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. be those of a single nucleon, such as in Pb

INELASTIC SCATTERING AND NUCIEAR STRUCTURE

Norman K. Glendenning

I. INTRODUCTION
‘The scattering process is one of the most powerful means of investigating
nuclear structure that we have at ouridisposal. Here I shall attempt to review

the theory of inelastic scattering and its applications to the study of the pro-

perties of individual nuclear states.

‘The nature of the experimental observation can be described as follows.
A-beam of (ideally) monoenergetic particles, let us for the moment say protons,
1s fired at a target of some‘pure isotope. A counting system has been set up to

record both the number of particles that are scattered at vartous angles, and

~ their energies. A counter at a particular angle will record having seen
- protons in discrete energy groups, corresponding to excited states of the target;
and then a ‘continuous energy-spectrum of protons correspopding to the

:_‘closely spaced levels at high excitation in the nucleus. It is actually the

description of events leading to the groups of protons corresponding to individual
nuclear states of the target that we are interested in.
The intrinsic structure of the lower lying states of a nucleus generally

can'bethoﬁghtof as not differring very much from that of the ground state. Those

.that do, lie at a much higher energy. That is to say, only a very few degrees

“of freedom are involved in the excitation. The relevant degrees of freedom may

209 which has a doubly magic number

of neutrons and proténs plus one extra neutron. The lowest half dozen levels or
so differ from each other, essentially, only in the state of the odd neutron. On

the other hand a nucleus like Smlsh is strongl&ydeformed and‘its-low lying spectrum
A ..
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suggests that thése‘léﬁels_éll'have the same intrinsic nucleonic structure and =

~ correspond merely to different rates of rotation of the system. ' This again, Viewédﬁ'_

in those terms, involves only the few degrees of freedom associated with the '
rotation.
In considering what physical process is involved in causing such a minimum

sort of_rearrangement,.one is immediately led to consider a direct interaction

between the prbjectile and the degrees of ‘freedom in the nucleus that have been

changed. In the Pb209 examplé the interaction would be with the odd neutron. In }

the deformed nucleus case, with'the part of the nuclear field arising “from the

deformation.

 Are there,compétingfmechanisms?' Perhaps a compound state was formed which

subsequently decayed to the observed levels. This is always possible. However

k;fif-the bombarding energy in the experiment is sufficiently high, there will be

'—so'many‘sfates to which‘a_compound state could decay, that the probability Qf dééay'

;ﬁﬁ;ény one of them = is very small. Tomake the Gontribution of this process == ° .-

small, we  therefore shall consider only bombarding energies greater than, say

“ 15 MeV, which, in a medium to heavy nucleus plades millions of levels in competitionﬂ

. with the ones of-interest;bas far as decay of a compound state .is concerned.

, energy group, yields the differential cross-section for exciting each level.

_The<measurements'atﬂvaribus angles, of the number of particles in each
In
a gross way, the angular distribution of scattered particles from a given energy

level reflects the spin and parity of the level, or more accurately the spin and

" parity that was exchanged between the scattered particle and the nucleus in

. making the @rénsition. This is because the particle must scatter in such a way"

as to obey the various conservation laws including angular momentum, and this im-

poses restrictions on the directions into which it can scatter. Just how directly .

W
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the exchange of angular momentum and parity is réflected iﬁ the angular distribu»-
tion depends on several circﬁmstances. Let us for a momént‘cpnsider some typical
single—pafticle states whose wave functions wé know have various forms inside
the.nucleus, but which all have similar exponential forms outside. AThese will be
occupied by variou; hqmbers of nucleons and in such combindtions that the nuclear
wave functions aré QrthOgbhélrto‘each other- Exciﬁation of the nucleus from one
state to another implies making the necessary.rearrangement in the way in whiéh
the single-particle stateé‘are occupied. 1Inside the nucleus, because of the various
fqrmé of the siﬂgle~particle wave functidns, one transition will bg characterized,
in general, by a différent radial aénsity‘than another. However in the exterior
‘region all the‘radial'densities will look similar to éach other, aside from their
‘ndrmalization. Now it is known that when a compogité particle, like an alpha, is
scattered from a nueleus, it is'mainly éensitiVe to the conditions in the exterior
region. 'Hence its angulér distribution will bé quite igsens&tive to the details
of the structure of the states but wili depend essentiaily only on the angularbmo—
méntum and parity transferred. The reiétionship is quite simple when the state is
excited directly from the ground state, but is less diréct.when cascade tranSitions
throﬁgh ihtermediate states.compete.with the direct tfansition, as we shall see
"latéf. vaen though the angular distributibns~of stronglyé;bsorbed ﬁarticles are in-
~sensitive to interior detéils, the magnitude of the cross sections, which depend
on the normalizétion Qf the transition density iﬁ the tail, are by continuity con-
nected to the interior condifions.

In contrast to this situation, scattered nﬁcleons can penetraté the ihterior

of the nucleus and consequently their angular distributions may be quite strongly

- modulated by fhe interior str&cture. Experiments using nucleons clearly are less
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suitablé fof-détérmining tﬁé spins and parities of ievels.,'But‘they would bg more‘:
appropriate than composite particles for studying_the detaileavnucleonic structure

of nucleaf étafésQ | | |

Since fhése lectdfés are concernéd with'the‘use of ineﬁasﬁic scattering in

invéstigations of nuclear structufe, it‘is éppropriate.to mention what particulaf:
aspects:of this‘proceSS supblémént other means of investigation. First it is clear
that only ﬁhe simplest properties of nuclei can be inferred essentially directiy

" from experiment. The_poéition of energy léVels'is,an example, For more complicated'
_fopefties, such as the ﬁﬁcleonic strucﬁure_of the energy levels, this is not so.

.The structure is ﬁot an obsefvable. But it influences and reflects itself in
‘observables. Thé approach therefore is to const?uét a model of the nucleus, and
from the model calculate various observableé. It should yield an energy spectrum
;in gobd agreement ﬁith obéervation. But sincé_the-Hamiltonian is stétiohéry at

its éigenstetes it is possible tﬁat the'energy'leQéls of the model nucleus will

.comé out.invgood agreement with observation even though the wave functions @ay bé pbof.
They can be subjected‘to fﬁrther tests by calculatiﬁg additional properties such |

as eléctromagneticItrénsitiqn fates. However the wave iength éf radiation emitted.> .

in the decay of a nuclear state is very large, S ' ‘

2ic _ 2miic 1000 ‘ .
A= S S e T (Fermi)
- €0 that the radiation is rather insensitive to radiai detai1s of the nuclear structure.

Of course the selection rules are very.important in a spectroscopic sense in de-

termining gross prdperties such as spins énd paritiés. Moreover the intensity

"does depend on the coherence involved in the nucleoniéirearrangement.in undergoing




PRI S e g i W AmT D RO s s & Sl ol AT IV KV i e

et v e < o i 55 T 12

the transition from one nuclear state fo another, which if constructive leads to "
) the enhanced transitions commonly referred to as colléctive, or if destructive
. | leads to hindered rates. These are important additional properties that a satis-
factory model must reproduce. But even these properties are not highly sensitive
to the particular microscopic details of the statés involved. In any case it is
clearly desirable to have a means of probing finer details.than is allowed by the
E.M. transitions. Inelastic scattering where the momentum transfer, g =k - &f,
can be qﬁite large, in general provides a finer probe, being sensitive to distances
o&r ~ l/q. This sensitivity,will,register itself in the angular distributions which
moreéver will generally involve severai miltipoles in contrast with electromagnétig
- transitiéns, which are usuaily dominated by one.
Quite aside.from the question of detail in radial distributions, scattering
: df various types of particles,offérsa means of explofing various aspects or com-
ponents of the nucleér field that exist by virture of the Spin, isospin and tensor
components of the nucleon-nucleon force.

. During the last few years powerful theoretical techniques for handling the
nuclear many-body problem have been developed, which have permitted a fairly de-
tailed description of nuclei in certain regions of the periodic table}' In this

. way the collective and "single-particle" states are described on the same footing
| ~ °  in terms of their nucleonic strucﬁure. While these detailed descriptions have
suéceeded fairly well in explaining the energy levéls,and"toqéome extent electro-
:magnetic transition rates and their systematics in certain regions of thé periodic
- table, it is important to have the.additional checks that a aetailed comparison:

: ‘with.SCattering data can provide.



II.

" IT.. COUPLED CHANNEL AND DISTORTED WAVE METHODS
The typical situation in attempting'to extract nuclear information from
a scatterlng experlment is the follow1ng We have'available a. certain model of

.of the nucleus which prov1des wave functions for the nuclear states. Let H

".denote the model Hamlltonlan for the nucleus of mass A, whose internal. coordlnates

we shall often denote also by A. We have available its eigenfunct;ons:

(HA'-"-EO[J) Tpl) =0 - <;>

R We want to determlne whether the descriptlon of the nucleus provided by th*s model .

‘is con31stent w1th a. scatterlng experlment.
For the system comprising the nucleus and the scattered particle, let us
say a proton, we therefore take the Hamiltonian
Ho=H, +T+V(g,4) S B (@)
'l,where T is the klnetlc energy of the proton, and V is the interaction of the
'”"proton w1th the nucleus. If the nucilear Hamiltonlan HA were written in terms,
,'of’collectlve coordinates, then these would appear in V, whereas if we had a

emore fundamental description of the nucleus in terms of the nucleon coordinates ;

‘ '£i~gi_$i, then .V iwouldvbe a sum. of two-nucleon potentials.

In any case;'it.ie natural to seek a solution of odur scattering problen;egu

fdefined;vWith appropriate boundary conditions,'by

(H - E) ¥(g,4) =0 | D l ;" ' " (3

. ;"-
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in the form of an:expansion in. terms of the nuclear wave'funetiohs QiJ(&), since
we wish to determine théﬁr;appropriatenessxfor1describing'the;nucleus.

To this end introduce the spin-orbit functions for the proton

ot = D 1 @1 | (4)

,"Where i denotes the polar coordinates of r and 1 is the\spin funetion for

the proton. Since we now have many Quantum numbers to keep track of, let us de-~
note by ¢ the whole collection of quantum numbers which define the intrinsie

state of nucleus and proton and thelr relative angular momenta before the collision,

¢ =QJ [Is]

and by c¢' some other state of intrinsic or relative moticn that may be achieved

ffaS‘a result of the collision. Using the spin-orbit functions for the proton, and

- the nuclear wave functions @ we form the functions of total angular momentum

aJ
I and parity = '

e - |
5 . 5
L (-)l'rra - (5)

namely  \ o
| bk B00) = ey @

5 . o - - R

In terms of these we now write an expansion for a solution of (3) having giveﬁ?

par%ty and total angular momentum 7 and. I.
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I have put a ‘EIEIGJZSj 1eﬁ.the state functiene‘ ?e-Anéfoﬁ tﬂe radial function -
u(r) to remind us that the initial state- of the system corresponded to the

‘ nucleus in-a deflnlte state oJ (the ground) w1th an incident protop having

’angular momenta lsj.' | |

.There»are two improtaht approximations implied when we write the expaneiOn
(7). Since it always coﬁtains the'pfoten ae a free partiele, we are neglecting
any epecific effect on the inelestic channels_thet we are interested in, of re;
actions such as pickdp;; The expansion is in tefms only of the elastic and inelastic
.' channels centaining the'prOtonf Moreover we.neglect eXChange of the proton with
Y, one in the target, which may take place, either‘by»viftue of the indistinguishability

vaf identical pafticles of‘by the exchange nature\of tﬁe_forces, , t S '

As to the fifst eppreximation we may note,thet the elastic and ineléetict_.'
pfocesses typically fepresent the largest patt of the directcrose—sectiont “We
may'be'prepared then to treat the other channels imblicity-through use of an.

- absorptive part in tﬁe diagonal matrix elements of the interaction;

.The neglect of exchange is less well founded; but is presumed, on the

strength of overlap erguments, to introduce little'effor”particularly fer suf;‘?

‘ficiently high bombarding.enefgies.
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Coupled.equationé.g'Inserting now the expansion (7) for ¥, into the

Schroedinger equation, (3), and making use of the orthonomality of the functions @,

- MYy M
' <¢C e I¢C'7TI>

= %ot S Brrr Gae @

we obtain, for each total angular momentum and parity I,m of the system, a set of
éoupled equations- for the radial functions u(r).of the scattered proton. For each

channel c¢' they have the form

T | I -
(Tgr *+ Vgrgr(2) = B g () == 2 V() () (9)
where .
° a2 2(g+1) ]
T = — |- +
c  2m 2 2
dr— r
2 2m - . _ ' IR v
'kc = _§'Ec | | (10)
H , .
Bo =8 - By

with E denoting the bombarding ehergy.' Finally.
: I ' . A VA ’ ~ " :
VC 1 c"(r) = | <¢c 'n I(a’é) Iv(a)é.) kbcu,n I(a’é» v ; (11)

denotes an integration over all internal coordinates and the polar angles of g,
leaving a function of radius r = |r[. It is of course diagonel in 7 and I,

- and independent of M, since V is scalar. All the functions u should be

v  understood to have the additional common labels shown in (7).

i
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As itsstands, thé.system of equations is.still‘infinite in number so that.
we shali make é;furthef épproXimétion: of all the inelastic channels .leading to
bound or continuum states of the nucleus, we.shall keep only those terms in the
-expansion (7) which correspond to states having large cross-sections, plus any
others which may interest us. Now the system of equations is finite in number,
_and solvable numerically with a computer. We shall have to diécuss the approxi-
mation we have madevin considering.only a few of thé manj channels. In particulé?
we shall see in what way the'finite system can be modified so as to include some
of the effects of the channels that we?e explipit}y eliminated. fhis will be
taken up'in the next section.‘ | | |
| Now létlus‘discuss a little ﬁhat is involved in numerically sol&ing the
R coupled équations. Each fuﬁction' u, is subject to‘tw0'boundary conditions; one
is at the origin whére the functions must vanish. 'Actually the behaviour in the
vicinity of the 6rigin_is that of a spherical Bessel fuhction. This fact can be
-used in numerically_integrating the equations on a computer, sO as.to avoid a very
"bad starting condition that could cause the solutions to grow in magnitude beyond
o thé range of the'computer, as the integration_prbgrés; tdlaréér radii. So starting
the ' integration Very'close to the origin with an infinitesimal Value for the function
in the incident channel, one would ggégg its SIOpe to be that of the éppro-
‘ priate Bessel functions. .Of course the poiﬁt is that we will not knbw.the actﬁal
slope until we reach the exterior region where thé second boundary condition gpélieé.
"In the.exterIOr region, where the nuclear potentials have falleh to zero,
the_equations_become uncoupled and are just the equations whose sqlutioﬁs’arg
relatéd to the Bessel functions in the case of neutrons, and Coulomb functions in

i

the case of protons. Hence
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. : . \
u, - a,Fc + B GC _ ' : (12)

where F and G denote the regular and irregular Coulomb functions. In

the absence of charge they become
1/2 | |
) [T | .

It is actually more convenient to use instéad of F and G the combinations of
these functions-which asymptotiéally behave like outgoing and incoming spherical

waves, Oz -and IZ-’

*. . . : _ . B L
1, =0, =6,+1{¥, _, ot (kr-nin(2kr) gﬁ/2+01)F1 S

where 1 =‘mZZ'e2/ﬁk,__ and a, is the Coulomb;phase shift. The boundary

. eenditions now can be stated precisely. In the .channel -c there are both
incoming dnd outgoing spherical waves at infinity,lcorrésponding to.the
fact that there is an incident wave in this channel. However in all other channels,
there are only outgoing waves. Hence we require:
_ o ' 1/2
Cu o s, I(kr)-[2] st oo, 1) (15)
! cve e e've!

- _ c c'e N c!
W : [¢]

In general the integrated solutions will have both incoming and butgoing
waves in all channels at infinity because the integration had to be started at

the origin. Therefore a linearly independent set of solutions must be generated.
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Let-us. number the various channeis et by l 2 «. N w1th l denotlng the target

‘channel c. (There w1ll be only one target channel for glven Iﬂ'when the targetfy
" has J=0, ”Thls.case,weﬁnOWsspe01a11ze to for,slmpl;01ty~ofunotat10n.)vaet us-placef. w
a)two.subscripts on,each solution;.-The One.will~denotebthelcnannel.number just;mentidned
~and the. other which of' N different initial conditions could be éhosen for the |
integration Thus- uk w1ll denote the k th channel of the system solved accordlng Ey
'to the boundary condltlon numbered p. These condltlons we can choose to be

__ Kr '/zpﬂ
if_’)“o W) = ) 21 F) T " ""

b-and thevderrvativevof this function. _Thus the behaviour of the'SOiutions is Suobvtj‘
thatvail but one‘ehannel-function has zero*vaiueﬂand g;gggjat»the origin. By
'solv1ng the system N tlmes w1th the boundary conditions p =1,...N we generate N h
_dlstlnct sets of solutlons, some linear combination of whlch satisfies the requlred ;;'J'

’ boundary conditions at an arbitrary exterior point R. This is expressed by the».n'

linear aigebraic equations'
: 8o Vpp T oreeBy Yoy T o Op v 00 =0
tar oeE N 2" - (18)
O R b0 g oo e
B0 B i ARHER T | -E S e © S0 NOZN» . SRR

“where all functions are -evaluated at 'R. Writing down also the derivatives of -

u:these equations would yield us 2N equations which can be solved for the .Nb
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coefficients a:'andvtho N scattering matriﬁ elements S. From the latter the
cross-sections for exciting each.of’the nucleaf states oan be calculated.

-It may be hoted that‘the number of coupled equatioos far excéeds the
number.of nuclear states congidered. This is because "¢ labels not only the
nuclear state @J but the angular momentum of the scattered 'particle.. Thus if
the total angular momentum and parity of the system are I,m then corresponding
to one nuclear stafe offépin and parity J Ty there will be stattered particles.:
of all angular momenta z,j( satisfying the conditions of Eq. (5), of ﬁhich there
are in general 2J+1 (when J < I, as is so except for thevlowest partial waves).
Thus for each angular momentum and parity Im there are

N= 3 (2J+1)
states

channels, where‘the sum is over the states of the nucleus. The experimental

conditions correspond to a beam of particles incident on the target,which is a

_superposition of many angular momentum states. Théy"range ~from f¢=0 up to

some maximum value, given approximately by 2kR, where R, -is:the

radius beyond which the interactions are effectively zero. For'oach 1 . there

:»are}two ﬂj states, - therefore.the total number of differenfial equation to be

solved is about hkRNe.

Distorted wave Borh approximation. A modest scattering problem for 20

’MeV protons scattered on the .nickel 1sot0pes, and taking 1nto account the lowest
6 or 7 states involves solving about 20,000 second order coupled differential

equations in the method described above. It is not surprising therefore that

";'uhtil recently the problem as stated above was solved only to first order in the

interaction V. This is called the distorted wave Born approximation and was first

vconsidered by Mott and Massey in their classic book on scattering, and was first

applied to nuclear problems by Horowitz and Me551ah and by Tdbocman and. Kalos.3
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Referring to Fig. l,;transitions,which_léad from the ground to an excited '

 state occur in first order ih-»V,.'whereas‘Otheritransitionsfieadiﬁg back to the':*vv,

ground1or connécting excited states, oécur»only;in second or higher order. ThéféL '
fore, to first order;lthe differential equation,-éf the system (9) which refer

» to sca£téring on'thé groqnd state have no source term on the right, while those
' refefring to exéited states have a single source term corrésponding to the direct':f

transition from the ground. Thus to first order the coupled system (9) becomes;v'

+ - = : '
.(Tc V. Ec)uc 0 o (targgt channels) A (19a) |
(jc,'+ Vi —iEc,)ué, == Vi, Uy . (excited state ghannels) (19b)_’

The'éu?erscript 9zero"loﬁ the solution to fﬂe fffs%‘equation will serve to re- .
mind ué, whenever itfappears,;tﬁat it is a solution to an uncoupled equétion._
 'The sﬁbéériptv e -reférs»té those channels which have the nﬁcleus in the ground
“‘state}'and the préjectilg in.any one of varibﬁs angular momentum states 1£j, |
while c'. refers oniy to excited states of the nucleus. The system is much
Msimpler than before,.since each excited state is coupled only to ground state
chaﬁnels. Hence_eéch excifed étate can be.coﬁsidered separately from the others
in fhisvapproximation,_ Therefore let. c! for.the'remainder of the discussion

~denote tﬁe nucleus in a particular excited state a'J'. Consequently the various
B channels ¢' refer to various angular momentuﬁ-statés of the projectile Z‘j',

while the nucleus-is in this definite excited state.
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The ‘equations couid be solved numefically as before. This would involve
solving for each 'kj, 2'3', four second order equations. However the solution
can be obtained more simply by solving two uhcoupled equations and then evaluating
. an inﬁegral. This is what 1s referred. to as the distorted wave method.

To obtéin this solution to the problem we introduce the Green's function
correspondiné to (19b)

R , |
(T 0+ Vo - By)) G (n,r') = 3o B(r=e') | (20)

This Green's function can be constructed from particular solutions, OC,- and

o )
Ugrs of the homogeneous equation

(¢ c'c

v(T|+VIvv'Ecv)yl=O | . (21)

which are respectively irregular and regular at the origin.and have the assymp-

totic forms, for chargeless particles

0,  exp i (kc,r - 1'm/2) , : (22a)
. 218, | | -
e I - & Op
LY | | | f -
==-2i e sin(k,,r - 2'm/2 +<80') ] : (22b)_

(For charged particles, see Eq. (14)). Here Gb; is the phase shift produced by

The normalizations have been chosen for later convenience. The desired-

Green's function is

A -1 o - o o
G e07) = g W50 0,1 (53) (220

< denotes the smaller of r,r'
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In view of ( 21) it,bbvibﬁsly satlsfles (20) “except at r = r'. ~ For this
.s1ngular p01nt we.can make the proof by 1ntegrating the equation over r from

f‘f’*- 5 to T + 6 and flnally use- the value of the Wronskian of uc and O that

i

can be obtained from (21) and-(22).

Now we can show by direct Substitution.into,,:(19b) and using (20)

that . , ) v
. . om 1 ! 1 v | v -
s =2 g o () Ty <r>u(r)ar y (=)
c 2 : Lo .
is a particular solution ;bfi (l9b). © It is in fact the'aesired solution because

as r goes to 1nf1nity 1t has outg01ng waves only)which corresponds to the

phys1cal condltlons

f oov
m (o)
u_,(r) 2l [ u_, Vo, u, dr!
! G 21kcj o, ¢ ecre
kc 1/2 - -;" | 2 kl oy -
= = H Sc!c QC'(r) E | o - (21*&)

Foe o @w)

This-ié;ihe dis@orted wave ‘Born. approximation to thé;é~matrik;3 In this approxi-

' matign,.itvcan bg'obtained by finding the two functions which describe the elastic
'Hxsﬁétferiﬁg freﬁ,the*pﬁ%éntials Vit and V., respectively, and then performing-the
: ;lntegratlons indicated 4in (24b) Anyvolving the coupling potential V-

As the _problem. has been stated so far, v, (r) 'is a real intcraction since

it'is a-diagonal matrix element of the two-body interaction. We know that, to re-
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produce the elastic scattgring of avnucleon from a nucleus, a‘complex (Optical)
potential is needed. In the next section wé shall see that the effects of the
truncation of ﬁhe infinite system are properly taken into account by using in
place of VCc a new effective interaction which‘is complex valuéd. The procedure
for using the distorted wave approximation consists then of searching for a

parameterization of the effective interaction represented as an optical potential,

Voo (r) = V(r) + 1 W(r) + vy (r){e-s), ' ()
s0 as to reproduce the observed elastic cross sections. The elastic scattering
functions uz thus deﬁermined, are then used in (24b) to caleulate transitions
out of the ground state. |
‘The distorted wave approximation include; only such transitions as 1 and
2 indicaied in Fig. 1 and ignores all second order transitions 3 to 6 and higher.

If however any of these direct transitions from the ground is too strong, let us

say 1, then the populatibn of level "a" becomes sufficiently high that the transi-

tion, 3, back to the ground state (which is of course of the same strength as 1)

cannot be ignored. This is a qualitative statement, but it seems, as a rule,
that the collective transitions in vibrational nuclei are not "too" strong, where-

as the transitions in strongly deformed nuclei are. The B(E2) for electromagnetic

: +
_ transitions from the collective 2 state in the former case runs about 10 single-

particle units while it is as lérge as 200 in the permanently deformed region.
This provides' a rough guide as to when the DWBA could be valid.
Clearly the method cannot be used to calculate the cross section to level

"b" if transition 2 is weak compared to 1 and 5. This situation could arise

t
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.t remarked on. According to (22b) it has outgoing scattered waves at infinity so

Fig. 1. The DWBA takes account of only transitions 1-
and 2. The others can occur only aftér the excited
states have been populated, and so correspond to .-
higher order corrections to the scattering. The
coupled channel calculations 1ncludes all trans1—
tlons to all orders. )

-the partlcular structure of the levels, as in the case of harmonic vibrations.v

+

TThus even 1f none of the transitions is too strong in the sense described above,'

'"jthe method may still not work for all levels in a nucleus.

The absence of the complex conjugate sign on uz, in (24b) should be . . :

that it is the complex conjugate of a function having incoming scattered waves. =
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III. TRUNCATION AND THE EFFECTIVE INTERAcTION

ares el

Our main interest in inelastic séattering is in the information it can

o :yield about the structure of the lowervstatesrof nuclei. We were therefore quite
willing to reduce the infinite number of coupled equations describing the whole
system of nucleus and scattered particle to alfiﬁite set of equations which refers

. explicitly only to the nuclear levels that are strongly coupled to the ground

state, and any others of speclal interest. We did this simply by dropping the

other terms in the expansibn of thé wave function that refer to the higher levelsf
of the nuclear spectrum. Thils is of course completely analogous to the shell
model treatment of a residual interactibn, which is diagonalized within a finite
.subspace drawn from the lowest single—particle levelé. In the shell model, this

| rtruncation procedure is justified on the grounds that the single-particle level

spacings, and gaps between major shells are relatively large, say of the order of

f the spacing between the lower levels of the system itself so that most configurations
lie distant in energy. In the scattering casé however, the kinetic enefgy avail-
able for exciting the nucleus is of the order of 20 MeV or more for the experi-
ments we are interested.in. This is more than enough to excite the nucleus into

bthe region of high ievel density. States of the system consisting of the nucleus
in an excited state of interest, coexist at the same total energy with states in

FMT.I which the nucleus is in the continuum region of its spectrum. Thus there is no

natural cut off in our expansion, arising from the energetics;'

We therefore cannot hope to justify our procedure as discussed so far and
must therefore investigate whether it can be modified. We shall see in fact that ,','
the effect of‘the‘excluded channels can be formally incorporated into the finite
-system whiéh refers explicitly only to the small subspace of interesting channelé; 

This is accomplished by a suitable modification of the interaction V. .
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For the discussion of this matter we,shéll'uéé a less explicit notation
than that employed in the previous section, and shall use opéféﬁof methods.
.-First}wefderive'an'expression'for the transition matrix whichbcorresponds to the

approximations made in the previous section.

Relation of truncated to exact solution. Let us denote the part of the-

Hamiltonian(l-2) exclusive of the interaction V, by
=i +. . ' L ) { '
H =H, +T S . \1).
so that the completé Hamiltonian'is

Heforvo o @

 nS®luti0n$ to ‘the unperturbéd problem

"have therefore the'strﬁéture
B = Gy S8 (50)
o g% gi%/(}g - By (3¢)

We can formally'write‘é solution to the exact‘problem-defined by

(E-H) Y=o ' : ‘ ()
as _ - A
\y(+)r_.¢ +-——-——l qu‘ : ; ' ' | (58)
' a T o E‘H*ié-v‘io‘, _
= @Vl : R Cd)

This embodies the two boundary conditions that there is a plane wave in channel o

and that there are outgoing spherical waves at infinity as is assured by the ie
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We have defined the operatdr for later convenience.

w[X] =1+ "E—:ﬁ X - - | (5¢)

From the work of Gell-Mann and Goldberge#'we know that the transition matrix for

the problem defined by Eq. (25 is
g
Tore = (0, 012l (6)

However in thé previéus section we did not obtain a solution to the com-~
plete problem but to a truncated one. Let P denote thefgroup of nuclear states
retained in the expansion of ¥ and let it also denote a projection operator on-
to this part of fhe vector space. The solution that we can obtain by solving the .
truncated set of coupled equationg)which contain the actual interaction .V, we

"shall denote by Y(T). It is the solution to the approximation problem

(B - Hp) ¥(T) = o (7
where

Hyp = Hy * Vo ‘ | (8a)

Vop = PVP S | | (8b)

Clearly HT does not  cause any excitations out of P into Q and defines

therefore the truncated problem of the previous section.

As above we can write a formal exact solution to this approximate problem as

\I’é:)(T) =.-Q[VPP]¢>a | (9a)

Xl =1+ =t X o , | (%)
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Similarly the transitionmatrix for the problem defined by (8).is
/ad)—wwl ey (10)

eﬁ%way&m>

As we disoussediearlier, We do'not expect this to giVe'feliable_results,becauéex

it does not take accounf of'ﬁhe effect of the eiiminatéd.channelo,even in an
approximate wéy. _Onfthe other hand the exact }ésult embodied in Eg. (6) is un-

attainable. Before deriving a compromise result let us'derive the connection

‘between the exact and approximate éxpressions:fo; :?(;‘vThié'is easily done.

First introduce the poténtial U that links the two'parts”of the space

(PHQ) V(ER) =V + U

V= -
PP . _ 2
v : o (11)
U=V, +V. +V o ' '
- PQ QP . QQ
‘and take note of the idenfity 7_ B St
(12=)'

: w[V] _w[U VfP] w[U] Q[ PP] .
This is readlly proved by 1nsert1ng the deflnitions of the operators on the rlght,,
carrylng out the multlpllcatlon, and u51ng the Operator 1dentity

Lol Llygplolypl | W)

1
‘With this result we can now express the exact solution Y in terms of

the solution of the truncated problem

w[V]¢ w[U] Q[V pl®

"'6,
Il'

]

) e Cw)
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Using this in Eg. (6) we have for transitions between any two states o and o'
of P

| T = (o v | 2 ()

= (Gl v Vm“f“fw””
- Toval® * (0| ¥ ez vl 2{ 0 0

Inserting the decomposition of V and U and remembering that « and &' Dboth

-belong to P gives us

Tra =Tora® <¢a,| nq * Vep) sV Qplw(")w» o (16)

The second term on the right describes theeffects which are omitted in the simple

truncation empioyed. These effects obviou§ly consist of excitation out of P

into @ and back again}

Modified truncation. We now seek a formulation of the problem that is

more amenable to incorporation of some of the effects due to the explicit eli-

" mination of most of the vector space. Following Fééhbachirwe shall use the same,

projection operators P and @ mentioned abbve.and insért into the Schroedinger

equation (4) the unit operator a
 (B-H)(PRQ)Y = 0 ‘ (1)
Multiplying by @ On the left yields

(B @) ~Hpler) 8

which can be solved formally as

= FH_ e

g (pv) - . (19)
qtte & | g -
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- We have not added a. solutiohﬁto thevhomogeneous'eQuation (E-HQQ)

any solutlon to thls homogeneous equatlon has zero net flux throagh any closed

= O because:

surface about the orlgln and hence v1olates the condltlons of the experlment
which correspond to outgoing-waves only in all but the target ,channel.-

- Now multiply Eg. (17) on the left by P to get

(E-H?B)(?Y) é H@Q(QQ)V - ; R e - | . (20).

© " Into this insert the solution (19) for Q¥ to get

[B-pp - Hpg 71 Ugpd (F¥) =0 LR e
v. QQ - S e -

~ which is the equation for the part of ¥ that contains only parts belonging to

~ the truncated space. It contains all the information necessery for calculating

transitions among states belonging*to P. benote it more conveniently by

_Y(;) = PY  | g : , .1 , ,.v (ée): :
. éinge ,PQVE 0 - wé can rewrite.Eq.-(El) as
A(E _‘Hoj_f1p) oo =,O . o ' j,o { .;ejoeoiﬂ | ’,i ' (é3?;
.Where: . _ o  >‘ l»
Ve PQET;F"QP - L e

The problen defxned by (23) dlffers from the one- that defined -our Original trun-
'cated problem, (T), by Preﬁisely the second’ term of (2#)3 ‘Since we are interestedj'” '

~ in sbélving (23) 1patheASpace;? only,|we aa not need~$he:outer projection operators’

on (24) o

ovevgder e

[Note: The action of Q in this equation is to be effected as in (2lka).]

R}
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From the identity ¥ = PY + Q¥ and Eg. (19) we have the entire solution

VQP) ¥(P) (25)

- whence according to Eg. (6) -

T = (0 IV + Vi v] ¥4 (2))

Oy I ¥ (e) S (26)

]

We can of course also write down the formal solution to Eq. (23)

A SOREE E—Zﬁﬁe Vo | (27a)
with - : '

ZH-:’HO+"? | | o | (27Dp)

The statement was made earlier that from Y¥(P) any transitions within
P could be computed. If that statement was not obvious it is now proven since

the transition matrix for the problem (27) is given by the exact result, (26).

To summarize the results so far, we have obtained a formal equation (23) which

- ‘refers explicitly only to the truncated space B, and. from which the exact transition’

matrix can be calculated according to (26). The equation for ¥(P) contains,
not the original interaction® V, but an effective interaction, effective within

P, which includes the effect of the eliminated channels, Q. While the exact

problem 1s actually no more tractable now than before, it is at least in a more

instructive form, a form which is more suitable for making the approximations
which will lead to a tractable problem, while retaining some of the important

contributions from the eliminated part of the space.
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The effective-ihtéractioﬁ. Whereas thé'originél séattering problem
governed by H = Ho.* Vlled to . an infinite setko? coupiéd equations.correspOnding,
to all channels, a-modified problem governed byi}{= Hor+’1fmhich ié to be solved
only wifhin a finite SubSpaée of channels, can be defined which leads to the séme
T—matfix elements betweéﬁ<channels of the subspace, Of course this is a state-

" ment which is'only formaliy-corréct, since to calculate the effective interaction ’

v

n?/j we would needwéhévcoﬁp}ete sbectrum of HQQ' At the’energies of.interest to
' us, there are miliions of open channels in medium to heavy nuclei so that a cal-
| culation oi"?’&s not feasible. Nevertheless it 1s a very important conceptual
result, since we can make certain statements concerning the nature and behaviour
of ’777 For exampie the usual optical_potential.for elastic scattering corresponds
. jgst to the case that P projects on the ground state aloﬁe. Only the elastic
channel is treated expliéitly, all others entering implicitly through “?VT While
we'cannot.calculaté the optiéal:potential frdm first principies, it can be para-
ﬁetefiied very'successfully. From its definition (24), ¥® is explicitly dependent
'_ on the energy, is cbmplex vaiued, and non—locai. The second ferm makes a large
contribution to diagonal matrix elements but is probably small for off-diagonal

‘ones. This can be seen by introducing the eigenstates of'HQQ in-a typical

diagoﬁél matrix element,

i

(05 (8) ¥ 10,,(8))

(eslviv e Ivie,)
an(?«)*% E - B, * i

(28)

il

"~ Here YC 'is intended to denote the wave function for the -A + 1 particles while
(04

. grations over the A particles and remain functions of the remaining‘coordinate.;

0] dehotes‘the wave function of the nucleus A only. The brackets dénote inte-‘_;‘

"
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The sum on C' runs over the space of Q and includes continuum and discrete
states. The numeratof is positive and the denominator changes sign only once.
There is little chénce therefore that the sum is small. However the individual
terms in the second part of ’1?ﬂgenerally‘will be very small.since they involve
matrix elements connecting the two parts of the space P and Q whose states
will usually be oflquite>a different structure, since the latter lie at higher' 
excitation in the nucleus A.

This means that the sum, which is over an enormous number of terms (a

~continuum built on each state Q of the A-particle system) is not dominated by

any particular one of them, so long as no states of Q are strongly cpupled to
ény of P. With the proviso that thé effect of such strpng coupling be removed-
ffom,’jynby treating them explicitly inJ'P, then the sum C in (28) will be
dominated by the high excitation region becauée of the high level density. From
this fact we see that.’ﬁyﬂﬁill be slowly varying from nucleus to nucleus, and that
the diégonal matrix elements in the.space P will be similar. We do know that
the optical model treatment of elastic scatféring is geﬁerally satiéfactory{
This éuggests that we trea£ the diégonal matrix elements ofﬁwgf'by a similar
phenomenological parameterization;

| For the off-diagonal matrix elemen£s of a?&f on the other hand, the
numerator of the second term is not positive but will fluctuate in sign from

term to term so that in general we may expect it to give a small contribution in

comparison with the first.

Non—localitj. To demonstrate the non-local nature of thevsecond term

:of ; &, which for convenience we call ‘ z& , We examine the coordinate repre-

sentation of ’M



| o lalvieXelviz',at
<a}é«‘h’/hl »A") ='% T - EC + ie . |
V(arﬁ) \}_’C(a,é;) \IIC (ﬁ' :é;') V(a'Jé,,’)
= % E-E, t+1e .
where . we have usedA“ |
Yo (z.8) = (z.alc)

QQ .

to denote a waveifuﬁ¢tion of H

fact that 'V is local (i.e.  diagonal in the coordinate fepreséntation)

AY

28

(29)

(30)

~for the A +1 particle_cdmpbsite, and the

(31)

- Now we can write the effect of-’?V’;cting on the wave functions we have been

\

“using. In a coordinatevrépresentation; we have-
(AW lae) =2 v(z) Yo(za)

Wt

X e [ arraa v (Al vEhal u(x') ¢(x',4)

C o

(32)
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IV. MICROSCOPIC THEORY OF INELASTIC'SCATTERING

‘We emphasized in the introduction that the remarkable develbpment of

= theoretical techniqueé for handling the nuclear\many»body problem have led to.
fair;ydetailed descriptions of nucleilin terms: of their nucleonic structure.
'The'enhanéed 32 transition rates of the first excited 2+ states is understood

; in terms of a coherent superposition of single-particle transitions. The energy

level systematics through'certain regions of the periodic table can be reproduced,

at least qualitati?ely. It is important to subject these descriptions to the

further stringent tests that inelastic scattering sets,to éee to what degree ghey

sﬁcceed here. 1In this section we develop the necessary apparatus for confronting

6

nuclear structure theory with inelastic scattering data.

The interaction. According to the development of the last section we

uﬁderstand that the diagonal matrix eleméﬁts of the interaction between the incij
dent particle and nucleus would be best parameterized as alnan-local complex-
valued optical—model potgntial. However we know from the work of Perey and Buck
. on élastic scattering, thatngenerally,anuequiValent Tocal potential can be found

and this we'take‘advéntage_of. Hence for the dlagonal matrix elements we have

Voolx) =V £(r) + 1[W £ (x) - ¥ W ay 'f]') (r)]

CMe W mﬂp SO r dr 7SO Coulomb

§Q

where
, ) rxA,l/3

] ‘ .
fx(r) =}l + exp( ) -, f' =af/ar ‘ (2)

a
X

is the Woods-Saxon form factor. This is the standard parametrization of the

r
.
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optical potential that is used at Osk Ridge, where 80 much of the elastic scattering
analy51s is performed.- v | - » L ,

In princ1ple the diagonal matrix elements ’172 are different in each
‘intrinsic state. That 1s, the optical potentials in the ex01ted states may be
different from each other and from that of the ground state. However referring
vto the structure oi"“j” (III—EH) it seems very plau51ble that' unless there are
states belonging to Q .which are very strongly coupled to one or several, but
‘not all states of_ P, then the Optical potentials in each state of P wil be
~similar. Theereason'for-belieV1ng this is that the sum over 1ntermed1ate states. -
dQ,v inrolvedfindthe evaiuatiOn of "f”, extends over such an enormous number of I
levels that it will not 'mattere‘much if the initial state" is the ground state or
one nearby. !
| .Wevneed'alsovthe off-diagonal matrix,elenents ’~*ch" (e’ + c") which ne
‘shail Often_refer”to as the direct interaction, since it is_respOnsible for_the-
‘vtransitions. vWé»learned_that‘it'may not differ'too much from.the nucleon-nucleon_

matrix elements V .c".'_we shall represent V in the form

o A L - |
- V(ga) = = V(x) _ S o (3a)
‘ - -i=l; v o o '~T'f . ;o

v(a;g¢> : <Vo-+ voee) ellzg) (v

where the well depths VO and Vl may also depend upon 34$i.. Let us make a

Legendre expansion of g

gqe%D=LQJlLur>x<mx<r> - (1)

! Moreover, in order'to treat both spin-dependent and independent terms on the same

v footing let-us define the tensors

“oats.r(f’i) N [YL(f)ZSJ,J B . :, )
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where YL is .a spherical harmonic, ZO =1, Zl = g . and the square bracket de-

notes vector coupling. Then we can write the multipole expansion of V(g,4)

' L+S+J f“
V) = 2 (- S . LSJ(r 4) ‘SLSJ (62)
Voot - i & vl Ypie) (6v)

is a tensor_operator in the nuclear space and depends only parametrically on r=[r[.

The multipole expansion is actually much moreigeneral than the particular
form chosen for the interaction, so that some of the following formulation, though
not the numerical results, are more general.

Now we want matrix elements of V

<
=
—
H
~
I

= (o, vl o, )

A M N M
([-’gjls J.l(r) ®O‘1J1 (a1, [V[‘ [%23 je(r) <I>a2J2 W1 (1)

]

-Inserting the multipole expansion for V, we note that the tensor dperator‘giLSJ

acts on the space of the scattered nucleon and the other operator, J$ , on the

nuclear épace. Such matrix elements can be evaluated by Racah techniques7 and
“the result written as,
I e
(r) = = v, C (ce ) {a. . ]| & e T, (8)
;¢ 15T g I8y Yret1l LSJ 2°2 o '
‘where C 1is pufely geOmetrical in character
AT+ AT+ i ’ v
Croy (© c>=<fSJ32JI~ it TG PR TR S ¢
IsJ V1’2 - “ ‘ 1V ST 8T4v2
J Jp I |

The curly bracket is a 6-j symbol. Rach's definitions of reduced matrix ele- =

-ments is used, which differs by a factor from énother definition also in common

v
»
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use. For thefreduced‘matrixhelement;ofvthe-sbin-orhit:tensorxwe find e
R oy ey A [3132 ' mf]l/g
L 4 125 . \
o _ElsL s 1 .v/-, ) , - o - 10) .
. - s L, 1/2 .3 _— e 10)
0 00 S .
' LS J

TR

e

.. where the'lasbtwOsymbols arev a 3-3 and 9 J coeff1c1ents, and L = 2L+l

Form factors - The matrix element of the interaction, (8) is now expressed

in terms of the purely geometrical quantities Cy the strengths of the 1nteraction l__'

¢V and V_ and nuclear reduced matrix elements which remain a function of the

0

ﬂradial coordinate r ‘of the scattered particle. They are referred to as form

Ve

h?factors for1thedtransition'betueenjnuclear states, leivand O£2'J2f

OtCX

? 0= @n gtk

' TheSerare the quantities_that carry the nuclear information that 1s relevant to f‘f

‘the inelastic scattering process. We now discuss them in some detail.

The structure of the nuclear form factors (ll) is actually rather simple

as. follows from the fact that the scattered particle aéts-as a one-body operator

'5. on the nuclear coordinatesfteCause'the interaction between nucleons is two-body.

So gf is a sum of one-body operators as seen in (6b), and the nuclear form

.. factor must be expressible as a sum of form factors for single-riucleon excitations.

Thus . S o ' R
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Fig. 2. - Shapes of ieveral slngle-particle form factors that contribute to
excitation of 2  states in nickel isotopes are shown for several force
The oscillator parameter v
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1s the form factor(correspondlng to the promotioﬁjqf a single nucleon from the |

stafe a to b. We use a to denote the collection of quantum numbers for a v

nazaJa’ and wa(a) denotes a single-

n

single-particle state in the nucleus, a
particle wave function with radial pa’rt, u_ (r). From the definition of SJ, Eq.
(6v) IR - | -
w1th the. radlal 1ntegral SR | . -

) —-——f ) gl () e )

' This defines the radial Shape of the form factor, Wé-can_géih an immediate
impressipn of the general shape by considering a zero-range interaction.v In thafze'
»céSevthe Legendre transform in Eq. (4) is

)

2L + 1 8(r- r{l
bm o ror

e = (sero ramge) (1)

© and o | L o : | R
) o u<r <r>/lm e )

Several single-partiéle form factors for transitions relevant to the
B ) o : o ’ B ’ - . ) ) i N " '\ .
- nickel region are shown in the Fig. 2 for various force ranges. The zerQ-rangefn"
~ results would be easilyvsurmised-from (14b) bu$ a force range of realistic size el

s

\'destroys'most of the fine:deféil,
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v
- For the Gaussian shaped potential

L\ 2 3 ) - |
g = exp-(_lga:g.__.'_) . ' o : (15) _
h p . . . ) . "’

thé'Legéhdre transform is

Le (r +r! )/D 3 :giEE_) . (Gaussian) (16)

(r r') = (2L + 1) i

Using harmonic oscillator radial functions ‘Ma’ a closed form for the form factors

can also be found. it'has the form

2 R : 2m+L,
b - m
B (r) =e" 3 GL(a b)( (17)
where v = mw/H is the oscillator parametér,' v/(vp +1) and m = l/2(Na+Nb—L)

with N denoting the oscillator quantum number!~va= 2(n—l)+£._ The coefficients
G are rather complex but are expressible in closed form as a finite double sum.6b
It is very_convenient for caiculational purposed to have available such a closed
form as (17), because it means that all the nuciear information that is relevant,

can be stored in a few expansion coefficients fof the various form factors (12).

Nuclear structure and amplitudes for elementary transitions. The form

_factors for a transition between any pair of nﬁclear states can be expressed as

a linear combination of elementary transitions just discussed, as expressed in
(12). The amplitudes with which the various elementary transitions contribute
can be calculated from the wave functions for the nuclear étates. The‘same
amplitudes arise in éther contexts also, since they»merely express how the matrix
element of a one-body operator taken between a many-body state, is‘ﬁritfen in
terms of the one-particle matrix elements of the operator. We illustrate their

calculation by several examples.
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Two-quasigerticle etates}' One of the methods used for handling many-

Dartlcle nuclear systems can be briefly descrlbed as followsl The palring effects
of the re51dual interaction are isolated by solv1ng the BCS equatlons. Thls
corresponds - to a transformatlon from the real nucleons of the system to quasi- .

” particlee,.which, astfer aé the'pairing effects of the interéction.are concerned
are almost noneinteracting The remalnlng part of the 1nteract10n is treated |
tapproximately by‘diagonalizlng it in the quas1part1cle space. Often the dlagonallvdnf
.Zétionﬁis restrictedeto tno;quasiparticle configurations,'”The wave function in

such a calculation have.the form

- |oam) =1/2 'zb"no‘g JM(ab '{o) : . . | (18)' 

"where the n's are conflguratlon amplitudes, - Wd) denotes the ground state'whioh’ ‘

1s here the vacuum for qua51part1cles of whlch a pair . creation operator is denoted
+ a ‘b +,. + o+
a(a,) = (-) A (b8) - -[aa-% ]J (29)

' ' : . C ' S R N :
The quasiparticle creation operator is denoted by & . We need also the quasi-

. perticle,scattering operator~

» ' ja'jb+M : "-ﬁw M o R .
nJ;(a,b) = (=) B bsa) = '[O‘a ozb] . _ - (20)

where

G - () e e

- SR . + _ v +
The transformation connecting the particles B  to the quasiparticles O 1is
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IV
B+.=tU ot +v & SRR _(22a)
am a anm a am Lo
where : _
‘U2 +v2_'="1_ -, w(-)¢t>o0 - (22b)

Since EfiSJ’ Eq. (6b) is é"one-body'qperator:in the particle space, to

evaluate its matrix elements between stateé expressed in terms of quasiparticles'

we would want to re-express it in these latter terms. The results for any such

N

operator is found after some Racah‘algebra to be

Flas = 5, (2J+i)'l/ ? (all F gyl v 2(es, )2 5, 8
* '21‘ FUan ',(‘)J+O Vavb] [NJFZ(a’b) + () NJ-M,(a’b)]
-5 Lvavb + ()77 Van] [A3;<a,b> + (-)M*"'AJ_M@,b)] (23

" where the phase ¢ is defined by .

S . o dgmdyto ' _ B
(2l Figsle) = (72 ol gl @)

and 1in particular for the operators (5) and (6b), o =L + S + J, The reduced

‘matrix element in (23), for our situation, is the previously defined single-

particle form factor (13).

To evaluate the form factor corresponding to transitions from the ground~“;
4+

 state [0) to an excited state such as (18), one sees that only the Ay term

. in (23) contributes. Using the readily proven fact that
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: o
v(Ov]Ai’ (a,b) A;' ' (é_:___'f,g..)'_lb; . -‘:l'..«.«_'
ja_jb+k ‘ _Y“: SR : _ N )
. 6’\)\ 6 , _' aa' 8)bb' =) v.Sab;;,laév,b')_i .(2‘5.)
- Frsa®) = (il gy (.00 10)

It is 1nteresting to look at this in some detail for a collective state,

v“vsay the 2 state of N16o.‘ The wave functions of Arvieu, Salusti and Veneroni L

1_

”have been used.8 Considering first ‘the case of 8=0 in (26) which we refer to as thef“‘

scalar form factor, one finds that for this state their wave function is fully

"coherent. Each term, corresponding to the various singleeparticle excitations that =

+ - C
lead from the ground to the 21' state has the same sign and so gives rise to-thefuﬁ

*ilarge form factorashown in the Fig.Blwhichfisfyery similar to.the one used;in?maCron“

scopic treatments of vibrational states. The individual terms are also shown.

. . ‘ - : : + : .
~This is in contrast to the form factors for other 2 states for which the various -

p elementaryltransitions interfere destructively, giving rise to smaller form factors ;

.which sometimes oscillate as illustrated in Fig. k. (Note‘that the absolute’values

are plotted on a logarithmic scale which accounts for the difference in appearance

between Fig 3 and. the top curve of Fig h)

There»are three vector form factors (S=1) corresponding to I=J, J*1.

However, since L is connected to the parity change between thevnuclear statesgikn-,

B then only the I=J vector form factor, together with the scalar, Jjust discussed

.. can contribute to the so-called natural parity states whose parity is given by ‘:',t

{
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Fig. 3. Scalar form factor for the lowest 2+ state in Niéo is shown together
' with the single-particle form factors that contribute to it. They all have
such phases that they add constructively for the lowest ot but must there-
- fore be destructive for all other 2% states. (Ref. 6b). .
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thelr spln as. Yﬂ ;,(f)Jgi’The—veCtor form factor ls small;compared to the scalar
state, since it is 1ncoherent, The:dashed lineS'ovaig' hfv

l
. + .
. 1llustrate the vector form factors for several 2 states.- It is actually pos51ble S

’ for the collectlve 2

eﬁthat another type of collect1Vlty may exlst based not on the 51nglet even part

‘ of the force as the 2 'state 1s, but on the tr1plet~even part of the n-p inter-. o

"1
“action.’ Ev1dently s1ngle-closed shell nuclei, such as Ni 1sot0pes would not be '
la favourable place to flnd them._

Only form factors such as (26) which connect the ground state to an exc1ted

g state, are needed;ln thegdlstorted wave Born approxlmatlon. - However the coupled_‘”

ﬁf:channel?method'takes'accOunt*alsorof'transitions between'excited states. Such

-‘°”tran51tlons become exceedlngly 1mportant 1f one of the states is: very weakly coupled

vto the ground paIthularly 1f the couplmg toa collect:.ve state llke the 21 1s str'ong by ccm_oarlscn

For trans1t10ns between two ex01ted states having the structure (18) the _

?

:‘.amplitudes>appearing'in the'expression (;2) for the form factor is

S S S 2t e
(al 1’ 2 2) - (=) tE - Hea ) (20, +l)]l/2'

ag. o, (3.3 3. ) R
191 Y2 ) Y2 ¢ Y1 . U
Yo% ) Z Mga  Mba L)

10
( ) .. o - ja'jdvjb

'ZT;xyﬁgan -lh.

a fuo{phonon'states;__ihe available'experiméntal evidence concerning‘so-?'{
) callea tuoephonon_statesuindicates considerable_departures from the ‘ ‘ R
vtivibratlonal mouel,;‘The‘evigence_consists of the sometines large splittings befn
Vtweentthe.members of?thegtwo—phonon triplet, deviations from the-predicted _
1ntens1ty rules for E2 radiatlon, and the finite static quadrupole moment of the :~;
| two-phonon 2 state in those nuclei for whlch_the measurements have been made. ~
,?Nevertheless sone'of the?two—phonon character is expected to persist, though it

may be dxuedwwith other.neighboring states. The type of nuclear structure calcu- -

ARV
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Fig. 4. Scalar and vector form factors for 2+ states in N160 are shown at
the left. The absolute values are plotted and oscillations are indi-
cated by (+) and (-). Corresponding cross-sections at 11 and 40 MeV
for proton scattering calculated in the distorted wave approximation
are also shown. (Ref. 6b).
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lation which.tfuncates the. problem at two quasipartiéie configﬁrations does nbt D
produce two-phonon states because they involve four-qu381partlcle configuratlons
However we can use the coherent operator that producesvthe 21+ state to generate‘
a "two-phonon" triplet of wave.fUnctions. Presumably these are not eigeﬁfunctibns 
of the problem, and wouid mix with neighboring two—Quaéiparticle stateé, but wév
can considér'them as an extreme limit. The form factofs by which each member of: .
Hvthe triplet ié qonnécted tojﬁhe-collective 21+ state can be obtained .easily upon-
B using the_quasibosdn commutétioﬁ rulés for the two—quasiparticle Operétors intro-
duced in (19), which'afe given in fact by the right side 6fv(25). The result is |
that the form factor connectlng each member of the trlplet to the collective 2
”.'state is prOportlonal to the form factor.for the ground state to 21 state Just

. prev1ously dlscussed. The proportionallty constant 1s ‘ [2(2J +1)/?]l/ where

Js is the spln of the two phonon state.

. Two-particle states. For conventional: shell ‘model wave functions describihg

“{v ﬁwo'partiélesbeyondcloéed shells, the structure amplitudes can be obtained from
17(27) by.choosing'Ué ='m5 = 1 and Va = VB'= 0. Whereas most shell model wave functions-

.are. descrlbed as

3. € [(ab)d
ash ab_“ °)7)
ﬁith'the ket antisymmetrized, our sum over configurations (18) 1s unrestricted as

to order of a,b. Hence

i
Py
=
+
(o

j"‘
o3
o
.
o~
L
)

Other cases can also be obtained from (27) as special cases.
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V. APPLICATION OF MICROSCOPIC THEORY

_-Effecfive interaction. As we have already discussed, the diagénal
matrix elements of the effective interaction are éeftain to‘be very complicated.
To calculate them wouid invoive approximating the wave functions for nuclear
states ranging all the way up into the continuum. The.fesults.of such a cal-
culation would certainly not be3as.reliable as an §pticél model parameterization,. -
For the special case when all excited levels are éeliminated, the effective in- |
teraction s0 parameterizéd is the usual optical'poténtial for elastic scattering,
and this can be found in any particular instance quite easily by use of one of

. the automatic search roﬁtiﬁes. We shall see in fact, that for spherical nuclei,
where the coupling to-excitéd states is not too strong, the same optical po-'
tential for pure elastic scattering can be used w}th little or no change when
a‘few,of the excited stétes are explicitly treaté&._ This 1s illustrated in

60 '

Fig. 5 for Ni~ . This is definitely not true for deformed nuclei, whose

coupling'ﬁo the 21 state, as measured in single-particle units of the reduced

‘B(E2) is about 100-1000 in contrast to a typical figure of 10 in spherical

(vibrational) nuclei. However in this section we are concerned with spherical
nﬁéléi.'

Concerning the off-diagonal matrii elements of ﬁhe effective interactioh,
we. have s0mé reason to hopé that they may not differ very much‘from fhose'of the 
free two-body interaction, or some simple parameterization theredf. Neverthe-
less this is an open Question. In principle it may be energy dependent, non -
.local{ and éomplex valued,‘in addition to having all the usual complexities 6f

| the two-body interaction. By its nature, anything that can be determined aboutv
~ 1t for one ehérgj, or one small region of the periodic table cannot be ecarried

over with any assurance to another. : 1
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e

Fig 5. Coupled channel (solid) is compared with optical model calculation of
elastic and distorted wave calculation of inelastic proton scattering ‘
(dashed). Note that elastic is barely effected by the additional coupling.
While. several cross-sections are only slightly changed others are signifi--

- cantly modified. (Ref. 61).
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- ‘Keeping these.reservations in mind we now discuss results based on a
simple force parameterized as in the last section. We shall in fact keep its

b . range fixed af 1.85 F such as is- often used in shell model calculations which

employ a Gaussianipotential, and the two well depths VO and Vl of (IVjB) will

R - Dbe adjusted.

-Two quasiparticle description of nickel>and tin. We gave a very brief -
idea of what is involved in this method of approximately solving the nuclear
problem, and it has.been‘discussed thoroughly elsewhefe.% Here we shall see
to what extent it succeeds in describing the scattering 6f protons. From Fig; 5; 
we seevﬁhat”while,the distorted wave method woild be adequate for some levels,
"in gehe;ql we must solvé the coupled eéuations, sinc¢ the_éollectiVe 21+ state

v is an important intgrmediate'step in the excitation 6f some of the levels,
| It is worth considering for a momept thé,exbhange nature of the residuéiﬁ
- interaction for such nuclei, where all valence nucleons are of the same type.
‘The only relevant parts are singlet-even (SE) and tripiet-odd (TO). The
‘v>form¢r is attractive and the latter smaller and péssibly repulsive. If we

rewrite the central potential in terms of 1 and'ol-c2 we have

SE + -
o SE . 310 | 10 - 5B s

From this we see that the Z1°% part is typically repulsive and that the

attraction comes from the spin-independent part. The lowest lying states will

OISO

as a consequencé possess such correlations as exploit this part best. The

=00 g

"position of a state in which the nucleons are so correlated will not be very

sensitive to the strength of g1’ % part.

PO SV S SRON- F PR
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From the discussion we can understand why the lowest 2+ state has a
fully éoherent,scalar form factor_while its vector form factor is small by .
comparison (Fig. M); The higher lying 2" states because they do lie higher
evidently have not éxﬁloited-the same part of the forceaso successfully, and
their scalar and vectof form factors afe more comparable in maénitude.

Because the scalar form factor for thg collective 2+ state is so much
larger than the vector, this state can be used to fix VO. When this’is doneJ
and Vl:is set to zero the rééulting crbss-sections are shown in Fig. 6. wa .
ngclear'structure calculations for Ni60 havé been used one corresponding to a
AGaussian~residual interaétion8 and one to a surfage‘delta intéraction.9 Théy;'
both give essentially the same result for thé collective QT state and hl+,.
where the agreeﬁent is not too bad. For the other states %ﬁe magnitudevof tﬁé

cross-sectionslo are correct to within a factbr of about three, but the details -

( _
. are notvwe1l reproduced. Trying different values for the spin dependent part’

Vl-does not significantly impfove the detailed agreemenil:.é'j
The'polarization for the collective. state has also been measured
-1thougﬁ at a.slighfly different énergy than the crpss—sections. This 1is shbwn,in_.
:Figr 7; - The agreement is fair. |

” For Sn120 the cfoSs-sectiéns?O are shown in.Fig. 8 and again the.cbllective
'2+ is weil reproduced but the magnitudes of the others are in erroxr by.aé much
as a féctor.two or three. As it turns out for this nucleus, all the levels |
shown could be calculated i'n.‘the distorted wave Born approximation with little
‘eribr;'

"Two—phonon states. ~We can use the approximate microscopic description of

twd-phonon states mentioned at the end of section IV to see if this provides a

better description than the ﬁwo-quasiparticle description. The results are
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v‘Fig. 6. Cross-sections and polarizations for 17.8 MeV protons. Curves are
coupled equation calculations using microscopic description employing a

surface delta interaction Ref. 9 (solid line) and a volume finite range
interaction Ref. 8 (dashed line). Direct interaction parameters are
Vo = =55 MeV, V; =0 and p = 1.85 F of Eq. (3) and (15). (Ref. 6J).
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- shown in Ref. &j and indicate that the extreme phonon picture is not in better -

agreement;'
Summaryﬁv Frdm these'calculatioﬁs we have seen that the microscopic [

. , = . o ‘ e
description of the collective 2 state seems to be fairly good. At least we

- calculate a ¢rossJSec£ion;in g06d accord with exﬁerimentﬂ"This gives us some
confidance in thinking:that the direét intéraction fhat was used in the scat-
'_téring calcﬁlatiOﬁ is hot gfossiy wrong.for these nuclei and at this energy
(~20 MeV):
| In fha#vCase we conclude that the description of the other states is = '
.'  gen¢réily notvvefy gbod. _it-is not én-éccident that if we are able to obtain-
any agreemehf é£ all, it should be for the collectivé\State. Since it is co-
‘herent’wifh feépeCt to the varioué configurétions.it is hot‘as'sensitiVe_to the “T
‘vﬁarticﬁlar ampiitudes as an incoherent sféte’whéré.the sméll form factﬁr resulté?;'
from cancellations. 1In a pﬁrase, if is éasier £0 deséribelfhé nuclear:order asf.“
embodied in a cbllectiﬁé'staﬁe than the chaos of an incoherent state. Neither_y?;;"'
the two—phonon déscription, nor the two quasipafticle description of the higher . -
.lying»states gives a very goo& account of the observed séattering. Thig is rathéri :sm
-:iaissapointing, sinée more accuraté structure calculatiénsrarevmuch more difficult; 
" Nevertheless if a-realistié.description of ény but the collective states in even ”'

- spherical nuclel is to be obtained, these difficulties must be overcome.
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VI. SCATTERING FROM ROTATTONAL NUCIET
The-rotétion of strongly deformed nuclei, especially in their lower
states; is slow compared to the velocities of the individual nucleons. In
this situation, ‘as was discussed long ago by Bohr and Mottelson, the rotation
and the nucleonic motion may be considered indepéndentiy of each other, to
good approximation, as is intuitively clear. Then for every.intrinsic nucleonic
state there will be a spectrum of rotational states.

In the last sections we considered the excitation of the nucleon degrees

of freedom in spherical nuclei. For deformed nuclel the lowest lying states are

- rotational and all belong to the same intrinsic state of motion. It is the

" excitation of the rotational states that we wish to consider now. .Such a study

is useful in measuring the shape of the nucleus.

Adiabatic approximation.12 If the orientation of the nucleus does not

change appreciably during the passage of the scattered particle over it, the

"adiabatic approximation may apply also to the scattéring process. In this case

the Hamiltonian

H=1T+T, + v(r,Q) | (1a)
may be approximated by
Hy =T + V(g,0) . - (1),

fwhere we are neglecting the rotational energy TQ of the nucleus. The Q '
_sfands for the Euler angles defining the orientation of the nucleus. We shall
‘not consider explicitly the intrinsic excitations, sb that the interaction V

ivis an effeétivé interaction iﬁ thé sense described earlier, since itlmust cafry

‘ the effects of the eliminated iﬁtrinsic excitations and their rotations. As

before it wiil be parameterized as a complex optical potential, which now has a

.
.

" non~-spherical shape.
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VI
EquationvCﬂﬂ?desefibes the elastic'seattering of.tﬁe‘particle from the
“’nucleus having fixed orientation Q. The desired solﬁtion»has the form

B L O R St B (20)

. k )
W = o e 0,0, T

(2v)

Where ® denotes the'target nucleér state The probiemrobviously does not
pOSsess spherlcal symmetry but may be solved convenlently as descrlbed by Barrett.15
On “the other hand, con31der1ng the orlglnal problem governed by (la), the

Tscatterlng amplltude for the trans1tlon from: the state J to J! may be written
L l

vaccordlng to Gell-Mann and Goldberger, as

X L - , (+) . -
 where, as_eerlier,
S R (3b)

v (bk'-,J'KIVI' =

N ls a solutlon in the absence of V, whlle Y( ) 1s'é“solu£ion'of'H;_ If we use-the
:?adlabatlc solutlon (2) as an approximation to the exact solution, Y( ), we obtain

N

K “ o | 1k ‘T (+)
5 Y G an, <I>J rar (2) e lV(a,a) lx&- @@ W)
The bracket would be Just the expression for theAamplitudenfiof the adiabatic

problem, ’Qﬂ“if‘k'ék;'gThe.ediabétic approximation neglects this difference, 50

we have ‘ : P
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o (0:9) = f dgcp;;,'m.(n)*-f<e,¢,n>®m<n>' I )

This fésulf may Seem'strange at first_glénéé, since it indicates that
by solving a certain_eléstic écattering problem and takiné ﬁatrix elements of
the resulting ségttering'amplitude,the amplitudes for transitions to excited
étates éan be calculated. To understand that this is;a sensiﬁle result we re-

turn to Eq, (2), which, remember, is the elastic scattering solution to the

" fictitious problem in which the nucleus has a fixed orientation. As such it

represents a superposition of the various rotational states, and we may write

its expansion,
269 (0) = 2 @90 (@) o (6)

Because of this close connection between the elastic and inelastic

scattering to states poésessing the same internal nucleon structure, which 1is

manifested in the adiabatic expression (5), this approximation provides a con-

venient framework within which to discuss the striking regularities observed in
| N 1k

the scattering of strongly absorbed particles like alphas. Austern and Blair

have discussed this very thoroughly in their paper.

The interaction. The nuclear shape will be parameterized by the usual

‘expression

_L‘U
1

Ro[l + )EJ'K OI?« Y>\K (9')¢‘)}

n

Ry * &R o S (7)

with the sums reétricted to even values. Hereb 6',6' refer to the body;fikéd

e
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. axls taken tolbe,the‘symmetrytaxis;of the.nuclegs.nﬂSo‘fhatu;R “will be.a reél-ﬂgﬁ'

number, we require =00

We paramerlze V- as an optlcal potentlal and expand it about the spheri—

cal shaPe._ The nuclear,part is

PG TS W T
i TR )

:o)] e

‘and similarly for the other parts of V. Since -

where

.-Re V('r'-RO) = Vo[l + exp(

COBR o | _ L _ :
5= _2 pAS : L (9

we obtain byvusé of the addition theorem for spheficél‘hérmbnics'én expfession'

“din terms of the generalized deformation parameters &

( ) )\kAK( }1/2& ;—II;) (gé I&) o l . (for n>1) : (10)

where QXK) =0y and ﬁ =2L + 1. Now we have 

Nuc(r -R) = Nuc(r -Ry) *. =Ny, I &5 (6 ¢ ) . (vlla) ’
 ﬁ?§F?. - - (-R )n l': : . ' ->."‘ o
N (r) _ oy Lol () 3V(r) ' (11b)
.~ n=1 , or” . L ¢
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If the deformation parameters @ are not toonafge, the series converges rapidly
since .B(n) is of order o.

The coulomb potential due to the charge distribution p(z) is

| '- SN g .
vVCoul(r') = ZZ'egf%:,‘_%wT ar" | (12)

where the coordinates are expressed in the body-fixed frame. Using

A
1 b T v woany
I.,:,’ _an - % 2>\,+l r>"+l Y>\<e )¢) ) Y)\-(e )¢ )
>
we get a similar expression for VCoul in terms of B(H). In fact
= + - 1! :
Voo &) = Tou () + 3 Cpe(r) Y, (07,6") | ' (13)
~ where, | - ( I '
AT ILK if r < Rl
: 5 < RC .
_ 377Z'e
CLK(r) =5t Cs g (13b)
c . X :
\ .
Here 'R, and R, are the smallest and largest value of R obtained in (7).

Between these points no analytic form exists, but ¢(z) is coﬁtinuous.15 The con-

stant C

5 1s the ratio of densities for the deformed shape (7) and the sphere of

radius R '
2 C | 58(()2)+ 5(()5) -1 1309
Cy=pypy = |1+ —F=— | 3¢
Gy =pgo0 i | |

~.and the monopole part of the Coulomb field is given by_the usual expression

(2)
2 5 2
Cy %Zl;e 14+ 2. %(i— r <R
= fa N c
Voowr (¥) = ' (134)
ZZ'e2 ‘ 5T > R2

Tr.

where we employ a uniform charge density with radius parameter RC having a deformed

shape of the form (7). In this case the constants I and O of (13b) are,
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Cop Ll (O @ () o
e SN T = L oo, ¢ R
S o - (13e)
I3 ) (n) T
‘i = 2 'n'1§L+3-n5!. e >+ 990 =9
| The potentlals are stlll expressed in terms of the body flxed frame.
U51ng the D- coefflclents to express our results in terms of the laboratory
'frame and adding_to—gether the‘nuclear_and Coulomb”parts"gives us finally
T T S 'Dﬁk + DL o ,
Vir-r(€,0)] = V(r-R,) *+ = Y. (6,¢) = V__(r) , (1k4a)
TS R TR0 gy T TS IR L g
where we have ~used the fact that V VL-K asmfoilows'from the property of
th 6£§) and | o '

| The first term of (1lka), being:merel& a spherical:optical ﬁotential,]has,ll ;'_

only diagonal matrix elements whereas the second;.non-spherieal part, gives rise
to excitations of the nucleus from one rotational state to another.

Form factors. Following our former generalldefinitioh of form factors

"we have from (14) that

LS 'vm(r) A el 2 @

where, as ‘earlier, we let a denote the quantum numbers describing the nuclear“*

r
.
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>state. Since the wave functions.for.the rotations are given in:terms of D-
functions, the reduced matrix element can be.readily:evaluated as integrals over

three D-functions with the result (for X > O, and even)

L + DL

u—#————dﬁn

%o

- (G ‘Té)l/e (glg g )fko o ALKy =Ky =0
: g, L3, -
- e an1/2 .
| < Y(Q 3 507 / (o X, Ke)%(e > AT K =0,K*0
;. ‘
) 28 32 o L o
| J1 o { 1 2; . (16)

—Kl K K2

L&,

J. L J J.tJd, L J ' .
(—K;L X Ki) + () 2(-1{ K ~K§} » MK 20, X *".O

- It will be insfrﬁctive to discuss the form‘factors in terms of the pos;

- sible excitations of an e#en-even nucleus; for which Jl = 0, and whose excited

states have spin 2, L4,... . Therefore the L'th term in (1ka) leads to direct

éxcifation of the state with spin L. 1In addition it can be reached by many dif-

"ferent cascade routes through intermediateAstates‘ Now the radial shape of the

- form factor (15) is given by .VLK and its general character can be surmised

readily from (11b) (since the Coulomb part is small although it has a long tail

and 1s especially important at,forward angles when ZZ' is large). If; as an

example the intrinsic nuclear shape is characterized as pure L=2, (a2 finite,

all others zero) then the leading term‘of V., is of ordef a2 and has the familiar

2
first derivative shape of the (Woods-Saxon) optical potential (Fig. 9), The
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.Fig. 9. The Vg‘form factor together with contributions to it from various orders.
1 through 5 in By, including the Coulomb part. The leading term is the well
known first derivative but. the higher terms yield altogether a correction of
about 20% in the form factor for B, = .27. Note the changing scale for higher
order terms. The Coulomb form facftor is elso shown. Dashed lines are the
iregirnary part. - |
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leading term of V4 is of order a22 and has the'second dérivative shape, and so
on. (see Fig.IlO).- If there is some intrinsic o, shape present, thén v, has aiso a
first derivative component bf order OtLL so that we may expect that a careful
analysis of the 4+-state may.lead t0 a measurement 6f ah' No single state

can be considered in isolation from the others however; since the coupling be-
tween excited states for strongly deformed nuclei cannot be neglected. Hence

the distorted wave approximation is not valid.

Coupled eqdations for alpha scattering. Alpha particles should be very
- useful for stud&ing fhe nuclearvsurface because, being strongly absorbed, we
are assured that most alphas'thét have excited a low iying rotational state,
were involved in a. surface reaction. Here we will discussvscatte;ing from
strongly defbrmed even nuclei.

Much interesting.work based on.various approximafe calculations of the
scattering amplitude'within the framework of the adiabatic approximation have
beeﬂ published by Drozdov, Inopin and Blair.l6 However with the constantly
improving experimental techniques, the information contained in the
data is more érecise than éan be ektracted»by use of the earlier approximate
methods. More recently the scattering émplitude has been obtained by exact
| numerical integratioﬁ of the differential equations both in the adiabatic
approximation, which is certainly valid at the energies we have in mind
(Exdi 20 MeV), and by solving the coupled equations after truncating the space
of fotational states. The two methods agree very well for all levels one or

two removed from the point of truncation. We shall use the latter method since

- it corresponds to our earlier discussion.

-~
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The coupled equatioﬁs describing'scattefing from a defofmed nucleus
would look quitevsimilar—to thosé,already-considered except for the interpre-
tation of the matrix elementé. Here we are interested only in rotations of the
ground state. Consequently the effective interaction carries the effect of
intrinsic excitations and their rotations (as wéll as the hiéher rotations of

the ground state that are dropped in the truncation). A1l the matrix elements

. that appear, are therefore diagonal with respect to the intrinsic structure and
so, for practical reasons, according to our earlier discussion, must be param-

‘eterized as a complex optical potential. The potential is of course deformed.

While we shall loosely refer to its shape as being the nuclear shape, it should .
be kept in mind that we are really talking about the particular component of

the field generated by the micleus, to which thevprojectile is sensitive.

 Various projectiles such as protons, neutrons and alpha particles all should

feel different fields. How different their shapes and surface structure are
is not 2 priori known, nor are the experimental data definitive.

In contrast to the earlier discussion of intrinsic excitations in

- spherical nuclei where the diagonal'matrix elements, or optical potential, could -

= ~in principle be different in each nuclear channel, they are identical in all

channels of the present problem; The channél quantum numbers are
¢! =Q'K'J' ! K (16)

where Q' denotés nuclear gquantum numbers edditional to K' ‘and J' like the

parity of the level .m', while {' 1is the angular momentum of the alpha

'particle. Its values are restricted by conservation of angular momentum and

1
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parity Slnce the target spin and parlty is J—O ,1 the channel spin I of

. our earller dlscuss1on 1s Just the angular momentum _l_ of the incident alphsa.

‘Then
gy
The off—diagonal“matrix elements of ﬁhefinteraction,"wh0se multipole
o decomp051t10n is glven by (1%) can ve found from the results of section IV by - .

lsettlng s = 1/2 -0, for our present case. of splnless alpha particles, or

~ otherwise one can Obtaln.them dlrectly by the same Racah methods.

c.C

Ve, 2§“l_ > cpaﬁ_ 2)5F P ‘(1 )

:iwhere; as before _C‘:is‘purely geometrical

e anfe g \ (. S
, N A SR ESTESRL
Crleqsen) = (=) 7 . T e (29)
T €L 0 00/ |J, 4, L SR

_2 2.
: rand sz'is_the form;raetorr(l5) that was diSCussed alread&.l Acfually we shall .
 be talking.only about_the‘ground state bandiof rotational states all of;which_'
:“lizhaVe therefore:vK =0 ’so that only K =0 cOntributesfto (18). 1In general
liﬁ,p;mtwo values of K could contrlbute, namely K = Kl'lL K2['.‘
» ‘ Now the coupled equations (II 9) are completely deflned. For eaoh in- '

'fvp.c1dent partlal wave 1. there are J + 1 outgoing waves for each nuclear state

g 'When £ > J so altogether there are
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‘N=3(J+1)
J _

. where the sum is over the spins of the states considered. The method of solving
them was qualitatively discussed,'but’the detailed numerical techniques are not
. interesting to us here.
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. VII. ALPHA SCATTERING IN THE DEFORMED RARE EARTH REGTON-
','The’éxcitaiion of rotations of théQgr@hnd staté in strongly. deformed _‘v'

even nuclei is ekcepfiohal in that the intfinéic struéture-bf_the states is not :.

changed in the reaétidn._ The_scattering'is thus;defined,by'onevobject;v

(0[#]0), the diagonal matrix element of the effective irteraction in the in-

trinsic ground state;1'Thié is-in contrast with the excitation of vibrations and

,fsingle-particle'states in which a'numberlof matrix elements whiéh are non-

. diagonal in the interhél'sﬁructufe are also needed. As we mentioned in the

" previous section, we shall work within the subspace ofvground state rotations . .

so that "V carries implicitly the effects of all the intrinsic excitations, and

we parameteri;ed.V:é7(OIFVTO) as'ah_optical:pbtential having a deformed shape, _

Its expansion in aimﬁlﬁipo;e series was written in (VIi-1k). fThe L'th multipole is

*:ré§p6nsiblé for diféctlygexcitingxtheVJ#L‘rotatiOnal-gtéte;:sowthat a careful study

of the various excited states will yield us the multipble expansion of  V

whose various terms are related to the optical parameters *VO;'WO, ry, @ of

(VI-8) and the shape parameters of the nucleus (VI-7) through equations (VI-

'.lO,ll,lE). A careful measurement of the crossésections of the various rotational

_sfates piovidéé a great. deal of data with which to determine V. Each angular

'.distribution constitutes not one.piece of data, but many, being characterized by

| such features as the frequency of oscillatipn, phase relative to elastic

’ pattefn, slope of the envelope of the maxima, amplitude of the oscillations

and magnitude of the crOSs¥section. One can expecﬁ therefore to measure the

opfical and shape parameters very éccurately. vPefhaps even the well known

ambiguity in the depths of the optical parametérs can be résolVed, although we

can not sﬁate this, . since our analysis has not been completed. -

-
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'Fig; 11.  Elastié cross-sections for four samariﬁm isotopes. The strongly _
 dampted oscillations correspond to the rotational nuclei. Opticel model
rogs-gections were obtained by N. Jarvis.
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Here we shall apply the picture of scattering by an 1deal rotor to

'exoeriments performed at Berkeleyl7 on various nuclel 1n the rare earth region-

of mass.A.z 1603, In”these experiments differential cross sections for 50 MeV
alpha particlesfwere.meaSured with very'high precision, The elastic cross
sections for a series of four even samarium isotopes_are shown in Fig. 11.

They exhibit a very importantIQualitatiVe difference. _The 0scillations_which are- -

,ivery'distinctiﬂithevlighter_two nuclei are almost absent in the heavier. In

fact it is known that the lighter two are vibrational while the latter two have & -

o . ' ' o ' - + o+ . « .
rotational spectra. The B(E2) for the 2 — O transition is much larger for the -
'_latter nucleil8vandfit is the stronger coupling to thé surface modes that is

'reflected sovclearly,in the_elaStic cr@ss-sectionsf The scattering back to the - =

_elastic‘state_from the 2 cannot be neglected when the coupling becomes too strong.

The curves shown in Fig, 11 are cross-sections computed from an optical

-model potential in which the elastic scattering is treated in isolation from the

other states.;9 From our discussion of the'effective'interaction in Section ITT '

A

htfit is ev1dent that the parameters (shown in Table 1) will be very different for-
hhg;the rotational nuclei than for the vibrational ones. This is because it must< o
.utake 1nto.account the effects on the elastic channel not only of the intrinsic‘
'excitations which are also-nresent in the snherical nucleus, but of the ro-
* tations as well, which are absent in the latter. ' When excitation of the rotations
v2:is‘explicitly'calcuiated by.solving the coupled equations, their contribution
t*i.1x>”7'is removed,and we find that essentially the same optical parameters (see

- Table 1) apply to both the spherical and deformed nuclei, since now they both

state the,spectrum andsstructure of intrinsic excitations are generally dif-

ferent, but of course the higher energy non-collective ekcitations of which there

\‘.
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T CQT?EEd*Bﬁ%_fE’L;S; and in the Taylor expanéion of each multipole we kept all
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are millions at the enefgyvofvthe‘éxperiment, ddminéte the effective interaction. -
It is possible that the small disagreement that dbes_still persist could be
eliminated if the effect of_the collective vibrational levelin‘Smll1L8 were re-
moved from*?"in the same way. Thus a rather consistent picture of the effective‘
interéction emerges. | |

So far we have avcomplete calculation only for one rotational nucleus,

154

Sm The experimental results are shown in Fig. 12 together with a coupled

"éhannel calculation .using the formulation of the preceeding section. The multi-

" terms up toandinclﬁding n=8, which we confirmed led to completély'convergent'

‘results in the cross-section. We also checked the effect of truncation within
o : . ; -+
" the space of rotational states. We.confirmed that eliminating the 6 state led

. to no detectable change in computed cross-gections to the lower states. Eliminating

+ + : '
both 4 and 6 did produce small but detectable differences. So we can be
+
assured that truncation beyond the 6 level introduces no errors in our deduced

parameters. In fact the calculated cross-sections must be regarded'as numeriéally

exact within an error too small to be detected even by the very precise experi-

- ments which are more accurate than indicated byvthe'experimental points marked

on the graphs.
Tﬁe'excellent,agreement shown in Fig. 12 corresponds tb the optical para-

meters listed in Table 1 (set'b) and: values of the deformation.parameters:

By = Oy = 0.225

By, = duo = 0.05
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- The sensitivity to the valu¢ and sign of 'Bu is indicated in Fig. 13.
There we see that both the phase and magnitude of cross-sections to the ﬂ+ and
6+ are dramatically effected by 64 as was previewed in the form factors VM
and Vsk.of Fig. 10. There is some suggestion;éecause of the slight disagree-
ment of the 6+ crosé—section at forward angles, Ef a small. ﬁ6' component to the
shape. The 8+ state will have tobbé measured to pin this down.
Although in this strong coupling Situation-the distorfed wave Born

approximation should not be applied, it is instructive to see what results if

it is used. The computed cross-sections are shown in Fig. 14. The main

qualitative—difference {5 that the large amplitude oscillations in the higher

spin states are no longer reproduced. In fact the deep minima are produced by.
an interference between the direct transitions which the DWBA takes account
of, and the cascade transitions, which it does not. (The DWBA does not take

account of the backward going transitions either, being of first order in V,

. and these have a very strong effect on the elastic cross-section). But never-

theless if one accepts the magnitude of the cross-section as a means of deter-

mining .62 the value of .3%300 is obtéined which is in closer accord with

~ Coulomb excitation work.

However our parameters reproduce the experiment so-well, as seen in Fig. 12,

- that we have considerable confidence in them. It does remain to be seen whether

. they are unique. These calculations are in progress but incomplete.

Though the main field responsible for the excitations is the nuclear

one, the Coulomb excitation cannot be ignored, as 1s indicated by the results

shown in Fig. 15. The erroneous value 62 = ,27 is deduced, compared to .225 when

the Coulomb excitation is accounted for.

-
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Comparing with Fig. 12 where

it 1is included illustrates its importance,
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Table 1. Optical model parameters for 50 MeV alpha particles. The 148 para-
meters and set (a) for 154 are pure elastic whereas set b) include explicit
coupling to the ground state rotational band through solution of the coupled
equations. Most important difference is diffuseness which in set (a) is very
large corresponding to the implicit treatment of the rotations.

v W r T g r

C
st 65.5 29,8 1.h27 ' 671 1.k
Sm154 a 34.6 » 29.4 1.40L .819 1.4
b 65.9 C o 27.3 - 1.hbo 637 1.440

" The excellent agreement obtained with the Sml data and

~Trends in '5,'
the high sensifivity of the h and 6 states to 64 lead us to believe that we :

can make a very precise measurement of the nuclear shape. Referring to Fig. 12

‘ +
- for Sml54 we see that the states are alternating in phase. The 4 1is out of

: S+ + '
‘phase and the 6 in phase with the 2 . However in Yb

176

as seen in Fig. 16

+ + +
the maxima of the 4 fall between the maxima and minima of the 2 and the 6 1is

+ .
out of phase with the 2 . This, as seen in Fig. 13, approximately describes

the situation for Bh = ~.05. Acchding to that figure, we also see that the

emplitude for-Bu = + .05 than for Bh =0 or -.05. Comparing Fig. 12 and 16 we

see that this feature is present in the experiments also. We must do an exfﬂ;-xg

176

‘plicit analysis of this nucleus, but it seems safe to conclude that Yb ' has

; .20 :
a negative 64 deformation near -.05. Hendrle, following the example of
Harada,21 computed the BM deformatlon on the basis of the Nilsson model. This
calculation took account only of the nucleons outgide the last closed shells'

and consequently the origin of the Bh deformation 1s not known, since the core

154

- presumeably also makes a contribution. However using our measurement on Sm

the origin was fixed and the resulting computed Bh shown in Fig. 18. We mote

that the predicted Bh for Ybl76 is negative in agreement with our conclusion above.
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" Flg. 16. Cross-‘s'ectiohs for 5_0' M_éV alpha particlés.-on'Yb _
‘Berkeley (Ref. 17). :The curve is merely a 1line through the points.

L’v

174 as measured at
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Fig. 17. The £ deformation computed by Hendrie on the basis of the Nilsson

scheme, by the method suggested by Harada.
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Summary.: We have computed the scattering of alpha partlcles by a per— o
fect rotor. In view of the sens1t1V1ty to the nuclear shape parameters, we : |
_believe that:by demandlng essentlally perfect agreement with experiment one can,' _
'measure.the:shape very.preciseiy. Thie.was_achieved for Sﬁl5u. Analysis of - |

other nuclei is underway but the £rend of.the By, deformation in the rare earth
region appears already ev1dent and is portrayed in Fig 17.

Flnally there is a. questlon as to the unlqueness of our parameterlzation
_ of the nuclear fleld. *Thls has still to be.settled, but if there is any hope
vat all in finding a uniQue potential 1t is surely in this situation where there

is s0 much data availablehwhieh is sensitive to the various multipole moments.




APPENDIX TO SECTION IT

Cross-sections ‘ For the sake of completeness let us recall how the cross-

sections can be obtained from the asymptotic behaviour of the wave function.

From (7) and (15) we have for one channel
M1 u (. B ¢ \1/2 I -
= -0 ).+ = -8
YCWI T or g'_¢cfﬂi 6E'C(Ic oc) (ic" (Eb'c c'c)oci}

The total wave function is

LMy, M. |
Y= Ao chI v - 7 e

and we must choose the coefficients A to correspond to the fact that there is a
plane (orCoulomb distorted) -wave in the target channel:dj..;That is in the absence

of scattering (S=O) we should have

B Bt

or in the presence of the Coulomb field alone

110, 0, 1, - :
b3 Vlm(e/zﬂ)i L _Ly0O : L

S
‘Yg = 05 (2)X 1/2 )
> Czl/ej I 'Z\r———u (21+1)11em£ oty -1 ¢M—ﬁn
T 437 Omm m 21_kr Pent

‘whence

. 1 ig
A C;zl/ej oJIL. -\,"_""'w@“l) Pe 2

onl 21k Omm  “mMM+m

Inserting this into ¥ and employing the asymptotic - expressions for Oc and  Ié

ﬁe»obtain, the general form,



‘L’M’m —->\YM’m»
T c : R

i . 1[k r- n 'In(2k’ rﬂ N

+’d'»JZ"‘M'1"ln' xr . T C!J'Mm al J M m (r)

Jr,<A) xl/2<o>

The first term‘h._as'-.é Cel;iiomb e_cattered waffe, or vin' fhe ebs.e'riceﬁ bf charée is Just
a plane'weve 'an'd the.s'e-cdnd terrri rep'resents the xsca'ttered waves arising from the
nuclear interections The explZLCl‘t form off ‘can be obtained by performing a
the. algebra 1mp11ed above

2k'r

The current assoc:.ated with ;e /r is ];Iev'/rz so that the flux ‘

: .through the surface r d.Q\ in.the direction Q,. is. . 2\%'(19 -+ The incident
. N N ) o B -

_flﬁ}&'isvv’so'f
912) a1 (f_) }z e
W oy oy 2RI W ] o I

’C "f ! %4 5. +J:gJMm,oc_'J'M'm'.'

with fc denoting t_he_ Coulomb amplitude. .Asmptpticalljr;.; we can -replace -
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FIGURE CAPTIONS

Fig. 1. The DWBA. takes account of only transitions 1 and 2, whereas the coupled

channel calculqtions includes such additional ones shown and all of them

iterated.

'Fig. 2. Shapes of several single-pafticle form factors that contribute to

+ g 2 o
excitation of 2 states in nickel isotopes are shown for several force

ranges of the direct interaction. The oscillator parameter v = mw/f =

0.25 y (Ref. 6b).

I C ' . ot '
. _ Fig. 3. Scalar form factor for the lowest 2 state in Ni6o is shown together

Fig.

Fig.

~ Fig.

with the 51ngle-partlcle form factors that contribute to it. They all ‘have __

such phases that they add constructively for the lowest 2 but must there-
fore be destructive for all otherAQ states. (Ref. 6b).

< +
L. Scalar and vector form factors for 2 states in Ni6o'are shown at the

left. The absolut¢ values are plotted and oscillations are indicated by

(+) and (-). Corresponding cross-sections at 11 and 40 MeV for proton

scattering calculated in the distorted wave approximation are also shown
(Ref. 6Db).
5. Coupled channel (solid) is compared with optical model calculation of

elastic and distorted wave calculation of inelastic proton scattering

' (dashed). Note that elastiC'is barely effected by the additional coupling.

While several cross-sections are only slightly changed others are signifi-

cantly modified (Ref. 61)

6. Cross-sections and polarizations for 17.8 MeV protons. Curves are

coupled equation calculations using microscopic description employing a

surface delta interaction Ref. 9 .(solid line) and a volume finite range
interaction Ref. 8 (dashed line). Direct interaction parameters are

Vy = -55 MeV, V, = 0 and p = 1.85 F of Eq. (3) and (15) (Ref. 6j).



2-

1

=

g. 7. Cross-sections and_ polarization for 18.6 MeV brotons.'v The experi-
mental polarlzation was measured at Saclay. The solid'lines are coupled . <
' cncnncl calculatdons based onlthc microscopic theory of: Rcf 8. |
. Fig. 8. CrOSs sectlon and polarlzatlon for l7 8 MeV protons, meacured &t
. Berkeley. SOlld llnes represent coupled channel calculation baced on
microscoplc theory of Ref. 8. |
Fig. 9. The V form factor together‘with contributions to it from varicus orders'

throuvh 5 in B including the Coulomb part;- The leading term ic the well

‘_known fir st derlvatlve but the higher terms yield altogether a correctvon of dvr

‘,ahout 20% in the form factor for 62 = .27.” Note the changing scale for higher
‘order'terms. The Coulomb'form factor is also shown. Dashed lihes.are the =
'1maP1nary part. | | | |

Flg lO - The form factors VA and V6 are shown for three values of 64

fd.rlg. ll - Elastic cross sections for four samarlum 1sot0pes. " The strongly
dampted oscillations cOrrespond to the rotational nuclei. Optical model~

' :grOss-eections were_obtained by N. Jarvis. |

'1‘Fig.v12, Cross—sections for 50 MeV-alpha exciting ground state rotational band”d

| h of smiP*, Curves are conpled channel calculation-as deseribed in text. AThé

ddatalwere taken'at.the ‘Berkeley 88 inchicyclotron (Ref; 17).

Flg..lﬁr, Extreme cen51t1v1ty of L and 6 to s1gn and value of Bh is indicated

in 50 MeV lpha scatterlng from Sml52+ | |

;Figf b, :Distorted wave calculation with Optic parameters,set (a) ofrTable.l,

g. 15 Coulomhxexcitation isﬁneglected here. Comparlng with Fig. 12 wvhere 1t
1is included 1llustrates 1ts imnortance, even though the main mechansim is the
nuclear excitation. Note also the 1nterference between nuclear and Coulomb
excitation in Fig, l2 at small angleslin the 2 . ,To compensate for the neglect
of Coulorb excitation a larger value of By is required namely By = .27

compared to-.225, Even so the data cannot be well reproduced.
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" Fig. 16. Cross-sections for 50 MeV alpha particles on Ybl7h

as measured at
\ .

Berkeley (Ref. 17). -The curve is merely a line through the points.
Fig. 17. The Su deformation computed’by Hendrie on the basis of the Nilsson

scheme, by the method suggested by Harada.
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