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ABSTRACT 

A kinematical constraint on the energy dependence of infinitely 

rising Regge trajectories is established. Under quite general conditions 
1 

it is shown that asymptotically a(s) ~ C S2, provided that certain 

channels couple to high~spin Regge recurrences. The implications of 

this result for dynamical models of ever-rising trajectories and for 

the decay rates of resonances are discussed in the light of experimental 

indications that a(s),~ Cs. 
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I. INTRODUCTION 

The fascinating possibility that Regge trajectories rise 

indefinitely is currently a subject of much interest.
l 

In a recent 

2 report, S. Chu and C; Tan consider a "simple bootstrap model" for 

infinitely rising Jl and N trajectories and find the asymptotic 
1 
2 

solution Rea(s)~ Cs = CE. They consider channels with two high-

spin recurrences and maximize the total spin, consistent with the demand 

that the channel's threshold is equal to the mass of the composite 

particle and that the orbital angular momentum is small. On the other 

hand, the known high ~pin resonances3, and recent fits of high energy 

scattering data with direct channel resonances4 are consistent with 

trajectories rising quadratically in E. 

Here it is shown that the restriction to a(E) ~ O(E) results 

from assumptions which are considerably weaker than those of Chu and 

Tan. In fact, for any number of Regge trajectories, a. (E), 
1 

coupling 

to channels with an arbitrary number of particles, conservation of 

energy and angular momentum, alone, lead to the asymptotic form 
a. 

. 1 
a. (E) 'V C.E . with a . .$. 1, if certain assumptions are made about 
111 

the composition of the communicating channels. The demonstration is 

general enough to completely characterize the channels which must couple 

to high-spin recurrences, if trajectories are to rise more rapidly than 

linearly in the energy. As a consequence we find that important dynamical 

assertions can be made if trajectories do rise quadratically in E. 
1. 

In Sect. II we present a general theorem for a S2 bound on 

trajectories, while in Sect. III we discuss the dynamical consequences 

of this theorem. 
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II . GENERAL THEOREM 

Consider the conservatio'n of energy and angular momentum for 

a resonance of massE and spin O:.(E) on the i-th trajectory. 'l'hrough
l 

out the paper 0: and E will refer to the real parts of the spin and 

mass of the particles. If, as we assume here, 1m 0: and r do not 

increase as fast as 0: and E, respectively, then we may safely ignore 

them. 

This initial resonance on the i-th trajectory communicates with 

a multiparticle channel composed of nf particles from each of N 

trajectories (f = 1, ... ,N). In this channel the v-th particle 

on the f-th trajectory has mass and spin 

With the usual definition of the Q-value, conservation 

of energy for this channel can be written, 

N 

L + E. (2.1) 
f=l 

Conservation of angular momentum requires the initial particle to 

have spin intermediate between the extremes of the fully aligned 

configuration of spins and total orbital angular momentum .£. , 
l 

and the minimum of the unaligned configurations. In our notation this 

N ~-f N n 

O:f(m~i) ) 
\~~-.~ ,--~ 

O:f(m~~)) I .e. + '\ '. ~ 0:. (E) ?:- min I .e. + \ (±) I i L, L. l ,--: L .. -J. l l 

f=l v=l f=l v=l 

is 

(2.2) 

Also it is convenient to define fractional masses xi~) of the constituents 

in thi s channel by the Tela tion, .. ".' 

.~, 
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Now the theorem can be stated. For N infinitely rising 
a. 

trajectories cx. 
1 

with asymptotic power behavior eEl 
i ' 

assume 

that each trajectory has at least ~ communicating channel satisfying 

the following conditions, as E -, 00, 

i. where a = max ~. a. ~ 
\ 1) 

ii. I Q,. I IE --> O. 
1 

iii. 

Then it follows that all a. ~ 1. 
1 

for a. 
1 

a. 

For this theorem to hold each trajectory must have one channel 

which satisfies these mild conditions on £., 
1 

(v) and Xif . However, 

the strength of the general theorem lies precisely in not having to 

specify the set of channels involved. 5 -Indeed, by letting the X's 

vary from zero to some fraction less than one, the actual composition 

of the channels involved may vary as E goes to infinity. 

This theorem merely states the kinematical fact that if a. > 1, 
1 

conservation of energy and angular momentum will not allow the channels 

satisfying conditions (i) - (iii) to exist. The strength of the 

coupling to these channels never enters the theorem, precisely because 

kinematics alone decouples all such channels for a. > l. 
1 

On the other 

hand, the claim that the condition (i) - (iii) are physically 
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realized for strongly coupled channels i's certainly a dynamical 

assertion. In Section III we will discuss both the plausibility 

of this assertion and the dynamical implications if the assertion is 
1 

false and trajectories violate our S2 bound~ 

Now let us give the proof that the conditions (i) - (iii) are 

in contradiction with a i > 1. Conservation of energy and angular 

momentum take the form 

N 

L 

1, ./Ea 
+ 

l 

X
( v) ~ 1 + 5, 
if 

N t \-. 
L.., 

f=l v=l 

where 5 -'> 0 as E~oo 

In the last expression all the terms drop out in the limitE '-7 00 

except for those with a
f 

= a. Suppose the af's are in decreasing 

order sU'ch that 

N 
0 

)~ 

'--' Mif_ Cf 
f=l 

a - a for f = 1,···,NO' f -

n 
f 

> 1, Mif 
)~ (X~~) )a L_' 

v=l 

where i = 1,···,NO' 

Then 

(2.4) 

(2.6) 

The theorem of Frobenius6 states that for any non-negative square 

matrix there is a maximum positive real eigenvalue, r, and it is 

bounded by the row sumS 

NO NO 

min \ 
Max 

'\' 
L" Mif :S: r :S: L. Mif 

f--,l f=l 
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Since Eq. (2.6) requires7 that r ~ 1 and since all the row sums are 

less than one for a> 1 and x~~) < 1 (se~'APpendix), there is a 

contradiction and we have proved a. < a < l. 
1- -

This proof can easily be extended to the case of infinite 

numbers of particles and trajectories. The production of an infinite 

number of soft particles (finite mass) each with a finite spin and finite 

orbital angular momentum will still allow the proof to hold. Their contribution 

to Eq. (2.5) is bounded by terms linear in E because the number of 

soft particles is bounded by Elm, by conservation of energy. Next 
JT 

the possibility of an infinite number of particles with increasing 

spin must be considered. For example, pion recurrences may be produced 

in quantity k ex:: E/I-L(E) with mass I-L(E) = I-LOEY. For Y between 0 and 

1 both the mass and nwnber of pions increases with E. Conservation of 

angular momentum gives 

(2.8) 

_ which implies 1- Y -I' ya '::;;:.. a for-large E, or a"'::;' 1. 

In order to extend the proof to the case of an infinite number 

of particles in a more general way, let us suppose that there is still 

a maximum power a f = a and that there is a maximum coefficient 

Cf = Cm for this power (f= 1, ... ,NO(E)). NOW, every term on the 

left of the inequality (2.5) for the leading trajectory can be replaced 

by Cm(Xi~)E)a, since for large enough E this replacement only increases 

the inequality. This implies 



N(E) 
\---
') 
L, 
f=l 

> 1, 
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as E -'> 00 

We refer the reader to the Appendix for the demonstration that Eq. (2.5) 

8 
is in contradiction with a > 1. 
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III. DYNAMICAL CONSIDERATIONS 

To consider whether the physical trajectories should actually 

obey our theorem, we must consider if channels satisfying the conditions 

(i) - (iii) are necessary dynamically for the production of the high 

spin resonances. If the interaction has a finite range, the strongly 

coupled channels have £max ~ kR ~ O(E). Hence, for these channels, 

one expects condition (i) to hold for a > 1. In most models of 

composi te particles the resonant channels (Q, > 0) and the channels 

with moderate binding energy (O~ -Q < E) are important so condition 

(ii) also seems reasonable. 

But condition (iii) is more difficult to support. In fact models 

have been proposed9 in which quasi-two-body channels with one high-spin 

resonance are important. It will be interesting to see if these models 
1 

produce trajectories that violate the S2 bound. In any case, violation 

of the third condition appears, on the surface, to be the most likely 

way for our theorem to break down. In view of the present experimental 

situation which suggests a power law, 2 ex. ~ CE , 
l 

it is interesting to 

consider in detail the consequences of such channels dominating the 

dynamics. 

First consider the case of such an asymmetrical channel for the 

decay of a high spin resonance of mass Ml and spin ex
l 

into a near-

by resonance of mass M2 and spin ex0 plus small mass particles. 
c. 

As X12 -. 1, all the other fractional masses are forced to zero. 

Conservation of spin requires 



UCRL-17613 

-8-

For X
12 

= ( 1 - ~ ) < 1, the resonance is decaying into one other high 

spin resonance on a different trajectory to the left (C
l 

< C2 ) on the 

Chew-Frautschi plot. As X
12 

~ 1, the slopes of the two trajectories 

must become equal (C
l 

= C
2

). This "gradual decay mode" is characterized 

by 

l:M 
E 

-~ 0, as E--+oo 

and it occurs between a trajectory and itself or one of equal slope. 

(3.2) 

Consider further, decay processes involving trajectories \vhich' 

are linear in s and have equal slopes, as suggested by experiments. 

Because the C's are all equal, it is 'evident from the matrix inequality 

(2.6) and energy conservation that every row sum must be unity. Hence for 

every decay process, the decay mode is a "gradual decay mode" characterized 

by Eq. ( 3 .2) . 

Moreover for trajctories quadratic in E, the orbital angular 

momentum must increase linearly. 

Since the pion is the minimum mass that can be emm~tted by the 

resonant system, and since the slopes C. of the trajectories (with the 
1. 

possible excepti'm of the Pomeranchuk) appear to be approximately 



UCRL-17613 

-9-
-2 

l(BeV) ,one has 

Smaller orbital angular momentum is allowed, if the decay product 

lies on a trajectory to the left. 

To summarize, decays are expected to take place in cascades 

through resonances of gradually decreasing masses. To keep the orbital 

angular momentum small, the cascade will have a tendency to feed into 

higher lying trajectories. Eventually high orbital angular momentum 

will be unavoidable as the cascade reaches the leading trajectory. 

The width of the high spin resonance on trajectories linear 

in s will be strongly reduced by centrifugal barrier effects 

resulting from high orbital momentum. For symmetric two body decays 

(equal masses) one has 

Even at E ~ 3 BeV, one is being forced into high angular momentum. 

This leaves only the asymmetric decay channels discussed above. Hence 

the orbital angular momentum may be expected to gradually quench all 

the resonant channels of the high-spin recurrences. 

If these resonant channels are dynamically responsible for 

maintaining the ever-rising trajectories, then the trajectories would eventually 

have to increase no faster than linearly in the energy. Referring to 

Eq. (3. 1+), we see that this orbital effect may become important near 

E ~ 10 BeV. and we might expect a(s) when plotted against s, to begin 
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curving over to a S2 behavior in this energy region. If this 

phenomenon does not occur and trajectories continue to rise linearly 

in s, then it appears very likely that the bound channels will be 

playing a dominant role in dynamically maintaining the rising 

trajectories as the resonant channels are gradually quenched. 

In conclusion, the dynamics of trajectories that violate the 
1 
2 s bound will be quite distinct from the dynamics of those that respect 

it. Q,ui te different models will be sui ted to the study of either 

alternative. 
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APPENDIX 

The following inequality is necessary for the theorem for 

either the finite or the infinite case. (In the finite case K(E) 

remains finite, N = NO and the result is trivial.) 

lim 
E~ 00 

K(E) 

I~ 
k=l 

1 

In xi~) the fixed index i has been surpressed, and the 

indices f and v replaced by k running from 1 to 

N(E) 

(A.l) 

K(E) 
,---

" nf , where K(E) is the number of part~s in the channel 

communicating with the initial resonance on trajectory 0: .• 
1 

For a > 1 and ~ < 1, the above inequality follows from 

conservation of energy in the form 

6= 

K(E) 
\,--.. 

lim 
E--+ 00 

~~-J A < ,', I- 6, 6 is arbitrarily small. 

k=l 

Subtracting (A.l) from (A.2), we have 

lim 
E--+ 00 

Since 

K(E) 
'\.-'~'. 

) (~ I 
..... ! 

k=l 

( -', 

Max ~X_ ~ 
( -""k) 

-

\'--' 

K(E) 

~a) 
,..-.~ ..... 

lim 
\, 

~(l 1 
.I 

E- 00 
1-_,", 

k=l 

< 1 - E, we have 

( 
a-I 

.6 ?;. lim L-, ~ 1 - (1 - E) ) • 
E_ 00 

- a-I) 
~ . 

(A.2) 
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Choosing E small enough, we have 

6. ~ A E (a -1). 

Now pick 6 < A E (a - 1) so that lim 
E-> 00 

K(E) 
\-~ 

L_. 
k=l 

UCRL-17613 

q.e.d. 
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