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- ABSTRACT-

The Schwinger variational method is used to compute Regge

trajectories for the Schrddinger equation with Yukawa potentials.
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1. INTRODUCTION

‘The Schwinger variational principle for systems obeying the -
Schrddinger equation is an efficient tool foridetérmining”bOth*
scattering phase shifts and bound-state energies.l This variationai
principle can also be used to calculate Regge trajectories in a
maﬁner similar to the Rayleigh-Ritz method used by Haymaker.2 The
advantage of'the Séhwinger method is faster convergence. The method
works well even at threshbld, where the method of Ref., 2 does not work,
the asymptotic behavior of the wave function not beiﬁg well aporoxi-
mated by the triél functions used. This note shows how the continuation
proceeds in ¢ and gives the relevant matrix elements. Finally a few
numerical examples are given and the generalization to combinations of

Yukawa potentials is included.

2. EQUATIONS AND RESULTS

The partial-wave Schrodinger equation is

QO
x) = A o lux) Vx) v )xPax, 0 (2.1)
0 | | ‘
where3
1 |
b -3 1
6 lxx) = 13 (x)72 5 a0 8, Do) (2.2)
d 1
- -2 q dag S \ [ ot 2

(2.3)

i -ux,
and V(x) is taken to be e H /X . Here yu is the exchange mass
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and .m 1is the reduced mass. . - Expressing (2.1) in terms
of the function uL(x) = V(x) WL(X) “and multiplying the resulting

expression by uL(x); gives, on integration,

o ‘ - obv © - ,
| ut(x) V-l(x) uL(x) X dx. = K‘/P ‘]' [xub(x)]G&(x,xf)-
0 o Jo

XJX'UL(X')](x x')dgAdx'.
(2.%)

This 1is the bound-state form of the Schwinger variational prinéiple.
At this point ¢ 1is éllowed to become arbitrary, subject only to the
condition that the integrals converge. This restriction will be removed
later.

Now, following Schwartz,l the second inteéral of (2.4) is transformed.

The Fourier transform is used in its partial-wave form, i.e., the Hankel

transform:y
® 1
P Syle) - [x uy(x)] 9, (px) ()2 ax,  (2.58)
0
xu(x) - [ U (p)} 3, (px)(px)? ap, (2.5b)
0
v. = L + I% ‘

The inversion "completeness" relation is
o0

Gy | xaley) fxvax - ely - ). (2.6)
] _
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Applying this transform to (é.ﬁ) gives
fo s

i, B0 | ,
q dg.

q? - 2mE - i€

uc(x) V'l(x) ut(x) *2 dx = -2mk~jr
0 ." o . 0 -

(2.7)

The problem is reduced to one-dimensional integrals provided trial

functions are chosen whose transforms are easily taken.
EaCh-Gt(p) is expanded in a sum of basic functions of the form
L

3,%0) = ( - ol o (2.8)
P+

where B = 50 +M and M=0, 1, 2, *++. We choose 80- to give the

correct boundary condition in coordinate space as x - O. The adjustable
parameter « has magnitude roughly Y-E + u. Using (2.5b) and (2.8),
one obtains '

) _ 5% ‘
u, (x) = AL,& X KL+%—6(Q x), (2.9)

. . L-
where A, o = [at*e 8/28 r(s+1)] and KX(Z) is the modified Bessel
) .
function of order A.. If So.equals L, thenuzs(x) .~ const. x‘fl,
: ' x=-+0
as is desired. [Remember that V(x) X0 x-l.]\ The coordinate space

basis functions become5

LM _ LM-3 |
u, (x) = AL,L+M x K%_M(a x). (2.10) .

In terms of this basis the potential matrix elements [i.e., the

left side of (2.7)]are
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M-1 M'-1
Dy = £) 2
Ve = By e B X |
. - I-0 L'=0
9 (M-%, L) (M'-5,10)(2¢ + M + M' = L - L' +2)
SLMM ' LT 42 T+L ’
(¢ - u) 7C (2)” |
(2.11)
where
N5 +n + k) ' 13 ..
(k) = T iE+a -5 it n=m P .

Since X ;(z) = Ky(z), we define (-3,0) = ($,0) = 1. If M (or M') =0,
-2 2 : ,
the sum contains only L (or L') = 0.

The right-hand side of (2.7) reduces to

Les] +_1_
v 2 dw .
A (G)MM' = mA o 24+M M +2 ) :
40 (¢ + w) (w - 2mE - {e¢)
_ (2.12)
This can be expressed in terms of hypergeometric functions
1 .
o T(e +—Z—_)(L +g+N_) o\ /1 bzl 5 -
(G)MM' = -T_]— ) F[l)t*‘é'; 2L+5+N;(T| - )/Tl];
(2t + 3 + N) a ' :
| | (2.13)

where 0 = -2mE - ¢ end N=M+M'. If £=0 and N =0, (2.13)

collapses into a very simple closed form. From this and verious recursion
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iformulas for the hypergeometric functions, matrix elements for all

integer ¢ and N may be generated. For complex ¢ it is convenient

to transform (2.13) into the form6

o [T+ 1) r((s ;_%')' - 1)

1 2
(6)ypqr = 5 - F(1, 4424105 3-£5 0 /)
A .
(az)ugn (22 + N + 2)
:i+'§- ) 2L+2+N n
+ i —_— _
o 1 -0 sin n(L+-2j-)
a .
(2.1k)

if ,arg %I < x.

' 2 | N
For reasonable values of «, the argument n/a is within the circle

™

of convergence of the power series representing ¥. For £ >0 ‘on

t+3

the scattering cut we choose the branch of 1 ¢ by theie prescription.

Equation (2.1L4) allows the continuzticn to all velues of ¢ (even

when the integral 2.12 diverges), since F 1is znalytic in ¢ excent

1 1 :
for poles at ¢ = + 39 + g, e, Actually (G)LQP hzs poles only
1 : : ' .
at L = - 3 " g, «e+ ., These come fronm the zerscs of sin n(t + g)
1 .
and the poles of I(Z + % + N) T(2 + 5 . Tne apparent poles at

1 3 8 . . o :
*** exactly cancel. AlsdO it may be wortnwhile notir <

"é) ‘2':
the first term of (2.15) is anzliyvtic in n ; the sscond terr contains
LW
PO +5
the standard threshold branch cut (q) 2 . Pirslly, only <ne
hypergeszetric functions for H =C ani I = 2 npeed be evaelusztel from

the series expansion, since the recursion formule
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F(é,b+l; c; z) = [(c,- B)F(a,b-l; c; z) + [2b - c + (a-b)z]F(a,b;c;z)]/b(l - z)
(2.15)

gives all other N. N
Numerical éomputations have been performed to test the rate of

convergencé of this method. iThe calculations were repeated for trial

functions containing increasing numbers of basis functions, thus generating

a sequence of successive approximations. That these sequences converge

very rapidly can be séen from Tables I - IV. In all of these tables,

m is 0.5 and A 1is 1. "Dimension" dénotes the number of basis

functions per trial function. Table I shows that convergence is excellentv

even at threshold.v Table I suggests that the value of the parameter «

is not critical to the convergenée rate. Tables IIT and IV coﬁtain random

examples for E # O. Ekcept for the solution labelled by k* in Table IIX,

all examples are for the leéding trajectory. The data used in this article

were found in about 20 seconds of computer time (CDC 6600).

~ 3. SUM OF POTENTIAIS
The-pfima:y new'difficulties lie in the calculation oflo

(V'l) = (uiIV-lluj). First, the integral may diverge if V has a

i3
node unless it is carefully built into the trial functions. Second, the
integral may be very hard to do in a closed form (the closed fbrm solution
was most useful in doing the analytic continuation in L){

One'straightforward wayll of'overcoming this difficulty is to

expand Wt(x) instead of ut(x) = V(x) Wt(x). " The expansion
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4 o - : X ‘
M+t -ax _ (L+1)+M-3
N wL(x) = oy X e = Z dy X K_21__,_M(ax)
M=0 M=0 :

can be recast as

Mig1 (O )X
X e .

1
™s

“z,i(x) = v, (%) ¥, (x)

=
I
(@

| LiM-% )
Ay * K-g-M<(°“ tug)x)

[t}
T8

where d and ¢ are simply related and i(=1,2,+**N) labels the

potentials. The Fourier transforms of these are of the form of Eq. {2.8).

Equation (2.7) then generalizes to

@ N
V0 Y V) v P ax -
o i1

N N ® ~ 2 '
u, ;(a)u, .(a) q" dq
= -Qm)\z Z ,2 )J R -
=1 j1Jo @ - emE- e
(3.1)

The V integrals are as easy to do as before. The
integrals are now

@ 2442
‘ q -dq

‘L+M1 _ L+M2 .
0 [qe + (o + ui)e] : .liqg + (a + p.j)e :] (q2 - 2nE - i€)

(3.2)
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if i = J this reduces to the hypergeometric form used earlier. Other-
wise tﬁe integral is expreésible as the Appgll hypergeométric functions
of two variables.lg These functions have a convergent series expansion
and satisfy transformation formulas analogbus to Eq. (2.15). In-
particular, recursion formulas on the indices allow all valqes of Ml
-and M2 to be found once two exélicit evgluations are .done via, say,

power series.

Since the several two-body channel integral equation is of the

form

(o o |
X[ OV (v (x5 ax
X,j 0
| . 3 o ® ) . . :
= Zg:_ J/, ’/f dx dx' Wk(x)vki(x)Gi(X’x')Vij(x')wj(x'(xx')2}
0 0 ‘ '

k,J,1

where k and J are channel indices, it is clear that the same tricks
will work here.

Another way of attacking the problem of sums of potentials is to
deal directly with approximationé to the matrix (V-l). Since (V) is

easily calculated for a sum of Yukawa potentials,

. -plx -pax .
v = Al(e /x) +a(e © /x)] = Vi +V,

where u, <y, , one is led to try (Y)_l as an approximation13 to (V-I).

I
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In particulér, we definelh

~ where - |

g, - “ui/vl = (1 + VN .

The inverse of (V) must be suitably modified fd take into account
that ,(¢i} instead of {ui} is used as a basis set. If [ui} had
been used aé a basis set, (ui IVI uj) would have a pole at ¢ = O.
The powver of x in 1/V, removes this. |

We define (M)ij :-<¢i l uj), the overlap matrix between the

two bases. A generalized "completeness" relation can be written:
E g = (3.3)
n,n'

To evaluate®’ (W) in terms of (M) we take matrix elements of (3.3),

yielding

()T (w) (1) T

[(M)T]-l :

Next we take matrix elements of the operator identity VV'.l = 1; we use

(0T

i}

or

W

(3.3) and solve for (V-l):

-1 T -1
(vi7) = ()" (v) ~ (). | (3.4)
This equation is truncated to give apovroximate values for the matrix (V’l)

in terms of the easily calculated (M) and (V). Now notice that
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(V)ij = <¢i lV' ¢.j) = <ui lvl l uJ> + <ui IVS I uj>
and : ‘
(g = (B L) = g 7w,
: ﬁhere _
v, = vvlg/vg = exp(-2u, + ue)/x .

These matrix elements may be constructed directly from those given by
Eq. (2.11). Using the same form for ui(x) as before leaves the
Green's funétion matrix elements unchanged from Eq. (2.13). This form
is probably not so realistic as that given by eXpanding ¥(x) and
forming u(x) = V(x) ¥(x), but it has the advantage of not requifing
the Apell hypergeometric functions mentioned earlier. It is also

worth remarking that the two-body multichannel problem can also be
solved in this manner and contains 6nly integrals which are easily done.

Some examples of this method are included in Table V.
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Table I. Convergence of the solution in ¢ at fixed A and E = O.

Here a 1is arbitrarily set at 2.0.» Dimension denotes the number of

trial functions used.

Dimension : L(n =-5). , , t(n = -25)
1 2.3%6435 : 1.88159
2 - 2.416%0 | 2.03520
3 2.45496 ' 2.11631
I 2.45770 2.15582
5 245874  2.17564
'6 | | 2.458862 o 2.18521
7 2.458900 , 2.18973
8 2.458905 | | 2.19179




Table II. Fixed ¢ =0, E =0,

choice of «.

~10~

Note

UCRL~-1T75Tk

the relative insensitivity to

Dimension

=3 N\ EoAN

Ao =.2.o)

-1.77718
-1.70483
-1.70811

-1.68076

-1.68000

-1.67985
-1.67982

Mo = 1.5)

-1.687500

-1.687500

-1.679931

-1.679909

-1.679812

-1.679810

~1.679806

- Ma = 1.25)

-1.73611
-1.69498
-1.68230
-1.68039
-1.6799k4
~1.67984
-1.67981
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Table III. Some random ekamplés of cohvergehce of the method for E < 0.

. o o .
The notation is A(¢,E),ad N\ (¢,E) denotes coupling strength to bind a¢

first excited.state with energy E and angular momentum £ .

Dimension

1

=

N W\

'2(0.6,0)

-5.52365
-5.51663
-5. 47468
-5 b Th5h

=5.47349

-5.47349

A(0.6,-5)

-12.094
-12.075

-12.07410

-12.07402

-12.07401

-12.07401

A (0,-5)

-16.3605
-16.2104
-16.1847
-16.1832
-16.183%0

A0.6,-15)

-17.57005

=17.34987

~17.34785

-17.347818
-17.347816
-17.347816
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Table IV. Some results for Re(E) > 0. A=-9, p=1, m= 0.5,

This trajectory "turns over" at about E = 2.

Dimension Re E . InE " Ret . _Imt
7 | 0.0250000 0.0226256 1.0054k 0.01969

8 | 1.005k44 0.01969

7 0.4965909 0.01480L4L 1.17553 0.22276

8 : | “ R 1.17553 0.22291

7 1.3261364 0.0175977 1.212L0 0.54856

8 1.2143k4 0.54571

7 N 2.9965909 0.1432961 1.07886 0.96090

8 ) 1.07254 0.98624
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Table V. Combinations of potentials V = X(LQE,G)(e-x/x + g e'gx/x).

Dimension \0,0,-8)  A0,-5,-0.5)  A(0.6,0,-0.5)  A(0.6,0,-L)
1 | 1.h22222 -10.402 -6.897 .9.31245
2 1.5T7477 ~10.213 : -6.90423 6.25718
3 1.497510 -10.21263 -6.90475 | 5.26559
L 1¥h9693u -10,2125623 -6.89998 4.97%946
5 1.491888 -1o.é12561 -6.90020 4,79201
6 1.491640 -10.212561 -6.89995 4. 72678
T 1.491232 -~10.212560 -6.89964 4.69563
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The scalar product isv
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(A) stands for the matrix of the operator A.
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C. Schwartz, Numerical Techniques in Matrix Mechaniés,_University
of California, Berkeley, preprint. | | » |

Matrices (V-l) and (V) will always be evaluated in the '{ui]

and (¢i} bases respectively.

With these particular functions

S0y = By Tu) = (e 1E) = (B L) = oy,

SO

M) = ()T
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