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ABSTRACT 

The Schwinger variational method is used to compute Regge 

trajectories for the Schrodinger equation with Yukawa potentials. 
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1. INTRODUCTION 

The Sch"ringer variational prirlciple for' systems obeying the' 

Schrodinger equation is an efficient tool for determining both: 

scattering phase shifts and bound-state energies.
l 

This variational 

principle can also be'used to calculate Regge trajectories in a 

2 manner similar to the Rayleigh-Ritz method used by Haymaker. The 

advantage of the Schwinger method is faster convergence. The method 

works well even at threshold, where the ~ethod of Ref. 2 does not work, 

the asymptotic behavior of the wave function not being well approxi-

mated by the trial functions used. This note shows how the continuation 

proceeds in t and- gives the relevant matrix elements. Finally a few 

numerical examples are given and the generalization to corcbinations of 

Yukawa potentials is included. 

2. EQUATIONS AND RESULTS 

The partial-wave Schrodinger equation is 

= ( 2.1) 

and V(x) is the exchange mass 
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and m 1s :thereduced mass. Expressing (2.1) in terms 

of the function u/x) = Vex) W t(x) and multiplying the resulting 

expression by ut(x). gives, on integration, 

XJ x ' u t ( X I ) ]( X X I ) dx dx I • 

(2.4) 

This is the bound-state form of the Schwinger variational principle. 

At this point t is allowed to become arbitrary, subject only to the 

condition that the integrals converge. This restriction will be removed 

later. 

Now, following Schwartz,l the second integral of (2.4) is transformed. 

The Fourier transform is used in its partial-wave form, i.e., the Hankel 

transform: 4 

x ut(x) = 

1 
v· = t + 2 

r o 

The inversion "completeness" relation is 

(YY':~f XJv(XY') Jv(XY)dx =5(y~y'). ( 2.6) 
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Applying this transform to (2.4) gives 

2 x dx·= 
2 q dq~ 

The problem is reduced to one-dimensional integrals provided trial 

functions are chosen whose transforms are easily taken. 

Each ~t(p) is expanded in a sum of basic functions of the form 

2 2 0+1 ' 
(p + a ) 

(2.8 ) 

where ° = 00 + M and M:o 0, 1, 2, •••• We choose °
0 

to give the 

correct boundary condition incoordinate space as x ~ o. The adjustable 

parameter a has magnitude roughly FE + fJ.. Using (2.5b) and (2.8), 

one obtains 

1 

where At,o = [a t
¥2-0/20 r(o+l)] and ~(z) is the ·modified Bessel 

function of order A. •• If 00 equals t, thenuto(x) t-l const. x , 
-1 x ~ 0 

as is desired. [Remember that V(x) x~ x .]. The coordinate space 

basis functions become5 

= (2.10) 

In terms of this basis the potential matrix elements [i.e., the 

left side of (2.7)] are 
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M-1 M'-1 

:xI I 
L=O L'==O 

x ( H-i, L)( M ' -i, L' )( 2 to + H + M' - L - L' + 2) 
(2a _ 1l)2t+M+W -L-L'+2 (2a)L+L' , 

where 

== k! r(~ + n - k) 
if 1 

n == 2' 
3 
2' 

( 2.11) 

since K l(Z) == Kl(Z), we define (-4,0) == (4,0) == 1. If M (or MI) 0, 
-'2'2 

the sum contains only L (or L') == 0. 

The right-hand side of (2.7) reduces to 

(G)MM
' 

== -m Ajm 
'0 

2 2t+M+t.1' +2 
(a + w) (w - 2IDE - le) 

This can be expressed in terms of hypergeometric functions 

(G)W,1' == 

ret + i)(t + i + N) 

r( 2t + 3 + N) 

(2.12) 

( 2.13) 

where 1) == -2mB - 1e and N == M + M'. If t == 0 and N ~ 0, (2.13) 

collapses into a very simple closed form. From this and various recursion 

'. 



UCRL-17574 

formulas for the hypergeometric functions, matrix elements for all 

integ~r t and N may be gerierated. For complex t it is convenient 

to transform (2.13) into the form
6 

(G)MH' 

if larg~1 <rr. 
11 

sin 

( 2.14) 

For reasonable val~es of 0, the artu~ent 2 
~/CJ. is within the circle 

of convergence of the power series representing F. For E > 0 'on 

the scattering cut we choose the branch of 

Equation (2.14) allows the continuation to all values of t (even 

when the integral 2.12 

for poles at t 
1 

= + 2' 
at t 

1 3 
= - 2' - 2' 

and the poles of r(.£ 

J, 1 3 exactly :; 2' 2' 

diver~es), since 

3 
+ 2' 

7 
Actually 

is analytic in t ezce~t 

(G)l"" hc.s p:.les only 
'4'j 

The se cor:e fror:! the zeros of sin 1( (t + ~) 
~ 

+ ~ + N) r( J, + i). Tne apparent pol~s at 

cance 1. 
8 

Also it r::.c.y be worth-,rh:' 2.e Doting trz t 

the first term of (2.15) is anal:rtic in ;,; the secons. tecz. c()r:::a:':-~s 

the standard. threshold branch Finally, only the 

,hy:?erge')rr.etric functions for N 

the series expansion, since the recursion'fo:TI..:la9 
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F(a,b+l; c; .) • ~~ - b)F(a,b-l; c; .) + [2b - c.+ (a-b)'lF(a,b;C;'~/b(l - zJ 

(2.15) 

gives all other N. 

Numerical computations have been performed to test the rate of 

convergence of this method. The calculations were rep~ated for trial 

functions containing increasing numbers of basis functions, thus generating 

a sequence of successive approxi~~tions. That these sequences converge 

very rapidly can be seen from Tables I IV. In all of these tables, 

m is 0.5 and A is 1. "Dimension" denotes the nu.rnber of basis 

functions per trial function. Table I shows that convergence is excellent 

even at threshold. Table II suggests that the value of the parameter a 

is not critical to the convergence rate. Tables III and IV contain random 

* examples for E I o. Except for the solution labelled by A in Table III, 

all examples are for the leading trajectory. The data used in this article 

were found in about 20 seconds of computer time (CDC 6600). 

3. SUM OF POTENTIAlS 

The primary new difficulties lie in the calculation oflO 

(V-l)ij = (uiIV-llu
j
). First, the integral may diverge if V has a 

node unless it is carefully built into the trial functions. Second, the 

integral may be very hard to do in a closed form (the closed form solution 

was most useful in doing the analytic continuation in t). 

One straightforward wayll of overcoming this difficulty is to 

The expansion 
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co 

t M+t -ax 
'lix e = 

M=O 

can be recast as 

co 

Vi(x) w/x) = L 
M=O 

M+t-l -(a+fJ.i)x 
~x e 

co 

= I 
M=O 

where ~ and cM are simply related and i(=lJ2,···N) labels the 

potentials. The Fourier transforms of these are of the form of Eq. {2.8). 

Equation (2.7) then generalizes to 

1'" vt(x) 

N 

L v1(x) wt(x) 
2 x dx 

1=1 

N 

= -2m~ I 
1=1 

= 

N[ 
~l 0 

2 . 
~, .(q)U, .(q) q dq 
~,l ~.~J~ ____ __ 

2 
q - 2mE - i€ 

( 3.1) 

The V integrals are as easy to do as before. The 

integrals are now 

2t+2 
q dq 

( 3.2) 
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I~ i = j this reduces to the hypergeometric form used earlier. Other-

wise the integral is expressible as .the Appell hypergeometric functions 

of two variables. 12 These functions have a convergent series expansion 

and satisfy transformation formulas analogous to Eq. (2.15); In 

particular, recursion formulas on the indices allow all values of Ml 

and M2 to be found once two explicit evaluations are.done via, say, 

power series. 

Since the several two-body channel integral equation is of the 

form 

= 

where k and j are channel indices, it is clear that the same tricks 

will work here. 

Another way of attacking the problem of sums of potentials is to 

d (V-I). eal directly with approximations to the matrix Since (V) is 

easily calculated for a s~~ of Yukawa potentials, 

V = 

where ~l < ~2 ' one is led to try (v,).-l 13 -1 as an approximation to (V). 
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In particular, we define14 

where 

The inverse of (V) must be suitably modified to take into account 

instead of {u.) 
1. 

is used as a basis set. If 

been used as a basis set, (u
i 

Ivl U
j

> would have a pole at t = o. 
The power of x inl/Vl removes this. 

We define (M)ij = (¢i I uj ), the overlap matrix between the 

two bases. A generalized "completeness" relation can be written: 

1 • 

To evaluate15 (W) in terms of (M) we take matrix elements of (3.3), 

yielding 

or 

(M)T = (M)T(W)(t.1)T 

\I • [(MlTT1
• 

-1 Next we take matrix elements of the operator identity VV = 1; we use 

(3.3) and solve for (V-I): 

= 

This equation is truncated to give approximate values for the matrix (V-I) 

in terms of the easily calculated (M) and (V). Now notice that 
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= == 

and 

(M)i~ = = 

where 

2 
== VI /V2 == 

These rr~trix elements may be constructed directly from those given by 

Eq. (2.11). Using the same form for ui(x) as before leaves the 

Green's function matrix elements unchanged from Eq. (2.13). This form 

1s probably not so realistic as that given by expanding w(x) and 

forming u(x) == V(x) W(x), but it has the advantage of not requiring 

the Apell hypergeometric functions mentioned earlier. It 1s also 

worth remarking that tIle two-body multichannel problem can also be 

solved in this manner and contains only integrals which are easily done. 

Some examples of this method are included in Table V. 
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Table I. Convergence of the solution in t at fixed A and E = O. 

Here a is arbitrarily set at 2.0. Dimension denotes the number of 

trial functions used. 

Dimension t(A = -3) t(A"= -25) 

1 2.36435 1.88159 

2 2.41630 2.03520 

3 2.45496 2.11631 

4 2.45770 2.15582 

5 2.45874 2.17564 

6 2.458862 2.18521 

7 2.458900 2.18973 

8 2.458905 2.19179 
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Table II. Fixed t = 0, E = O. Note the relative insensitivity to 

choice of' a. 

Dimension A.(a = 2.0) A.(a = 1.5) A.(a = 1.25) 

1 -1. 77778 -1.687500 -1.7)611 

2 -1. 70483 -1.687500 -1.69498 

3 -1. 70811 -1.679931 -1.68230 

4 -1.68076 -1.679909 -1.68039 

5 -1.68000 -1.679812 -1.67994 

6 -1.67985 -1.679810 - -1.6798)~ 

7 -1.67982 -1.679806 -1.67981 
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Table III. Some random examples of convergence of the method for E < O. 

* The notation is A(t,E)"md A (t,E) denotes coupling strength to bind a' 

first excited state with energy E and angular momentum t. 

Dimension A(0.6,0) A(0.6,-5) A(0.6,-15) 

1 -5.52365 -12.094 -17·37005 

2 -5.51663 -12.075 -16.3605 -17.34987 

3 -5.47463 -12.07410 -16.2104 -17.34785 

4 -5.47454 -12.07402 -16.1847 -17.347818 

5 . -5.47349 -12.07401 -16.1832 -17. 31.t7816 

6 -5.47349 -12.07401 -16.1830 
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Table IV. Some results for Re(E) > O. A= -9, ~ = 1, m = 0.5. 

This trajectory "turns over" at about E = 2. 

Dimension 

7 

8 

7 

8 

7 

8 

7 

8 

Re E 1m E 

0.0250000 

0.0148044 

1.3261364 0.0175977 

2.9965909 0.1432961 

Re t 

1.00544 

1.00544 

1.17553 

1.17553 

1.21240 

1.21434 

1.07886 

1.07254 

1m t 

0.01969 

0.01969 

0.22276 

0.22291 

0.96090 

0.98624 
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Table V~ Combinations of potentials V = ~(t,E,a)(e-x/x + a e-2X/x). 

Dimension >...(0,Oz-4) >...( 0, -]; -0 .5) >...(0.6,0,-0.5) >"'(0.6,0,-4) 

1 1.422222 -10.402 -6.897 . 9.31245 

2 1.5771~77 -10.213 -6.901j.23 6.25718 

3 1.497510 -10.21263 -6.90475 5.26559 

4 1.496934 -10.2125623 -6.89998 4.93946 

5 1.491888 -10.212561 -6.90020 4.79201 

6 1.491640 -10.212561 -6.89995 4.72678 

7 1.491232 -10.212560 -6.89964 4.69563 
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