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ABSTRACT 

We have shown that the assumption of maximal analyticity of 

first degree and fixed-t po~er behavior of the scattering amplitudes 

in general imply a ImTer bound at a fixed angle. The fixed angle 

lower bound takes the form exp[-c (z ) sY logs] where c (z ) and 
Y s Y s 

I are positive. The precise value of y depends on the specific 

assumptions on the fixed-t bound of the scattering amplitude. In 

particu1ar, the assumptions made by Cerulus and Martin correspond to 

1=1/2, and. for the case of a linearly.rising trajectory, y = 1. 

Furthermore, we obtain a finite lower bound at z = 0, which heretofore . s 

was given to be zero. 
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I. INTRODUCTION 

Cerulus and MartinI have shmm that the MandeIst.am representa-

tion, together 'lith a weak unitarity condition, implies that the 

scattering amplitvde has a Imler bound as the energy s increases 

at fixed center-of-·mass scattering angle z • 
s 

They used the finite 

range of the interaction and the assvJnptioYl of a polynomial bound to 

show that 
.12 If( s, z s) I ~ exp[ -c (z s) S2 logs). Subsequently, Ma.rtin 

rederived this result under a 'leaker assmnption. The rapid decrease 

of the differential pp scattering cross section at large momentum 

transfer led Kinoshita3 to postulate the princj.ple of "minimal inter-

action"--that the physical amplitude takes the minimum value consistent 

with the e;eneral requirements of analyticity and unitarHy. 

Doubts concerning the uniform polynomial bound assumption have 

been expressed by Cerulus and Martin,l and by Mandelstam himself.
4 

Martin
2 

was able to include the possibility of Regge cuts when the 
1 

leading branch point in the J-plane does not increase faster than t 2 

as the momentum transfer t increases. Recent experiments,5 ho,·rever, 

suggest that Regge trajectories could increase ]jnearly with t. If 

this trend persits, then the assumptions rnade by Cerulus and Martin, 
1 

and by Martin
2 

could be too strong. 

We shall show that the assLUnptions of maximal analyticity of 

the first degree and fixed-t povler behavior do indeed imply a lower 

bound at fixed angle. The fixed-angle-10l-ier bound (FALB) takes the 

form exp[ -c (z ) s)' logs L \-rhere )' is a positive constant and 
)' s 
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c (z ) is a positive definite function. The precise value of the 
r S 

constant r depends on the specific assllmptions on the fixed-t bOlmd 

of' the scattering amplitude. In terms of' the Hegge pole hypothesis) 

the FALB d,epends on the behavior of the leading singularity in the 

J-pJane as a function of t. i'Ie ShOH that the result of Cerulus 2"nd 

Marti.n (C-il-r) is a special case of thi s general result. FUl'thermore, 

Ive jmprove the 10\·rer bound at 

1 -
be zero. -) 

z 
s 

0, ,vhich heretofore was given to 

In Section II) we set up our mathematical problem and prove a 

theorem which will be used repeatedly. We shall see that the FAI,B is 

closely connected to an angle e I-Thich determj.nes a domain in the 
max 

t-plane within ,·rhjch the fixed-t polynclmial bound j.s assumed. VIe sr,all 

reduce the problem formally to that of a theory satisfying uniform 

fixed-t polynomial bound assumption) I-lhere the range of interaction 

depends on the energy. In Section III, ",<1e 8118.11 exhibit a potential 

model with its dOlrcain for polynomial bound enlarged as compared to the 

domain assumed by C-M; a::ns::qLEntly tmt tre FALB obtained is higher than 

that of C-U.- In Section IV) ve consider relativistic scattering 

amplitudes. Ttle discuss the additional constraint of simultaneous 

uni tarity in all channels. 'de show that the C-M resuit is consistent 

wi th this constraint, but is by no means the most general one. In 

particular, Wt= "heX! tbBt fora linear Regge trajectory} the best FALE \Ve 

can obtain is exp[-c
l 

(Z5) slogs]. TIle shall make some concluding 

remarks in Section V. 
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II. A MATHEMATICAL THEOREII1: 

. ., '. 

We now shmr hOlv the assuniptton of fixed-t pOiler behavior 

implies a FAI,B for a scattering amplitude. Cons1.der an analytic 

fWlCtion T(s,t) of two complex variables. Let T(s,t) be Ei.:nalyti.c 

int w-:ith a branch point at to on the positive real axis. If 

T(s, i') has fixed-t pm"rer behavj.or in s,we can define a function 

N(t) lim (log IT(s, t) I / logs). (Ir . .1 ) 
s~m 

The function N(t) is a real-valued continuous function on the complex 

t-plane. \ile assume IT(s,t)/ < c sN(t) at large s, '"here c is a 

large positive constant. We shall. show that the specific behavior of 

th1.s funct;i.on N(t) will determine a F'AIB for the function f(s, z ) 
s 

T(s, t), with z = J. + 2t/(s-4). 
s 

F'irst, -tie need a lemma, which is a generalized version of a 

theorem proved by Cerulus and Ma.rtin. 
1 

Lemma (Cerulus-Martin Theorem): 

Let -g(s,w) be an ana.lytic function of the real variable s 

and the complex variable w, such tha.t, at large s, 

1) 

2) 

g(s,w) is analytic in w wfth a branch point at .w
O = 

1 + al /(s-4)2Y, a
l 

> 0, Y > 0; 

N 
Ig(s,w)/ < s for wED, where D is a finite dorr~in in the 

w-plane (to be specified in the proof).: 

o (a
2 

logs), a
2 

< N and finite. 
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Then, /g(s,w)/ ~ exp[-c (w)s'Y'logsLfor s suffidently large, and 
'Y 

-00 < ,,; < 1, llhere the real function c (,,;) 
'Y 

is posHive definHe in 

this inter~~l .. (See the appendix for the proof.) 

He cannot apply this lemrrE. to olU~ function directly, 

by identifying the variable IV Ylith z , because condition 2) of the 
s 

lemma is in general not sa tisfj.ed. He can, hmvever, make an appropd.a te 

change of variable so that this lemma becomes applj.cable. Let us 

first define a new variable .g r exp [ i (rc - e)] t - to' and 

write N(t) as fi( g). Denote by e 
max 

the biggest angle for which 

fi( g) is bounded by some constant NO' Ylhenever g lies to the left 

of two lines in the = r exp [ i (rc ± e ) L 0 ~ r < OJ • 
max 

In this sector of the g-plane, subtended by an angle of 2 8
max

' the 

NO 
func·tion T (5, t ) is bounded by s The desired transformation is 

the one which maps this sector onto a plane. On this new complex 

plane, we can apply the above lem,'11£!. and obtain a FAIJE. 

We define 

w = (11.2 ) 

where 'Y = rr/28 , and max 
p 1 + 2tol(s - 4)j and we use f(s} w) 

to represent f[s,z (s,";)]' In the w-plane, f(s,i-T) is bOlmded by 
N s 

s 0, and it is analytic except fur abranch point at 

(II. 3) 
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No;,rwe apply the lemma, assumhig the condition 3) is satisfied by 

Since 

FALB 

w(s,z ) 
s 

for f(s,z ). 
s 

Theorem: 

1 - (1 _ Z )21 
s 

If /T(s,t)/ ~ c sN(t) and 'l'(s,t) has the slngu.larity 

structures descrlbed above, then f(s, z ) 
s 

has a F'ALB, i.e., 

/f(s,z )1 ~c' exp[-c"(z ) Sl logs], for -CD < z < 1, 
SIS S 

where I rr/28 • max 

(11.5 ) 

Thus the asymptotlc 10lver bound at a fixed angle derived here 

1s connected to assumpU.ons on the domain specified by 8 
max 

The 

usually assumed polynomial b~~nd corresponds to 8max rr. In that 

case, a ~, and ,,'e obtain the C-M result. But in general, the 

angle 8 will not be equal to rr • 
max 

For a theo~y with a finite 
1 

range of interactlon, t o
2 is a constant (it is the inverse of the 

range. ) It corresponds to a singularity in z -plane, located at the 
S 

point p 1 + [2td(s - l.f)). This point p approaches z 
s 

1 

as lis when S is large. If we make an analogy ;,rith a problem in 

which w is the cos1ne of the scattering angle, \{e see from Eq. (II. 3 ) 

(s-4 )/-1/2. tha t the range cf the interaction hc~s an energy dependence 

In this ne-vT V leory, the scattering amplitude satisifes a uniform fL>::ed-t 

polynomial bOlLl1d. 
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Martin
2 

has subsequently abandoned the assumption of a unj_form 

polynomial bound, and rederi ved the C-M result ll..l1der a SOmei-lnat 

different assumption. His "neH" assumption reCluires that the funct:Lon 
1 

o( It 1"2} This l-leaker assumption 

might still be too strong. Recent experiments seem to suggest the 

pavrer Net) gravis l:Lnearly I-lith t. However, He can make use of h1.8 

mathematical method and der1.ve our theorem with a relaxed condition. 

The angle e 
max 

can now be the blggest angle 

in the sector defined by this angle e 
max 

so that N(s) 

In the next section, itre shall exhibit a potent:Lal model where 

8 > 1L and the corresponding FALB derived is higher than that of max ~ 

C-M. In Section IV, we shall see that for a linear trajectory the angle 

8 _ will be rr/:2. Hence the FALB 1..rill be 10i-Ter than that of C-M. 
max 
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III. A FDTENTIAL MODEL' 

The existence of the Mandelstam representation has been proved 

for a certain class of potentials. 6 'l'hrovgh the vfOrk of Regge) 7 we 

also kno\V that the scattering amplitude has fixed-t pm-Ter bohavior due 

to the existence of t-channel Regge poles. The uniform polynomial 

bound) required by the Mi:1.ndelstam representation} puts a restriction 

on the possible position of at-channel Regge pole. Let the scattering 

amplitude A(s}t) be bounded by 
N I s I . The pm'Ter N has the physical 

interpretation of being the "maximum" angel-lar momentum a t -channel Regge 

,pole can have} as can be seen easily from the Froissart-Gribov amplitude 

(111.1 ) 

Since the discontinuity function D (s) t ) 
s 

is also b01.md.ed by the same 

power} ECl. (111.1) defines an analytic function of f,} regular for 

Re(.£) > N} for all t on the t-channel physical sheet. Since a 

Regge pole arises from the divergence of the integral in 'ECl. (111.1 L 

it follows that no Regge pole can move to the right of the line 

Re(f,) N for all t on the first sheet. The angle e defined 
max 

in the last section \Vill then be at least as large as rr. Using the 

Theorem of Section II} we see that the FALB of the scattering amplitude 
1 

is exp[-c~(zs) S2 logs]. This is exactly the Cerulus-f,19,rtin result. 

If the angle e is bigger than rr} the corresponding FALB max 

will be bigger than that of C-M. If a(t}P) is also regular on the 
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second sheet of the i-plane} for Re(l) > N} the double spectral 

function I-Till also be bounded by . 
N 

s } for all t. Tllis 

fol10lvs from the fact that the discontinuUy of a(t}£) across its 

elastic cut 1s gi.ven by 

00 
( 

(2i) J 
s(t) 

, 2 s' 
p ( s, t) Q.e( 1 + D+) d s . (111.3) 

Now we can use a dispersion relation to find Dt(s,t), and Dt(s,t) is also 

bounded by 
N 

in the same region where is bounded. Since s 

(21) Dt(s}t) is the difference of the scattering amplitude A(s}t) 

between the first and the second t-sheets, the angle 

possi.bly bigeer than n. 

e 
max 

is now 

For potentials suffici.ently "analytic} ,/3 all poles of a( t) £) 

move tOHards the negative axis on the second sheet 1-There Re(£) 

is large. For this class of potentials, e can be as large as 
max 

2n - E. We apply our theorem of Section II and obtain a FALB 

[ () 1/(4-'::')1 ] 
exp -c1/4 Zs s ogs . (111.3 ) 

We can generalize this method to include any finite number of channels, 

and obtai!! a FJI..LB higher than that of C-M. 

Additional considerations ffive tobe made for relati visUc 

problems. As we shall see,that there are infinttely nl2.ny ITlultiparticle 

channels opening as t increases, and their existence is probably lv-hat 

is responsible rOT the ever-rising Regge trajectory.9 If the leading 

Regge trajectc£'y increases too fa.st, the FALB \·rill be considerably lo,rer 

than tlJat of C-M. 
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IV. ro\·~""R BF..JiAVTOR AT FIXED-MOI'-1ENTUM TRANSFER AND FIXED-ANGIJE LOVlER BOUJ:.lD 

In a relativistic theory, the scattering amplitude A(s,t) is the 

sum of t'iVO analytic functions A(t)(s}t) and A(u)[s,u(s}t)L defined by 

co 
Dt(s}t' ) 

A(t)(s,t) 1 
( 
I dt I -i' - t Jl' j 

to 

CD D (s, u' ) 
A (u)[ s} u(s} t)] 1 ( u du' - u'- u(s,t) Jl' J 

(IV.l ) 

U
o 

with 

A ( s, t ) ::: A (t ) (s, t) + A (u) [ :;>, u ( s, t ) ] and u + s + t 4 • 

Both A (t) (s) t) and A (u) (s) u) have the same singuJ.arlty structure 

in s as does A(s}t)} and both have rj.ght hand cuts in the t and u 

planes respectively. For potential scattering, the complete scattering 

amplitude A(s}t) is just A(t)(S,t). Here Ive are interested in the 

behavior of A(s,t) when s goes to infinity whil.e keeping z 
s 

fixed, 

where z is the cosine.of the s-channel center of mass scattering angle. 
s 

Let us define 

f(s,zS) - A(s, t), f(t)(s}zs) - A(t)(s z ) } s } and f(u)(s z ) 
} s = A[sju(s,t)] 

where 1 
2t 

-1 
2u 

(IV.2 ) z ::: + 4 ::: - 8':-4" s s -
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z . fixed) from our knmrledge of the 
s 

and A (u). 

and 

It does not follow immediately that the lower bounds for 

f (u) should also be Imrer bounds for the full amplitude 

because cancellation10 might occur betveen f(t) and f(u). We think 

such cancellatlons are unlikely and shall assume that they OCClJ.T only 

at isolated points of z • 
s 

It then follows that the bigger of these 

two 1010[6:' bourtds for ~(t ) 
I and feu) is the best Imrer bound obtained 

for averaged functions. For instance} define 

res} z ) 
s 

z +6. ; JS u. f(s}x) 

z 
S 

dx} 6. > O. (IV.3 ) 

If 6. is not too small} we immediately have a lower bound for r(s}z ) 
S 

in both energy and z dependence. From this point on} we shall dlscuss 
s 

only f(t)(s z ) } s } (and drop the subscript) for slmplicity. 

The FALB of A (s) t ) can nov be found in exactly the same 

fashion as that for potential models. In the Regge theory} the function 

N(t) would be the value of the real coordinate of the rightmost 

slngularity in the jt-plane at a given t. Because of s-channel 

unitarity} the Froissart bound
ll 

tells us that N(t) ~ l} for 

-00 ~ t ~o. It also follows from unitarity that
12 

N(O) ~ N(t) .~ 2 for 

o ~ t ~ to} i·rhere to is the lowest t-channel .singularity. The value 

of N(t) for an arbitrary t is} in general} not Ll1ci-m. In most mod.el 
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th . 13 eorles, N(t) is bounded for the ,{hole complex t-plane, as WdS 

shovm in the example in the preceding section. Ho'{ever, all these 

models could not incorporate simultaneous unitarity in·all channels. 

It is a "Tell-known fact that a finite number of normal threshold 

singularities in one channel is inconsistent with unitarity in the 

cross-channel. As discussed in Ref. 9, the existence of infinitely 

many multiparticle channels may have the effect of producing ever-

rising Regge trajectories. If this is the case) N(t) will not be 

bounded as 1 t 1 _.> co. 

Applying the theorem of Section II, Vie obtain a Im{er bound for 

f(s, z ), 
s 

/f(s,z )1 ~ exp[-cy(z ) sY logs]) where y 
s s 1c/28 • (Iv.4) max 

The existence of infinitely many multiparticle channels also limits the 

angle 8 to less than max 
14 

1('. 'men e = 1(', we obtain the max C-M 

lower bound. In this sense) the C-M lower bound is the best possible 

lower bound for f(s,z ) consistent withs-channel unitarity .I5 
s 

We can easily see that the FALB of f(s, z ) 
s 

can be considerably 

lower the.n that of C-H. In particular, if a Regge trajectory increases 

linearly with t, e will be It then follows that the FALB of 

f(s,z ) is 
s 

. max 

In general, the FALB vTill be 

y 1 
exp[-c (z ) s logs]) 2-~)( < en. y s 

16 
We note that this bound is true for aJ 1 z bet'{een 1 and -1) 

s 

(IV.5 ) 

(Iv.6 ) 

including the point z 
s· 

o. (Numerical form for Cy is given in Ref. I'7.) 
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V. CONCLUDING REMARKS 

We have seen that there is a connection bet1veen the asymptotic 

behaviors of the scattering amplitude A(s, t) j.n different asymptotic 

regions. It is not clear at the present if the asymptotic conditions 

of the S-matrix are determined by axioms of maximal analyticity of the 

first degree. The postulate of second degree maximal analyticity is 

intended to fill this gap. It is nevertheless encouraging to lmOlv that 

the kn01-11edge of fixed-t asymptotic behavior, which can be obtained from 

the second degree maxim--'J.l analyticity, implies certain constraints on 

the fixed-angle behavior, whether the former is simply a consequence of 

basic S-matrix axioms or not. 

The conjecture of ever-rising Regge trajectory might sound 

alarming at first. It will not allow us to write d01VD a double-spectral 

representation in the form originally proposed by Mandelstam. This 

worry is really an ill-founded one. Unitarity in all channels and 

simultaneous analyticity in sand t can give definite meaning to 

18 
the Mandelstam representation through analytic continuation. All 

singularities of scattering amplitudes are dynamically determined. The 

ever-rising-Regge-trajectory model is definitely a qualified candidate 

to satisfy all these requirements. 

It is interesting that both the energy dependence and the angular 

dependence of the pp cross section data at large angle are compatible17 

with the form of our 101ver bound for either 1 
2" or 1. 

Unfortunately, the data are not sufficient to make a meanj.ngful test on 
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the minimal interaction hypothesis. Should the scattering amplitude at 

large angle indeed coincide \-lith the lm-ler bQund amplitude, the sj.tua-

tioD "rill be quite puzzling) since there are other general Y'equirements 

not used in our derlvatiol1 of the results. So it is still possible 

that the fixed-angle behavior is of the form proposed by Martin and by 

Kinoshita, "\-rith 
1 

I :::: 2"' whereas the lm-rer bound ,·rill decrease faster. 

Consideration of analyticlty in the s-channcl' might, hm.,rever, raise 

the lmrer bound obtained here. 
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APPENDIX 

Pi'oof of the Lemma (Cerulus -Martin Theorem): 

The original C-M theorem was given in Ref. 1, and vas sub sequent1y 

clarified by 'J:. Kinoshita :in Ref. 3. He shall not repeat their' results 

and refer interested readers to Ref. 3 for details. We s1-18.11 only 

point out the major modifications necessary for our proof. 
a

1 (1 ) g(s,v) has a branch 'point at yTo 
o < 'I < co, yrhereas the actual sca tterine; ampl:i.tude has a branch point 

2tO 
in z -plane at 1 + -----

S (s - 4) • 

(2) g(S,yl) has no left-hand cut in w. Consequently, we do 

not have to restrict ourselves to mappings centered at w = O. 

(3) For any point 'ilb on the real axis to the left of w = 1, 
w - w b 
r-:-W-

b 
If I·le consider g(S,'<l) define w 

w, we see that g(s,w) has a branch point at 

w = 1 + 
[al/(l - w

b
)] 

(8 _ 4)2'1 
1 + 

as a function of s and. 

(A.l ) 

(4) "Now we do precisely the same thing as C-M did. Using 

the mappings of Refs. 1 and 3, centered at w = 0, and applying Hadamard's 

19 three-circle theorem, one obtains: 

(A.2 ) 

where 
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M1 

a
2 (A.3 ) := S 

MO 
N (A. 4) := s 

M := exp [- q:> ( W, S )) := g ( s, w ) (A.5 ) 

.en r 
In R 1 - (A. 6) 

with 

-c(w-)-l A. (1+A.) 
:= 2 .en 1 ... A. , 

== (2 s j.n e )' 1/2 
A. . \1 + sin '9' 

and 

sin e := 

-2 1/2 
(1 - w) • 

Substituting Eqs. (A.3), (A.4), (A.5), and (A.6) into (A.2), 'one has 

, where we have-introduced F(w, w
b

) 

(5 ) Define c (w)= min y 

this back into Eq. (A.5), we obtain 

1· 
c(w, w

b
) (28:"1)2 

(F(W,'il
b

) 1-00 <wb < Iv). 

Ig(s,I-I)1 ~ exp [-c (I'T) (s - 4l .en s]. y 

Putting 

(6) One can check that c (w)· is finite for all w, -m< I-r < l. 
y 
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