt~ined by ,finding .t~e .·twofunGtions :which ',describe the elastic 

. scattering frerrt. the :pcrhEmtials Vc I C,I, and Vcc ' respeqtively, and then performing the 

':i.nt:egratibl1s indicated i'n (24b) ,involving the coupling potential V c' c' 

As the problem_h~s b~eri stated so far,,- Vcc(r)"is a real interaction since 

it'is a diagonal matrix element of the two-body interaction. We know that. to re-
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produce the elastic scattering of a nucleon from a nucleus, a complex (optical) 

potential is needed. In the next section we shall see that the effects of the 

truncatiop of the infinite system are properly taken into account by using in 

place of V a new effective interaction which is complex valued. The procedure cc 

for using the distorted wave approximation consists then of searching for a 

parameterization of the effective interaction represented as an optical potential, 

so as to reproduce the observed elastic cross sections. The elastic scattering 

functions o 
u thus determined, are then used in (24b) to calculate transitions c 

out of the ground state. 

The distorted wave approximation includes only such transitions as 1 and 

2 indicated in Fig. 1 and ignores all second order transitions 3 to 6 and higher. 

If however any of these direct transitions from the ground is too strong, let us 

say 1, then the population of level "a" becomes sufficiently high that the transi-

tion, 3, back to the ground state (which is of course of the same strength as 1) 

cannot be ignored. This i"s a qualitative statement, but it seems, as a rule, 

that the collective transitions in vibrational nuclei are not "too" strong, where-

as the transitions in strongly deformed nuclei are. The B(E2) for electromagnetic 

+ transitions from the collective 2 state in the former case runs about 10 single-

particle units while it is as large as 200 in the permanently deformed region. 

This provides'a rough guide as to when the DWBA could be valid. 

Clearly the method cannot be used to calculate the cross section to level 

"b" if transition 2 is weak compared to 1 and 5. This situation could arise 

through the action of some selection rules arising from 



/ 

b 

'a 

ground 

1 2 :3 4 5 6 

Fig. 1. The DWBA takes account of only transitions 1, 
and 2. The others can occur only after the excited 
states have been populated, and so correspond to 
higher order corrections to the scattering. The 
coupled, channel calculations includes all transi-

,tions to all orders. 
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,,' 

the particular structure of the levels, as in the case of harmonic vibrations~ 

Thus even if none of the, transitions is too strong in the sense described above, 

the method may still not work for all levels in a nucleus. 
,,' 

The absence of the complex conjugate sign on in (24b) should be 

remarked on. According to (22b) it has outgoing scattered'waves at infinity so 

that it is the complex conjugate of a function having incoming scattered waves. 

. ~, 
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III • TRUNCATION AND THE EF.B'ECTlVE INTERACTION 
." 

Our main interest in inelastic scattering is in the information it can 

•• Iii, 

. yield about the structure of the lower,. states of nuclei. We were therefore quite 

willing to reduce the infinite number of coupled equations describing the whole 

system of nucleus and scattered particle to a finite set of equations which refers 

explicitly only to the nuclear levels that are strongly coupled to the ground 

state) and any others of special interest. We did this simply by dropping the 

other terms in the e~ansion of the wave fUl1ction that refer to the higher levels 

of the nuclear spectrum. This is of course completely analogous to the shell 

model treatment ofa residual interaction, which is diagonalized within a finite 

subspace drawn from the lowest single-particle levels. In the shell model, this 

truncation procedure is justified on the grounds that the single-particle level 

spacings) and gaps between major shells are relatively large, say of the order of 

the spacing between the lower levels of the system itself so that most configurations 

lie distant in energy. In the scattering case however, the kinetic energy avail-

able for exciting the nucleus is of the order of 20 MeV or more for the experi-

ments we are interested in. This is more than enough to excite the nucleus into 

the region of high level density. states of the system consisting of the nucleus 

in an excited state of interest, coexist at the ~ total energy with states in 

which the nucleus is in the continuum region of its spectrum. Thus there is no 

natural cut off in our expansion, arising from the energetics. 

We therefore cannot hope to justify our procedure as discussed so far and 

must therefore investigate whether it can be modified. We shall see in fact that 

the effect of the excluded channels can be formally incorporated into the finite 

system which refers explicitly only to the small subspace of interesting channels. 

This is accomplished by a suitable modification of the interaction V. 
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For the discussion of this matter ~e shall use a less explicit notation 

,'. ," ' L. ' 
than that employed in -the previous section, and shall use operator methods. ' 

First,~e' derive an expression for the transition matrix ~hich corresponds to the 

apprOximations made in the previous section. 

Relation of truncated to exact solution. Let us denote the part of the' 

Hamiltonian\JI-2) exclusive of the interaction V, by 

so that the complete Hamiltonian is 

H = H + V o 

Solutio~s to the unperturbed problem 

(E - H ) ¢ = 0 o 

have therefore the structure 

as 

, 2 
k 

n.. :::: <P (A)ei~·t 
'PexJk exJ -

We can formally ~rite a solution to the exact problem defined by 

(E '- H) 'l' = 0-

\T/ ( + ) , = n.. + I un.. 
I ex 'P ex E-H -ti€~·'Pex 

(1) 

(2) 

, (3a) 

I~:, 

(4 ) 

This embodies the t~o boundary conditions that'there is a plane ~ave inchennelex 

and that there are outgoing spherical ~aves at infinity as is ,assured by the i€ 

, .. 

~, 
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We have defined the operator for later convenience • 

m[X] _ 1 + 1 X 
E-H+iE 

. 4 
From the work of Gell-Mann and Goldberger we know that the transition matrix for 

" 
the problem defined by Eq. (2) is 

(6) 

However in the previous section we did not obtain a solution to the com-

plete problem but to a truncatE(d one. Let P denote the group of nuclear states 

retained in the expansion of ~ and let it also denote a projection operator on-

to this part of the vector space. The solution that we can obtain by solving the 

truncated set of coupled equations) which contain the actual interaction. V, we 

shall denote by ~(T). It is the solution to the· approximation problem 

where 

Clearly HT does not cause any excitations out of Pinto Q and defines 

therefore the truncated problem of the previous section. 

(8a) 

(8b) 

As above we can write a formal exact solution to this approximate problem as 

n[X~=l+ 
1 

E-H -X+i€ o 
X (9b) 
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. Similarly the transi tion;~matrix for the problem defined by.(8) is 

.. ,y.. ,. I (+) Y cxtcx(T) = <¢cx t. Vpp I 'l'cx . (T) (10), . 

= (¢cx t Ivl 'l'~+)(T) 

As we discussed earlier } we do not expect this to give reliable results, because·: 

it does not take account of the effect of the eliminatedchannel~even in an 

approximate way .. On the other hand the exact result embodied in Eq. (6) is un-

attainable. Before deriving a compromise result let us derive the connection 
.. d· 

between the exact and approximate expressions:f0I.:. J . ,This is easily done. 

First introduce the potential U that links the two 'parts of the space 

v == .(P-+Q) V(P+Q) = Vpp + U· 

(11) 

and take note of the identity 

(12:) 

;, 

This is readily proved by inserting the definitions of the operators on the right, , 

carrying out the multiplication, and using the operator ident~ty 

11111 1 - - - = -(Y-X)- = -(Y-X)­X Y X Y Y X 
(13) 

-With this result we can now express the exact solution 'l' in terms of 

the solution of the truncated problem 

- ..... 

= m[U] 'l'(T) L. (14) . 
. .. '. 
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Using this in Eq. (6) we have for transitions between any'two states a and a' 

of P 

== <¢a' Ivauf 'l'~+)(T) 

. 1 . (-j,-) 
== < ¢ a' I V + V E _ H +i € U [1' a (T) ) 

Inserting the decomposition of . V ~nd U and remembering that a and a' both 

belong to P gives us 

(16) 

The second term on the right describes the effects which are omitted in the simple 

truncation employed. These effects obviously consist of excitation out of P 
• 

into Q and back again. 

Modified truncation. We now seek a formulation of the problem that is 

more amenable to incorporation of some of the effects due to the explicit eli­

mination of most of the vector space. Following F;~hbach5 we shall use the same. 

projection operatDrs P and Q mentioned above and insert into the Schroedinger 

equation (4) the unit operator 

, (E-H) (P+Q)'f == 0 

Multiplying by Q oh the left yields 

(18) 

which can be solved formally as 

(19) 
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We have not added a solution to the homogeneous equation . (E-HQQ ) X = ,0 because' 
'. . ~ 

any solutiont.o this' homogeneous equation has zero net flux through any closed 

surface about the origin and hence violates the conditions 'Of the experiment, 
, . 

which correspond to outgoing waves only in all but the target, channel. 

Now multiply Eq. (17) on the left by P to get 

(20), 

. Into this insert the solution (19) for Q~ to get 

1: 
[E-lLp - lL_ HQPl (p~) = 0 --p ~ E-H

QQ 
+i€ (21) 

, . 
Ivhich is the equation for the part of ~ that contains only parts belonging to 

the truncated space. It contains all the informab.on necess~ry for calculating 

transitions among states belonging to P. Denote it more conveniently by 

~(p) = p~ (22) 

Since 
~> • 

PQ = 0 ,we can rewrite Eq. (21) as 

(E -' H ' -'Y) ~ (p ) = 0 
o 

(23) 

where ~' 
.' 

~ = Vp~ + VPQ E-H~Q+i€ VQP (24a) 
.', 

The' .problem 'defined by,€23~dif.fers, from the one' that.,g.ei'ined·cUlt' briginal. t2'\ill-

:c~te<l probJ,em,' .(7:), py.p!r'ec·i,selY· the se,condtei~cf ·,(24}.!i· Since ;we· are intere:sted, 

,i::. s91v~ng (23) i!l' ,the :Sp8ce, ;p 'only" ,yre dO. not tfeedthe:oute:t prOj:ect,ion operator's', 

Q 
,,-I, -V+V V '., - E-H+i€ 

[Note: The action of Qin this equation is to be effected as in (24a).] 

., 

:; 
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From the identity ~ = p~ + Q~. and Eq. (19) we have the entire solution 

1 
~ = ( 1 + E-H +iE VQP ) ~(p) 

QQ 

whence according to Eq. (6) 

(¢rvl Iv + v Q vI 'J!(+)(p)) 
u. E-H+iE ex 

(26) 

We can of course also write down the formal solution to Eq. (23) 

(27a) 

with 

lI=H +rf 
o (27b) 

The statement was made earlier that from 'J!(p) any transitions within 

P could be computed. If that statement was not obvious it is now proven since 

the transition matrix for the problem (27) is given by the exact result, (26). 

To summarize the results so far, we have obtained a formal equation (23) which 

refers explicitly only to the truncated space p, and from which the exact transition 

matrix can be calculated according to (26) .. The equation for 'J!(p) contains, 

not the original interaction V, but an effective interaction, effective within 

P, which includes the effect of the eliminated channels, Q. While the exact 

problem is actually no more tractable now than before, it is at least in a more 

instructive form, a form which is more suitable for making the approximations 

which will lead to a tractable problem, while retaining some of the important 

contributions from the eliminated part of the space. 
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The effective interaction. vfuereas the original scattering problem 

governed by H = H + V led to an infinite set .of coupled equations corresponding .' o 

to all channels, a modified problem governed by ~= Ho +~which is to be solved 

only within a finite subspa ce of channels, can be defined which leads to the same. 

T-matrix elements between channels of the subspace. Of course this is a state-

ment which is only formally correct, since to calculate the effective interaction 
" '1"', we would need the complete spectrwn of H

QQ
• At the energies of interest to 

us, there are millions of open channels in medium to heavy nuclei so that a cal­

culation of ~is not feasible. Nevertheless it is a very important conceptual 

result, since we can make certain statements concerning the nature and behaviour 

of "'!;r. For example the usual optical potential for elastic scattering corresponds 

just to the case that P projects on the ground state alone. Only the elastic 

channel is treated explicitly, all others entering implicitly through ~ While 

we cannot calculate the optical potential from first principles, it can be para-

meterized very successfully. . From its definition (24), "P' is explicitly dependent 

on the energy, is complex valued, and non-local. The second term makes a large 

contribution to diagonal matrix elements but is probably small for off-diagonal 

ones. This can be seen by introducing the eigenstates OfHQQ in a typical 

diagonal matrix element, 

~oo == <<PW(~) 1'1I"!<pw (a) 

<<pajlv!~c)(~clvl¢w) 
- Voo(rJ + ~ E - EC + i€ 

(28) 

Here ~C is intended to denote the wave function for theA + 1 particles while 

<Pa denotes the wave function of the nucleus A. only. ,The brackets denote inte­

grations over the A. particles and remain functions of the remaining, coordinate. 
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The sum on C runs over the space of Q and includes continuum and discrete' 

states. The numerator is positive and the denominator changes sign only once. 

There is little chance therefore that the sum is small. However the individual 

terms in the second part' of '11" generally w'lll be very small since they involve 

matrix elements connecting the tvlO parts of the space P and Q whose states 

will usually be of~uite a different structure, since the latter lie at higher 

excitation in the nucleus A. 

This means that the sum, which is over an enormous nunilier of terms (a 

continuum built On each state Q of the A-particle system) is not dominated by 

any particular one of them, so long as no states ofQ are strongly coupled to 

any of P. With the proviso that the effect of such strong coupling be removed 

from ~by treating them explicitly in P, then the sum C in (28) will be 

dominated by the high excitation region because of the high level density. From 

this fact we see that ~will be slowly varying from nucleus to nUCleus, and that 

the diagonal matrix elements in the space P w~ll be similar. We do know that 

the optical model treatment of elastic scattering is generally satisfactory. 

This suggests that we treat the diagonal matrix elements of~ by a similar 

phenomenological parameterization. 

For the off-diagonal matrix elements of ~ on the other hand, the 

numerator of the second term is not positive but will fluctuate in sign from 

term to term so that ip, general we may expect it to give a small contribution in 

comparison with the first. 

~on-localitY. To demonstrate the non-local nature of the second term 

of ~ which for convenience we call ~~ we examine the coordinate repre­

sentation of ""'V, 
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" 

where we have used 

(30) 

to denote a wave function of HQQ: for the A, + 1 particle composite, and the 

fact that V is local (i.e.' diagonal in the coordinate representation) 

(31) 

Now we can write the effect of ~cting on the wave functions we have been 

using. In a coordinate representation, we have 

X .... E---,i=-c-+:---:i-€! dr.' d!' 

(32) 

.' 
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IV. MICROSCOPIC THEORY OF INELASTIC' SCATTERING 

We emphasized in the introduction that the remarkable development of 

theoretical techniques for handling the nuclear many-body proble~ have led to 

fairlydetailed descriptions of nuclei in terms' of their nucleonic structure. 

+ 
The enhanced E2 transition rates of the first excited 2 states is understood 

in terms of a coherent superposition of single-particle transitions. The energy 

level systematics through 'certain regions of the periodic table can be reproduced, 

at least qualitatively. It is important to subject these descriptions to the 

further stringent tests that inelastic scattering sets, to see to what degree they 

succeed here. In this section we develop the necessary apparatus for confronting 

nuclear structure theory withinela'stic scattering data,6 

The interaction. According to the development of the last section we 

understand that the diagonal matrix elements of the interaction between the inci-

,dent particle and nucleus would be best parameterized as a non-local complex-

valued optical~model potential. However we know from the work of Perey and Buck 

on elastic scattering~ that ,generally ,an ,equivalent l'ocal potential can be found 

and ,this we take, advantage of. Hence fot the diagonal matrix elements we have 

'rcc(r) = V fV(r) + i[W fw(r) - 4 WD 'aD f~ (r)] 

+ (2.(]) 
--0 (m:cf l'd. 

VSO r dr fSO(r) + VCoulomb(r) (1) 

where 

[1 -:xA1/3) r f (r) = + exp(r ff = df/dr 
x x 

(2) 

is the Woods-Saxon form factor. This is the standard parametrization of the 
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1'.:-

optical potential that. is used at Oak Ridge, where so much of the elastic scat"tering 

analysis is performed~ . 

In principle the diagonal matrix elements ~. are different in each 

intrinsic· state, That is, the optical potentials in the excited states may be 
. / . 

different from each other and from that of the ground state. However referring 
, . 

to the structure of "y" (III-24) it seems very.plausible that, unless. there are 

states belongingi to Qwhich are very strongly coupled to one or several, but. 

not all states of P, then the optical potentials in each state of P wil be 

similar, The,reason·forbelieving this is that the sum over intermediate states 

Q, involved in the evaluation of "'"'Y", extends over such an enormous number of 

levels that it will not matter much if the initial state is the ground state or 

one nearby, 

We need also the off-diagonal mat. rix. el~ments ~ (c':j: c") which we . c' ·c" 

shall often refer to as the direct interaction, since it is responsible for the 

transitions. We learned that it may not differ too much from the nucleon-nucleon. 

matrix elements 

V(r,A) .... -

v , ", c c We shall represent V 

V(~r.) = (VO + VI 0 '0.) g( Ir_-~ !) 
.... ~ .... -~ '-.L 

in the form 

where.the well depths Vo and. VI may also depend upon l'li' Let us make a 

Legendre expansion of.:.' g. 

(4 ) 

Moreover, in order to treat both spin-dependent and independent terms on the same 

footing let us define the tensors 
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"Where YL isa spherical harmonic, .60 ::: 1, .61 ::: e:. . and the square bracket de­

notes vector coupling. Then "We can "Write the multipole expansion of V(!:.,~J 

(6a) 

"Where 

(6b) 

is a tensor operator in the nuclear space and depends only parametrically on r=/r/. 

The multipoleexp?nsion is actually much more general than the particular 

form chosen for the interaction, 'so that some of the follo"Wing formulation, though 

not the numerical results, are more general. 

No"W we "Want matrix elements of V 

- (¢c ~Iv/ ¢c ~) 
1 2 

= ([nt;; . (r) <P J (~)]~ IV I 
tJP.ls J1 0:1 1 

Inserting the multipole expansion for V, we note 

acts on the space of the scattered nucleon and the 

that the tensor operator 'YLSJ 
4f":! 

other operator, ;S , on the 

nuclear space. Such, matrix elements can be evaluated by Racah techniques7 and 

the result written as, 

(8) 

where C is purely geometrical in character 

.f; ~l ;l} 
J2 2 

The curly bracket is a 6-j symbol. RachIs definitions of reduced matrix ele-

ments is used, which differs by a factor from another definition also in common 
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use. For the reduced matrix element'of the spin-orbit· tensor we find 

(~1:~2 ) 
£1 1/2 jl 

X 12 1/2 j2 (10) 

L 8 J 
t 

., 

" where the last two symbols are 
'. a 3-j and 9-j coefficients, and' 

... 
L == 2L+1. 

Form factors •. The matrix element of the interact:Lon,(8) is now expressed 

in terms of the purely geometrical quantities C"" the strengths of the interaction 
, 

. Vo and VI and nuclear reduced matrix elements which remain a function of the 

radial coordinate r of the scattered particle. They are referred to as form 
\.-.~ 

; factors for-the transition between ,nuclear states CXIJ1 ~nd~2J2' 

(11) 

These are the quantities that carry the nuclear information that is relevant to ' 

the inelastic scattering process. We now discuss them in some detail. 

The structure of the nuclear form factors (11) is actually, rather simple 

as follows from the fact that the scattered particle acts as a one-body operator 

on the nuclear coordinates.because the interaction between nucleons is two-body. 

80 fJ is a sum of. one-body operators as seen in (6b), and the nuclear form 

factor must be expressible as a sum of form factors for single-nucleon excitations.' 

Thus 
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Fig. 2. 'Shapes of ~everal single-particle form factors that contribute to 
excitation of 2 states in nickel isotopes are shown for several force 
ranges ~f the direct interaction. The oscillator parameter v ; mro/~ ~ 
0.25 F-. (Ref. 6b). 
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(12) 
, .. :-,.. 

where 

(13a) 

is the form factor, corresponding to the promotion ,of a single nucleon from the 

state a to b. We use a to denote the collection of quantum numbers for a 

single-particle state in the nucleus, a == n f. j , ~nd 7/J (r) denotes a single - , 
a a a a -

particle wave function with radial part ua(r). From the definition of{5, Eq. 

(6b) 

(13b) 
I ' 

with the ,radial integral 

This defines the radial shape of the form factor ~ We can gain an immediate 
. , 

impression of the general shape by considering a zero-range interaction. In that' 

ca se the Legendre transform in Eq. (4) is 

" . ' 
2L + 1 '5(~-~') ~ 

= 47T r r' (zero range) (14a) . 

and 
" , 

(14b) 
" 

Several single-particle form factors for transitions relevant to the' 

nickel region are shown in the Fig. ,2 for various force ranges. 
'\ ' .... , 

The zero-range',' 
" 

results would be easily surmised from (14b) but a force range of realistic size", 
~. 

destroys most of the fine detail. 
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For the Gaussian shaped potential 

the Legendre transform is 

(Gaussian) (16) 

Using harmonic oscillator radial functions Ui. , a closed form for the form factors 
a 

can also be found. It has the form 

2 in -"'II' 
e .6 

m=O 
(17) 

where v =rnm/n is the oscillator parameter, "'I =~:\'/(vp2+1) and m = l/~(Na+Nb-L) 

with N denoting the oscillator quantum number,· N.= 2(n-1) +£, The coefficients 

G 
6b are rather complex but are expressible in closed form as a finite double sum. 

It is very convenient for calculational purposed to have available such a closed 

;form as (17), because it means that all the nuclear information that is relevant, 

can be stored in a few expansion coefficients for the various form factors (12). 

Nuclear structure and amplitudes for elementary transitions. The form 

factors for a transition between any pair of nuclear states can be expressed as 

a linear combination of elementary transitions just discussed, as expressed in 

(12). The amplitudes with which the various elementary transitions contribute 

can be calculated from the wave functions for the nuclear states. The same 

amplitudes arise in other contexts also, since they merely express how the matrix 

element of a one-bOdy operator taken between a many_body state, is written in 

terms of the one-particle matrix elements of the operator. We illustrate their 

calculation by several examples. 
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Two-quasiparticle states. One of the methods used for handling many-
. , . 1', 

particle nuclear systems can be briefly described as follows; The, pairing effects 

of the residual interaction are isolated by ,solving the BeS equations. This 

corresponds to a transformation from the real ,nucleons of the system to quasi­

particles, which, as far as the pairing effects of the interaction are concerned 

are almost non-interacting .. The remaining part of the interaction is treated 

approximately by diagonalizing it in the quasiparticle space. Often the diagonalh;'.~'" 

zation'::is :restr,ictedcto two-quasiparticle configurations. The wave function in 

such a calculation have the form 
I 

[exJM) / exJ +( ) I ) - 12 .6 TJab AJM ab '0 ' 
a)b 

(18) 

'where the TJ I S are configuration amplitudes, . TO), denotes the ground state which 

is here the vacuum for quasiparticles,of which a pair ,creation operator is denoted 

by 
. . +J , J -Jb + 

(_) a AJM(b,a) [ + +]M = - ex Db 
a J 

+ 
The quasiparticle creation operator is denoted by ex. We need also the quasi-

particle scattering operator . 

where 

ex am 
a 

j -j +M 
= (-) ab N J _M(b ,a) 

j -m 
= (_) a, a ex 

a-m a 

'[' +rv]M = - ex ex 
a b J, 

The transformation connecting the particles 
+ + 

~ to the quasiparticles ex 

(20) 

(21) 

is 

.. 
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+ + 
A U ex +V ex I-'am = a am a am . (22a) 

where 

if + ~. = 1 (22b) 

Since fJ
ISJ

, Eq. (6b) is a one-body' operator in the particle space, to 

evaluate its matrix elements between states expressed in terms of quasiparticles 

we would wapt to re-express it' in these latter terms. The results for any such 

operator is found after some Racah algebra to be 

+ ~ [Ua l1, (-)J+O Va Vb] [ N;;(a, b) + (- )M+O N J _M(a,b)] 

- ~[UaVb + (_)J+a VaUb] [A;:(a,b) + (_)M+o AJ_M(a,b)]} (23) 

where the phase cr is defined by 

J -jb +cr 
= (-) a (b II~ ISJ I/a) . (24) 

and in particular for the operators (5) and (6b), cr = L + S + J. The reduced 

matrix element in (23), for our situation, is the previously defined single-

particle form factor (13). 

,To evaluate the form factor corresponding to transitions from the ground 

state [0) 
+ 

to an excited state such as (18), one sees that only the AJM term 

in (23) contributes. Using the readily proven fact that, 

.' .. 
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. J .:,' , 

(25) 

'. 

we obtain 
l 

(aJII:rLSJ(r,~) /10) 

(26) 

It is interesting to look at this in some detail f'or a collective state, 

say the 21+ state of' Ni 60.' The wave functions of' Arvieu, 8alusti and Veneroni 
, '8 
have been used. ,Considering first the case of' 8=0 in (26) which we ref'er to as the ',' 

scalar f'orrn f'actor, one f'inds that f'or this state their wave :fui1ction is f'ully , 

coherent. Each term, corresponding to the various single-particle excitations that 

+ lead f'rom the ground to the 21 state has the same sign and so gives rise to the' 
, , 

,.: ,'·large f'orm f'actor shown in the Fig. 3, which is' yery similar to: the one used,in' macro~ 

. " 

scopic treatments of' vibrational states. The individual term,s are also shown. 

+ This is in ,contrast to the f'orm f'actors f'or other 2, states f'or which the various' 

elementary transitions interf'ere destructively, giving rise to smaller f'orm f'actors 

which sometimes oscillate as ~llustrated in Fig. 4. (Note that the absolute values 

are plotted on a logarithmic scale which accounts f'or the dif'f'erence in appearance 

between Fig. 3 and the top curve of' Fig. 4). 

There are three vector f'orm f'actors (8=1) corresponding toL=J, J±L 

However, since L is connected to the parity change between the nuclear states, 

( ..:.)L =7Tl 7T2 
''1 .~ 

then only the L=J'vector f'orm f'actor, together with the scalar, just discussed, 

can contribute to the so-called natural parity states whose parity is given by 
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Fig. 3. Scalar form factor for the lowest 2+ state in Ni60 is shown together 
with the single-particle form factors that contribute 'to it. Irhey all have 
such phases that they add constructively for the lowest 2+ but must there­
fore be destructive,.: for atl other 2+ states. (Ref. 6b).· 
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their. spin as ,',7T 
'J . 

- (.,.). 'The vector form factor is small compared to the scalar 

for thecolle~tive 2"+ state, 'since it is incoherent. The dashed lines of Fig. 4 ,1 
+ 

. illustr~te·the vector. form factors for several 2 'states., It is actually possible 

that another type of' collectivity may exist, based, not on the singlet-even part' 

+ 
of the force as the 21 " state is; but on the triplet ... even part of the n-p inter-

action.' Evidf2ntly 13ingle..'closed shell nuclei, such as Ni isotopes would not be 

a favourable place, to find them., 
, , 

, ()rily fprm factors such as (26) which connect the ground state to an excited 

state, are needed in the. distorted wave Born approximation. ,However the coupled 

channeFmethodtakes account also of transitions between excited states. Such 
~. .' 

transfti,OI1:s become e~ceediriglyimportant if one of the states is very weakly coupled 
'" " • , ";, ,,' • r ,,,' . J" .', +' 

.to the grotmd, p~cuJarly, if the~ouvling toa ,coJJective state Dke the ~ is strOI\gby carplriroJ.. 

, For 'transitions between two excited states having the structure (18) the 
" , 

amplitudes: appearing in. the' expression (~2) for the form factor is 

.~,. . ; .. 

, r J +J +J +1 '/ ' 
= (_) 1 2 [ (2J +1)( 2J +1) ] 1 2 

, 12. 

(_)L+S V V ) 2: 
a b d 

..... 1 

Two":phonon states. The ayailable experimental evidence concerning so-, 

called two-phonon states indicates considerable departures from the 
. . . . . 

,vibrational model. The evidence consists of the sometimes large splittings be-, 

tween the meIYfbers of the two-phon()n triplet, deviations from the predicted 

intensity rules for E2 radiation, and the finite static quadrupole moment of the; 
" _ ;l 

.. . , .... 

+ 
two-phonon· 2 state in those nuclei for which the measurements have been made. , , 

Nevertheless some of the;two-phonon character is expected to persist, though it 
L 

may be shared wi th other, neighboring states. The type of nuclear structure calcu-

~: L:. '(,'::. 

' .. ' 
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lation which truncates the problem at two quasiparticle configurations does not 

produce two-phonon states because they involve fpur-quasiparticle configurations. " 

, + 
However we can use the coherent operator that produces the 21 state to generate 

a "two-phonon" triplet of wave functions. Presumably these are not eigenfunctions 

of the problem} and would mix with neighboring two-quasiparticle states, but we 

can consider them as an extreme limit. The form factors by which each member of,,' 

+ the triplet is connected to the collective 21 state can be obtained easily upon, 

using the quasiboson commutation rules for the two-quasiparticle operators intro-

duced in (19), which are given in fact by the right side 6f, (25) . The result is 

+ 
that the form factor connecting each member of the triplet to the collective 2 

previously discussed. The proportionality, constant is 
" 

+ 
stat~ to 21 state just 

(2 (2J2 +1)/5]1/2 "here 

state is proportional, to the for~ factor for the ground 

'. J2 is the spin of the two phonon state • 

", ~, . 

. Two-particle states. For conventional,shelltnodel wave functions describing 

two particles beyond closed shells, the, structure amplitudes can be obtained from 

,(27) by choo$ing Ua ::: nIb ::: 1 and Va ::: Vb ::: O. Whereas most shell model wave functions 

, are, described a's 

, b ' c' I (a b) J) 
,a5b ab 

with the ket anti symmetrized, our sum over configurations (18) ~s unrestricted as 

to order of a,b. Hence 

other cases can also be obtained from (27) as special cases. 
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V. APPLICATION OF MICROSCOPIC THEORY 

,Effective interaction. As we have already discussed, the diagonal 

matrix elements of the effective interaction are certain to be very complicated. 

To calculate them would involve approximating the wave functions for nuclear 

states ranging all the way up into the continuum. The results of such a cal-

culation would certainly not be as reliable as an optical model parameterization, 

For the special case when all excite~ levels are 'eliminated, the effective in-

teraction so parameterized is the usual optical' potential for elastic scattering, 

and this can be found in any particular instance quite easily by use of one of 

the automatic search routines. We shall see in fact, that for spherical nuclei, 

where the coupling to excited states is not too strong, the, same optical po-

tential for pure elastic scattering can be used with little or no change when 

a few, of the excited states are explicitly treated. This is illustrated in 

Fig. 5 for Ni60 . This is definitely not true for deformed nuclei, whose 

coupling to the 21 state, as measured in single-particle units of the reduced 

B(E2) is about 100-1000 in contrast to a typical figure of 10 in spherical 

(vibrational) nuclei. However in this section we are concerned with spherical 

nuclei. 

Concerning the Off-diagonal matrix elements of the effective interaction, 

we have some reason to hope that they may not differ very much from those of the 

free two-body interaction, or some simple parameterization thereof. Neverthe-

less this is an open question. In principle it may be energy dependent, non-

local, and complex valued, in addition to having all the usual complexities of 

the two-body interaction. By its nature, anything that can be determined about 

it for one energy, or one small region of the periodic table cannot be carried 

over with any assurance to another. 
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Fig. 5. Coupled channel (solid) is compared 'With optical model calculation of 
elastic and distorted 'Wave calculation of inelastic proton scattering 
(dashed). Note that elastic is barely effected by the additional cou~ling. 
While several cross-sections are only slightly changed others are signifi­
cantly modified. (Ref. 6i). 
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Keeping these reservations in mind we now discuss results based on a 

simple force parameterized as in the last section; We shall in fact .keep its 

range fixed at 1.85 F such as i p often used in shell model calculations which 

employ a Gaussian potential, and the two well depths Vo and Vl of (IV-3) will 

be adjusted. 

Two quasiparticle description of nic.kel and tin. We gave a very brief 

idea of what is involved in this method of approximately solving the nuclear 

1 
problem, and it has been discussed thoroughly elsewhere. Here we shall see 

to what extent it succeeds in describing the scattering of protons. From Fig. 5 

we see that while the distorted wave method would be adequate for some levels, 

. + 
in general we must solve the coupled equations} since the collective 21 state 

is an important intermediate step in the excitation of some of the levels. 

It is worth considering for a mome,nt the. exchange nature of the residual 

interaction for such nuclei, where all valence nucleons are of the same type. 

The only relevant parts are singlet-even (SE) and triplet-odd (TO). The 

former is attractive and the latter smaller and possibly repulsive .. If we 

rewrite the central potential in terms of 1 and 01'02 w~ have 

·SE + 3 TO 
V :::: 4 + TO SE 

4 

From this we see that the [l'~ part is typically repulsive and that the 

attraction comes from the spin-independent part. The lowest lying states will 

as a consequence possess such correlations as exploit this part best. The 

position of a state in which the nucleons are so correlated will not be very 

sensitive to the strength of [l'~ part. 
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From the discussion we can understand why the lowest 2+ state has a 

fully coherent scalar form factor while its vector form factor is small by. 

comparison (Fig. 4). + 
The higher lying 2 states because they do lie higher 

evidently have not exploited the same part of the force so successfully, and 

their scalar and vector form factors are more comparable in magnitude. 

Because the scalar form factor for the collecU.ve 2+ state is so much 

larger than the vector, this state can be used to fix VO' When this is done 

and Vl j.s set to zero the resulting cross-sections are shov111 in Fig. 6. '1\10 

nuclear structure calculations for Ni60 have been used one corresponding to a 

G " "d 1 . t ·t" 8 d t f d· It itt" 9 Th aUSSlan reSl ua J.n erac J.on an one -0 a surace· e a n erac -J.on.· ey _ 

4- + 
both g'ive essentially the same result for the collective 2; state and 41 ' 

Vlhere the agreement is not too bad. For the other states the magnitude of the 

cross-sections10 ar'e correct to within a factor of about three, but the details 
( 

are not well reproduced. Trying d:i_fferent values for the spin dependent part 

.. . 6" 
V

l 
does not significantly :i.mprove the detailed agreement. J 

11 
The polarization for the collective state has also been measured 

-though at a slightly different energy than the cross-sections. This is shown in 

Fig. 7. ''l'he agreement is fair. 

For 8n
120 

the cross-sectionslO are shov111 in Fig .. 8 and again the collective 

.+ 
2 is Vlell reproduced but the magnitudes of the others are in error by ,as inuch 

as a factor two or three. As it turns out for this nucleus, all the levels 

ShOv111 could be calculated in the distorted wave Born approximation vlith little 

error. 

". 

Tw()-phonon states. We can use the approximate microscopic description of 

hlo-phonon states mentioned at the end of section IV to sec if this provides a 

better descripti.on than the two-quaslparticle descrir>ti.orl. The results are 
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coupled equation calculations using microscopic description employing a 
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interaction Ref. 8 (dashed line). Direct interaction parameters are' 
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shown in Ref. 6j and indicate that the extreme phonon picture is not in better 

agreement. 

Summary. From these calculations we have seen that the microscopic 

+ description of the ,collective 2 state seems to be fairly good. At least we 

calculate a cross section,' in good accord with experiment. ' This gives us some 

confidance in thinking that the direct interaction that was used in the scat-

tering calculation is not grossly wrong for these nuclei and at this energy 

(",20 MeV); 

In that case we conclude that the description of the other states is 

, generally not very good. It is not an accident that if we are able to obtain' 

any agreement at all, it should be for the collective state. Since it is co-

herent Vlith respect to the various configurations it is not' as sensitive to the 

particular amplitudes as an incoherent state where the small form factor results 

from cancellations.' In a phrase, it is easier to describe.the nuclear order as 

embodied in a collective state than the chaos of an incoherent state. Neither 

the two-phonon description, nor the two quasiparticle description of the higher 

lying states gives a very good account of the observed scattering. This is rather 

dissapointing, since more accurate structure calculations are much more difficult. 

. Nevertheless if a realistic description of any but the collective states in even 

spherical nuclei is to be obtained, these difficulties must be overcome. 
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VI. SCATTERING FROM ROTATlONAL NUCLEI 

The rotation of strongly deformed nuclei, especially in their lower 

states, is slow compared to the velocities of the individuai nucleons. In 

this situation, as was discussed long ago by Bohr and Mottelson, the rotation 

and the nucleonic motion may be considered independently of each other, to 
, 

good approximation, as is intuitively clear. Then for every intrinsic nucleonic 

state there will be a spectrum of rotational states. 

In the last sections'we considered the excitation of the nucleon degrees 

of freedom in spherical nuclei. For deformed nuclei the lowest lying states are 

rotational and all belong to the same intrinsic state of motion. It is the 

excitation of the rotational states that we w.ish to consider now. ,Such a study 

is useful in measuring the shape of the nucleus. 

Adiabatic approximation. 12 If the orientation of the nucleus does not 

change appreciably during the passage of the scattered particle over it, the 

, adiabatic approximation may apply also to the scattering process. In this case 

the Hamiltonian 

(la) 

may be approximated by 

(Ib) 

where we are neglecting the rotational energy Tn of the nucleus. The n 

stands for the Euler angles defining the o;rientation of the nucleus. We shall 

not consider explicitly the intrinsic excitations, so that the interaction V 

, is an effective interaction in the sense described earlier, since it must carry 

.' the effects of the eliminated i~trinsic excitations and their rotations. As 

before it will be parameterized as a complex optical potential, which now has a 

, non -spherical shape. 
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Equation (lb) des~~'ibes the elastic scattering of the ,particle from the 

nucleus having fixed orientation n. The desired solution has the form 

ikz 
e + f(S,¢,n) 

ikr 
e 

r 

(2a) 

, (2b) 

Where <P denotes the target nuclear state. The problem obviously does not 

.. ' 

, .',' 13 
possess spherical symmetry but may be solved conveniently as described by Barrett. 

j . 

On the othe,r hand,' considering the original ,problem governed' by (la) , the 

, scattering amp Ii tude for the transition from, the state·.1 to' J' may be written 

according to Gell-Mann and Goldberger, 4 as 

K 
fJM,J'M' 

-m J r 't (+) ) 
== '2~2 \¢k I, J1KM' V '¥:i JKM ; 

Jill ~ , "'1M', 
(3a) 

where, as earlier, 

ik',·r· 
== ew. -<PJ1KM , 

isa solution in the absence of VJ while '¥(+) is a,' solution of H. If we use ,the 

( ) 
. , \TI(+) , 

adiabatic, solution 2 as an approximation to the exact solution, I we obtain' 

(4) 

The bracket would be just the expression for the amplittide"r:- of the adiabatic 

problem, '(2) if. k' ;;"k. ' Thei:ldiabatic approximation neglects this difference, so 

we 'have 

... ,.. 
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This result may seem strange at first glance, since if indicates that 

by solving a certain elastic scattering problem and taking matrix elements of 

the res~ting scattering amplitude, the amplitudes for transitions to excited 

states can be calculated. To understand that this is a sensible result we re-

turn to Eq. (2), which, remember, is the elastic scattering solution to the 

fictitious problem in which the nucleus has a fixed orientation. As such it 

represents a superposition of the various rotational states, and we may write 

its expansion, 

L; 
JIM I 

(6) 

Because of this close connection between the elastic and inelastic 

scattering to states possessing the same internal nucleon structure, which is 

manifested in the adiabatic expression (5), this approximation provides a con-

venient framework within which to discuss the striking regularities observed in 

14 
the scattering of strongly absorbed particles like alphas. Austern and Blair . 

have discussed this very thoroughly in their paper. 

The interaction. The nuclear shape will be parameterized by the usual 

expression 

with the sums restricted to even values. Here e' ,cp' refer to the body fixed 
t 
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'axis taken to be the symmetry~xis,;of the . nucleus ..So that:":,:Rwill' be ,8 real .,--

number, we require aN<: =~-K'. 

We paramerize Vas an optical potential and. expand it about the spheri- .' 

cal shape. The nuclear.part· is 

(8a) 

where 

(8b) 

and similarly for the other parts of V. Since ~ 

we obtain by use of the addition theorem for spherical harmonics an expression 

in terms of the generalized deformation parameters 0 

{R
ORO)h = ( ) fK ~ YiK 

o(n)' = 2: {AM,}i/2(AA' L), "'(A-A L) o(n-l)a ' . (for n' > 1) (10) 
LK Aki\k ~ K k-K ", 0 0.0 11K Ak .'. 

where 
{l) 

0iIK == aiIK and':C = 2L + 1. Now we have 

VNuc (r-R) = V
N 

(:r-RO) + 2: NT·,,(r) YL·· .(8 ~¢I ) 
uc IK ~ K.. 

(lla) 

where 

(llb) 
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If the deformation parameters a are not too large} the series converges rapidly 

since o(n) is of' order ~. 

The coulomb potential due to the charge distribution p(~) is 

Vc l(r') =zz'e2f~ dr" ou l~ .,.. 
.There the coordinates are expressed in the body-fixed frame. Using 

A 
1 47f r< 

2:: Y,(8 I ,r/..').Y, (8",r/.. II
) Ir I -r" I = 21..+1 Atl I\. 'I-' I\. 'I-' 

.... A r'" > 
we get a similar expression for V Coul in terms of 

Vc l(r) ~ Vc l(r) +2:: CLK(r) YLK (8' ,¢') ou.... . ou LK 

where 
L r 

ILK L+l 

3ZZ ' e
2 RC 

CLK(r) = 2L+l Co 
R L 

C 
°rK L+l r 

In fact 

if r < Rl 

if r > R2 

(12) 

(13a) 

(13b) 

Here 'Rl and R2 are the smallest and largest value of R obtained in (7). 

Between these points no analytic form exists, but ¢(r) is co~tinuous.15 The con-

stant'C o is the ratio of densities for the deformed shape (7) and the sphere of 

radius RC 

[ 

30(2)+ 0(3)]-1 
'd 0 0 C = P Po = I + -----o ' J47f 

(13c) 

and the mqnopole part of the Coulomb field is given by the usual expression 

c 3ZZ'e
2 

[1 
0(2) 

5(~lJ ,r 
0 

< RI + ---
o 2RC .f47f 

VCoul(r) = (13d) 

ZZ'e2 
,r > ~ 

r 

where we employ a uniform charge density with radius parameter Re having ~ deformed 

shape of the form (7). In this case the constants I and 0 of (13b) are, 
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'-

60 t:L ok) I = - 2:' . lOO = 0 
IK n! , 

n=l I,"' 

., .. (13e) 
L+3 ok) 

°IK = 2: I , 000 = 0 " 

n=l " 

Thepotentfals are still expressed in terms of the body-fixed frame. 

Using the D-coefficients to express our results in terms of the laboratory 

frame and adding to-gether the nuclear and Coulomb parts gives us finally 

' ... .,. 

V[r-R(e,¢)] "" V(r-R ) + 2:. yIM(e ,¢) 2: VIK(r.) 
°IM' . K>O 

(14a) 

as" follows from the property of 
". ~~.' 

where we have used the fact that 

the ok), and 

VIK=N +C LK IK 

'. The first term of (14a), being merely a sphe:i'ical; optical potential, ,has 

only diagonal, matrix elements whereas the second, non-spherical part, gives rise 

.toexcitations of the nucleus from one rotational state to,another. 

Form factors. Following our former general definition of form factors 

we have from (14) that 

where, as earlier, we leta denote the quantum numbers describing the nuclear 

'" 
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'state. Since the wave functions-for.the rotations are given. in-terms of·D-

functions,the reduced matrix. element can be readily. evaluated as integrals over 

three D-functions with the result (for K~ 0, and even) 

(J J )1/2 (J1 L J2 ) 1k 
1 2 000 0 ,. if Kl . -. K· 

2 = 0 

.;..: 

= ... 1/2lJ1 L J2 ) 
if Kl 0:'. K2 :j: 0 (2 jl j2) . O-K K %K = 

2 2 2 

(-) J
1
(j' j)1/2 {r L J ) ,1 2' 1 2 

+ 1 + ~,O -Kl K K2 
(16) 

It will be instructive to discuss the form factors in terms of the pos-

sible excitations of an even-even nucleus; for which J
l 

= 0, and whose excited 

states have spin 2, 4,... . Therefore the LIth term in (14a) leads to direct 

excitation of the state with spin L. In addition it can be reached by many dif-

ferent cascade routes through intermediate states, Now the radial shape of the' 

form factor (15) is given by V
LK 

and its general character can be surmised 

readily from (lIb) (since the Coulomb part is small although it has a long tail 

and is especially important at forward angles 1-lhen ZZI is large). If, as an 

example the intrinsic nuclear ~hape is characterized as pure L=2, (a2 finite, 

all others zero) then the leading term of V2 is of order a
2 

and has the familiar 

first derivative shape. of the (Woods-Saxon) optical potential (Fig. 9). The 
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leading term of V4 
2 

is of order a2 and has the second derivative shape, and so 

on. (see Fig. 10). If there is some intrinsic a4 shape present, then V4 has also a 

first derivative component of order a4 so that we may expect that a careful 
+ . 

analysis of the 4 state may lead to a measurement of a4 . No single state 

can be considered in isolation from the others how~ver, since the coupling be-

tween excited. states for strongly deformed nuclei cannot be neglected. Hence 

the distorted wave approximation is not valid. 

Coupled equations for alpha scattering. Alpha particles should be very 

useful for studying the nuclear surface because, being strongly absorbed, we 

are assured that most alphas that have excited a low lying rotational state, 

were involved in a surface reaction. Here we will discuss scattering from 

strongly deformed even nuclei. 

Much interesting work based on various approximate calculations of the 

scattering amplitude within the framework of the adiabatic approximation hav~ 

been published by Drozdov, Inopin and Blair.16 However with the constantly 

improving experimental techniques, the information contained in the 

data is more precise than can be extracted by ~se of the earlier approximate 

methods. More recently the scattering amplitude has been obtained by exact 

numerical integration of the differential equations both in the adiabatic 

approximation, which is certainly valid at the energies we have in mind 

(Ea. 2: 20 MeV), and by solving the coupled equations after truncating the space 

of rotational states. The two methods agree very well for all levels one or 

two removed from the point of truncation. We shall use the latter method since 

. it corresponds to our earlier discussion. 
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The coupled equations describing scattering from a deformed nucleus 

"Would look quite similar to those, already considered except for the interpre-

tation of the matrix elements. Here "We are interested only in rotations of the 

ground state. Consequently the effective interaction carries the effect of 

intrinsic excitations and their rotations (as "Well as the higher rotations of 

the ground state that are dropped in the truncation). All the matrix elements 

that appear, are therefore diagonal with respect to the intrinsic structure and 

so, for practical reasons, according to our earlier discussion, must be param-

eterized as a complex optical potential. The potential is of course deformed. 

While "We shall loosely refer to its shape as being the nuclear shape, it should. 

be kept in mind that "We are really talking about the particular component of 

the field generated by the nucleus, to "Which the projectile is sensitive. 

Various projectiles such as protons, neutrons and alpha particles all should 

feel different fields. Ho"W different their shapes and surface structure are 

is not ~ priori kno"Wn, nor are the experimental data definitive. 

In contrast to the earlier discussion of intrinsic excitations in 

spherical nuclei "Where the diagonal matrix elements, or optical potential, could 

in principle be different in each nuclear channel, they are identical in all 

channels of the present problem. The channel quantum numbers are 

c' == a'K'J' £' (16) 

"Where a' denot~s nuclear quantum numbers additional to K' and J' like the 

parity of the levelTI', while £' is the angular momentum of the alpha 

particle. Its values are restricted by conservation of angular momentum and 
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parity. Since the target spi'n'and.parity is 
+ . 

J::O, the' channel spin, I of 
, . 

our earlier discussion is' just the angular momehtum £of the incident alpha. 

£'. =.£ + J' 
""""'. """'" ~ 

(17) 

. . ". 

The off-diagonal matrix elements of the interaction, whose multipole 

de'7omposi tion .is given by (14) can be f~~d· from the results of section IV by 

. setting s = 1/2 ~. 0, for our present case of spinless alpha particles, or 

otherwise one can obtain ,them directly by the same Racahmethods. 

(18) 

vlhere; as before C is purely geometrical 

. and 1 is the form factor (15) that was discussed already. Actually we shall 

:t>e talking only about the ground state band,,;of rotational states all of which 

have therefore K = ° . so that only K = ° contributes'to (18). In general 

two values of K could contribute, namely K = 1Kl ± K21 •. 

Now the coupled equations (II-9) are completely defined. For each in-

cident partial,wave £ there are J + 1 outgoing waves for each nuclear state 

'.: J when £ > J so altogether there are· 

" 
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N = 2: (J + 1) 
J 

63 

where the sum is over the spins of the states considered. The method of solving 

them was qualitatively discussed,but the detailed numerical techniques are not 

interesting to us here. 
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VII.· ALPlrA, SCATTER~NG IN THE DEFORMED RARE' EARTH REGImt 7 . 

The excitation of rotations of the ,ground state in strongly deformed 

even nuclei is exceptional in that the intrinsic structure of the states is not_ 

changed in the reaction .. The scattering is thus defined by one object, 

< 0 [7"10), the diagonal matrix element of the effectiveiriteraction in the in-

trinsic ground state.'. This is in contrast with the excitation of vibrations and 

single-particle states in which a number .of matrix elements which are non-

diagonal in the internal structure are also needed. ·As we mentioned in the 

previous section, we shall work within the subspace of ground state rotations 

so that "V' carries implicitly the effects of all the intrinsic excitations, and 

we parameterized V ~ < 0 I""Y'IO) as an opticalpotential having a deformed shape. 

Its expansion in a 'm~ltipo~e series was written in (VI-14). The LIth multipble is 

-re,sponsible for directly,excitingthe ,J=L,rotati.<'>nal ,state', so\that a ·careful study 

of the various excited states will yield us the multipole expansion of V 

whose various terms are related to· the optical parameters . V O,WO' r 0' a of 

(vI-8) and the shape parameters of the nucleus (VI-7) through equations (VI-

10,11,13). A careful measurement of the cross-sections of the various rotational 

states provides a great deal of dat"a with which to determine V. Each angular 

distribution constitutes not one, piece of data, but many, being characterized by 

such features as the frequency of oscillation, phase relative to elastic 

pattern, slope of the envelope of the maxima, amplitude of the oscillations 

and magnitude of the cross-section. One can expect therefore to measure the 

optical and shape parameters very accurately. Perhaps even the well known 

ambiguity in the depths of the optical parameters can be resolved, although.we 

can not state this-, - since our analysis has -not been completed. -

~. I 
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Here we, shall apply the pi-Cture ef scattering by an ideal reter to. 
, , " . '1 

experiments perfermed.atBerkeley 7 en various nuclei in the rare earth regien 

ef mass A !::: 160.. In these experiments differential cress sectiens fer 50 MeV 

alpha particles were measured with very high precisien. The elastic cress 

sectiens fer a series ef feur even samarium isetepes. are shown in'Fig. 11. 

66 

They exhibit a very impertant qualitative difference. The escillatiens which are 

very di'stinct-,:in the lighter two. nuclei are almest absent in the heavier. In 

fact it is knewn that the lighter two. are vibratienal while the latter two. have. 

+ + 
retatienalspectra • The B(E2) fer the 2 -7 0 transitienis much larger fer the 

, 18 
latter nuclei and it is thestrenger~: ceuplirig to. the surface medes that is 

reflected so. clearly in the elastic cross-sectiens. The scattering back to. the' 
" , 

+ elastic state frem the 2 cannet be neglected when the ceuplingbecemes ·tee streng. 

The curves shewn in Fig.,ll are cress-sectiens cemputed frem an. eptical 

medel petential in which ,the elastic scattering is treat~d in iselatien frem the 

other states.19 Frem eur discussien ef the effective interactien in Sectien III 

. it. is evident that the parame..ters (shewn in Table 1) will be very different fer' 

'the retational nuclei than for t-he vibratienal enes. This is because it must, 

take inteacceunt the effects en the elastic channel net enly ef the intrinsic 

excitatiens which are also. present in the spherical nucleus, but ef the re-

tatiens as well,which are absent in the latter.' .When excitatien ef the retatiens 

is explicitly calculated by selving the ceupled equatiens, their centributien 

to. "'Y is remeved ,and we find that e'ssentially the same optical parameters (see 

Table 1) apply to. peth the spherical and de ferme d nuclei, since now they beth 

take acceunt ef the intrinsicexcitatiens enly. It is true that near the greund ,I 
~ ~ 

state the spectrum and structure ef intrinsic excitatiens are generally dif-

ferent, but ef ceurse the higher energy nen-cellective excitatiens ef whi<:h there 

". 
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VII 

are millions at the energy of the 'experiment, dominate the effective interaction. 

It is possible that the small disagreement that does still persist could be 

eliminated if the effect of the collective vibrational level in sm148 were re-

moved from~in the same way. Thus a rather consistent picture of the effective 

interaction emerges . 

So far we have a complete calculation only for one rotational nucleus, 

The experimental results are shown in Fig. 12 together with a coupled 

channel calculation ,using the formulation of the preceeding section. The multi-

pole expansion of the potential (VI-II) in both nuclear and Coulumb parts was 
~-. ---- ._", ~-

-,-carrledolit to L:;8~ and-in the Taylor-expa~~ion of each multipole we kept all 

terms up to and including n::8, which we confirmed led to completely convergent' 

results in the cross-section. We also checked the effect of truncation within 

+ the space of rotational states. We confirmed that eliminating the 6 state led 

to no detectable change in computed cross-sections to the lower states. Eliminating 

+ + both 4 and 6 did produce small but detectable differences. So we can be 

+ assured that truncation beyond the 6 level introduces no errors in our deduced 

parameters. In fact the calculated cross-sections must be regarded as numerically 

exact within an error too small to be detected even by the very precise experi-

ments which are more accurate than indicated by the experimental points marked 

on the graphs. 

The excellent agreement shown in Fig. 12 corresponds to the optical para-

meters listed in Table 1 (set b) and values of the deformation parameters: 

134 = CX40 = 0.05 
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The sensitivity to the value and sign of ~4 is indicated in Fig. 13 . 

. + 
There we see that both the phase and magnitude of cross-sections to the 4 and 

+ 6 are dramatically effected by ~4 as was previewed in the form factors V4 
. \ 

69 

and V6 0f Fig. 10. There is some suggestio~because of the slight disagree­

ment of the 6+ cross-section at forward angles, 6f a small ~6 component to the 

8+ 
shape. The state will have to be measured to pin this down. 

Although in this strong coupling situation the distorted wave Born 

approximation should not be applied, it is instructive to see what results if 

it is used. The computed cross-sections are shown in Fig. 14. The main 

--~----q-ua-l-itat-ive-drffe:terfce~is fnat-th-e large amplitude oscillations in the higher 

spin states are no longer reproduced. In fact the deep minima are produced by 

an interference between the direct transitions which the DWBA takes account 

of, and the cascade transitions, which it does not. (The DWBA. does not take 

account of the backward going transitions either, being of first order in V, 

and these have a very strong effect on the elastic cross-section). But never-

theless if one accepts the magnitude of the cross-section as a means of deter-

mining the value of .300 is obtained which is in closer accord with 

Coulomb excitation work. 

However our parameters reproduce the experiment so·well, as seen in Fig. 12, 

that we have considerable confidence in them. It does remain to be seen whether. 

they are unique. These calculations are in progress but incomplete. 

Though the main field responsible for the excitations is the nuclear 

one, the . Coulomb excitation cannot be ignor~d, as is indicated by the results 

shown in Fig. 15. The erroneous value ~2 = .27 is deduced, compared to .225 when 

the Coulomb excitation is accounted for. 
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Fig. 15. Coulomb excitation 1·s neglected here. Comparing 'With Fig. 12 'Where 
it is included illustrates its importance} even though the main mechanism 
is thE: nuclear excitation. Note also tl1e interference+bet'Ween nuclear and 
Coulw;lJ excitation in Fig. 12 at small angles in the 2. To compensate 
for the nei~lect of Coulomb excitation a larger value of 132 is required} 
namely Pr '" .27 cornparE:d to .225. Even so the data canno"[ be 'Well rc;pro-
- ~ . 
auced. 
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Table 1. Optical model parameters for 50 MeV alpha particles. The l4Bpara­
meters and set (a) for 154 are pure elastic whereas set b) include explicit 
coupling to the ground state rotational band through solution of the coupled 
equations. Most important difference is diffuseness which in set (a) is very 
large corresponding to the implicit treatment of the rotations. ' 

V 

65·5 

a 34.6 

b 65.9 

W r 

1.427 

1.404 

1.440 

a 

.671 

.B19 

.637 

r 
c 

1.4 

1.4 

1.440 

-.-~.-

--,~~--- -- --~Trends-in t34-:--T1le-- excellent;~~eem;nt obt~ine~ ~it;the Sm154 data and 

'+ + 
the high sensitivity of the 4 and 6 states to ~4 lead us to believe that we : 

can make a very precise measurement of the nuclear shape. 

for Sm154 we see that the states are alternating in phase. 

phase and th~ 6+ in phase with the 2+. However in Yb176 as 

Referring to Fig. 12 

+ The 4 is out of 

seen in Fig. 16 
+' + + 

the maxima of the 4 fall between the maxima and minima of the 2 and the 6 is 

+ 
out of phase with the 2. This, as seen in Fig. 13, approximately describes 

the situation for ~4 = -.05. According to that figure, we also see that the 

amplitude for ~4 = + .05 than for ~4 = 0 or -.05. Comparing Fig. 12 and 16 we 

see that this feature is present in the experiments also. We must do an ex~::.. .... ", .. 

plicit'apalysis of this nucleus, but it seems safe to conclude that Yb176 has 

, 20 
a negative ~4 deformation near -.05. Hendrie, following the example of 

21 Harada, computed the ~4 deformation on the basis of the Nilsson model. This 

calculation took account only of the nucleons outside the last closed shells 

and consequently the origin of the ~4 deformation is not known, since the core 

presumeably also makes a contribution. However using our measurement on Sm 154 

the origin was fixed and the resulting computed ~4 shown in Fig. lB. We ~ote 

that the predicted ~4 for Yb176 is negative in agreement with our conclusion above. 
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. , "'. 

. .; 

f,.,' 





'16 

, VII 

Summary. We have computed the scattering of alpha particJ,esby a per-
,;.t:. 

fect rotor. In view of the sensi ti vity to the nuclear shape parameters, we 

believe that by demanding essentially perfect agreement with experiment one can --i 

. ·154 
measure the shape very precisely. This was. achieved for Sm • Analysis of 

other nuclei is underway but the trend of the ~4 deformation in the rare earth 

region appears already evident, and isportr.ayed in Fig. 17. 

Finally there is a.question as to the uniqueness of our parameterization 

of the nuclear field •.. This has still to be settled, but if there is any hope 

at all in finding a uriique potential it is surely in this situation where there 

is so much data available which is sensitive to the various multipole moments. 

I 
! 
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APPENDIX TO SECTION II 

Cross-sections. For the sake of completeness let us recall how the cross-

sections can be obtained from the asymptotic behaviour of the wave function. 

From (7) and (15) we have for one channel 

M 1 
'Y. I ~ cn r 

2: r/, M f;; (I _ 0 ).+f~)1/2 (0 
c ' .. '+' c' nI t -c ' c c C \ k c '. c ' c 

The total wave function is 

'l:' = 2:A M '1' M· 
c7TI c7TI 

- S 0 
C I C ) c' 
I .. } 

.' . 
+~---.--- .. _-- .--~ 

r , 
I 
~ 

! 
I 

I 
r 
I 

I 
! 

. , 

and we must choose the coefficients A to correspond to the fact that there is a 

plane (or' Coulomb distorted) ·wave in the target channelaJ. ,That is in the absence , 

of scattering (8=0) we should have 

._M,m M() m() ikz 
~O = ¢aJ A XI / 2 a e 

or in the presence of the Coulomb field alone 

._M M ..... j 1 1a £ 0 1 - I £' 0 
~~,m = ¢,-vT(A)X1 ... / 2

m ~ ,47T(21+1) i e . Y C '-"<.J.t 2ikr .J. 

whence 

Inserting this into 'Y and employing the asymptotic· expressions for 

we obtain, the general form, 

o c 

.L 

and 
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.' '" . 

cx'J'M'm' 

i[k'r~1) 'in(2k'r~ . . . .• 
e . IJrN (A) 
.. r ,'. JCXJMm,CX'J'M'm'. r + 

The first term has a Coulomb scattered wave, or in the absence of charge is just 

a plane· wave and the second term represents the scattered waves arising from the 

nuclear interactions. The explicit form Of.f-N can be obtained by performing 

the algebra implied above. 

. ~e2k'r/r The current associated with ~ is so that the flux . 

through the surface 
2 

r dD, in the direction n, is The incident 

flux is v so 

where 

. ~. = ~C orvrv' n.:. _ 0 + t!N :r .T \.AA.A< ~'. mm'TaJMrn,CX'J'M'm' 

.; 

denoting the Coulomb amplitude . Asymptotically> we can replace 

r by K' . 

.. ( 
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FIGURE CAPTIONS 

Fig. 1. The DWBA. takes account of only transitions 1 and 2) ~hereas the coupled 

channel calculations includes such additional ones shown and all of them 

iterated. 

Fig. 2. Shapes of several sipgle-particle form factors that contribute to 

+ 
excitation of 2 states in nickel isotopes are shown for several force 

ranges of the direct interaction. The· oscillator parameter v = mmjn = 

0.25 
-2 F . (Ref. 6b). . 

Fig. 3. Scalar form factor for the lo~est 2+ state in Ni60 is shown together 

~ith the single-particle form :factors that contribute to it. -'1'b.ey_ al~flay"e __ 
--~- ~- - - - ~-~.- ~-- -~--' . __ .. ----- ~----.--- --. ---- ~- .-- ~--

+ such phases that they add constructively for the lowest 2 but must there-

+ 
fore be destructive for all other 2 states. (Ref. 6b). 

Fig. 4. Scalar and vector form factors for 2+ states in Ni60 are shown at the 

left. The absolute values are plotted and oscillations are indicated by 

(~) and (-). Corresponding cross-sections at 11 and 40 MeV for proton 

scattering calculated in the distorted ~ave approximation are also shown 

(Ref.6b). 

Fig. 5. Coupled channel (solid) is compared ~ith optical model calculation of 

elastic and distorted wave calculation of inelastic proton scattering 

(dashed). Note that elastic is barely effected by the additional coupling. 

While several cross-sections are only slightly changed others are signifi-

cantlymodified (Ref.6i). 

Fig. 6. Cross-sections and polarizations for 17.8 MeV protons. Curves are 

coupled equation calculations using microscopic description employing a 

surface delta interaction Ref. 9· (solid line) and a volume finite range 

interaction Ref. 8 (dashed line). Direct interaction parameters are 

Vo = -55 MeV) Vl = 0 and p = 1.85 F of Eq. (3) and (l~) (Ref. 6j). 
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}i'ig. '7. Cro~,s-sections ahd polarization for 18.6 MeV protons; The experi-

men"~Ql polarizution was measured at Saclay. The solid lines are coupled ,?'" 

chclnnel calculations based on the microscopic theory, of Ref. 8. 

rig. 8. Cross-section and polarization for 17.8 MeV protons, measured at 

Berkeley. ,Solid lines represent coupled channel calculation 'based on 

microscopic theory of Ref. 8. 

Fig. 9. The V2 form factor together with contributions to it from various orders 

1 through 5 in (32 including the Coulomb part.' The leading term is the ,.,ell 

known first derivative but the higher terms yield altogether a correction of, 

about 20% in the form factor for (32 = .27. Note the changing scale for higher 

order terms. The Coulomb form factor is also shown. Dashed lines are the 

imaginary part. 

Fig~ 10. The form factors V4 and V6 are shown for tbree values of (34' 
I;' 

Fig~ 11. Elastic cross-sections for four samarium isotopes •. The strongly 
, , 

dampted oscillations correspond to the rotational nuclei. Optical model 

cross-sections were obtained by N. Jarvis. 

Fig. 12. Cross-sections for 50 MeV' alpha exciting ground state rotational band 

ofSm154. Curves are coupled channel calculation as described in text. The 

datu were taken at the Berkeley 88 inch cyclotron (Ref. 17). 

Fig. 13. 
,,' + + 

Extreme sensitivity of 4 and 6 to sign and value of (34 is indicated 

in 50 l'.feV alpha scattering from sm154. 

'Fig. 14. Distorted wave calculation with optic parameters set (a) of Table 1., 

Fig. 15.' Coulomb excitation is neglected here. Comparing with Fig. 12 where it 

is included illustrat'es i,ts importance, even though the main mechansim is the 

nuclear excitation. Note alsQ the interference between nuclear and Coulomb 

+ excitation in Fig. 12 a~ small ancles in the 2 • ,To ,compensate for the neglect 

of' Coulcmb excitation a l~rger value of t3.2 is required namely ~. ,= .27 

compared tc.225. E:ven so the data cannot be well reproduced. 
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Fig. 16. Cross-sections for 50 MeV alpha particles on Yb174 as measured at 

Berkeley (Ref. 17). The curve is merely a line through the points. 

Fig. 17. The ~4 deformation computed by Hendrie on the basis of the Nilsson 

scheme, by the method 'suggested by Harada. 
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