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ABSTRACT 

The dispersion relation for the axial propagation of electro-

magnetic energy in a hollow plasma vavegulde is derived. The structure 

considered has a cross section consi.sting of a central cylindrical 

vacuum region surrounded by a plasma she1J. contained within a metal 

cluter conductor. Solutions of the dispersion relation are presented 

vhich show the variation in propagation cha.ract.eristics attained by 

varying the plasma properties, the radial dimensIons, or the external 

magnetic field. Losses in the pla.sma region and the effect of finite 

conductivity in the metal outer conductor are considered. 

Propagation cha.racteristics of a hollow plasma wa.veguide resemble 

those of a. metal circular waveguide for large axial ma.gnetic fields, 

hut as the axial magnetic field is reduced, the phase eharacteristic 

of the ,guide changes to that of a slow wave structure. The attenuation 

characteristic of the hollow plasma vaveguide, for waves of a TM type, 

may be lower by sevel'al powers of ten than that of conventional meta.l 

waveguides. 
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L INTRODUCTION 

Present-day radio-frequency linear particle accelerators employ 

metal waveguides or cavity resonators to confine the intense electro-

magnetic fields required. This introduces two 1bnitatlons at high 

energies. Large amounts of rf power are required to compensate the 

copper losses in the walls of the metal structures, and great physical 

lengths are required because the maximum voltage gradient is limited 

to a few million volts per foot of accelerator length by high-voltage 

breakdown between conductors in vacuum. For example, the linear 

accelerator at Stanford requires 240 20~MW klystrons to produce 20-GeV 

electrons, with most of the supplied energy used to overcome copper 

losses in the two-mile accelerator waveguide. 

Clearly it will be. of great value to develop an accelerator structure 

with s.ignificantly less loss than metal waveguides or cavity resonators. 

A structure that is only 1/1000 as lossy as the Stanford linear acceler-

ator waveguide will require only one 5-MW klystron t,o overcome wall 

losses in thp. waveguide. It will be of greater interest if the same 

structure can hold higher voltage gradients before breakdown irl vacuum. 

Increasing the voltage gradient the structure may hold will reduce the 

length required. 

It has bee.n proposed by others to construct a guide for electromag-

netic energy, using a plasma, that has considerably lower loss than the 

1-3 best metal conductors. If the plasma frequency, LJ , is higher than 
p 

the applied rf frequency, W , and if the plasma collision frequency, V ' 

is very much lower than the rf frequency, little rf power will be 

transferred to t,he plasma. Lichtenberg has considered a plasma waveguide 
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consisting of two semi-infinite plasma slabs separated by a vacuum 

reeion.l August has considered a cylindrical vacuum region within 

an infinite plasma. 2 Both have considered the case of an infinite 

3,..·da1 magne tic field and have indica ted that low-loss propaga tion of 

fast ...,aves (phase velocity greater than the velocity of light) J'l).ay be 

achieved b.r using a plasma ...,aveg~ide device. 

The hollo..., plasma waveg~ide, hereafter also referred to as a 

plasmaguide, has the cross section sho~~ in Fig. 1. A method of 

confining the plasma, suggested by Woodyard, is in a Philips Ion Gauge 

type of discharge in a strong axial external magnetic field. 3 If a 

ring-shaped cathode is used, the plasma formed will be hollo..." and t~e 

:electromagnetic energy ...,i11 be confined prL~arily to the central vacuum 

;,core. In the proposed plasmagttide, the cyclotron frequency, LJ c' is 

;Proportional to the axial magnetic field and will enter into the solu

(tion as an independent variable. The presence of a finite cyclotron 

·frequency makes the .plasma an ani'sotroplc medium and greatly complicates 

any type of analysis except by numerical methods on a high-speed digital 

conpu ter. 

It may be seen from the brief discussion above that the plasmaguide 

designer has a large number of independent variables at his disposal 

to achieve a favorable design. Ther.e are at least four different fre-

quencies ~~d at least t...,o major linear dimensions available. In brief, 

these are the plasma frequency, the collision frequency, the cyclotron 

frequency, the applied rf frequency, the vacu~m region radius, and the 

outer radius of the plasma region. A computer solution of the propcga-

tion characteristics. of the plasmaguide which considers all these 
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Cross section of the hollov plasma waveguide. 

Fig. 1 
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independent variables has been developed. Several cases have been 

examined "hich show that a hollow plasma waveguide of reasonable 

dimensions (theoretically obtainable plasma conditions) and moderate 

ext.ernal axial magnetic fields has powers of ten less loss than con

ventional metal waveguides. 

The properties of the hollow plasma waveguides investigated will 

be describe'd by LJ-p diagrams, by plots of the a.xial rf electric field 

dlstri bution, and by att.enuation curves. No attempt wi] 1 be made to 

ana.lyze the behavior of the hollow plasma waveguide as a function of 

rf signal level. The behavior of a plasma in Ii strong rf fleld and 

the question of high-voltage gradients have been examined by il.ugust. 4 

In the following discussion, the small-signal equivalent dielectric 

tensor representation of' th~ electronic properties of t.he plaSlll!l 

region is used. 

Experimental work using a plasma colulTln to guide electromagnetic: 

ent:'rgy has been report-ed by Lichtenberg, Govindan, and' Woodyard. 5 The 

Q of a partially ionized plasma with fluctuating density, created by a 

x'<3flex discharge, is determined by a measurement of the decay of micro

wave energy in a cavity eoaxiaJ. to the plasma column. The measurements 

indicate that the plasma Q is lower by a factor of J to 4 than the Q 

cal,~ulated from t,he theory. The results obtained in thIs disGussion, 

for a theoretically simplified plasma, must. be considered alongside 

the experimental difficulties and the inexplicably larger losses 

reported by others. 5 
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.tI. DERIVA'fIONOF THE FIELD EQUATIONS 

1. Characterization of the Plasma 

A plasma 1s defined here as a fully ionized gas in which the 

Dehye length is much smaller'thanany other lengt.h of interest, and 

in which only the bulk properties of the gas are important. In 

addition, the plasma is assumed to be uniform everywhere (the plasma

vacuum interface is an abrupt transition). 

For simplicity in calcula tions, the plasma is considered to be' a 

fully ionized hydrogen gas. Partial ionization principally alters the 

rf losses, but not the gross electromagnetic properties of the plasma. 

For use in a hollow plasma ,.,aveguide, we shall consider only 10w-

temperat.ure and low-density plasma.s appropriate to microwave applica-

tiona. o If the plasma electron t.emperature ranges from 5 000 to 100 000 K 

(0.5 to 10 eV approximately), the plasma 1Ii11 usually be from a fe1l 

per cent to 100% ionized. The densi Ues considered will range from 

1010 
to 1013 (charged) particles per em3• For comparison, thermonuclear 

fusion plasmas have temperatures and densities on the order of lOS ~K 

and 1014 particles 'per em3 and higher. 

The plasma properties may be descrlbed by several eharact.eristic 

frequencies. They are the following: 

(a) The plasma frequency, LJ p' is the characteristic relaxation fre

quency of the plasma. Neglecting temper~ture corrections, it is given 

by 

(1 ) 
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where ne:: electron density, electrons/m3, 

e :: electronic charge, 1.602 x 10-19 coulomb, 

m :: electron rest mass, 9.1091 x 10-31 kg, 

-12 !. to :: the permittivity of vacuum, 8.8542 x 10 farad/me 

(b)The cyclotron frequency, (J c' is the frequency of rotation of 

electrons 1.n a magnetic field; it is given by 

LJ :-:: (e/m)BO' c 
(2) 

~ c) The col11sion frequency, V , represents an energy loss mechanism 

in the plasma. For a fully ionized plasma, there are three types of 

collisions, electron-electron, ion-ion, and electron-ion. The rirst 

and second types do not change the total energy or momentum of the 

electrons or the ions, but are useful in establishing equilibrium dis-

tributions of these particles. Collisions of the third type transfer 

energy and momentum between the electrons and the ions, and s.re a 

mechanism for transferring energy from an electromagnetic wave to the 

plasma. 

(d) The average electron-ion collision frequency as given by 

Shkarofsky6 is 

v :: r ~ ')Y1.. ~ 11" ne (3K 0 Te)/A( - e7. )1-x 
2.iT '2.. tv). 12.1IfoKsTe 

In[ I ~~ ~\fo)Vz (ll1f~'i K81e~ • 
where KB :: Boltzmann I s constant and Te :: the electron temperature o in K. 

~. 

f 
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For a hydrogen plasma 

v = 
In [7ela x 109 Te~11 LJpJ 

[8 .OB xlO~ Te'3/z.jU;] 
0) 

For small signals, the electronic properties of the plasma region 

may be specified by an equivalent dielectric tensor. A detailed des-

cription of the derivation of the equivalent dielectric tensor repreSAn

tation for the plasma region may be found in Spitzer.? For cylindrical 

01' Cartesi1:l.n coordinates we use 

where 

I t" {tl~ 0 
Ilfyll =,-iE,2. t" 0 

() () t33 

(4) 

The rf fie1ds are assumed to have an exp (lz - i[Jt) dependence. 

If there are any losses in the plasma region, the propagation constant, 

1, will be cO!llplex. Then, r ': ex + ~8 where eX::;: the at.tenuation 

constant and j3 = the phase constant. 

2. Plasm1:l. Region Field Equations 

Many investigators have discussed metal waveguides, filled or 

partially filled along the center with plasma.8 ,lO-12 Although the 

geometry Wid operating conditions studied by t.hese investigators differ 
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from the case presented hare, many of thelr plasma region results 

apply here. 

Maxwell's equations in the plasma region are 

V· H =: 0 , 

V' (/i( /IE= 0 o i r I ' 

-7 /, Whal"e p,O =:: t.hc permeabili ty of vacuum, 4 7T x 10 henry/m. 

o a 
For t.he ca.se of no losses, ex.. :: 0 and a z ::; ij3, at:: iW· 

The above set of equations may be expa.nded in cylindrical coordi-

nntes ~nd manipulated to give a set of four equations expressing the 

transverse electric and ma.gnetic fields in terms of the axial electric 

and magnetic fields: 

r EEl 
K 1 Er = 1)3 !K2 ~ / - j. ~ ¥ ~ eci 

L J 

+ ~ n [Ak?_ dH~ _ kLf ili~l, 
I ( y 0 e 12. ~H" J 

Kl E =- ~B [ K2. ;:) Ei: + ~A'2.( oE~Jl 
e / r- ae 'lor 

~'l [iK2 -w + ""rtl1.~~l· 
- .i~ f/~ (jH~l 

r ae J 

.( K3 () E~ 1 
r or' 

(6) 

(7) 

~I 
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KIHe - 1fi [lAte iJ Hl- + K2. oH~ (8) - . 1"2.'01" r as. 

~\ + A [ ~ K3 aE t + fife< &f;,,] . 
where ry d'r r () r 

,i\ == LJ/c (wave number), 

8 c. :: velocity of light in a vacuum (2.997925 x 10 m/sec), 

Tl :::: Y;J.:o/t~ (vacuum wave impedance), 

K2,: ltu _,8.2 , 
Kl - K ..... 2 k4 C' ? . - , - c12' 

2 2 :.2 :.2 02 
K3 :: k [11 ~ k f 12. - J-' t 11 • 

. Further manipulati.on of Maxwell' a equations yields 

[v~ + (c:' ;,~ )-k' -fiJ 71 Hi< = - A c£ I~}) Aft E. • 

[ \7~+ f33},'-_p2iB1Ec =-,{ t/l;P7(H~, 
. nJ ["~ 

where \J ~ is the transverse portion of the Laplacian operator. In 

, • 2. 1 a '( ()) 1 a 2 
cylindrical coordinates it is glven by\? ::: - -}'- + - :2 -:-- • 

V T r 0 r -0 r r de 2. 

For convenience we shall make the following definitions: 

'l.. 2 2- _ fJZ a
1 

::: t,,- tl1_ ~ (9 ) 
tl/ 

a., ::: f 3~"'l. - S]..3j32 , (10) -. (1/ 

b
l 

:: t33(/~~fl (11) 

'. f" 
, 

..£l~fl · (12) b
2 

::: A. 
t/l . 
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The scalar wave equations for the axial fields may now be written 

[v~ + diJ7(Hi! = b~El' 

[9 ~ + 0.1-] E l :: bz7( Hi: · 

Equations (13) and (14) are two couple4 scalar wave equations 

relating E and H. This pair of coupled equations must be solved z z 

(D) 

(14) 

simul taneously. Only under certain circumstance s are pure TE or TM 

modes possible. If either b1 or b2 is equal to zer~ the scalar wave 

equations are uncoupled. This may occur if the external magnetic field 

:is infinite or zero. The scalar wave equations are also uncoupled at 

the plasmaguide cutoff frequency at which j3 1s zero. 

In other research on wave propagatlon in gyrotropic media, the 

rotational nature of both the electric and magnetic fields has been 

included arid formal equations have been obtai~ed. 9-11 Electrons under 

the influence of such fields undergo transverse as well as axial 

osdllations. Eavc and Everhart have defined the possible modes of 

11 wave propagation as follows: 

A wave is predominantly transverse electric, TE, if in its transverse 

components the contribution of the longitudinal magnetic field component 

exceeds the contribution of the longitudinal electric !leld component 

by at least one power of ten. 

A wave is predominantly transverse magoetic, TM, if in its trR~sverse 

components the contribution of the longitudinal electric field exceeds 

the contribution of the longitudinal magnetic field component by at 

lea~t one power of ten. 
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A wave is hybrid if the contributions of the longitudinal electric 

and magnetic field components to transverse field components are 

approximately the same. 

A practical hollow plasma waveguide design of a linear accelerator 

structure will have its operating parameters selected to maintain a 

TIM mode of energy propagation. 

Following the method of Shohet, the scala.r wave equations, Eqs. (13) 

and (14), can he uncoupled from each other, producing two fourth-order 

hi-quadratic wa.ve equations, 12 

[\7.; + V~(~1+Q~ + 0.1 0.1. -bt b2.J E~ :: 0, 

[\7~ +V;(cil.+a,~+ (A1QZ. - b.\b2.]H
2

:: O. 

(15) 

(16) 

The fourth-order equation for the electric or magnetic field may 

be factored into the product of two second-order wave equations: 

(17) 

where 

Solutions of the second-order wave equations l' OJ' n cylindrical 

geometry are wal1 known; they are, in fact, just Bessel's equations. 

The result is that, in genera.l, E and H are the linea.r stuns of two z z 

solut,ions. The general form of the solution 1s 

2. '~e 
E. = ~~ Aj~eA. Z'15(Tj t), 

J , 
<\, J:=:l . 

where Z (T.r) denotes some cylinder function (a solution of Bessel's 
q J 

equation) • 
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2 In general, T. is complex. 
J 

2 2 If T
j 

is a real number, and T
j 
~ 0, the 

soJu tions can be expressed as a linear combination of Bessel functions 

of the first and second kinds with real arguments (Jq(Tjr) and Yq{Tjr)). 

If' T2
j
. is a. real number and T~:> 0, the solutions can be expressed as a 

. J 

linear combination of modified Bessel functions of the flrst and second 

kinds with real arguments, (r (T.r) and K (Tjr)). If Tj
2 

is complex, 
q J q 

either the unmodified or the modified Bessel functions are appropriate, 

bu t InUS t be evaluated wi th complex arguments. 

At this point in the discussion,it is instructive to conslder the 

case in which the external axial magnetic field is infinite or zero, 

then bl and b2 equal zero. The scalar wave equations are uncoupled; 

with LJp~ LvI , we find that T2 ~ O. The solutions of the scalar 

wave equatlons are a 1 inear combination of modified Bessel functions 

of the first and second kinds. 

Returning to the discussion of the general case, the TM mode of 

electromagnetic wave propagation with no circumferential variations, 

q = 0, is the only mode of interest for possible linear accelerator 

applications. Therefore, the solution for the axial electric f'ield In 

the plasma region' may be written 

(18) 

where QO representr- an unmodified or a modified Bessel function of the 

first kind, and Wo represents an unmodified or a modified Bessel function 

of the second kind. 

Substl tut,ing in the coupled scalar wave equation, Eq. (14), on'! 

may wri te the expression .for the axial magnetic f.ield, 
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2-

Hz = 2:: ~l[ Aj o.o(T;r) + BjWon,rl). (19) 

where F -j -

j-:'l 

Substituting the above expressions for the axial fields into the 

previously derlved expressions, Eq. (5) through (8) for the transverse 

fields, one obtains the equations for the transverse fields in the plasma 

region. (See Appendix A for the transverse field equations.) 

3. Vacuum Region Field Equations 
/ 

The field equations in the vacuum region are easily deri"ed by 

letting LJ
p 

go to zero in the various plasmll equations. Then, f 11 and 

E· 33 go to uni ty and f 12 goes to zero. The scalar wave equations for 

the axial fields beeome 

(20) 

0, (21) 

IJhere 

In the vacuum region, the scalar wave equations are separable and 

!->urc TE or 'I'M modes may exist, but in order to satisfy the boundary 

conditions, both TE and 'rM modes must be considered. 

Solutions of the scalar wave equaUons are Besse]: functi.ons. 

Bessel functions of the second kind, either unmodified or modit'ied,are 

not allowed as a solution, since the vacuum region lnc1udesr :: O. 

If K4 :> a,t.he solution of a1 ther scalar wave equation is the unmodified 

Bessel function of the first kind. If K4 < 0, the solution is. the 
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modified Bessel function of the first kind. Therefore, the solutions 

for the axial electric and magnetic fields in the vacuum region may 

be wrH.ten 

EV 
::: C 00(T3 i) z 

(/2) 

and H
V 

::: A ~Qo(T'lY)' z ( -' 

(23 ) 

where T3 ::: [ ~"L -,B'L ] liz.. 

The equations for transverse fields in the vacuum region are 

derived simi.larly to those for the plasma region. The transverse 

field equaUons for the va~uum region are t.abulated in Appendix A. 



" 

'.,{ 

-15-

III. DISPERSION RELATION AND METHOD OF SOLUTION 

1. Determination of the Dispersion Relation 

By use of the expressions for the tangential fields, a set 

of six linear homogeneous equations may be written to describe the 

boundary conditions. The boundary conditions that must. be satis-

fied are that 

(a) the tangential components of the electric and magnetic 

fields must be continuous across the plasma-vacuum interface, 

(b) the tangential components of the electric field must vanish 

at the metal wall of the outer conductor (use of a good conductor 

is assumed). 

The six boundary conditions (four on Ez ' Hz' Eg , and He at 

a.t r :: R ) result in six Unear w 

homogeneous equations. The resultant determinant,which must be 

set equal to zero for a nontrivial solution, is the dispersion 

relation for the plasmaguide; in general it is made up of complex 

terms arranged as shown below 

all a12 a
13 

a
14 

8
15 0 

8 21 8 22 8 23 a24 0 a26 
a31 8.

32 
8

33 
a

34 
0 a36 

_. o • 

8 41 842 a
43 

8
44 8

45 
0 

a51 a
52 

a
53 a

54 
0 0 

a61 8 62 8 63 a64 0 0 

The elements of the above determinant are tabula ted in 

Appendix B. 

(24) 
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2. Method of Solution 

The solut.ion of the determinantal qispersion relation is 

cumb6rsome by other than numerical methods. A dig:i tal computer pro-

grl'lJ:: W!I.S wri tten in FORTRAN IV language to f5.nd the complex propagation 

constant,l ' necessary to satisfy the dispersion relation at a. gi.ven 

rf frequency. In general, a complex 1 is necessary unless there are no 

losses in the plasma region ( V = 0); i.f there are not, the propagation,; 

consta.nt is given by 1:-:: if3. In the execution of the program, the 

fr(lquency is vllried from the TMOl eu toff fr'3quency of the hollow 

pJ.f.tsTDa wavegtlide,LJ
O

' to an upper frequency of three times the cutoff 

frequency, LJ . A logical flow chart of the digital computer pro-
max 

g.-a'}! to find t.he 1 necessary to satisfy the dls}.lersion relation 

is shown in Fig. 2. 

The independent variables used to describe·the hollow plasma 

w8.veguide are read int-o the computer at point A of l"ig. 2. They are: 

RO - vacuum radius in meters, 

Rw/RO = ratio of outer conductoI' radius to vacuum region radius, 

V/W _. ratio of collision frequency to rf frequency, 

LJp/LJo := ratio of plasma frequency to plasmaguide cutoff frequeney, 

LJ~/LJp - ratio of cyclotron frequency to plasma frequency. 

At point B, fig. 2, the cutoff frequency of the plasmaguide 

. described in the' input data is computed. The derivat.ion of the 

pla.smaguide cutoff dispersion relation and the solution of the cutotf 

dispersion rela. tion are described in Chapter r'J. 

At point C, Fig. 2, trle elements of the equivalent dielect.ric 

tensor are computed for a frequeney slightly higher than the cutofr 

and 
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COMPUTE 
cutoff 
frequency 

© EVALUATE 
dielectric 

tensor elements 

@l-------+-----, 
® EVALUATE 

dispersion relation 
determinant [Det(Y)] 

Yes 

Yes 

PUNCH 
data cards used 
to plot curves. 
Print data 

Yes 

XBL675-3141 

Logical flow chart of the digital computer program for the exact 

solution of the plasmaguide characteristics. 

Fig. 2 
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frequ~ncy. The program is ready to search for the propagation constant 

necessary to satisfy the dispersion relation at this frequency. The 

elements of the dispersion relation determinant, as given in Appendix \ 

a, are evaluated at point D. The propagation constant of an equiv:alent 

met.al guide 18 used as the first guess at the r necessary to sat-

isfy the dete~inantal equation. A round metal guide operating in 

the TMOl mode with the same cutoff frequency as the plasmagUide is used 

for comparison purposes. It Is referred to as an equivalent metal 

gu:i.de throughout the rest of this discussion. 

In determining the elements of the dispersion-relation determinant, 

one must evaluate unmodified and modif:i.ed Bessel functions for both 

rea] and complex arguments. The computer coding to do this must be 

efficient and sufficiently accurate to enable one to solve for complex 

propagation constants when the phase constant and the attenuation con

stant may differ by factors as large as 109• To compute the desired 

Bessel functions, It was necessary to combine and modify several sub

routines developed by other programmers. 13- 15 The computed results 

of the Besset function routine developed for this program were 

compared~ for a wide range of real and complex arguments, with the 

Nathmal Bureau of Standards tables of Bessel functions. 16, 17 The 

re:mJ ts agreed with the tables to six significant figures, the 

Gxtent of the tables. 

kfter the elements have been evaluated, the value of the deter

minant 1s computed by use of a subroutine developed for this purpose. IS 

The value of the detenninant, Det( l), is in general, complex. The 

program then proceeds to compute the change in the assumed propagatlon 
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constant, 1 ' necessary to reduce the value of the determinant to 

zero. The procedure followed at point E, Fig. 2, is to assume one 

is ~urficiently close to the desired 1 (that sat.isfies the dispersion 

relation) to expand the function DetCr) by means of a Taylor's 

series expansion about 1'.19 ThIs method of oompuUng the zero of 

a function is called the Newton-Raphson method, and Is treated in 

.. 20 21 
many numerical, Clualysls texts.' The result of the Taylor's 

series expansion, ignorirlg higher-order terms, is given by 

o = Det(r) + 6 1~D5~CrJ +..., (25) 

where D.l is the change in r nece:=;sary to reduce the value of the 

determinan.t to zero. 

To fiud fj r it is necessary to evaluate the derivative of the 

dispersion-relation determinant with resp~ct to the propagation constant. 

Differentiation of the 6X6 determinant is most easily and quickly done 

numerically. The procedure followed in evaluating the derivative 

numerically, point F, Fig. 2, is as follows: 

(a) Compute 12 = I + 10-
7 

(b) evaluate the dispersion-relation determinant at 72 and store 

the value in Det( 12)' 

(c) ev&.luat.e the derivaUve by using 
pDet( 0) _ 
00 

The change in J necessa.ry to reduce the value of the dispersion~ 

relat.ion determinant to zero 1s found by solving Eq. (24) for /j 1 ; 
one finds 

At pOint G, Fig. 2, a decision must be made by the program; if the 

computed fractional change in '{ is greater than O.OOOJ., Ii new I 
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is calculated at H, and the program returns through I to junction D. 
I 

At :r, a counter is indexed which counts the number of times 1 has 

been calculated. A solution usually requires tvo to four iterations. 

If the above process is repeated too many times (eight is the maximum 

numb",r of iterations allowed in this program), the program ietenninated 

and a set of error messages is printed. 1'his usually occurs if an 

improbable set of independent variables has been submitted for analysis. -

If the computed fractional change in I is less tha.n 0.0001, 

the determinant.al equation is said to be satisfied, and the program 

proeeeds to calculate other properties ~f the hollow plasma waveguide. 

If the programmer requested, via. the input data, plots of the axial 

eleet.ric field as a function of radial position, it is necessary to 

determine the coefficients of the Bessel functions in the field 

expr~ssions of Eqs. (18) and (19) and Appendix A. This is accomplished 

by use of a subroutine that evaluates ratios of five of the coefficients 

. th . th 22 to I e SlX • ~fter the coefficient ratios have been calculated, 

point J on Fig. 2, the field in any region of the plasmaguide may 

,be expressed as a percentage of the axlal electrie field at the center 

line of the plasmaguide. 

The wall losses may now be calculated by a perturbation technique 

discussed in Chapter V. .Tust, as for the axial electric field plots, 

the wall loss calculations are optional, depending upon the choice 

of the programmer via the data input. 

At point K, the results of the calculation up to now are stored 

in a form sui table for punching, upon completion of -the program, !l 

Bet of output data cards containing the propagation characteristics 



-21-

and field plot data. The program, at point L, of Fig. 2, then proceeds 

to increment the rf frequency, test if the new frequency is less than 

the desired maximum frequency LJ , and return to point M'to determine max 

a new propagation constant at the new rf frequency, etc. 

Aft.er the propagation constants for a series of frequencias up 

to a. value three times the cutoff frequency have been determlned, the 

program will return from point N to point 0 if there is another set 

of plasmaguide independent variables to process. If there are no more 

input data. cards, a tabula.tion of the calculations is printed and a 

set of'''-output data 1s punched by the card punch assodated with the 

digital computer$ These output data cards are used to plot the 

characteristics of severa'! plasmaguide designs on the same graph,--as 

showr. in Figs. 3 through 16. 

-.... IU;.';' 
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IV. CUTOFF 

At the cutoff frequency, WO' of the hollow plasma waveguide, 

there is no energy propagation in the axial direction </3= 0). 

Referring to the auxiUary quantities defined in t.he discussion 

of the plasma region field equations (Eqs. 9 to 12), it may be seen 

that, at cutoff 
" 2. el/ - e'2 a

1 
:: 

til 
8 2 -- (

33
){ 

b
l 

:: 0, 

b2 - O. 

"2-

,'" , 

For b
l 

and b2 equal to zero, the TE and TM modes are uncoupled, 

as may be. seen by referring to the scalar wave Eqs. (13) and (14). 

Considering only the TM mode, the scalar wave equation ror the axial 

electric field '!.t cutoff is 

('V: + <1 2.) E c = O. ( 26 ) 

For the case of LJ > W, we find a 2<0. Therefore, solutions 
. p 

of the scalar wave equation in the plasma region are linear combinations 

of modified Bessel functions of the first and second kinds. The 

axial electric field in the plasma region is given by 

E :: AIO(T r) 
z c 

(27) 

whero T :: -Y-f ~? 
C 33. 

, and IO and KO are the modified Bessel funct..lons 

of the first and second kinds. 

To detennine the cutoff frequency of the plasmaguide, it is 

necessary to derlve expressions for the rest of the cmtoff fields. The 

boundary conditions at cutoff are similar to those requlred tor the 

general solution of the plasmaguide dispersion relation; see Chapter III. 



The required field expressions may easily be derived' from the general 

plasmaguide field expressions by letting )3 = 0 and using Eq. (27) 

for the axial electric field in the plasma region: 

He = iTcCAIl(Tcr) - BK1(Tcr))jk~ (pla.sma region at cutoff) , 

E; = CJO(kr) (vacuum region at cutoff) , 

HV 
e = -iCJ 1 (kr )/n. (vacuum region at cutoff) • 

At cutoff, the resultant determinantal eq~ation that must be 

solvec. for the hollow plasma waveguide cuto.ff frequency is 

= . 0, 

where 

all = IO(TcRO)' a12 = KO(TcRO)' a13 = -JO(kRO)' 

a21 = LeIl (TcRO)' s-22 = -LcKl (ToRO)' a23 = +1Jl (kRO)/~ , 

Solution of the cutoff determinantal dispersion relation i~ per

formed numerically, point B on the logical flow chart of Fig. 2, by 

the same method as used to find the 1 necessary to satisfy the 
• 

general dispersion relation; see the "Method of Solution" discussion 

in Chapter III. In the numerical method of solution, a first guess at 

the cutoff frequency is needed. The first guess is obtained by using 

the approximation for the cutoff frequency of a hollow plasma waveg~ic.e 

with the same vacuum radius but with a infinite outer conductor 

2 radius as derived by August. For LJp/LJo greater than 3.0, 

(28) 

(29 ) 

(30) 
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August has derived the expression 

r 
",here Wo = the TMOI mode cutoff frequerlcy of a round rnetal guide with 

a radius equal to the vacuUlll region radius. 

It may be noted that all the elements of the cutoff determinantal 

dispersion relationaro independent of the axial magnetlcfield. 

Therefore the cutoff frequencies for the TM modes are independ~nt 

of the axial magnetic field. 



V. ATTENUATION DUE TO FINITE WALL CONDUCTIVITY 

1. Perturbation Te chnigue 

In specifying the boundary conditions for the hollow plasma 

waveguide, Chapter III, the tangential electric fields at the metal 

wall oftr:eouter conductor were set equal to zero. Even for very 

good conductors, a small tangential electric field exists; however, 

the field distribution is only slight1y perturbed from the loss-free 

solu tion. 

By the perturbation technique described by Str.atton, the 10s8-

fr~e solution is used to approxtrll.ate t.he tangential magnetic fields 

at t.he conduetor surface. 23 Assuming the conduL~tion cnrrent in the 

wall i::; very much greater than t.he dlsplacement currant (always true, 

by definition, for a good conductor)~ the surface current denslty 

In the wall is gi van by 

--+- ~---" 

Js=nxHt:. 
The average poyer dissipated per unit length in the 'Walls is giv~m 

by 

where R 
5 

Fl. = ~'fi~12 ds. 

is the surface resistivi ty of the wall in ohms per square. 

Rs used tn the calculation is, at room temperature, 2. 61XIO-7 -vr ohms 

for coppel:'; 24 f 1. s the 1'1' freq1leucy in Hz. 

To determine the attenuation constant due to the effect of 

finite wall conductivIty, point P on Fig. ~pone must first determine 

t.hl~ total energy flow in the axial dir""ctlon~ The tjme-uverage axial 

energ-j flo .... calculations a.re carried out with the p1asma losses set 

aqual to zero; V:; o. 
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2. Time~Average ~~ial Power Flow 

(a) Vacuum Region;" 0 -:::;y ~ RO 

The time-a.verage axial vacuum power flow is given by 

p. = l~rret'srdr, 
(32) 

where SV = (1/2.) o:to..(E~H:· - E~H~) 
~., . 

Note: A starred quantity indicates~he complex conjugate of the quantity. 

From the transverse field equations, Appendix A,.ve find 
v v~ Ali. ?. ;\7..( ) E y ,He = K47]C V\oT,l'"" , 
v vt llfL. 1. I 2. ) 

and - Ee HI' = K4nD Oo\T~r • 
Th f Sv _ 1 B. b. ('2. <..) I 2.. ere ore, _ zK41) C +0 Qo(T

3
r) 

and f
Ro '2. 

p = lTA{3 ((2.+ D~) r d (T r)dr 
v K4n, . 0 3 • 

o 

(34) 

The definite integral expression used to evalute the time-average 

axial ':ncuum power flow expreBs10n is given in Appendix C for both 

unmodified and modified Bessel's functions. 

(b) Plasin~ Region: R~~ I'" % R w 

The time-ave:rage axial plasma. power flow is given by 

(35) 

where 

Using the expressions for the transverse plasma fielqs given in 

Appendix A, we find . 

ErH: =.t Lj l.1j(ALi4-1J) [ Aj Oo(lj r)+BjW~(lj y)] 
J=~ . f 

.' X [AjO:o(Tjr)+BjW~t1it-)J (36) 
'2. 

and - EeH!::.-:-2::.(Ljz.lj{LHT.S~[ Aj QJo(T1t) + 8jW~("Gr)] 
J=1 _ 

X [Aj Oo\Tjr)+ BjW~l1j~)]*". (37) 

,.'.. -
. " 

'-'" 
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The integral expression for the time-average axial plasma po~er 

flo~ Is evaluated by substituting the expressions of Eqs. (36) and (37) 

into Eq. (35) and performing the indicated integration by numerical 

means. A numerical integration subroutine developed ~Vardas25 is 

used to evaluate Eq. (35). 

The tot-al time-average axial power flo~, P
z

' is the sum of tuo 

components, the time-average axial po~er flow in the vacuum region, 

PvJ and the time-average axial power flow in the plasma region, Pp: 

and 

P =P +P. z v p 

3. Time~Average Power Loss in the Wall 

The surface curren t density in the wall is gi ven by 

2 

Je=H;:1 =.~ ~[Aja\)(1jRw)+8JWo(TjRw}] 
Ir':.Rw J'::l. '/ \ 

The Urns-average power loss per uni t length in the wall is the 

sum of two components, one duato the small Hz field in the plasma 

region at the wall, a,nd the other due to the He field in the plasma 

region at the wall. The loss due 1'.0 the H component at t,he wall may z 

be neglected with respect to the loss due to the He component. The 

loss is proportional to the squa.re of the magnItude of the tangential 

magnetic field. He is typica11y several powers of ten greater than· 

Hz •. Over the range of plasmaguide parameters considered (see Section 

1 of Chapter VI), the ratio of the axial magnetic field to the axial 

electric fleld varied fr0lll 0.0001 to 0.001. The mode of "lave 

! 
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propagation iepredominantly transverse magnetic (as defined in 

Section 2 of Chapter II). The time-average power loss in the ~all 

is g-L van by 

if RwRs\ Lj+ 1j[N}o( TjR.) + 8j W: (T; Rwllr 
4. Attenua.tion Constant 

The attenuation constant, due to finite conductivity in the 

23 .... alls, C( " is given by Stratton, .... 

(38) 

(39) 

If' tho plamna region has losses, V~O, the r necessary to satbfy 

the dispersion relation equation isa complex number (see Cha.pter' II!, 

Section 2). The real. part of r i8 the attenuation consta.nt due to 

the losses in . the ?lasma region,CXp ' . Tho attenuation constant, ex , 
for 0. hollo .... plasma waveguide with .... al1s of finite conductivity and 

a. nonzero collision frequency in the plasma reg:t~n is g1. .... en by the sum 

of ~he two attenuation constants, 



-29-

VI. DISCUSSION OF RESULTS 

1. §election of Parameters 

The operation, of the hollow plasma waveguide may be compared with 

that of a metal waveguide. In a metal waveguiqe, electromagnetic energy 

is reflected at the walls by induced conduction currents; in a hollow 

plasma waveguide, electromagnetic energy is reflected at the plasma 

interface by induced currents that are reactive for a lossless plasma. 

In a metal, the rf frequency is very much less than the electron colli~ 

sion frequency inside the metal, while in a plasma, the reverse can be 

true. A metal has very small skin depths at rf frequencies; a plasma 

wi th Up:::::> LJ may have skin depth~ several thousand times as large as 

the metal. The confinement properties are in fact independent of the 

collision frequency. A low-loss hollow plasma waveguide design will 

maintain the plasma frequency greater thant.he rf frequency, LJ p:::;;;:" LJ , 

and the rf frequency very muc~ greater than the collision frequency, 

LJ» V' 
The other independent variables to be selected are the magnitude 

of t.he external axial magnetic field, the outer conductor radius, and 

the vacuum radius. The size of the vacuum radius is determined by the 

rf frequency the plasmaguide is designed to carry; see the suggested 

design at the end of this section. The losses caused by the conduction 

currents in the outer conductor should be kept small. Toensure'this, 

the ratio of the outer conductor radius to the vacuum radius must be 

large enough so the rf fields that penetrate through the plasma region 

to the outer conductor wall are sufficiently attenuated by the inter

vening plasma volume. 
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The selection of the magnitude of the external axial magnetic 

field is difficult because of the complexity of the hollow plasma 

waveguide dispersion relation equation. 'The calculation of a propaga-

tion characteristic, from (,)0 to 3LJ 0' for one set of independent 

variables, requires approxim~tely '12 sec of computation time on a 

CDC 6600 computer, or approximately 50 sec on an IBM 7094 computer. 

It is economically feasible to try a likely set of independent variables, 

compute the propagation characteristics, examine the results, and then 

recompute the propagation characteristics with a modified set of indepen-

dent variables. One does not have to repeat this procedure too many 

times before the results described in the following paragraphs are 

obtained. 

2. Results 

The phase characteristics obtained for several values of external 

axial magnetic field, with a ratio of plasma frequency to cutoff frequency 

of four, is given in Fig. 3. The curves are normalized as discussed in 

Chapter III, Method of Solution. For purposes of comparison, the TMOl 

mode CJ - f3 diagram is displayed for a metal waveguide with the same 

TMOl mode cl.!-toff frequency as the plasmaguide. This is the equivalent 

metal guide referred to in Chapt.er III; R(eq), Fig. 3, is its radius. 

The cutoff frequency found for each of the four curves shown is 

the same, independent of the external axial magnetic field as derived 

in Chapter IV. The cutoff frequency for this ratio of plasma frequency 

to cutoff frequency is 12% lower than the TMOl mode cutoff frequency 

of a metal guide with the same radius as the vacuum region radius. 



-.31-

PUlSMI=lGUIDE OMEGI=l-BET~ DII=lGRI=lM 
() RotR", 3.0 Wf'/Wo 4.0 Wt;/W p =10.00 V/w 
[3 RJRw 3.0 Wp/Wo 4.0 Wc.JlJp 2.50 V/W 

Ro/Rw 3.0 LJp/Wo 4.0 W,/Wp 1.25 vlw 
RJP..w 3.0 W,/Wo 4.0 W,/Wp .75 V/W 

7.50 

TMOi Mode 
6.00 Equivolent metol guide 

(3 

w 

Il 

4.50 

~ 3.00 

1.50 

.0 
.0 2.40 4.80 7.20 

BETI=l"'RCEQ.1 

Fig. .3 

=0 
=0 
=0 
=0 

9.60 12.00 

XHL 675-4040 



-32-

The phase and group velocity curves corresponding to the LJ-;g 
diagrams of Fig. 3 are shown in Figs. 4, 5, and 6. The velocity at 

which an equiphase surface travels is called the phase velocity of 

the wave. It is given by 

Vp = 

Therefore, the ratio of the ordinate to the abscissa of the GJ- j3 
diagrams of Fig. 3 is the phase velocity of the wave in the plasmaguide. 

The velocity of propagation of energy, the group velocity, is given by 

V :::. (@ )-1 
'J elk. 

The group veloci ty is the reciprocal of the derivative of the w-j3 
diagram. The derivative of the LJ- p diagram is obtained numerically. 

The phase and group velocity curves shown in Figs. 4, 5, and 6 are 

normalized with respect to the speed of light in a vacuum. 

The LJ- 8 diagram for a phsmaguide with a very large external 

axial magnetic field (~I /tJ = 10.0, on Fig. 3) very closely resembles c p 

that of the equivalent metal waveguide. The character of the solutions 

of the dispersion relation, Eq. (23), changes as the external axial 

magnetic field is decreased. The resulting TM wave phase velocity 

becomes less than the velocity of light in a vacuum (a slow wave). The 

change in the LJ-)3 diagram caused by lowering the external axial 

magnetic field is shown by the three curves for LJ ~LJ ratios of 
'c p 

2.5, 1.25, and 0.75 on Fig. 3. 
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The extent of penetration of the electromagnetic fields into the 

plasma region may be seen from the plots of axial electric field versus 

radial position shown in Figs. 7, 8, and 9, with lJ IlJ = 1.25 and c p 

varying {~/LJO. It may be seen from the set of axial electric field 

distribution curves that the axial electric field decays to a very 

small value at an appreciable distance from the outer conductor wall. 

This suggests that the choice of the ratio of the outer conductor 

radius to vacuum radius, for this set of field plots, is larger than 

necessary for a low-loss waveguide. 

For slow wave solutions, the highest axial electric field is found 

at the plasma-vacuum interface. I!'igure 8 shows the axial electric 

field distribution for a plasmagutde with a normalized phase velocity 

just slightly less than unity (Vp = 0.99, LJILJo = 2.0). The axial 

electric field at the plasma-vacuum interface is only slightly higher 

than the axial electric field along the plasmaguide center line. If 

the rf frequency is increased, the axial electric field at the plasma-

vacuum interface becomes very large and the phase velocity of the TM 

mode w,tive decreases ( Vp = 0.76, W/WO = 3.0); see F:!.g. 9. 

Large fields at the plasma-vacuum interface extend further into 

the plasma region and cause the attenuation of the plasmaguide-to increase 

very rapidly as the phase velocity of the plasmaguide decreases. Figure 

10 is a plot of the ratio 01' the plasmagulde attenuation to an equiva-

lent metal guide attenuation for several values of electron-ion collision 

frequency in the plasma region. It may be noted that a large improve-

ment in the at~enuation of the plasmaguide, compared with the attenuation 

of the equivalent metal guide, may still be achieved even for the slow-wave 
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portion of the propagation characteristics. The attenuation rises 

rapidly as the phase and group velocities become very slow. The 

phase and group velocity curves are shown in Fig. 11 for the plasma-

guide of Fig. 10. There is no change in the LJ-~ diagram, or in the 

phase and group velocity curves, between the 1)=0 case and the case 

of small but finite collision frequencies in the plasma volume. Figure 

12 shows the attenuation in nepers/m for one of the plasmaguide designs 

of Fig. 10; also shown for comparison purposes is the attenuation of 

the equivalent metal guide. 

Figure 13 illustrates the effect of varying two of the plasmaguide 

independent variables. The attenuation ratios shown in Fig. 13 are 

due only to wall losses; the collision frequency in the plasma volume 

is set equal to zero. If the ratio of the outer conductor radius to 

vacuum radius is chosen as 3.0 and 1.5 respectively, the lower and 

upper attenuation curves of Fig. 13 are produced, demonstrating that a 

reduction in wall losses by a factor of almost 103 may still be achieved 

with a comparatively thin plasma sheath surrounding the vacuum region. 

Barsing the ratio of the plasma frequency to cutoff frequency from 4.0 

to 8.0 increases the factor by which the wall attenuation is reduced 

from 103 to 105 (see the middle curve of Fig. 13). 

Figure 14 is a plot of the attenuation in nepers/m for the equiva

len t me tal guide and the plasmaguide of the upper at tenua tion ratio 

curve of Fig. 13. Figure 15 shows the ratio of the real part of the 

propagation constant to the imaginary part of the propagation constant 

versus the normalized rf frequency. Figure 16 shows the ratio of the 

axial power flow in the phsma region to ·the axial power flow in the 
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vacuum region versus the normalized frequency. Figures 15 and 16 

illustrate the degradation of the plasma containment and consequent 

rise in attenuation as the rf frequency approaches the plasma frequency. 

3. A Suggested Hollow Plasma Waveguide Design, 

As an illustration of how one may use the curves presented here 

to evaluate a particular design, the following example is given. 

Choosing' a vacuum radius of 5 em as a convenient size (the rf 

frequency will then be in the 10-em band), we find the TM mode cutoff 

frequency, for WplLJo = 4.0, equal to 2.06 GHz. The attenuation ratio 

curves displayed in Fig. 10 show that for an outer conductor radius of 

7.5 cm, the attenuation, for VIW = 10-6, will be approximately 

0.018 times that of a~ equivalent metal guide. The rrfrequency used 

is 4.12 GHz, two time}·,the cutoff frequency; at .thi\s rf frequency, the 

normalized phase velocity is approximately. 1.0 (see Fig. 11). The 

external magnetic field required is 3.68 kG; Wc/Wp = 1.25. 

For a fully ion~zed gas, the plasma frequency required corresponds,' 

to a gas pressure of 1.2 x 10-5 mm. For a r~tio of collision frequendy 
i ' 

to rf rreq~ency of 10-9, at 'w = 8.24 x i09 rad/sec, a 100% ionized p . 

hydrogen gas requ:ires an electron temperature of approximately 55 0000 K 
1 

(4.9 eV). 

,- "'i L-~'" ' 



-49-

VII. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

Solutions of the dispersion relation for a hollow pla8ma waveguide 

wi th a fini teexternal axial magnetic field may be found by numerical 

means. Computations of plasmaguide propagation curves and field plots 

may be performed rapidly on modern high-speed digital computers. 

Hollow plasma waveguide designs supporting,predominantly transverse 

magnetic waves wi th adjustable phase velocities and significantly lower 

attenuation than comparable metal guides have been demonstrated. The 

hollow plasma waveguide is a relatively simple structure of uniform 

cross section. A very modest external axial magnetic field is required. 

This field performs the dual functions of confining the plasma and of 

modifying the phase velocity of the 1M-mode wave. 

It is suggested that further work be carried out on the validity 

. of the dielectric tensor formulation when strong rf fields are present. 

This formulation may no longer be a meaningful way of describing the 

electromagnetic properties of the plasma. 

. Further calculations should be undertaken to determine the effect 

of' pIa.sma densi ty time variations and the effect on the propagation 

characteristics of the existence of a nonuniform plasma density distri

bution. 

Construction and testing of an experimental hollow plasma wave

guide model could proceed concurrently with the further t.heoretical 

investigation required. 
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APPENDIX A 

~l~sma Region Transverse Field Equations 

- 2-

Ey = Jh L j~Tj [ A~' 00 ( Tj r) + 8:;W~(TjY)] J 

Ee = kl LLjt Tj [ II 

HI'= t Lj3T.i [ II 
:..-=-L 
~-

He= );'l.;.LhTj [ Ii 

L Jl~ [;. jJr\2 - )\1t~lFj J/Kl J 

L~~= [~fi,t ttL - ).K2FJ!Kl, 

Lj,= [J;8'~f'2 + Ij3K2Fj]/7?K1, 

I ,r, ,c,K-; L·= /., V 
}'f l. 

• " ~ '2. C Fl In Kl + A-p.1'\ C 12 jJj ( . 

)I J ' 

J ' 
] , 

Vacuum Region Transverse Field E9uati0!l~ 

E~ = ¥; COo (Tjr) , 

E~ = -to 0'0 (T~r) , 

H;= -~DO:o(T,r). 
v )1\ I ) 

Het 1;71 C Qo( Tsr • 

I , 

QO and Wo are tabulated for both the unmodified and modified Bessel 

functions in Appendix C. 
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APPENDIX .B 

~persion Relation Determinant Elements 

In Row 1 

From the boundary conditions on Ez at r = RO we find 

a1l=QO(T1RO)' a12=QO(T2RO)' a13=WO(TlRO)' a14=WO(T2RO)' 

and a15=-QO ( T 3RO). 

In Row 2 

From the boundary conditions on Hz at r = RO we find 

a2l=F1a11' a22=F2a12' a23=F1a13, a24=F2a14,and a26=a15 • 

In Row 3 

From the boundary conditions on E e at r = &0 we find 
I / / 

a31=i~2TlQO(T1RO)' a32=iL22T2QO(T2RO)' a33=iL12T1WO(T1RO)' 

a34=iL22T2W~(T2RO)' and a36=-kQ~(T3Ro)/T3. 
In Row 4 

From the boundary conditions on Heat r = &0 we find 

a41=8031L14/L12' a42=a32L24/L22,a43=a33L14/L12' a44=a34L24/L22, 

and a4S=la36/7( · 
In Row 5 

From the boundary conditions on E at r = & we find 
:. z w 

aS1=QO(T1Rw)' aS2=QO(T2Rw)' a53=wO(T1Rw),'and a54=WO(T2Rw)· 

.In Row 6 

From the boundary conditions on E e at r = R we find . w 
I I I 

861=L12TIQO(TiRw)' a62=L22T2QO(T2Rw), a63=L12WO(TIRw),and 

a64=L22T2W~(T2Rw)· 
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APPENDIX C 

In the main body of the text Q
o 

represents an unmodified or a 

modified Bessel function of the first kind, Wo represents an unmodified 

or a modified Bessel function of the second kind. 
/ I 

Q
O 

or Wo represents 

the derivative of the function with respect to its argument. 

Any of the standard texts on Bessel functions give the following 
. 26 27 
formulas: ' 

Let Z (X) be an unmodified Bessel function of either the first or n 

the second kind of order n. 
! 

Then ZO(X) = - ZI(X) 

and Z~( X) = ZO( X) - Z1 (X) Ix. 

For modified Bessel Functions 

of the first kind 

I~(X) = II (X) 

and I{(X) = IO(X) - Il(X)/X. 

For modified Bessel Functions 

of the second kind 

Kl(X) 

and KO(X) - Kl(X)/X. 

The necessary integral formulas are 

for the unmodified Bessel function of the first kind 

1 .... 2( . ) f /) 2.[ 2 2 . rJl X dr =~ 2 r J1(X) + JO(X) - 2JO(X)J1(X)/X], 
o 

and for the modified Bessel function of the first kind 

Jy 2 () 2 2 2 _ rll(X)dr = - 1/2 r (IO(X) - I1(X) - 2IO(X)Il (X)/XJ. 
o . 
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