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Abstr'act 

>): 

The transient response of two slabs of finite thickness in contact 

at a plane interface and initially containing nonequilibrium amounts of a 

transferrable solute (or, the response of the analogous heat conduction 

problem) is found in terms of an eigenfunction series. The approach to 

equilibrium is depicted graphically for a few values of the parameters, 

and, with the aid of tables that have been prepared, the solution may be 

calculated for a larger range of values covering the region of practical 

interest. 
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Formulation 

The transient response of two slabs of finite thickness in contact 

at a plane interface and initially containing nonequilibrium amounts of a 

transferrable solute is of some practical importance. Such a situation 

.may occur in the analysis of porous media in oil fields and in the approach 

to equilibrium of a solu,te distributing between two immiscible liquid 

layers. 

For the problem considered here, movement of the solute occurs 

by molecular diffusion in the two regions, which, in general, have dif-

ferent diffusion coefficients. The slabs are of finite thickness in the 

direction perpendicular to the interface but are of infinite' extent laterally. 

No transfer occurs across the outer boundaries of the slabs. The con-

centrations on the two sides of the interface are related by a constant of 

proportionality m. The fluxes at the interface are the same in both slabs. 

The quantity of interest is the ratio of the average concentrations in the 

two media as a function of time. This rati~ approaches m as time 

approaches infinity. 

The diffusion equations for the two media are 

and 

z a C
1 --z- , 

Ox 

z a C z 
--2- , 
Ox 

The outer boundary conditions are 

for -a < x < 0, 

for o < x < b. 

oC 1 
dX (t, -a) 

oC z = l1x (t, b) = o ,. 

and the interface conditions are 

t > 0 , 

t > O. 
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.. mci(t, ° 
and 

+ 
= c-> (t, ° ) ... 

The solution is given here for the· general initial condition specifying 

c 1 (0, x) and c 2 (0, x), but attention is focused explicitly on the case of 

special interest, 

c i (0,X)=c
10

, for -a~x<O, 

for ° ~ x ~ b . 

A material balance on the solute in the two regions yields 

b -ci (t) = c iO - a c 2 (t) , 

(i) 

where c
i 

(t) and c 2 (t) are the average concentrations in regions 1 and 2, 

respectively,and c
i0 

is defined by 

The approach to equilibrium is measured by the 
cZ/ci . c2/m 

f(t) = = ...,----
m , b-c

iO
- a c 2 

ratio 

The differ'ential equations and the associated boundary conditions 

can be written in dimensionles s form by letting 
Dit 

T= --Z-' 
a 

TJ = {XI a, - 1 ~ TJ < ° 
~ a:, '0 ~ TJ ~ a ; 

c_{C1/ C1,o' -i~TJ<O 
- c2/mc10, ° ~ TJ ~ a , 

(continued) 

{ / .' 

, 
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and 

b 
Q' -- -

a 

b 
M = m. a 

The resulting equations are 

for -1 <.11 < 0 T > 0 , , 
0<11<0:' 

ac 871 (T ,-1) = 
ac a 1') (T, 0:') = 0 , 

- + 
C (T ,0 ) = C (T, ° ) , 

and 

The initial condition ,Eq. 1, becomes 

{ 

1, 
C (0, 11) = 

0, 

and the quantity f is 

f( T) 

where 

C ( T, 11) d 11 . 

The manner in which f( T) approaches unity as T approaches 

00 depends upon the parameters 0:' and M. A useful series solution 

( 2) 

(3) 

(4) 

(5) 

'( 6) 

can be obtained directly either by the as sociated eigenfunction technique 

or by the Laplace transform method. With the former, general initial 

conditions can be accommodated more easily, and this. scheme is out-

lined below. 
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The solution can be applied to the analogous heat conduction 

situation by replacing D1./DZ in Eq. Z by the ratio of the thermal dif-

fusivities and m in Eq. 3 by the inverse ratio of the volumetric heat 

capacities. In this cas e, 'f is the ratio of the average temperatures 

in the two regions. 

As s ociated ~igenfunction Technique 

Following Lanczos [1.], one considers the as sociated eigenvalue 

problem for C
k 

( T), 

dZC 

~ k + C = 0 -y k 
dT) 

for -1.< T)<O, 0 <T)<O', 

with 

-
Ck(O ) + = Ck 

(0 ) , 

and 

dC
k - (-1.) = 

d11 

Its solution is 

dC
k 

d 11 (a) = 0 • 

~ sin \:11 +cos \: cos \:'11, -1 ~ 11 < 0 

= ~{~ :M
in 

sin ~ sin ~ 11 + cos ~'cos "K: 11, 0 ~ 11 ~ a 

with the eigenvalues given by 

, M 
tan ~ = - a- tan a ~ for k = 0, 1., Z, ... (7) 

Only the nonnegative eigenvalues need be considered; let them be ordered 

so that ~O = 0 < A.1. < ~Z < . .. . 

The eigenfunctions {Ck ( T)} do not form an orthogonal set over 

(-1., a) for this problem, but they are biorthogonal with the (discontinuous) 

functions 

". 

• 
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for -1 ~" < 0 , 

for 0 ~" ~ Q' 

that is, 

= 0 if k I j 

. 10 if k = j 

1/ (1+ M) 1/2 , for k = 0 

[ ( 
2 2 . 2 1/2 

2/ i + ~ sin ~.+ MC6S~)J .... , for k=1,2,3,···, 

then the eigenfunctions are normalized, so that 

Q' 

L 
For the general initial condition ¢(O,,,) = g(11), the solution to the 

problem in terms of the nor'malized eigenf1,lrlctions is 

0() 

C( T, 11) =L 
k=O 

'. 2' 
Bk ~k (1'\) exp (- Ak T) , 

. 0() 
". ,: .. \-"l 

where the B k ' are the Fourier coefficients of . g( 1'\) = L 
k=O 

For the specific initialtondition, Eq. 4, these are' 

r"'"' 

B = k 

.•.. 

,", A' 
o 

~SinXk 
• ••• 1. ~ . ' '.:" ~ 

for k = 0 , 

for k = 1, 2, 3, •• ' . 

. ,. 

'~:~ , 
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The quantity C
Z

( T) in Eq. 6 is given by 

for the initial condition, Eq. 4, this becomes 

1 
1+M -

00 

L 
k=1 

z 2 
exp (-},.k T ) 

i 2 2 
\csc \: + ~ 

sin 

2 
csc 

(8) 

The limiting form of the series solution as Q' - 00 agrees with the 

solution given by Lovering for ,,= 0 [2] . 

Discussion 

2 
Even for moderate values of A.1 T the series Eq. 8 converges 

extremely rapidly, and only the first term or two need be calculated. 

The required eigenvalues can be found numerically by solving Eq. 7 by 

an iterative technique, such as Newton's method, taking care to use the 

appropriate branches of tan A.. Tables have been prepared giving the 

first ten positive, solutions of Eq. 7 to four places for several values .of 

Q' and M in the range 0.001 ~ Q' ~ 1.0 and 0.001. ~ M ~ 1.000 [ 3]. These 

tables can also, be used to directly obtain the roots for 1.0 ~ Q' ~ 1000. 

Figures 1 and 2 depict f( T), Eq. 5, using C 2 (T) as calculated 

from Eq. 8, with the series truncated at k = 40. This number of terms 

is required to give plotting accuracy for extremely small values of f(T) 

2 
and ""1. T. Away from the neighborhood of the origin, however. far 

fewer terms are required. Figure 1 shows the variation of f(T) with 

, 
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M when 0: = L If 0'::: 1, Eq. 8 becomes simply 

eZ{T} " i~M ( 1 - ~~~ k
Z8

,,2 

k odd 

Z 2 ) k TI ' 
exp (- 4- T:) (9) 

so that 

where f1 (T) denotes f(7") when 0: = M = 1. Thus, if 0: = 1, one can ob-

tain f(7") directly from f1 ('T) for values of M not explicitly shown in Fig. 1. 

Equation 9 agrees with the solution given by Carslawand Jaeger for 0: = M = 1 [ 4]. 

Figure 2 shows the variation of f(7") with 0: when M = 1. If 

so that 

1 2 
f(7"; a;-) = f(o:O 7"; 0:0 ) • 

Here C
2

(T; 0:) and £(7";0:) denote C 2 (T) and f(T) for a given Q'. Thus, 

if M = 1, one can obtain f(T) for Q' = 1/ Q'o by simply changing the T 

scale on the Q' = Q'o curve. In particular, since the curves for Q' ~O.1 

are essentially indistinguishable from the curve for 0: = 0, f(T) for values 

of Q' larger than 10 (Q'O less than 0.1) is approximately given by 

1 2 
f(T; -, ) ~ f(Q'OT; 0) 

Q'o 
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FIGURE LEGENDS 

Fig. 1. f(7) VS. 7 for QI =: 1 and several values of M. 

Fig. 2. f(7) vs. 7 for M =: i and several values of QI. 

I 
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f( T) 0.5 

M = 1000 

2 3 

T. 

Fig. 1 XBL676-3329 
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