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A.N ANALYTICAL AND NUMERICAL STUDY OF THE BOUND-STATE SOLUTIONS TO THE 

PION-NUCLEON BETHE-SALPETER EQUATION 

Klaus D. Rothe 

IBWTence Radiation Laboratory 
University of California 

Berkeley} California 

ABSTRACT 

The Bethe-Salpeter e~lation describing the interaction of 

pseudo scalar mesons and nucleons via pseudoscalar coupling is solved 

numerically for energies below the elastic threshold by use of variational 

techniques. We consider only the "ladder" approximation with a local 

potential corresponding to the exchange of' an elementary nucleon. 

Simple generalizations of this form of the interaction are considered 

as well. In the absence of a cutoff this leads to a marginally singular 

integral equation. We examine in detail the boundary conditions to be 

imposed on the solutiorw in order to lead to a discrete eigenvahle 

spectrum. The study of this problem is considerably simplified at zero 

total c.m. energy} where the (Wick rotated) equation is invariant under 

four dimensional rotations. In order to take full advantage of this 

symmetry} we construct a new set of spinor spherical harmonics belonging 

to the representations ( n t 1 !!.) and 
2 } 2 (2"n}n

2
tl·) of the four-

dimensional rotation group. The discussj.on is then extended to the 
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general case, in which we examine briefly the formal structure of the 

E -I 0 solutions. Attention is given to the role of the !!relative time" 

. in a relativistic theory, and the closely related problem of arriving at 

a time-independent approximation of the BS equation. In particular, w·e V 

consider the static and nonrelativistj.c limit of the equation, and 

discuss the validity of the approximations involved. The eigenvalue 

spectrum obtained in the two limits is compared to that of the original 

equation. Finally, a brief discussion is given of the NB and VB 

sectors of the Lee model, designed to illustrate still further our 

observations on the role of the "relative time" in a relativistic theory. 
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I. INTRODUCTION 

In recent years there has been renewed interest in the relativistic 

v 1 
two-body equations of Salpeter and Bethe. In the absence of a theory of 

the strong interactions) these off-shell equations provide at least a 

means for performing dynamical calculations within a manifestly covariant 

framework. A complete treatment of the field-theoretical problem Hould 

require us to represent the kernel of the integral equation as the sum 

of all irreducible Feynrnan graphs contributing to the elastic two-body 

amplitude. The solution of' the complete problem is evidently hopeless 

at the present time. In fact) even in the "ladder" approximation) in 

Hhich we retain only the lowest order term in the expansion of the 
') 

kernel in pOHers of G'- (the square of the coupling constant), the 

equation has for some time been considered intractable, the difficulties 

being largeley due to the presence of a degree of freedom in the equation) 

the "relative time, " which has no analog in nonrelativistic quantum 

mechanics. The numerical program initiated by C. Schwartz
2 

demonstrated 

however that the (Wick rotated) BS equation, in the ladder approximation, 

could be solved accurately by conventional numerical techniques. This led 

to renewed interest in the BS (Bethe-Salpeter) equation as a computational 

tool, a number of calculations having extended since then the bO"Lmd st.a.te 

calculation by C. SchHartz to the elastic scattering region3 and as far 

a.s the second inelastic threshold.
4 

In this paper He continue this numerical program by making a 

quantitative investigation of the "pion-nucleon,,5 bound states in conven-

tional pseudoscalar meson theory, the dynamical framework being provided 
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by the BS equation in· the ladder approximation (see Fig. l). This 

problem has received little attention within this particular framework, 

although it has been extensively studied by the dispersion theoretic 

techniques of S-matrix theory, in which it has served as a prototype of 

so":called "bootstrap" calculations. In the present calculation we con-

sider the 3 - 3 resonance (which we refer to as the N*) and the 

nucleon as dynamical states of the 1rN system. Since we restrict 

ourselves to the bound state problem, we are left with the nucleon as 

the only dynamical state of immediate physical interest. If the usual 

arguments given within a dispersion theoretic framework6 should serve as 

an indication, we expect the N* to contribute here the dominant force. 

However, the inclusion of the N* exchange would force us to introduce 

a cutoff right from the start. Since it was the original aim of this 

paper, if possible, to introduce no arbitrary parameters into the calcula

tion, we have considered here only the nucleon exchange force. 7 This 

choice of interaction still leads to a marginally singular integral 

equation. Unfortunately standard mathematics has little to say about the 

-
existence of solutions and the natlITe of the eigenvalue spectrum of such 

singular equations. This has led to repeated speculation that these 

equations may either have no solutions at all, or that their eigenvalue 

spectrum may be continuous. An explicit example is provided by the 

1 1 t ' 8 nuc eon-nuc eon BS equa -lon, whose eigenvalue spectrum was found to be 

continuous unless the integral equation was supplemented with additional 

boundary coriditions not already contained in it. In this paper we are 
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faced with a similar situation. It is for this reason that we denote 

a su-bstantial part of this paper to a detailed study of the b01mdary 

condHions to be imposed on the sol11tions. We find that the behavior 

of the BS wave flIDction near the light cone is critically dependent on 

the strength of the potential} and that a proper treatment of these 

boundary conditions is imperative for our numerical calculation to be 

successful. The problem of givtng a proper treatment of the eq:uation 

near the light cone has also been encountered in connection with the 

n(4 
nucleon-nucleon problem} and has been studied at great length in a 1-' 

field theory. 9 In our case the discussion of this problem is however 

considerably more complicated because of the presence of spin. 

Because of the difficl!lty of solving the BS eCluation even in its 

simplest form} the ladder approximation} early efforts have been directed 

toward obtaining approximate solutions by introdl1cing an instantaneous 

interaction into the originally covariant eCluation. This procedure led 

to a time-independent} three dimensional eCluation. However} the validity 

of these approximations is particularly Cluestionable i.f we are dealing 

with a marginally singular eCluation} stnce they lead Cluite often to a 

supersingular (as in the present case) or even a nonsingular eCluation 

(as j_n the N - N problem). In either case) the original character of 

the BS eCluation has been sufficiently changed so that no correspondence 

need be expected between the eigenvalue spectrum of the original eCl1.mtion 

and its approximation. In this paper we consider two such time-independent 

approximations as applied to the pion-nucleon BS eCluation and discuss 

in particular the I1static" and I1nonrelativistic" limits. We examine 

in this connection tbe role of the I1 rel ati ve time l1 in the BS eCluation} or 
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for that matter, in a relativistic theory in general. In particular we 

will illustrate our observations by presenting a brief discussion of the 

Lee model from a somewhat unconventional point of view. It is hoped that ~ 

the point of view taken in this paper will help clarify some of these 

important questions. 

The subject material has been arranged as follows: In Sec. II 

we motivate field-theoretically the. precise form of the BS equation of 

interest, defining all the relevant quantities. Section III is devoted 

to a study of the asymptotic behavior of the solutions to the Wick 

rotated integral equation. In Sec. IV we present some of the mathematical 

results which will be needed later on. In particular we construct a new 

set of spin or spherical harmonics belonging to the irreducible representa

tions (. n ± I !?:.) and (!?:. nil). of the four-dimensional rotation 
. 2 '2 2' 2 

group. The main properties of these functions are discussed and a number 

of useful formulae are derived. In Sec. V we discuss in detaj.l the 

behavior of the solutions near the origin of the (Wick rotated) Euclidean 

space, by studying the BS equation in its differential form. No attempt 

is made in this section to select among the "regular" and "irregular" 

solutions. If a physical interpretation of the BS amplitude is to be 

avoided, the criterion for such a selection must come directly from the 

integral equation itself. This is discussed in Sec. VI. The numerical 

techniques and results of our calculation are presented in Secs. VII and 

VIII. Finally, in Sec. IX we turn our attention to some additional 

topics of particular interest. We discuss the role of the "relative time" 
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in a relativistic theory and consider in this connection the "static" 

and "nonrelativistic" limit of the equation, as well as presenting some 

numerical results. A number of additional topics are left for the 

Appendices, where we present, in addition to some mathematical details 

relating to the conventional spinor spherical harmonics, a proof of 

elastic unitarity; the group theoretical results which we use in Sec. IVj 

some details on the formal struct11re of the E = 0 solutionsj a discussion 

of the connection between the covariant and old-fashioned perturbation 

theorYj and a discussion of the Ne and ve sectors of the Lee model. 

from a somewhat unconventional point of view, but in l.ine with our work 

in this paper. 

We follow in general the notation of Ref. 3. Three-vectors are 

represented by bold-face type, and natural units (n 

used throughout this work. 

c 1) are 
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II. THE BETHE-SALPEI'ER EQUATION 

We begin by motivating the precise form of the BS e~lation from 

field-theoretic considerations. Although there exists no real need to 

make this explicit connection with field theory, it will allow us to use 

the language of Feynman diagrams whenever this seems desirable, in 

addition to providing us with an unambiguous definition of all the 

relevant quantities. Since we are concerned only with the bound-state 

problem, it will be particularly convenient to work with the relativistic 

two-body wave function for the "pion" and "nucleon,,5 in a state 1[3), as 

defined 10 by 

Here ¢Hi(x) and "lJrH(x) are the Heisenberg fields of the pion and the 

nucleon respectively, I,S) is the "physical" vacuum, and T is the 

time ordering operator. "lJrH(x) is an eight-component object in the 

combined spin and isotopic spin space of the nucleon. Denoting by 

¢i(x) and "IJr{x) the pion and nucleon fields in the "interaction 

t t · " ha th . . 1 t d f· . t . 11 represen a ~on, we ve e equ~va en e ~n~ ~on 

(2.1 ) 

for the relativistic two-body wave function in the scattering region. 

Here S is the scattering operator, 10) is the 'bare" vacuum state, 

and l}tl'~) is the state of a free nucleon and pion of momentum .1:1 
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d k t ' 1 12 an -2 respec 2ve y. (We have suppressed all spin and isotopic spin 

Cluantum numbers.) We take the interaction Hamiltonian density to have 

the conventional form 

Ji(x) ~ i ~ [~(x), 7'5 .. j Ijr(x») ¢j(x) 
j 

(2.2 ) 

where i .. are the usual Fauli matrices, and G is referred to as the 

"pseudoscalar coupling constant." Experimentally G
2 /4rr "'" 14. By 

inserting the familiar Dyson expansion of the S-matrix13 into the 

definition (2.1) we arrive in a straightforward manner at an integral 

eCluation for ~(xl' x
2

) in the scattering region 

where we have restricted ourselves to the "ladder" approximation (see 

Fig. 1). Here Gl(x) and G2 (x) are the one-particle Green's functions 

for the nucleon and pion respectively 

6(x;m) 
ip.x 

e 
2 2 , 

P + m - 2€ 

(2,4) 

= 
2 

(2:) 
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1 

2)2 t . 
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and l<l (z) is the. first order modified Bessel 

f'unction. l4 lex) is the nucleon exchange potential corresporiding to the 

Born diagram of Fig. 2 and is given by 

lex) 

~O(xlJX2) is the wave function for the free pion and nucleon 

where 

(k. J ill.)J ill. 
"-1. 1. 1. 

1 

(k.
2 2 )2· 

+ m. 
"'1. 1. 

(2.6) 

U (kJ a) a .", is the nucleon Dirac spin or with the covariant 

normalization U(k) U(k) 
,,-. "'- = 1 The matrices 

P(I)Q$i
j 

are the usual isotopic spin projection operators 

-> -->-

p(!:.) 1 - t . 1" 

2 3 
J 

-->- -->-

p(2.) 2 + t . 1" 

2 3 J 

-->- -4 

where 1" and t are the isotopic spin operators of the nucleon and meson 

respectively. (rn the Cartesian basisJ -i€. ok)' Using the fact 
1.J 
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that P(I) p(r') P(I) 5
11

, we arrive immediately at the integral 

equation for the two-body wave function in a state of definite total 

isotopic spin I: 

Here 

1 
11(-) = -1, 

2 

We have omitted all other isotopic spin labels, 

2 • (2.8 ) 

function of the total isotopic spin I. In the future we omit this label 

as well. The sign preceding AI in (2.7) is of course prescribed by 

our "derivation." Moreover, the requirement of elastic unitarity provides 

here an additional check, as we point out in Appendix C. 

We proceed now to eliminate one of the integration variables in 

Eq. (2.7) by making use of the translational invariance of the theory. To 

t.his end we c-ortsider the canonical transformations 

P PI + P2 X - 1-11 Xl + 1-12 x , 2 

(2.9) 

P 1-12 PI - 1-11 P2 - (p,po) x -= Xl - x - (r, t ), 
"" 2 '" 

where 1-11 and 1-12 are constants subject to the condition 
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1 . (2.10 ) 

Since we are dealing with an exchange 

convenient to make the choice 

potential it turns out to be 

1 15 
~2 = 2' This is the choice 

made throughout this i.;ark .. unless explicitly stated otherwise. 

Translational invariance allows us to write 

1jr(x) iK·X e 

Substitution into (2.7) leads then to the following integral etluation 

for 1jr(x) (we now label the wave function by the momentum of the 

incident wave): 

= U(k) 
'" 

if·£-iw12t/2 
e f.. I d 

4 
x t G (x - X t) I (x t) 1jr k ( -x' ) .. (2.11) 

' ..... 

where w12 =: wl - w2 and G(x) is the two-particle Green's function,. 

Performing the integration we obtain 

G(x) [ l' '" OE]G() ml + r·u + r 2 0 x (2 .. 12 ) 

in the c .m. system of the pion and nucleon, where E = WI + (J)2 and 
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iq.x 
e 

2 0 E 2 2 2 0 E 2 2 
[q - (q + 2") +ml - iE] [~ - (q - 2" ) + ~ - iE] 

is of course just the two-particle Green's function for two spinless 

(2.13 ) 

particles. Because of the polesof the integrand it is desirable for the 

purpose of later discussions to cast the integral (2.13) into a different 

form. Making use of the familiar Feynman parameterization techn1que we 

arrive at 

t d(3 -i (~+.~ ill12 )t J d 4 ip.x 
Go(x) e p e 

== E 4 222 iE] . (2rc) [p + (3 - k -
-<Dl /V 

where k
2 

N J 
CDl and CD

2 
are related to the total c.m. energy E as 

follows: 

2 1 2 2 0 2 
k 

4If 
[E - (ml + m

2
) ] [Ef - (ml - m

2
) ] 

/v 

ff+ 2 2 
ff - (2 2) 

(2.14) 
(ml - m ) ml - m2 2 -

CDl == , CD
2 == 

2E 2E 

and 

== (2.15) 
E 

The four-dimensional integral in momentum space has been evaluated in 

Ref. 3 to be proportional to the zeroth order modified Bessel function 

KO • Hence, 



== 
i 
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x' I ] 
(2.16 ) 

where _ ! 1L ~ arg [((32 - k2 )2 Ix - x' I] ~! 1L , as explained in Ref. 3. 
2' 'V "2 

With the aid of 

== if (J 2 
o ' 

we may rewrite Eq. (2.11) as the differential equation 

'" I(x) We-x), 

(2.17) 

supplemented with suitable boundary conditions. It is this equation 

which we solve in the calculational part of this paper. 

Finally we would like to remark that unless additional information 

is required which is not already contained in the integral equation (2.11), 

we do not need to give a physical interpretation to the two-body wave 

function (2.1), but may regard it merely as one possible way of formulat-

ing the given mathematical problem. Thus, with the defi.nition of the 

scattering amplitude, 

== 
E 

f (k' k) a'a-'" , -v , 
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where T is related to the S-matrix in the usual way 

S I-iT, 

we easily establish the connection between f(k', k) and the solution 
""..- ~ 

w (x) to the integral equation (2.11): 
k 
IV 

f(k',k) -
........ 1'\ •• ' 

-ik' ·x e (2.18 ) 

the numerical factors being fixed by simply looking at the Born term. 

For later reference we give here also the momentum space version of 

(2.11) and (2.18). Thus, denoting by ~(p), 'G'(p) and 'I(p) the 

F01ITier transforms
16 

of W(x), G(x) and r(x), we obtain, from (2.11), 

The scattering amplitude (2.18) is now related to ~k(P) by 
"'" 

4 
ij(~') J"~ 

(2Jl) 

-'V N 

r(k'+ p) wk(p). 
,'-, 

(2.20 ) 
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III. ASYMPl'OTIC BOUNDARY CONDITIONS 

Since it is very difficult to solve numerically the eigenvalue 

problem in the form of Eq. (2.17), we should like to consider instead 

the corresponding eigenvalue problem for ~(rJ T), the analytic continua-
'" 

tion of \If (!'J t) to the imaginary time axis: ,~(r,T) 
"" 

ASS"lJlJling the solution to be an analytic function of t, we arrive at 

the differential equation 

'V0 _E . 2 E 2 
[ml - i "I.d - I 2] [rJ - + E d4 + '4 2 

m2 ) rp(x) == A Vex) ~(-x) 

(3.1) 

for ~(r,T), where 

Vex) r(r,-i'f) 
N 

[KI(MR) + i "I'~ K2(MR)] • (3.2 ) 

1 

Here R == Cr2,+ 'f2)2, and K (MR) is the nth order modified Bessel ..... n 
14 function with tre asymptotic property 

1 

K C) ( :rr )2 -z I z I ~ 00 • - n Z ->- 2z e as 

We have introduced the notation 

(x ) ex (r,T), Cd ) ",. ex 
d 

dT' 1
" 0 )'4 == y, 

scalar products being now defined in terms of an Euclidean metric: 

(3.4) 

;,/, 



" 
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2 
x 

2 2 
r + T 

The corresponding analytic continuation of the integral e~uation (2.11) 

has already been discussed in the literature~)17 We do not repeat here 

the arguments except to state, that for suitable restrictions (to be 

given at the end of this section) on the c.m. energy E, "\fe may carry 

out this analytic continuation by IIrotating" SimultaneOusly18 the t 

and t I 
1 variables in E~. (2.11) through an angle 2 ~ in the 2nd and 

4th ~uadrants of the complex t and t' planes: t T exp( -i¢), 

t' T' exp(-i¢), a ~ ¢ ~ ~ ~. Denoting the analytically continued 

solution by ¢k (x), we arrive thus at the integral equation 
~~ 

'k 1 J. .r-2 ~ T J 1+ ¢k(x) U(k) 
~ ..... 

v(x') ¢k(-x ' ) (3.6) e A d x' H(x - x') .... 
,,-

where d4x d3r dT , and 

H() [ J.• ~ 0 E ] IT ( ) x ml + i' 0 + 'Y 2 lla x 

An explicit expression for Ha~} T) may be obtained directly from (2.16): 

t -(~+~ ~2)T 2 
1 

Ha(x) 
1 d~ k2 )2 R] (3. 8 ) == e KO[ (~ sl E /'V 

-~ 

----------
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In the bound-state region '¢(x) will have poles at (one hopes) a a.iscr2te 

set of values of E (for a given value of 71.). At these values of E, 

the residue of .¢k(x) at the pole, ~(x), satisfies the homogeneous 

integral equation 

~(x) 

The asymptotic boundary conditions to be imposed on the solutions to 

(3.1) are those of .¢k(x) (in the scattering region) and ~ex) (in 

the bound state region) as deduced from the integral equations (3.6) and 

(3.9). Although the asymptotic properties of Bethe-Salpeter amplitudes 

have already been discussed in the literature, 3, 17 we review here the 

results in somewhat greater detail with particular emphasis on the 

unequal mass kinematics of the problem. 

Since the asymptotic form of the solution is determined by the 

Green's function, we begin by considering the asymptotic properties of 

the integral e3. 8 ). This form is particularly suited for the intended 

d · .. th b d t t . h (p2 - k2 ) > 0 for p w;th;n ~scuss~on ~n e oun s a e reg~on w ere ~ f~ ~ ~ 
'\.. 

the integration interval e even in the unequal mass case ~ ). In the 

scattering region it is however preferable to consider the alternative 

expression 

ikr 1 
UJ.2 T 

/ -(1)1 00 

'\ df3 -(f3+~ UJ.2)'r 1 -"2 1 (L+ J' HOex ) 
e 

:= 
8:rrE - e 

- 8:rr2 
,- e r !E 

J 

ill2 
,-

(3.10) 
1 

X KO[(f32- ~2)2 R] 

,:£,t. 

• 
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as derived in Ref. 3. Making use of the asymptotic property (3.3) of 

the modified Bessel functions, we see that we will be interested in 

studying in general the asymptotic form of the integral 

b / .1.. 

I b(x) J / :rr 

-l)~ RJ 
-g(f3)R (3.11 ) df3 f e a 

\ 2 (f32_ a 

(f32 
') 

where by assumption _ kG) > 0 for a~f3~b, and 
,,-. 

1 

g (f3 ) 
2 2 2 

f3 cos e + (f3 - k) , cos 8 
.-v 

'rIR . 

The asymptotic properties of integrals of the form (3.11) may be discussed 

by the "method of steepest descent. ,,19 Let f3 0 be the value of f3 in 

the interval (a,b) for which g(f3) takes on its smallest value (not 

necessarily a minimum). We distinguish three possibilities: 

(A) f3
0 

= a, and gf (a) -I 0; in this case gf (a) > 0 and 

e -g(a)R 

In particular: 

1 
1 -2 CtJ..2 l' b 

-2- e I (x)·"-' 
8:rr E -CtJ.. 

(B) f3
0 

- b, and gf(b) 1 0; in that case gf(b) < 0 and 



b . 
I (x) '" a g' (b )R 

-g(b )R e 

In particular 

,..., -

(c) g (~) has a true minimum for = ~o within the integration 

interval (a, b), including the endpoints; in this case g I (~O) 

~o 

We arrive this time at the following asymptotic form for I b(x) 
a 

b 
I (x)-+ 

a 

/ k2 R .. e e - 1-,,- Sln 

RSin8 

e 
-g(~ )R . 0 

the result being independent of the endpoints! 

Having discussed the asymptotic properties of b 
I (x), we turn a 

nm., briefly to the problem of interest. Because of the unequal mass 

kinematics of the problem, it is helpful to distinguish four separate 

regions in the c.m. energy E (we take m
l 
~m2): 

(3.16 ) 

7\ 
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(1) ° ~ E ~ m1 - m2 

Here (see (2.14)) 
2 

<l). > 0, ~ < 0, ~. > 0; From (3. 8 ) we 

conclude that ~o = ~, independent of the value of cos 8, so that 

HO(x) has the asymptotic behavior (3.14) for - 1 ~ cos 8 ~ 1. 

2 2 ! 
(2) ml - ~ ~ E ~ (ml ~ m2 ) 

Here UJ. > 0, 
2 k < 0; Considering again the integral 

rv 

(3. 8 ) we easily see that g(~) does have a true minimum within the 

integration interval for some values of cos e. In fact, all three 

cases (A), (B) and (C) are here relevant, so that we may distinguish 

three regions:in the (E, cos 8) plane, the boundaries being determined 

0: by the conditions gf(_~) 

(2a) ~/ml ~ cos e :;; 1 HO(x) has the asymptotic behavior (3.13); 

(2b) 

(2c) 

behavior 

(3 ) 

- 1 ~ cos e ~ - ~/m0 ; _ c. 

- ~/m2 ~ cos 8 ~ ~/ml 

(3.16) ; 

2 2 ml - m2 ~ E ~ m1 + m2 

HO(X) 

2 ; 8n 

has the asymptotic behavior (3.14); 
1 
2<l).21." 

e HO(X) has the asymptotic 

f) 

Here ~ > 0, (.1)2 > 0, ~L < 0; The same conclusions as for the 

case (2) hold here. 

Here 2 
~ > 0, ~ > 0, :!;/ > 0; from (3.10) \"e easily deduce with 

the aid of the results (3.13), (3.14) and (3.16) the asymptotic form of 
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-(~)~ 
2:rrR 

(~ cose .. ml)R 
e 

(CD1·;..ml cos e)R 

E - (2" c ose+m2 )R l 

(~ + ID2 cos e )R j . 
This asymptotic form was already obtained in Ref. 3. Again we may 

distinguish three domains in the cos 8 variable, whose boundaries 

may be read off directly from the above asymptotic expression. They 

evidently correspond to a) ml/~ ~ cos 8~ 1 j b) -1 ~ cos 8 ~ -m2/CD2 ; 

and c) -m2/CD2 ~ cos 8 ~ ml/~' 

The above results are summarized in Fig. 3, the asymptotic farm 

of the solutionsbeing the same as that of HO(X)' (We have exhibited 

only the exponential dependence of these asymptotic forms. To be 

specific we chose m1 ~m2' corresponding to the physical case of 

interest.) Following the same type of reasoning as given ln Ref. 3, 

we find then, with the aid of Fig. 3, that the integration in Eqs. (3.6) 

and (3.9) does indeed converge at infinity, provided that E < 2m2 + M 

and E < 2ml + M; that is, for the c.m. energy E below the first 

inelastic threshold. For E ~ml + m2, these restrictions imply of 

course the stability conditions ml < m2 + M for the "nucleon;' and 

m
2 

< m
l 

+ M for the "pion." 

Before concluding this discussionwe should like to comment 

briefly on the negative energy spectrum of Eq. (3.1). Ignoring for 

the moment the question of boundary conditions, we readily verify that 



-21-

if cp(x) is a solution to Eq. (3.1) for E = EO (EO> 0 to be 

specific), then Y5 cp(-x) is also a solution for E = EO' at the 

same value of the coupling constant. In fact, as we will see later 

on, the same statement can be made about the eigenvalue problem. This 

shows that the equation admits a positive and a negative energy spectrluu 

whenever the equation has solutions at all. As will become evident 

later on, when we restate these observation for the partial-wave 

projections of cp(x), this is precisely the statement of the familiar 

20 "MacDowell symmetry." - It arises here as a consequence of the trans-

formation properties of the equation under space-time inversion, but can 

be shown to follow also from more general principles.
2l 

Note that as 

a function of x, the solutions for E - EO have the same asymptotic 

behavior as the solutions cp(-x) for E EO' and are again acceptable 

solutions to the integral equation (3.9) with EO subj ect to t he above 

stated restrictions. 
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IV. :MATHEMATICAL IRELIMINARIES 

A. Some Useful Formulae 

We derive here some useful formulae relating to t he four-dimensional 

spinor spherical harmonics defined in (A6). 
£+M /\ 

Specifically we are concerned 

with products of the form Q Y - (R), where 
n 

Q is any of the operators 

(0:\7). The evaluation of 
I\- /\.-

.e+M .e+M 
T Y - and d Y-4 n 

has already been given in Ref. 2. We state here the result:22 

where 

A .e 
n [

(n - .e) (n + £ + 1) 1 ~ . 
4n(n + 1) 

(4.1) 

(4.2 ) 

The evaluation of 
.etM 

(o.r) Y is also straightforward. With the aid 
"-' "'- n 

of formulae (A2) and the recursion relations for the Gegenbauer 

1 . 1 C
n

£ (t ), 23 po ynoml.a s 

== 

== 

£ + 1 
n + 1 

,.;. 



-23-

we obtain, after some algebra, 

where 

and 

J!, 
B + 

n 

B 

r .e + ( .e:tl L 1\ 

R IB - Y +(R) l n n-l-l 

.e -I- ( .etl L 1\ 1 
c - Y -I-(R)I 

n n-l J ' 

r (n + .e + 2) (n + .e + 3) l~ , 
l. 4(n + 1) (n + 2) 

r (n - .e + 1) (n - .e + 2) l~ 
I I ' L 4(n + 1) (n + 2) .' 

(£±l) .e± 
c +:::: B 
n+l n 

.e+ 

(4.4) 

(4.5a) 

(4.5b) 

To evaluate (a.V) Y - we consider first the Fourier transform of this 
""'''' n 

product using (4.4), and recover the desired result by taking the inverse 

Fourier transform. Thus, expanding a general spinor field in terms of 

the spherical- harmonics (A6) 

cp(x) :::: 

n 

and making use of the plane Wdve expansion (pox :::: ,:po;: + P4'T) 

ipox 
e :::: 

\~ J l(ffi) .eMA .eM" 
L. in n+ Y ± (p)* Y ± (R) 

n ffi n an t3' 
"'v M 

n 
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we obtain with the aid of '(4.4). (we omit the magnetic quantum number 

M labelling F t±M(R) and yt±M(R).) 
n n 

.-v t+( ) where F - P 
n 

+ C ± ~dP F t±(p) n y +(R) £ J' J (PR) (£±lL A 1 
n n R n-l 

is the Fourier transform of F £±(R): 
n 

== 

Finally, making use of the recursion relations for the Bessel functions, 

I n+2 (ffi) 
- (~ - ~ \ 

I n +l (m) 

R dR RJ 
, 

IR 

J (m) 
(~ n + 2') 

In+l(FR) n 
== dR + R . R . ,/ PR , 

we arrive at the desired result: 

t A 
-i(O'·\7) Y ±(R) 

IV /\.. n 

(t±l) A . (t±l) , 
B t± Y +(R) C~ -~) -C t± Y +(R) (i.. + n + 2) 

n n+l dR R n n-l dR R 
" 

(4.6) 
where the coefficients B £± and C £± have already been defined in 

n n 

(4.5). We note that we could have arrived of course in exactly the same 

manner at formula (4.2). 

,.' 
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B. n±l n (n n±l) 
Basis Ji'unctions for the Representations (2' 2) and 2"' 2 of 

Construction of Basis Functions 

In this section we make use of the group theoretical results of 

Aj)pendix B in order to construct explicitly the basis functions for the 

irred'icible representations (n±l !!.) and 
2 '2 

(!l ~) 
2' 2 of °4 , the four-

dirnenslonal rotation group. These functions are simple combinations of 

the four-dimensional spherical harmonics defined in (A6) and are 

particularly suited for our discussion of Eq. (3.1) at E 0. As 

we indicate in Appendix B, we may obtain these basis functions by simply 

pro<jecting out, ,vith the aid of the projection operators defined in (B2), 

the desired components from the spherical harmonics (A6). These 

functions are thus labelled by the total three-dimensional angular 

momentum J, the magnetic quantum number M, and the index n± labelling 

the irredll.ci·ble spaces. We will distinguish between the basis functions 

for the reprel:;entations (n~l) ~) and (~, n~l) by the presence and 

absence of a "tilde;' respectively. Specifically, 

"y JM N Pn ± 
a.£:M y 

n± n 

g JM 
(4.7) 

"·V 
"V 

.P Y JiM 
== N 

n± n± n ) 

r, .-' 
'where .. r' and P are the pro,iection operators (132 ) for the n± n± 

irreducible spaces of the representations (n±l !!.) and (n !!.:.l) 2 ) 2 2 ) 2 
/V 

respecti vely, and N, N are normalization constants. One may readily 

verify that it is irrunaterial whether we apply the projection operators 
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n 

or Y (.t+1L 
n 

-26-

(same J). After proper normalization we end 

up with identical results, as it has to be. To be specific we apply the 

£+ projection operators to Y . Making use of 
n 

== 

-+ ~ £ 
Co.L) Y -

n 
== 

£ 
.t y+ 

n 
, 

where the operators Li are the usual generators of infl.nitesimal 

rotations in three-dimensional space, and noting the following properties 

of the coefficients A R, 
n ' 

A 
£ .t+ I A £+1 

n Bn _l + n 

defined in (4.3) and (4.5) 

1 
== 2(n + 1) 

A £ 
, n+l 

1 

[en - .e) Cn + £ + 2)]2 

== 

we obtain, with the aid of the results of the preceding section, 

£+ 1 /' .t+ 2)]~ Y C£+lt\ ( a.A) Y (! Y + [Cn - £) Cn + £ + 
"v ., .... n 2 n n ), 

£ - 1 (~ £+ 1 
(£+1) :.'\ C a.B) Y -l Y [en - £) (n + £ + 2)]2 Y 

f\.-,v n 2 n n )' 

;.,. 

\i 
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where the operators Ai and Bi have been defined in (B.1). }t"lking 

use of t.hese results and the definitions (4.7) .le obtain then fj.na11y 

JM i l .e+ .e)~ y CP+l L) Yn == [en + .e + 2)2 Y + Cn -
'hc~ +-i) n n 

+ 

. JM 
1 1 .e+ 2 ) ~ Y (.e+ 1 ) - ) 

'Yn [ Cn - £)2 Y - (11 + .e + C·_---:-· n n 
1\,J2(n T 1) 

(n __ 2±1 , 2n) d as basis functions for the rep:c8scntation, an 

.... JM 
'Y 

n· 
+ 

== 

1 
I---·-~-·--

\l2(n + 1) 

1 ---.---.-
J2{~-··:;:-·i-) 

[en 

1 £ 
[en - £)2 y + + Cn + £ 

n 

as basis functions for the (:2:-' n±!) reprcsentEJ.tj.on. 'llhe quant"l.1JH _ 2 

(4.82 ) 

(4.0b) 

JM '"V JM . 
nU1llbers J and M labelling 'Yn± and ~± taKe c'n the values 1/2,3/2, •.. 

(n±~) and M - J, - LT + 1,''',,); we are thu.s lc,ft \-lith (n + 1) 

[(n ± 1) + IJ basis functions for eac:h of the irred1.1ci"Dle spaces 

( n±~ ~) and 
2 '2 (2!!.' nil) 2' in agreement .lith the dimensim!ality of these 

representations as given in Appendix B. That the function3 (h.8) do 

indeed SJBn an invarJant manifold under tiie transfo:cr.lations of 

be readily verified with the aid of the com'ni.l.tation relations 

[ (I4' (p J 0, [(8. CP n± 
] 

..L n± l ° ; 
tv '" 'V 

[ (1.,: JJJ ... 0, [ oBi' P, J 
J. n± J.J± 

o 

0, 
Lj. 

can 



Properties 

We list here a number of properties of the functions (4.8) 

vrhich ,·re will need in our later work. To begin .with we note that these 

functions are orthonormal: 

L f d~11 yJM y.J'M ' !\ 

CR)* n~ (R)a = 0JJ 1 °MM I ° n±nJ a· n1: a 

(4.9) 

\~f 
~. JM IV JIM' 
'Y (R)"x, ~ /\ 

O~TJ I °MM' ° ~J d~'R n± a n~ (R)a n±n~ 

whei.'e d~ ls the infinitesimal solid angle defined in (.11..5). The 

addition theorem and completeness relation tb,ke the form 

± 

'" 
the functions ... 1] 

n± 

JM 

2 (n + 1) 
2 4;,: 

satisfying exactly. the same relations. 

(4.10) 

(4.11) 

.e ( . C cos y) 
n 

are of course the Gcgenbauer polynomials and cos y is defined in (All). 

Under space-time reflection: 

(4.12 ) 

see that these functions are not all independent. In 

and are related. by slEce inversion 

'....i 

\! 
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YJMI\ 
~ (R), 

n± p 

/\ 

R = 
P 

(-x, 'r) I R (4.13 ) 
'" 

By construction we ba ve, of course, (we list only a few representa ti ve 

examples) 

(,~, 2 ry-JM ~n ± 12 ,[~.Jl 1J 
'IF JM :p} yJM n (~ + 

" "JM 
= + = - 1) ,~ \.,L 2 

.,.J , 

"n± 2 .'\.j II± n± r" 2 n± 

VJM ",.I JM '-.I JM ..J 

(£2 n (~ + 1) '?J ", 2 ry' {n ± 1) r(n ± 12 1] 
ii,:l JM - , .B ..., I + 

N "'n± 2 2 n± n± 2 \.. 2 n± 

the notation being the same as in Appendix B. Denoting by C the charge 

conjugation matrix 

with the property -1 
C ° C tv 

exp ( -irro
2 

) 
at3 

* - Z' we have 

J M 'l',[ J, -M '" 
( -) - ( )* , R, 

n± 

(4.14) 

(4.15 ) 

In those cases in which the quantum nl1IDbers J and M are of 

no re1evanc~e (as :1.n the case of 04 symmetry, for example) it is 

convenient to define the ~lnctions 
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~n±(RI ) 2 2: yJM" yJMI\ 
= 4rr. '.;,. . (R ,) ." . (R)* , , . af3' 

JM 
. n± a n± f3 

(4.16 ) 
yJM " "-'JM ,..,\ 

~n±(RI) . 2 L Y (Rr 4rr . (R') , 
af3 JM 

n± a n± 
(if 

which play the same role in the four-dimensional case, as the functions 

ZA£±(~') defined in (A3 ) do in the th:r'ee'-dimens :tonal case. Since the r 

functions ~ n±(R') and ~n±(R' ) share a number of properties, it 

is useful to introduce the function to represent either one 

of them. We have then evidently 

From (4.9) we obtain the orthonormality relations 

(4.17) 

and the addition theorem (4.10) can now be stated as follows: 

2(n +1) C l(cos Y) B 
n af3 

(4.18) 

In the remaining part of this section we give a list of formulae 

which will be particularly useful in our later work. These formulae are 

the analog of those listed in (A2) for the three dimensional spherical 
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harmonics, and are readily derived wtth the aid of the results of 

Sec. IV-A. To this end we introchi(:E:; the notation 

(a ) 
a 

so that 

O'·x .,. iT, '" a.x 

(c,- a,) 
I\.- q. 

a.r - iT , 
/\/ /v' 

G 4 

(4.20 ) 

for example. By considering an infinitesimal four-dimensional rotation 

we easily prove the transformation laws
24 

D(~)(R) IV D(O~)(R-l) if? _1 t'V 

cr -- af-> 
a afs 

(~.21 ) 

D (o-~) (R) D(~O)(R-l) J? -1 
a of-> a af3 

where D(~O)(R) and D(o-!)(R) are the unitarity, irreducible representa

tions of 04 - and. cR rv D(~})(R). The transformation properties U~.21) 

suggest that the explicit expressions for the products of the form 

Q and. Q representing SUC21 "rotationally 

invariant" operators as (4.20) may take a ver'j' si.mple form. This is 

indeed the case. We sumIuarj.7.8 O"L1..1:' results be101-7: ~re suppress the 

quantum nun·bers J and lv1 since they remain ul'ls.ffected by the 0ljera-

tions of Q; -we use the notation 
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N 

/\ 
-i(CJ.x) 'Yn± 'YCn±lL 

+ 

"" . (J A) (\f 'Y' (rul)_ 1 CJ.x =: 

, n± 
+ 

rv 

-i(er.d) 'in tj 
+ Cn+lt 

(-~- - ~) 
dB R 

(4.22 ) 
'" 

-i(a.a) ~n Y(n-l)+ 
(d n + 2) ::: dB + H 

N 

i(a. d) Yn ry (n+l) (~.--~) 
+ "dl{ R' 

f'V 

i(a.a) 'Y 'V (! _/_ n ; 2) 
n .J (n-l) 

+ 

Combining the above results i-Te obtain the additional formulae 

(a'. C)) (0'~) 'Yn == 

+ 
I\.{ (.i. n + 3) 
-:I n dB + R 

+ 

.(p.d) CCJ.~) 'Y' -y (~-~) n - n dR R 

(4.23 ) 

::: rtf (el n+2\ 
:In_ dR + R-')' 

IV 

the corresponding formulae fOl~ 'Y JM beip.g obtained directly from 
n± 

here by the simple replacements 
IV 

o -+ 0 
G ex 

and 

,., 
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With the aid of these results we may write down immediately the 

corresponding formulae for the spinor functions (4.16). We will not do 

so except for noting in particular the fornlUla 

(4.24) 

which we will need to make use of later on. 
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V. BOUNDARY CONDITIONS AT THE ORIGIN 

In this section we deduce the behavior of the solutions to (3.1) 

near the origin of the four-dimensional Euclidean space. The results 

will include the so-called Irregular" and "irregular" solutions. No 

attempt is made in this section to justify the selection of one or the 

other. Aside from physical considerations which we do not go into in 

this paper, the criterion for such a selection must come from a study 

of the integral e'luation (3.9) itself. This is left for Sec. VI where 

we find in fact, that even the integral e'luation (3.9) does not 

necessarily exclude the irregular solutions. 

The study of the behavior of the solutions to (3.1) at R =.: 0 

is rather involved, if we consider the general case in which E J O. 

A great deal of insight into this 'luestion may be obtained, however, by 

considering first the problem at zero total c.m. energy E, where the 

e'luation simplifies considerably. If the behavior of the solutions at 

R = 0 should turn out to be independent of E, as one might expect 

on the basis of some familiar examples, it would be sufficient to consider 

this special case, alth01]gh the generalization of the results to the 

case in which E J 0 will not be immediate, as we shall see. 

A. E = 0 

For E o E'l. (3.1) is invariant with respect to the trans-

formations of the group 04, In order to make this symmetry most 

explicit it is convenient to work in the representation where . 
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C -'0 \ /1 ) a, 
'Y5 I 'Ya I , =: 

/ \ -1/ '-, a / ,r 

the matrices a and "0 ha ving been defined already in (4.19). a a 
We 

call thiEi the "Weyl representation. II 'Yex and are matrices in the 

direct sum space of the representations (~, 0) and (0, ~) of °4 , 

The reason for working in this direct sum space is of course the 

required invariance of the theory under srace inversion. Indeed, as 

(4.13) demonstrates eX.R1icitly-,_the operation of space inversion takes 

the representation 
1 

(n ± 1 !!.) into 
2 '2 

(~, n ~ 1), and vice versa. 

Denoting by D2(R) the representation matrices in the direct sum srace 

[(~,o) (:jj (O,~)], we have the following transformation law for the 

'Y-matrices (see (4.21)): 

=:;' rR -1 
a[3 1'[3 • 

It follows that for E=:O Eq;' (3.1) is invariant under four-dimensional 

rotations, so that its solutions may be classified by the eigenvalues of 

the complete set of commuting generators of °4 , We write the E ° 
equation in the form 

° 
where 

'" V(x).P(x) . 

(5.2 ) 
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Here V(x) is the "potential" (3.2) and P (x) is the operator defined 

by 

P l. ~ (x) (r, T)'" (-r, -T) • 
IV tV 

Introducing 

Y(r) 

we define the "parity" operators in three- and four-space: 

== (5.3 ) 

We note the follmving commutation relations: 

(5.4) 

Because of these commutation relations we may choose the solutions of 

E<l. (3.1) to be also eigenfunctions of IT3 or IT4, but not of both. In 

particular, the eigenfunctions of IT4 will have to be of the form 

r, .-,JM(",) 
<) R " 
,J n± \ 

~. ) (5.5 ) 
1I'JMI'I) ; 
'-I (R / 
'"' (n±l) ./ 

-t-

with space time parity (_)n. Substituting (5.5) into (5.1) and using 

the results of Sec. IV, we arrive at the following set of coupled 
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G (R) :25 
n 
+ 
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"radial" functions r (R) and 
n+ 

mIfF (R) + ('.i.. + n+~)Kn-t-l G (R) = (_)n A In.f lK (IvlR) IiI (R' -1-
1 n dR R n R 1 n I 

K (1-11\) G (n)] 2 . n . 
+ + + + 

.n-j-l () fd· n)',.11 () m K 'G R +! -- - - K Ii' R 
1· n \dcq R n +. + 

(5. 6 ) 

where 

Equations (5.6) exhibit explicitly the degeneracy of the solutions Hith 

respect to tho quantt;m m:unbers J and M. In exactly the same manner 

i-re arrive at a set of coupled differential equations for 1" (R) and 
n 

It ls, hOl-Tever, simpler to note that if cP JM(x) is a solution 
n 

of (5.1) i-lith eigenvalue A ) then so is 
+ JM 
cc Il3 cP n,' on 

T 

account of the commutation relations (5.4). Ths.t is, we may obtain the 

differentlal- equations for Ii' (R) and G (R) by simply noting that 
n 11 

(i-re make a convenient choice of proportionality constant) 

(5. 8 ) 

He conclude therefore that for a giVen value of n, the cOl:i'ojj'ed set of 

solutj.ons 
JM 

and 
JM 

hlith CPn+ 'fCn+l)_ J and M taking on the ';3.1U(;3 

J. 1/2, 3/;' ... 
I ,-- J ,. (n + -1), 11 - J, - J T 1, ... , J) i.s (n 

\" +- J)x 



x(n + 2) - fold degenerate. For eigenfunctions of IT3 the additional 

twofold degeneracy expressed by (5.8) would correspond to a degeneracy 

with respect to the two values of the orbital angular momentum coupling 

to a given total angular momentum J 

We now turn our attention to a study of the behavior of 

and G (R) as R ~ 0. Although the potential (3.2) has a logarithmic 
n± 

singularity at R =: 0, the leading constribution exhibits an integral 

power law 

(n± I JIM'IVI n± JM) ->- 8 I 8JIJ 8MIM n± n± 
8(_)n / 1 '\ 

( \ 

R3 )' 
",-1 

" 
/ 

as R ->- 0. 

Substituting (5.9) for Vex) in (5.6), we arrive at two coupled 

differential equations of the Fuchsian type, with R ° a regular, 

singular point. We conclude therefore that the six independent solu-

tions (for a given value of A, J, M and n±) to Eq. (5.6) exhibit 

the behavior 

('vitti i 1,6) (5.10 ) 

as R --->- 0) provided that I- 0, and 13. - 13. 
~ J 

I- 0, for i I- j. 

We must have, however, a. - 13. =: m (integer). In fact, ~ more detailed 
~ ~ 

examination of the equations shows that m only can have the values 

m =: ± 1. The a. IS and 13. IS are then found to satisfy the indicial 
~ ~ 

equations 



~ 
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n n n 
( _ )n+l 811., 

n n 
[a + 

- nJ [a + (n + 2) J [a + (n + 2) J ~ + + + 1, - + = a 

(5 .lla) 
n n n n n 

[0; + + nJ [0: + (n + 2) J ["v + (n + 2) J (_)n 811., 
,v + "" + - 1 - a + ~ - a 

and 

n n n n n 
[a - - nJ [a - + nJ [a - (n + 2) J (_)n 811., ~ - 1, - :=: a 

(5 • lIb ) 
n n n 

(_ )n+l 811., 
n n 

[a - - nJ [ei - + nJ [ex - + (n + 2) J 
/"V /\ .. -
~ =a +1. 

We note the following useful relations: 

(n±l) 
a :j: - 1 , + 

(5.12) 
(n±l) 

a + ± 1 . 

For the purpose of later discussions it is also convenient to distinguish 

among the six independent solutions to Eqs. (5.11) by a subscript m 

where m denotes the integral value which the solution in question 

approaches as A. ~ 0. Thus 

Note that 

a m 
-> m as A. ...... ° . 

- a n± ; finally we note that except for some 
m 

isolated values of A., including A. = 0, the solutions to Eqs. (5.11) 
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do indeed satisfy the above stated conditions for the validity of the 

ansatz (5.10). This can also be seen from Fig. 4 for the special case 

n = 1, where we present a plot of and as a flIDction of the • 

coupling strength f... 

B. E f 0 

We now turn our attention to the actual case of interest, that 

is, when E f O. In this case it is still desirable to expand the 

solution in terms of the four-dimensional spinor spherical harmonics, 

although this leads now to an infinite set of coupled third-order 

ordinary differential equations. The situation is therefore much more 

complicated and the discussion of the boundary conditions at the origin 

is correspondingly more involved. 

We begin by restating the results of part A in a somewhat different 

form, the reason for this being twofold: 

(a) In the E I- 0 case it turns out to be more convenient to work 

in the "Dirac representation" related to the "Weyl representation" by a 

unitary transformation. In this representation 

/ \ r , .' 
1'\ I' 1 ( Z', 

.-
0 I 

Y j I Y = Y5 \,,1 \ " 
, ; 

\\ .. , -1/ "'. \:-~, / / ./ 

(b) If E I- 0 the space-time parity is no longer a good quantum 

number, whereas IT3 st ill c ommut e s with the operator [)E(d;f..). It 

is therefore desirable to restate our earlier conclusions in terms of 

the simultaneous eigenfunctions of JJE(d;f..) and 
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He may obtain the E ::: 0 eigenfunctions of TI3 by simply 

a~plying the projection operator 

p 
:!: 

1 
2 

(t~Iee-parity ± 1) 

to the o solutions (5.5). Denoti.ng the resulti.ng functions by 

JIM , vThere L 
1 

.T .:;: 2' 

1 

specific,:; the three -pexi ty, lIe ba ve 

"'-
\ 

\ 

\ 

) 
/ 

! 
// 

(5.14 ) 

( _ )L-J +2. ( ) ( ) "lith three-In.rity The fu:nctions F Rand G R 
n± n;!; 

appearing in (5.14) are of cotU'se identical to the ones appe9.ring in 

(5.5). He note that not all of the solutions (5.14) are independent: 

This pro}Jert~l had already been noted j n (5.8). To be specific '.,re choose 

'x JLM(x) (\-lith L 
n. 

J +- ~) as the independent set of solut:iom; to 
T 

,TM 
~I) and 

n 
replace the origi!1?l set of soluti.ons 

+ 

JH 
Cj)n (some qW.1.ntu!1l 

numbers J, £.1 2nd n). Going nOfto the Dirac representation aDd 1l10,}zing US(~ 
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of the definitions (4.8) we arrive at the following expressions for the 

E = 0 eigenfunctions of 

/ 

IT .22 
3" 

/ 1 

(
" (2(n + t + 2)]2 F(R) y t+ 

n + 1 n 

'\ 

+ [2(n - t + l)]~ G(R) y t+\ 
n + 2 n+l 

I 

=( 
\ f2(n - n]~ F(R) y (t+lL 

\l n + 1 ' n 
" 

I 

_ (2(n + t + 3»)~ G(R) y(t+1

7
)_J 

, n + 2 n+l 

(5.15a) 

with three-parity 
t 

(-) J and 

with three-parity (_)'e.+l. Here F(R) == F (R) and G(R) ':= G (R), 
n+ n+ 

so that 

n n 

F(R) 
'et + 

G(R) 
Ret + +1 

"- R rv 

(5.16 ) 
ND+ ,.",il'4-

-1 
F(R) "- Ret G(R) "- Ret , 

as R -.. 0, where 
n+ 

et are the solutions to the indicial equations 

(5.11a). Comparing (5.15a) and (5.15b) we see that 



Eqllation (5.17) together liith the commutation relations (5.4) ShO,\IS 

X 
t+ X (t+l)_ 

that and are solutions to Eq. (5:1) for the same 
n n 

eigenvalue /I.. This corresponds to the twofold degeneracy already noted 

j.n connection vrith (5.8). With the,additional degeneracy in t and the 

• magnetic quantum number M we have again a set of 2(n + 1) (n + 2) 

degenerate solutions. 

We could have a:crived at the results (5.15) also in a less direct 

"ray by substituting the expansion 

into (5.1). This \-Tould lead at first to an infin:i.te set of differential 

equations coupled in the ql1anturn number k. Our earlier group theoretical 

considerations have shmm hm.;ever that there 'exist s01utions '\'l:r~ich 

actually decouple this infinHe set of equations. By studying this 

question sOffiei{hat more closely we find that it is precisely the choice 

of coefficients in (5.15) ifhi.ch leads to such a decoupling via a number 

of cancellations. We leave the details of this stucly for Appendix D 

and turn nOll our attention to thE: case where E f O. 

If E I 0, the substitution of the eXlJansion (5.18) into 

Eq. 0.1) again leads to an infinite set of coupled differential 

equations 'lhich can no longer be decoupled. This complicates the study 

of the boundary cOEditions at the origin considerably. He \-rill 8hO'\'T, 



-44-

however, that if we develop the solution as a power series in E 

to a given order in E, only a finite number of terms will contribute 

in the expansion (5.18). Indeed, consider the solutions ¢k(x) to 
IV 

Eq. (3.6). For E below the elastic threshold and at a given value 

of ~, ¢k(x) is expected to have a discrete set of poles in E, 

corresponding to the eigenvalues E of Eq. (3.9). 
m 

Considering in 

particular one such pole at E EO ' we write 

== 

The bound state wave function cp(x) was then defined as ~E(x) 
"" 

evaluated at the pole: cp(x) - '¢Eo (x)j assuming that ¢E(x) can 

be developed into a power series in E with radius of convergence 

r 0 ~ I EO I , and noting that in the limitE ...... 0 we must recover the 

results (5.15), we conclude that to first order in EO 

independent of 

below. The E i= 

respect to J and 

labeled by the same 

between the E 

£, £, £,+ ( ) cp - x 
n 

X ± (x) + EO \jr ± (x) ) 
n n 

0 

£ 

E == 0 solutions (5.15) and is 

The general form of \jr£±(x) will be determined 
n 

solutions are of course no longer degenerate with 

Note, however, that both 1,+ and X£± . cp - are n n 

quantum numbers, implying a one-to-one correspondence 

o and E f 0 solutions. 

.' 

'. 
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In order to determine the form of ~£±(x) we substitute (5.19) 
n 

into (3.1), keeping only the first order terms in EO' We arrive then 

at the following set of coupled e~uations for X£± 
n 

o J (5 .20a) 

(5 .20b) 

Equation \5.20a) is of course just the E == 0 equation. E~uation 

(5.20b) is of the form of an "inhomogeneous" E o equation, the 

inhomogeneous term being already known from the solution of (5.20a). 

This suggests that we seek a solution of such form as to lead to only 

a finite set of coupled differential equations. An examination of the 

inhomogeneous term in (5 .20b) shows that ~£±(x) must in fact be of 
n 

the following specific form 

,/ 
I~ ( )]J_ 

/ l2 n~£+l 2 Fl (R) 
I 

== i 
:, 1 

\ f2 (n-£-1) po. F (R) 
\ l. n J 1 

/ 1 ~ 
/ .e " ( .e r ) 1-- .e'\ ,: F (R) Y + + l2 n- +2 2 G (R) Y + \ 

(
' 2 n+l n+3 ~ 2 n+2 \. 

+ \ J 

\ F (R) y(.e+1L _ [2 (n+.e+4n! G (R) y(£+l)_ ) \2 n+l n+3 J 2 n+2 ! 
, / 
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the formal structure of W(.e+l)_(X) 
n 

being the same as that of 

t+ 
II4 1jrn" The coefficients of Y' 1 n-

and Y have been chosen so that 
n+2 

when the operator 

coefficients of Y n-2 

is applied to 1jr.e±(x) in (5.20b), the 
n 

and Yn+3 
in the resulting expressions vanish 

identically. Our discussion in Appendix D shows that the above choice 

of coefficients does indeed accomplish this. In general a truncation of 

the expansion (5.18) as represented in (5.21) cannot be achieved without 

running into a contradiction. Thus) for the case in' question, the 

substitution of (5.21) into (5.20b) leads to a set of eight coupled 

equations for the six radial function in (5.21), so that we appear to 

be left with an overdetermined problem. It is, however, the structure 

of the equations (5.21) as considered from the group theoretical point 

of view which assures us that only sj.X out of the eight equations can 

in fact be independent. This is indeed found to be the case. 

Although we have demonstrated it only to first order in EO' 

our results suggest that, subject to the assumed analyticity properties 
_ •• '.J 

of ,0E(x) .. we may obtain the E I 0 

starting from-the E = 0 solution 

solution ~i± perturbatively by 
n 

Xi±(x), with only a finite number 
n 

of terms contributing to its partial wave expansion (SUCh as (5.18) to 

a given order in EO' As for the radius of convergence rO of the 

expansion of ~E(x) in powers of E, we note that certainly rO < E
l

, 

where El is the first excited state in the bound state spectrum of 

Eq. (3.9). 

Having determined the structure of the E I 0 solutions to 

first order in E, we now examine the behavior of the radial functions 
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in (5.21) at R = O. This is a straightforward, although tedious task, 

since we are dealing now with a finite set of coupled equations. We will 

not present the details which are purely algebraic in character. The 

results of this study are listed in Table I. Introducing the expansion 

(5.22 ) 

where we have followed the notation (5.19), we may summarize the contents 

of this table by the statements 

n+ 
ex + 

F.e± '" R m 
nk 

as R ~ 0, where 

Ik-nl 

and 

+ I (k±l)-nl 

n+ 
ex are the six solutions to the indicial 

m 

equations (5 .lla). Although we have shown only the first-order solutions 

(5.19) to exhibit the behavior (5.23) at R =: 0, we note that these 

boundary conditions are independent of J and M, and are in fact 

determined by the E = 0 soJ_ution itself. We therefore ass'ume 

(5.23) to be correct independent of the value of E. 
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VI. THE INTEGRAL EQUATION AND BOUNDARY CONDITIONS 

AT THE ORIGIN 

In order to complete our discussion of boundary conditions, we 

need to examine which of the boundary conditions (5.23) are actually 

contained in the integral equation (3.9). Our objective in this 

section is actually tw·ofold: In addition to establishing which of the 

six independent solutions (5.23) to Eq. (3.1) (for given values of J, 

'£, M and n) are also prospective solutions of the integral equation 

(3.9), it seems of considerable interest to learn how the boundary 

conditions (5.23) may be obtained directly from the integral equation 

itself. We restrict our discussion to the case in which E ~ O,since, as 

we have seen in Sec. V, this is entirely sufficient for our purpose. 

In this case the expression (3.8) for the "Wick rotated II Green's function 

simplifies considerably, the result of taking the limit E ->- 0 being 

1 

8rr2 

1 

~ 
For simplicity we will take m

l 

upon substituting (6.1) into (3.7), 

I-I (x ) 

(6.1) 

m. In that case we obtain 

(6.2 ) 

As in Sec. V-A it is convenient to work in the "Weyl representation." 

The E o solutions are then of the form (5.5). Introducing the 

operator 

., 

.-
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/ 
, 

-i( 0.;:) ) 
Q(~) 

( 1 
= \ " 

(6.:; ) 

we write' the E o solutions (5.5) in the foni: 

(6.4) 

With the definitions 

/V 

U(x,x' ) 
1\ _] '/\ 

Q(x) Vex) Q(x} 

we may rewrHe Eq. (3.9) as an integral equation for q)(x): 

-v J 1~ N r".' "'" cp(x) :0: -'/I. d x' H(x, x') V(x') q)( - x') . (6.6) 

We have 

'V 

Vex) 

(IS. (1I1R) 

\JS,(MR) 

and 

'. 
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Hll (X,X,) 
m 

KO (m I x - X I I ) == si 

/v m CO' • ~) KO (m I x - X I I) (a.~ ,) 1122 (x, x ,) 
S:rr2 

(6.S) 

2 
[R(cr.~) Kl (m I x - X I I ) KJ(mlx - x' I l] A- m (a.~I) H

12
(x,x' ). 

si mix - x'I 
- R I 

mix - x'I 

2 

[R 
KJ(mlx - x'I) ~(mlx-xll) 1 

'~1 (X)X,) m (C> A) (a/il)J == si 
- R' a·x 

mix - x'I mix - x'I 

Making use of the addition theorem (4.1S) we have the exp'l.Dsions 

Baj3 

I\l(mlx-x l /) r In+1(mR<) Kn+1 (mR» 

(mR) (mR I) 
vt'-± (R) 

(6.9) 

== 
mix - x' I 

'--
n± 

R I aj3 

1 

where R == 
22"2 

(r + T ) ) 
IV 

R> max (R)R'}, etc., and E == 2 for 
n 

all positive integers n except for n == 0 where EO == 1; 

and K (x)-are modified Bessel functions with the properties n 

( ) ( ) (_x)n 
I x - r n + 1 2 n 

'I, 

(n f 0) ) 

J 

as x ..... 0 

KO (x) rv - .en x ) 

I (x) 
n 

(6.10) 

" 



With the aid of the expansions (6.9) and (4.24) we obtain the following 

set of coupled integral eCluations for the radial functions and 

G (R) in (6.4); 
n± 

F (R) = 2ril-.(_)n+lJ"R,2dR ,{ m [E I (mR<)K (mR»-2I 2(mR<)K 2(mR»] 
n± 4(n+l) n n n n+' n+ 

) 
-[R\ 1_ (mR )K_. (mR.)- R~ I 1(mH)K ](mR»][KL(MR.')G (R')+K0 (MR')F (Rl)]f' 

n+l < n+l ,> n+ < n+. . n±. c. n± . 

m 
- 4(n+l) 

x [K_ (MR ,) F (R') + K2 (MR ,) G (R ' ) ] 
-~ n± n± 

[\?n:(mR<)Kn:(mR)- 2In+2 (mR<)K
n

+
2 

(mR)] [K1 (MR I )Gn ± (R 1)+1<2 (MR' )Fn ± (R' )]} 

(6.11) 

v{here n - (n ± 1). In order to deduce the behavior of the radial 

functions at R <".:.~ 0 we make again the ansatz that in this limit 

F (R) ,.... Ra , and G (R) a Breaking up the integration (6.11 ), '" R j in 
n± n± 

00 (R ~oo r , 
I dR' ; dR ' 

I 
dR' ! + i 

-' / ,j 

0 0 R 

we may then evaluate explicit.ly t.he integral dR', by making use of 

(6.10). Moreover, in the limit R -'> 0 the dominant contributton to t.he 
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integral lCD dB' comes from the neighborhood of R' = R, so that the 
R 

leading term in this integral may be obtained by simply substituting for 

F (R) and G (R) ·their values at R t,t o. Performing the indicated 
n± n± 

integrations we arrive at the following indicial equations for a 

and /3 : 

4 ( )n+l { 1 
~ - [a + n + l][a - n - 1] 

1 
[a + n + 2 J[a 1 (6.12a) 

with /3 a + 1, and 

(6.12b) 

with a = /3 + 1; Comparing Eqs. (6.12) with the indicial equations 

(5.11) obtained earlier, we see that they are in fact identical. This 

then completes our first objective, that is, to learn how the boundary 

conditions (5.23) may be deduced directly from the integral equation 

itself. It remains now to be seen for which of tiE six solutions (5.23) 

the integral equation (6.11) remains well defined. An examination of 

the equations leading to (6.12) (we do not present the details here) 

shows that we need to observe the inequalities 

n+ 
(n + 2) 

",n+ 
a > - , a > - n 

(6.13 ) 
n - -'\In_ 

a > - n , a > - n 

i 

.... 

., 
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if the integration in (6.11) is not to diverge at RI 0. [Compare 

(6.13) with the ~ ° solutions to the indicial equations~] 

At this point it is convenient to define what we will refer to 

as the "regular" and "irregular" solutions. We separate the 

solutions to the indicial equations (5.11) into two groups, depending 

on whether they take on positive (including zero) or negative values 

for ~ O. We will refer to these as the "regular" and "irregular" 

solutions, respectively. Thus, to take an example, the solutions 

to Eqs. (5.lla) belong to the first class, 

whereas 
_v n+ -v n+ 
a_(n+2) , and a_n belong to the second class. 

We make the corresponding classification of the six independent solu-

tions (for given values of J, M, £ and n) to Eq. (3.1). Consider 

then a typical case such as represented in Fig. 4, where we have plotted 

l± 
and 

,,,1+ 
function of the coupling constant The a a - as a ~ . 

intersection of a given line ~ = ~l with the curves gives the six 

(possibly pairwise complex) solutions to the indicial equations. We 

see that the restrictions (6.13) do not necessarily exclude the irregular 

solutions. Thus, if we take the 1+ solutions in Fig. 4a as an 

example, the conditions (6.13) are seen to exclude only one of the 

irregular solutions for ~ > 0, whereas they exclude all three for 

~ ~ 0. By merely counting the number of free parameters, we would 

expect therefore Eq.(3.9) to have a continuous eigenvalue spectrum for 

~ > 0, unless we supplement the integral equation with additional 

boundary conditions. To this end we require the solutions to be regular 
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at R O. This choice of boundary conditions has the virtue that 

we treat the solutions for positive and negative values of the coupling 

constant in a like fashion. Another reason for favoring this choice is 

that for a non-singular force the integral equation would include 

wi thout question only the regular solutions. 

Having thus completed our study of the boundary conditions to be 

imposed on the solutions to Eq. (3.1), we like to comment again briefly 

on the MacDowell symmetry (see Sec. III) and its relation to the eigen-

value problem. Labeling the bound-state solutions by the corresponding 

values of the energy E and coupling constant ~, we may now restate 

our earlier conclusions as follows: If (jl~±(X;~, EO) is a solution of 

Eg. (3.1 ) for E EO , then (£±l)-f( ) 
CPn x;~,- EO cc IT4 cp!±(X;~' EO) 

1s also a solution for E - EO ' at the same value of ~ . In fact 

both of these solutions are regular, if either one of them is. Comb1ning 

this with our earlier remarks in Sec. III concerning their asymptotic 

behavior, we conclude that if cp~±(X;~,EB) solves the eigenvalue 

problem for E ~ , then cp~£±l)-f (x;~,- ~), as defined above, 

solves the eigenvalue problem for E - EB .28 That is, 

(6.14) 

which is a more familiar way of stating "the MacDowell sym.rnetry. 

", 

.. ' 
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VII. NUMERICAL TECHNIQUES 

A. General Treatment 

In the preceding sections we have prepared the ground for doing 

the calculation we have in mind; that is, to solve Eq. (3.1) sub,ject 

to the conditions that ~(x) exhibit the asymptotic behavior of 

Fig. 3 and that it be regular at R == O. Writing equation (3.1) tn 

the form 

we easily verify that the quotient 

[ r.J 

:i.s stationary with respect to infinitesimal variations in ¢(x) about 

the solution to (7.1). The integrals in (7.2) converge at infinity for 

E below the bro-body elastic threshold, i. e. E < ml + m2 • This can be 

easily verified with the aid of the results of Sec. III as summarized 

in Fig. 3. In the scattering region the integral in the numerator 

ceases to converge, however (the integral in the denominator continues 

to converge for E below the first inelastic threshold), so that the 

stationary expression (7.2) can be used only for calculations in the 

bound state region. The choice of scalar product was of C01ITSe dictated 

by the desired stationary properties. As an extra bonus we notice that 



-56-

the operators DE(d) and Vex) are self-adjoint with respect to the 

scalar products chosen, so that we will have to deal only with 

Hermitian (actually real, symmetric) matrices in the calculation. vIe 

also note that;>... ;>...* as long as the denominator in (7.2) does 

not vanish. However, since Vex) is not a positive definite operator, 

this is not guaranteed, and Eq. (7.1) does in fact have complex as 

well as real eigenvalues ;>.... 

In the actual calculation we considered Eq. (7.1) as an eigen-

value problem in either E or ;>... depending on our choice of potenti.al. 

Thus, in the case of a non-singular potential, such as the potential 

(3.2) in the presence of a cutoff, i.t was clearly preferable to regard 

Eq. (7.1) as in eigenvalue problem in ;>..., since this allowEd us, at 

least jn principle, to represent correctly the asymptotic boundary 

conditions., as well as the boundary conditions at the origin. On 'the 

other hand, in the case of a singular potential it was preferable to 

regard Eq. (7.1) as an eigenvalue equation in E, since then the 

boundary conditions at the origin could still be incorporated correctly 

into the caJ.culation, although the asymptotic boundary conditions would 

have to depend implicitly on the computed values of E. It was 

important that not the converse point of view was taken, since for an 

attractive potential the boundary conditj,ons at the origin are expected 

to play the dominant role. In fact, our numerical calculation showed 

that 'it was absolutely crucial that the boundary conditions at the 

origin were treated properly, as it vTaS to be expected, since we are 

dealing with a non-Fredholm equation. 

'. 

,> 

't, 
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In Sec. VI we argued on the basis of the integral equation (3.9) 

that the solutions to Eq. (3.1) should be regular at R = O. The 

solutions to the eigenvalue problem are then in general a linear 

combination of the three independent regular solutions to Eq. (3.1) 

(for a given set of quantum numbers J,. M, f, and n). To take proper 

account of all three of these solutions would require the inversion of 

extremely large matrices in the actual variational calculation. Hence, 

if the matrix sizes are to be kept at reasonable values, we need to 

compromise by either building into our "trial" functions the correct 

boundary conditions at the origin and representing the radial functions 

otherwise poorly; or by including only the dominant contribution at 

R 0 and improving instead on the form of the radial trial functions. 

From the numerical point of view the latter choice is definitely to be 

preferred. An inspection of (5.23) shows that at least for a restricted 

range of the coupling constant the boundary conditions (5 .23a) with 

m n can be considered as leading at R o although this choice 

will not represent the dominant behavior for all the radial functions. 

We will thus consider in the actual calculation only the leading 

boundary conditions as given by 

n+ I a + k-nl 
R n , as 

Now, it follows from our discussion in Sec. V that the 

" specification of the angular momentum and parity of a particular 



channel of interest is insufficient to single out a unique solution, 

since we are left with the quantum number n labeling the solut-ions 

(5.22) as an additional degree of freedom. Since this quantum number 

has no direct phYsical interpretation, it follows th3.t, to take an 

example, the "nucleon" could in principle be considered as a bound 

state in anyone of the infinite number of JP 
1+ 

2" ' I 
1 
2 

channels distinguished by the quantum number n. In view of the role 

of this quantum number in labeling the solutions, we would expect on 

a merely intuitive basis that higher values of n would correspond to 

higher excited states. The stability of the nucleon under the strong 

interactions would then suggest that it should be interpreted as a 

bound state in the channel labeled by the lowest value of n. We have 
,e 

thus restricted our attention to a study of the solutions ~£+(x) and 

U+IL ( ) 'Pi, x as a logical starting point for our calculation. We will 

refer to these solutions simply as cp£± (x L and write 

00 

L 
kd 

Then, according to our choice of boundary conditions (7.3) we will, in 

the actual numerical calculation,require the radial functions to exhibit 

the behavior 

, 



• 
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as R ~ 0, -where we have made use of (5.12) in order to put the 

results into a more symmetric form. Noting also that 

~i" " 
where c;·L/ E (6; A) is the operator defined in (5.2) and C is the charge 

conJugation matrix (4.14 )" we conclude wHh the aid of (4.15) [the 

spherical harmonics (A6) satisfy the same relations] that, for the 

bound state problem, F~i'(R) and G~±(R) in (7.4) may be chosen to 

be real, for A real. Specifically, we took the radial trial functlons 

to be of the form 

F~ ± (R) 
O/±+(k-f.) M -yR 

= R ,£ ~ a
km R

m 
e , 

ni=O 

a~±±l+(k-£) 
(7.7) 

G£± (R) 
M -yR ~-, 

b
1rnl 

R
m 

R L e , 
k 

m=O 

(. K. The actual solutions have logarithmic singularities 

at H o so that we could very likely have improved on the convergence 

of our calculation by including explicitly these logarithmic singularities 

in the expansi.on (7.7). We have not done so for the sake of simplicity. 

In practice only fairly low values of K and M in (7.7) were 

cons:i.dered; thus typically 2:;;; K ~ 5 and 0 ~ M ~ 8. The stationary 

expr~ssion (7.2) was then converted to a matrix equation for the 

expansion coefficients (akm , b
km

) by performing all the integrations. 
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This left us vlith a set of matrices DE(k 'm' i ' jkmi )ab and 

V(k 'm 'i' ; krai )ab corresponding to the differential operator- and 

potential-integrals respectively. Here m and k have the same 

meaning as in (7. r() and i labels the three independent re[Sular 

solutions. (In the actual calculation only one value of i "\Vas 

considered, corresponcUngto the choice of boundary conditions (7.5).) 

The indices· a, b label the upper and Imler components in the 

expandon (7.4). In order to speed up the calculation ve expressed 

the matrices D. and V were real, symmetric: D. (k 'm' i' j tJni) b 
J J a 

D.(bJlijk'm'i')b ,vlith the correspondi:ng statement for V(I,J). 
J a 

In the calculations involving the singular potential (3.2) we 

were not free to consider arbitrary values of the coup1 ing constant 

strength A. Evidently the six solutions to the indicial equat10ns 

(5 .JJ.a) are real for only a restricted rangE; (AI' A
2

) of coupling

constant values. (We \v-lll refer to AI; 2 as the "critical" values 

of the coupling constant A.) Outside this range ,ye have t"\Vo pc·drs 

of complex conjugate solutions. In fact, as Fig. l~ illustrates, the 

regular and irregular solutions do, or do not mix at A AIJ2 ' 

depending on the sign of A and the pg,rticular quantum numbers 

involved. Still, from a purely mathematical standpoint one I'Tonld. 

expect that, at least in principl.c, a vTell-defined ej.genvalue problem 

could be formulated even for coupling constant strengths exceding the 

critical 'lalue. vIe VTould thus expect that our boundary concH tion of 
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regularity would continue to lead to a discrete eigenvalue spectrum for 

IAI ~ 1Al 2 1. In particular, if there should be no mixing between the 
.' 

regular and irregular solutions at the critical values of the coupling 

constant (such as for A < 0 in Fig. 4a, for example) we could 

continue to choose these boundary conditions at the od.gin to be real: 

with the corresponding statement for .e + ( ) G k- R • n 

·n 
cos (~+ .en R + B) , 

Here 

n+ n+ 
~ ± i ar denote the real and complex solutions to the indicial 

equations (5.11a), and A, B are constants to be fixed by the eigen-

value problem. (The overall normalization constant is of course 

irrelevant.) The solution is thus seen to oscillate infinitely fast 

at R 0, the existence of an eigenvalue problem depending of C01ITSe 

critically on the choice of phase B. Aside from the obvious numerical 

problems, it is very doubtful whether a meaningful physical inter

pretation can be given to these solutions. 29 We have restricted 

therefore our attention to the coupling constant range 

where the values of A
1
,2 corresponding to the solution 

given b;O 

where 

A 1,2 

are 



and 

B 

2 
:=: n (n + 2) , a 

1 
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2 -en + 2) , 

have listed the calculated values of 

solutions cp£±(x) for .e o through 5. 

-n ; in Table II we 

corresponding to the 

Although the present calculation "las originally intended to be 

free of arbitrary parameters) the range (7.8) of coupling constant 

values considered'in the singular problem was too restrictive in the 

P 1 + -
J :=: 2 channel (see Table II) as to give a bound state, so that we 

needed to modify the nucleon exchange potential (3.2) appropriately if 

bound-state solutions were to be obtained at all. We considered 

therefore the two modifications 

4~ 
[a Kl (MR) + b 

-". IS (MR)] , R 
i 'I-x f-.. vex) 

vex) ~ [Kl(MR) + 
.". 

feR, Rc) K2 (MR)] R i 'l'x . 

Here R 
c 

is a cutoff parameter and r(R;R ) 
c 

which was chosen to be of the form 

f (R jR) == R/ (R + R ) . 
c c 

is a cutoff function 



.,. 

-63-

The bound-state solutions were thus studied as a function of the three 

masses and M, the parameters a and b appearing in (7.9a), 

and the cutoff parameter R 
c 

We were of course free to give a any 

desired value., whereas the parameter b was still restricted to the 

range (~l' ~2) as given by (7. 8 ). For a = b the potential (7.9a) 

reduces of course to the form (3.2) corresponding to the exchange of 

an elementary nucleon. We also note that for the choice of potential 

(7.9b) the boundary conditions (7.5) need to be replaced by 

k 
'" R , 

k±l ,.., R as R ...... O. 

Before we proceed to a discussion of the numerical results, there 

are several "technical" points which seem worth mentioning. In practice 

it was found that the "optimum" value of the exponential parameter I' 

in the expansion (7.7) as determined in the C01.1rSe of the calculation 

was in general far off from the one suggested by the known asymptotic 

properties of the· solution because of the short range character of the 

force. The starting point of our numerical calculation therefore 

consisted in searching for a "good" value of the parameter I' by 

studying the convergence properties of the calculation at small but 

ir.Lcreasing matrix sizes. We then improved on the accuracy of the 

calculated eigenvalues by enlarging systematically our space of basis 

functionsj that is, by keeping an increasing number of terms in the 

expansions (7.4) and (7.7). Since we expect the terms in the expansion 

(7.4) to become of decreasing importance as we go to increasing values 
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of k, we made the index M in the sum (7.7) a function of k, 

observing at all times the inequality M(k) > M(k + 1). In practice 

we did not invert matrices larger than 54 by 54. For matrices of this 

size an accuracy of 1% or less was common for the case in which 

m 
1 

m
2

, although an accuracy of ?';: 10% could already be obtained 

for much smaller matrix sizes. This is to be compared with other" 

calculations.3,4 When making this comparison it is to be kept in mind, 

of course, that the presence of spin alone in our problem doubles the 

matrix sizes for a given choice of trial function. 

Because of the orthogonality of the spherical harmonics it was 

evidently crucial to determine precisely the total number of terms 

which needed to be included in the expansion (7.4) if the computed eigen-

values were to be accurate to some specified amount. In practice it 

was found that we never had to include more than the first five terms 

in the expansion (7.4) if an accuracy of about .1% was desired. This 

suggests that our method of reducing the genuine two-dimensional partial 

differential equation in the variables R and cos e to an infinite 

set of coupled ordinary differential equations by expanding the 

solution in the form (7.4) has definite advantages over solving the 

partial differential equation direct!. y, since it provides us with an 

approximation scheme in which we actually need to solve only a small 

set (in our case at most five) of coupled ordinary differential 

equations. 

Tables III and IV illustrate the observations just made. In 

Table III we present a typical sequence of approximations for f1.ve 

.. 
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different choices of the asymptotic behavior of the trial functions. The 

first column specifies the form of the trial function, the notation being 

K M(,e), M(.e + 1),···,M(K) 

where M(k) is the maximum value of the summation index m in the 

expansion (7.7), as a function of the four-dimensional angular momentum 

k labeling the radial functions, and K is the maximum value of k 

considered in the partial wave expansion (7.4). The table illustrates 

how the choice of the exponential parameter in (7.7) affected the 

convergence rate as well as the direction from which the computed 

eigenvalues approached the final value. We see that independent of 

the choice of !, the numbers do eventually converge to the same 

final value. 

Table IV illustrates our above observation that special care 

had to be taken to include a sufficient number of terms in the expansion 

(7.4). Table IVa shows the effect of improving only on the radial 

dependence; the numbers are seen to converge to the same final value 

independent of the choice of !, as one would expect, since we may 

correct for a poor choice of the exponential parameter by including 

simply a larger number of terms in the expansion (7.7). Table IVb shows 

on the other hand, that by improving only on the "angular" dependence 

of the solutions we cannot correct a poor choice of !, so that the 

numbers are seen to converge to different values for different choices 
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of 'Y. However, in all cases the numbers are seen to converge to the 

"wrong" value, the "correct" value being 1.649 as seen from Table III. 

Table IVb also shows that it was entirely sufficient for our purpose 

to include only the first five terms in the expansion (7.4), as we 

had already pointed out. 

lie have outlined here the general numerical procedure which 

was followed in the present calculation. We turn now to a disucssion 

of certain difficulties inherent in our choice of variational principle. 

B. Weakly Bound states With m2/ml < < 1. 

If we want to study the physically interesting case, that is, 

the bound states of the pions and nucleons with the experimentally 

measured masses, we run into several difficulties with the Rayleigh-Ritz 

variational principle (7.2). The fact that we are dealing with weakly 

bound states, such as the "nucleon," for example, and with a very small 

mass ratio, ~/ml 0.144, implies a very' asymmetric asymptotic 

behavior of the solution with respect to the forward and backward light 

cone, so that. in the bound state domain the solution is actually 

exponentially rising in one part of the (cos e, E) plane, and decaying 

in another, although the product cpt(-x) cp(x) is always exponentially 

decaying. These circumstances made it in general rather difficult to 

obtain reasonably accurate solutions for the case in which m2/m
l 

== 0.144, 

although the variational principle (7.2) proved quite adequate for mass 

ratios 0.4.::; m
2

/m
1 
~ l,the lower bound being actually a function of 

the bound state energy considered. There have been presented, of course, 

.. 
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alternati ve ways of formulating the variational problem3 which, in 

addition to being much more efficient, do overcome to some extent the 

above dlfficulties. However, instead of pursuing these alternatives, 

we will try to "patch up" the variational calculation as presented so 

far, by transferring some of the undesirable asymptotic properties of 

the solution to t he potential. To this end we consider the transformation 

~(x) 
1 
21llicose ( ) e Cj) x , 

where ~ is some parameter whose value we are free to choose. If we 

set ~ == (ml - m
2

) ~ then '~(x) Ivill exhibit the asymptotic behavior 

cp 'V exp[~(E - ml - m
2

)R] along both the positive and negative time 

direction, replacing the original asymptotic behavior (see Fig. 3) 

Cj) ~ exp[(~ - m )RJ 
2 1 for cos e E 

1, and Cj) '" exp[ (2' - m2 )R J for 

cos e - 1. We have thus achieved a complete symmetry with respect 

to the forward and backward time direction:in the four-dimensional 

Euclidean space. Moreover, the solution is now exponentially decaying 

for all E ~ m ~ m . " l' 2' We also note that this particular choice of ~ 

replaces the asymptotic expression (see again Fig. 3) 

exp[ - -,,~~2 r - ~ 121"] by exp[ - -"L~2 r - ~ 12 (1 - 11 h]' where 
;~) 2 

n, E/(m
l 

+ m
2

), Hence for ,.,reakly bound states (11 '~:~ 1) we have 

reduced the original asymptotic expression to an essentially time 

independent form~l Another choice for the parameter ~ would obviously 

be ~ == (~, and would correspond to the choice ~i 

in (2.9). The result of the transformation (7.13) is 
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nO\1 that q;(x) js exponential1y decaying everywhere in the (cos 6)E) 

plane for (llll- lll2) < E < llll + lll2; h 0I..r ever , the asymptotic behavior 

of q;(x) vith respect to the for'iVard and bacbrard tj_llledirection is 

stUl asymmetric. 

FTom the practical point of vielv the transformation (7.13) 

merely jnvolves the substitutions 

o 
m --7lll -J-lY, 

1 1 E""'" E - 11 

.-v 
cp(x) -> cp(x) , Vex) ""'" vex) J-l1" ) e vex 

in (7.2). As trivial as this change m.ay appear, from a practical 

standpo:int the situatlon is nOI) cons:ic1erably more COfflI)licated, since 

,"e are no longer denl :i_ng Hi th a rota-tionally invl11'iant potential. 

Hmvever, lore still need to compute only one-dimenstonal integrals. '1'hu3 

in order to evaluate the integral Jd4
X :0'-I(x) V(-x) ¢(x) in ('7.2) 

we make use of the expanston 

-I-W-'\cose e == 2 
k 

(-) (k + l) Ck
1

(COS e) 

and of the reduction of the direct prc",-luct of t-~l0 four-dimensional 

spherical harmonics. In prac:tice we needed only the reduction coefflcjent 

"".e C (nn IN) as given by the integra,l 



.,.,. 
" 

"vi 
C (nn'N) N£N£j' 

n n' 
de (sin 8)2£+2 C£+l (cos e) cf,+l (cos e) CNl(cos e). 

n-£ n!..£ 
o 

Here C l'(cos e) are the Gegenbauer polynomials and 
n 

N £ is the 
n 

normalization coefficient defined in (A7). Note that 
"v£ 
C (nn'O) = 

and 
",0 
C (rm 'N) 1. 

/ 
-1 

From the orthonormality property 

(x) o 
nn' 

,e -2 
(N ') 

n 

we deduce immediately that 

,',£ 
C'(nn'N) o unless In - n' I ~ N ,~ n + n' . 

It also follo'l-TS from (7.15) and the property = 

of the Gegenbauer polynomials) that 

/v
p ( ) C' nn'N (_ )n+n '+N ""p, 

C (nn'N) 

so that 

'" .e 
C (nn 'N) o unless n + n' + N = even integer. 

o nn' 

In practice the coefficients 
,,,-.f. 
C (nn'N) were computed numerically by 

expressing the integral (7.15) as a quadruple sum over products of 

gamma functions. 
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Making use of the above results we may now convert the variational 

expression (7.2) to a ,matrix equation just as before. In particular} with 
/\/ 

the expansions (7.4) and (7.7) for our trial function ~(x) corres-

pondj.ng to the transformed solution (7.13) we obtain for a typical 

element of the matrix [V(nm'n'm') ] replacing the integral , ab 

Id
4

X ¢t(x) v(-x) ¢(x) in the stationary expression (7.2) 

/v 
V(nmj n 'm ' )11 

\ . k ,..",e ,e 
L. (-) (k + 1) (C (n,n'}k) Ul (n + n'+ m + m';k) 
k 

.e ,/.e ,e ",.e .e 
+ [A , 1 C (n,n'+ l}k) + A , C (n,n'- l,k)] u

2
(n+ n'+ m + m' jk)} 

n + n 

where 

is now a typical integral that had to be computed, with peR) denoting 

a cutoff function. (For the singular problem peR) 1.) Only the 

Bessel functions I K+l (fJR) and IK(fJR), lVith K max[k} in the 

sum (7.19), were computed explicitly, the rest being obtained with the 

aid of the recursion relations 

(Note that as a consequence of (7.16) and (7.18) only a finite nuraber 

,~, 
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of terms need to be summed in (7.19).) The integrals were computed 

numerically by use of Gaussian integration techniques. 32 

The effect of introducing the modificaUon (7.13) is illustrated 

in Table V where we have listed for a sequence of increasing matrix 

sizes the computed coupling constant values needed to give a bound-

state of the actual pion nucleon system at the mass of the nucleon, 

E 1.0. The potential was taken to be of the form (7.gb) with 

R 
c 

0.7 and M 1.0. For the choice ~ 

the "convergence" of the calculation is seen to be extremely poor, 

whereas the choice fl 0.856 is seen to lead to a quite satisfactory 

convergence of the numerical results. In practice the modification 

(7.13) provided us with one additional variational parameter which we 

were free to adjust so as to optimize the convergence properties of 

the calculation. 
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VIII . NUMERICAL RESULTS 

In the present calculation we devote our attention exclusively 

to the J 3/2 and J 1/2 channels. For convenience we 

divide this discussion into several parts corresponding to the different 

values of the total angular momentum J, isotopic spin I and parity 

that were considered. To a large extent we are concerned only with 

the general features of the eigenvalue spectrum of Eq. (3.1)J which 

are not expected to depend critically on the ratio m
2

/m1 . Because of 

the technical diffl.cultles encountered when dealing with a ratio 

m
2
/ml < < 1 (as in the pion-nucleon case), we have placed somewhat 

greater emphasis on the case where m = 
1 

We note that the last 

significant figure of the computed eigenvalues as listed in Tables VI 

through XIII is uncertain. 

A. The N*(J P = 3/2+, 1= 3/2) Channel. 

In this channel the coupling constant A. is positive (recall 

that A. is related to the pseudoscalar coupling constant G as in 

(2.8)); the parameters a and b in (7.9a) were taken to be positive, 

as well. In Table VI (Fig. 5) we have summarized our results for the 

choic e of potential (7. 9a) with ml 1.0. The energy 

spectrum was computed for several values of a and b. We see from 

Fig. 5 that both the singular and nonsingular components of the 

potential (7.9a) "act ,,33 attractively i.n this channe1. We also note 

that, for the range of coupling constant values considered here., there 

exist no excited states in the energy spe~trum.34 We see from Table VI 
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that for the undamped nucleon exchange potential (3.2) we obtain a 

bound state of mass = 1.649 (in our units) for = 1.6 

2 
(G /4:rr 10). Finally, although we have not verified this explicitly 

for this particular channel, we expect the curves for E vs. a in 

Fig. 5 to continue smoothly into the negative energy region, since 

the eigenvalue problem is well defined for all energies lEI < ml + m2, 

as we have noted already in Sec. VI. 

P 1+ 
our discussion of the J = 2"' I 

We will see this explicitly in 

1 2" channel. 

In Table VII we have summarized the correspondlng results for 

the correct pion-nucleon kinematics, that is, for ml M 1.0 

and 0.144, the pion mass. Again we studied the energy spectrum 

for several values of the parameter a in (7.9a), with b = 1.6. For 

the choice I-l o in (7.13) the convergence of the calculation was 

rather poor for energies close to threshold, that is, for 1.6 ~ a ~ 1.9 

(See Table VIr.) The modiflcatlon (7.13) did lead however to some 

improvement for a suitable choice of the parameter I-l. Table VII 

shows that for the exchange potential (3.2), that is, for a b in 

(7.9a), we obtain a bound state of mass ~ = 1.04 at a coupling 

constant ~ = 1.6 (G
2
/4:rr 10). It is ~uite reasonable to interpret 

this bound state as the N*(1236), since, for the singular force (3.2), 

the N* could emerge in our calculation as a weakly bound state, while 

a more realistic treatment of the short range part of the force may 

"predict" it as a resonance (for the same value of the coupling constant). 

The above value for the mass of the should be compared with the 
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value calculated by Abers and Zemach,6 who obtained the N* in their 

N/D calculation as a bound state with a mass m(N*) =: 1.13 (in 

our units) at the experimentally measured value of the coupling 

constant, for a force input corresponding to the exchange of an 

elementary nucleon. The results of Table VIII give qualitative 

support to our observation that with the modification (7.10) of the 
.---- - -----------------------------------------------------------------

short range part of the force and a reasonable choice of the cutoff 

parameter R , we would not obtain the 
c 

N* 

experimental value of the coupling constant. 

as a bound state at the 

In Table IX we give the energy spectrum as computed for several 

values of the mass M of the exchanged nucleon, for m
l 

1.0 

and the potential (3.2) with A 1.6. We find that for increasing 

values of M (with a corresponding decrease in the range of the force) 

the two-body system becomes more deeply bound,. l-lhich seems at first to 

contradict our intuition. A glance at the potential (3.2) shows 

hOVlever, that the mass of the exchanged nucleon controls not only the 

range of the force, but also the effective coupling constant strength. 

Finally, we have summarized in Table X the bound state energies 

as computed for several values of ~, with ml =: M 1.0, and for 

the choice of potential (7.9a) with a 1.9 and b 1.6. The 

convergence of the numerical results was quite good for m
2 

in the 

range from 0.4 to 1.0, even for the choice ~ o in (7.13). 

B. The JP =: 1/2+, I =: 3/2 Channel. 

Again only positive values of the parameters a, band f'- are 

to be considered here. No stable particle with the above quantum 
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numbers has been observed to date. Because of the very restricted 

range of coupling constant values that could be considered here in 

the singular case (see Table II), we were unable to obtain any bound 

states unless we considered the more general forms (7.9) for the 

potential, with a f b and R 
c f O. This was the case in all 

J == 
1 
2 

channels, independent of the isotopic spin and parity, and 

was of course the reason for considering at all the modifications 

(7.9). In Table XI (Fig. 6) we present the bound state energies as 

computed for several values of the parameters a and b in (7.9a), 

with M '1.0. Qualitati vely the situation is very 

simtlar to that represented in Fig. 5, except that now the singular 

component of the potential (7.9a) acts repulsively .• whereas it acted 

attractively in the N* channel. The nonsingular component acts 

attractively, as before. One might expect that the situation would 

be reversed if we considered negative values of the parameters a and 

b. In particular, since the overall force was found to be attractive 

for a, b > 0, we might expect it to be repulsive for a, b < O. This 

is not the case, bound state solutions having been obtained for both 

signs of the forces, as the following discussion will show. 

C. The Nucleon (JP 
1+ 1 
2" I == 2') Channel. 

In this channel r. < O. The parameters a and b in (7.9a) 

were taken to be negative as well. In Table XII we list the computed 

bound state energies at several values of the coupling constant r., 

for the choice of potential (7.gb) with R 
c 

1.0 and 
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M = 1.0. We have found it instructive to study this 

time explicitly both the positive and negative energy spectrum. As we 

have pointed out already, our eigenvalue problem is just as well defined 

in the negative energy domain as it is in the positi.ve one, provided that 

-(m
l 

+ m
2

) < E < (m
l 

+ m
2

). The results of Table XII as plotted in 

Fig. 7 i.ndicate a somewhat "abnormal" situation, the computed binding 

energies bearing an inverse relationship to the magnitude of the 

couplil~ constant. However, in view of the MacDowell symmetry as 

stated: 1n the form (6.14), this Ifabnormal" situation in the 1 

channel (we use the notation .e±) is a direct consequence of the 

existence of a "normal lf situation in the 0 channel. This has been 
+ 

explicitly verified numerically. Stated more generally, given a 

normal situation in the f± channel, we will have a corresponding 

abnormal situation in the (£ ± 1) channel. It is clearly sufficient 
-t-

to compute the positive and negative energy spectrum in all angular 

momentum c.hannels of a given parity, since the energy spectrum in the 

remai.ning channels of opposite parity may be obtained from here with 

the ai.d of (6.14). We note that the MacDowell symmetry has been 

21 shown to be a consequence of extended Lorentz invariance (i.nvariance 

under complex JJorentz transformations) which is i. tself a consequence 

of the invariance of the S matrix under real Lorentz transformations. 

Hence, the usual requirement of Lorentz invariance provides the 

physical reason for the existence of the abnormal situation observed 

above. 
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Finally, Table XIII summarizes for the nucleon channel, the 

data complementary to that presented in Table VIII for the N* 

channel. Fixing the energy of the bound state at the nucleon mass 

(E 1.0) we have computed the eigenvalues ~ as a function of 

the cutoff parameter Rc in the potential (7.9b), with ml = M = l.0 

and m
2 

= 0.144, the pion mass. [Since we are dealing here with a 

very weakly bound state in addition to a very small mass ratio 

m2/ml , we found it imperative to consider the modification (7.13). For 

the choice jJ. 0.856 the convergence of our numerical results was 

quite good.] Comparing the contents of Tables VIII and XIII we note 

that the values of the pseudoscalar coupling constant G needed to 

give a bound state of the nN system at the nucleon mass is approximately 

three-half times larger in the N* channel than in the nucleon channel! 

(Recall. that an estimate based on the relatj_ve sizes of the Born term 

in the various channels would predict the nucleon as contributing the 

dominant force in the N* channel, not in the nucleon channel!) We 

observe however that the situation in the N* channel is a normal one, 

whereas in the nucleon channel we are dealing with an abnormal situa

tion, so that the strength of the force (as measured in terms of the 

binding energy of the bound state) is here inversely related to the 

strength of the coupling constant. 

vIe should like to conclude this discussion on a somewhat 

pessimistic note. Our results have shown that any estimate of the 

relati ve strength of the forces in the various channels as based on 



the Born diagram of Fig. 2 will fail completely in the bound state 

problem, as of course was expected. Moreover, our calculation has also 

shown that, for the bound state problem, the sign of the coupling 

constant does not in general provide a criterion for distinguishing 

between attractive and repulsive forces (lIDless the operators involved 

are either positive or negative definite, as is the case in a ~3 

theory with equal mass particles.). This implies in particular that 

the study of crossing matrices alone cannot provide in general an 

estimate of the relative sign and strength of the forces, except when 

this study is made in the context of a particular dynamical model. 
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IX. TIME INDEPENDENT APffiOXIMATIONS TO THE BS ~UATION 

As we have seen, a great deal of effort was involved in the 

solution of Eq. (3.1). It is clear that the presence of the "relative 

time" in the BS equation presented the greatest difficulties in our 

analytical discussion as well as in the actual numerical solution. 

This motivates us to ask a number of questions: What is the role of 

the relative time variable in the BS equation? Under what conditions 

would a time-independent description of a physical situation be just 

as adequate? Is it possible to arrive under these conditions at a 

time independent equation (with a local or nonlocal potential) by 

starting from the original covariant equation? In particular, we may 

ask whether the static limit of Eq. (3.1) exists, and if it exists, 

what particular form it would take. Static models for the rcN inter

action have received a great deal of attention in the past, most of the 

discussions having been gi.ven, however, within a dispersion theoretic 

framework, although the pioneering work of Chew and Low35 was presented 

in a field theoretic context. 

In order to anSI-Ter the above questions, we must begin by 

understanding the role of the r elati ve time variable in a covariant 

theory. This is discussed in the following section, where we find that 

this role is intimately connected with the presence or absence of anti

particles in the theory. In Secs. Band C we will then consider t\W 

particular time-independent approximations to Eq. (3.1), which we will 

call the "static" and "nonrelativisti.c" limits. The "static limit" 



-80-

involves approximations which have a simple diagrammatic interpretation 

and which will lead, at least formally, to the well known Chew-Low 

static model for the pion-nucleon interaction (in the ladder approxima-

tion). The "nonrelativistic" limit will involve the approximations 

already considered by Blankenbeckler and sugar
S6 

and by Schwa.rtz and 

Zernach. 3 In every case, however, we need to introduce a cutoff in 

order to make the approximations at least somewhat meaningful. In 

Sec. D we will then compare the solutionsto the equations in the static 

and nonrelativi.stic limit with those of the original BS equation. The 

discussi.on of a related topic i.s left for Appendix E. 

A. The Role of the "Relati ve Time~' 

We begin by considering our problem from a somewhat "old 

fashioned" poi.nt of view. T,ve like to solve the eigenvalue equation 

H IB) 
s 

where H is the full, time-independent Hamil tonlan in the "Schrodinger 
s 

picture" and IB) are the sta·U.onary eigenstates of H Thi.s is in 
s 

general a hopeless problem si.nce the exact treatment of Eq. (9.1 ) 

within a relativistic framework would necessarily lead to an infini.te 

set of coupled, three-dimensional integral equations for the probability 

amplitudes ACm, k. ;n, p. ;n, P
k

) 
1 J . 

of findi.ng the "bound state" in a 

...' 



,,, 

state of m bare mesons with momenta k., n bare nucleons with 
1 

momenta n bare antinucleons with momenta Hence, in 

any practical calculation we have to truncate somehow this set of 

c01Jpled equations. Thus, speaki.ng diagrammatically, one might ignore 

all higher (than some given number) intermediate particle states, and 

include the contribution from the lower lying intermediate particle 

states exactly. Another less obvious possibility would consist in 

including some well defined contrj_bution from all intermediate particle 

states. Since we are dealing with off-shell equations it is by no 

means clear which of these truncations would be most realistic. This 

is an interesting question, but has not been considered here any further 

in this paper. The presence of an arbitrary number of particles in the 

j_ntermediate states is characteristic of any covariant treatment, since 

particle-antiparticle pairs must be included. On the other hand, in 

some field theoretical models ignoring the antiparticle eontributions, 

only a finite number of particles in the intermediate states may 

contribute. A classic example i.s provided by the ve sector of the 

Lee model,37 corresIJoncling to the time- ordered ladder graphs of Fig. 8. 

Only one- and two-particle intermediate states contribute here, corres-

ponding to the fact that the /ve) and /Nee) represent a complete set of 

free particle states for thi s particular sector. Returni.ng to our original 

problem, we ,wuld like to consider now the second type of truncation 

suggested above. Using again the diagrammatic language, we would like 

to truncate the infinite set of coupled, three-dimensional integral 

equatIons arrived at from Eq. (9.1) by including only the contribution 
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from the ladder graphs, ignoring "crossed rungs," etc. This will 

leave us again with an infinite set of coupled equations, which are 

in fact equivalent to the covariant equation (2.11). Indeed, from 

the pojnt of view of perturbation theory we find that, grouping to-

gether all time-ordered diagrams of a given order N, we obtain 

invariably N! diagrams which differ merely in the ordering of the 

vertices. These N! non-covariant diagrams may be collected however 

into a single covariant Feynman diagram by introducing an additional 

degree of freedom corresponding to the time-variable in coordinate 

space. To give a specific exampl.e, we consider the box diagram of 

F o 9 t d t· 38 19. ,as represen e by he J'Iltegral 

I" 4 

J~2!> 
U(k',a')[M + /.(k'+ q)J[M - l'(~ + q)][M + l·(k + q)] u(~,a) 

[(k'+ q)2+ rvf- iE][(~ + q)2+ rvf- iE][(k+q)2+ rvf- iE][(~ _ q)2+ ,l-iE] 

(9.2 ) 

aside from irrelevant kinenatical factors. It is convenient to 

separate the particle and antiparticle contributions in the integral 

(9.2) by writing 

[M - I'P] 
p2+ r:.f _ iE 

f.JL\ 
I : 
\ E(p) ! 
\ 'v ; 

rU(r) U(~) . 

LE(P)-po-iE 
rv 

V( -p) v( -p) 1 
E (p )'V + pO _rv i E J 

for the nucleon propagator, with the corresponding separation of the 

meson propagator. Here U(p, a) and 
r~ a 

V(p,a) 
N a 

1 [/5 U(£) c- ]aa are the usual Dirac spinors for the nucleon and 



antinucleon respectively.* The separation (9.3) corresponds to the 

diagrammatic decomposition of Fig. 10, and leads to the replacement 

of (9.2) by the sum of sixteen separate integrals. It is however our 

claim that by a careful algebraic rn.anipulation of the individual terms 

in this sum, we may rewrite it as the sum of twenty-four integrals 

bearing a one-to-one correspondence to the time-ordered diagrams of 

old fashioned perturbation theory. The reason that the decomposition 

of Fig. 10 does not lead immediately to such a one-to-one correspondence 

is of course, that even for a detailed specification of the ~lantum 

numbers labeling the particles in the virtual intermediate states, the 

interactions at the vertices may still proceed in more than just one 

given time-order. Figure 11 illustrates our point. Thus) the time-

ordered diagram of Fig. lla is the only fourth order diagram contri-

buting to the :n:N interaction if no antinucleons are to be present in 

the intermediate states. On the other hand, all four diagrams of 

Fig. lIb are characterized by the same quantum numbers labeling the 

particles in the virtual intermediate states, and merely differ in the 

time-ordering of the vertices. In practice the "rules of the game" as 

applied to the box-diagram of Fig. 9 were found to be very simple: 

I-laving made the separation (9.3) in the integral (9.2), and performing 

the 
o 

p integration, a particular integral was found to correspond 

* Note that the sum over spins in (9.3) is implicit in the matrix multi-

plication: L U(p,a) U(p,a)A , etc. 
a '" ex .'V I--' 

We will make 

frequent use of the shorthand notation used in (9.3). 
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to 1) a single time ordered diagram, as in Fig. lla, if the integrand 

invol'ved only one pole in either the upper or lower half of the 

plane; 2) the sum of several time-ordered diagrams, such as in 

o 
p 

l i'ig. lIb, if the integrand exhibited more than one pole in either half 

of the 
o p . plane. It is a simple, although tedious, algebralc 

excercise to verify these statements explicitly for the.box diagam of 

Fig. 9,39 and becomes a forbidding task for higher order diagrams. The 

correctness of our observations can however be demonstrated in general, 

as well. 

The above considerations have led then to a clear interpretation 

of the role of the relative time variable in the BS equation (or a 

covariant theory in general). Its introduction represents thus merely. 

an alternative mathematical way of dealing with a difficulty intrinsic 

to any relativistic problem, that is, the infinite dimensionality of 

the Hi1bert space of particle states. Iriparticular it fol1ows, that 

if for seime reason (such as conservation laws ) only. one time-ordering 

of the diagrams should be permissible, the time-variab1e no longer 

plays a usefu1 ro1e, and we should be able to eliminate it explicitly 

from the theory. We will make specific use of these ideas in the 

following sections. 

We like to conclude this discussion by commenting briefly on 

the importance of the antiparticle contributions in a relativistic 

theory. It appears that it is difficult to make a reliable statement 

in this respect. An examination of the time-ordered graphs of "old 

fashloned perturbation theory" shows (we refer here specifically to 

the :n:N problem) that individual diagrams (of a given order) involving 



antinucleons in the intermediate states are supressed with respect to 

the diagrams (of the same order) illvolving no antinucleons at all, if 

the ratio of the meson mass to the nucleon mass is small (~/M < < 1), 

provided that the dominant contribution comes from intermedl.ate particle 

states with momenta small compared to the respective particle masses. 

This presupfOses the presence of a sufficiently strong damping mechanism. 

However, even if all these conditions should be met, it should still be 

remembered,that by neglecting the antinucleons in the theory we are 

excluding N! - 1 (perhaps "small") Nth order diagrams out of the 

total of N! diagrams. 

B. The Static Limit. 

Startillg from Eq. (2.19) we arrive, by making a number of 

approximations, at the "Chew LoW equations" (in the ladder approximation) 

for the static pion-nucleon interaction. For the discussion we have in 

mind it is convenient to work with the equation for the scattering 

amplitude. Thus, introducing the Stapp M- function by 

f(k',k) 
I\.. /\i 

2M 
SnE U(lc ,) M(k·, k) U(k) 

/v. ..\.. 

where f(k', k) 1.S the on-shell scatterillg amplitude defined by (2.20), 
?")-" FL-

we arrive from (2.19) at the followillg off-shell equation for M(p,k): 

M(p, k) 
A" (~fV N 

it. r(p,k) - t. j ,~-~4 r(p + pI) GE(p') M(p',k). 
(2n) 
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For later convenience we have labeled the momentum space Green's function 

explicitly by the total c.m. energy E. We proceed to make a series 

of approximations .• which, motivated by our earlier considerations, 

require however the presence of a properly chosen cutoff in order to 

have any validity. Assuming then a suitable "damping mechanism" to be 

present in Eq. (9.5), we proceed to neglect the antinucleon contributions, 

corresponding to the replacements 

.'oJ ... \, ..... 

I(p) ->- I'(p) _f(411:)2 (E&) 
1'5 U(;E) U(£) 1'5 

o . ] 
, 

[E(p) - P - ~E 
, .... 

(9.6 ) 

( M ) 
u(p) u(p) 

'-v 'V 

.ETPJ [E(p) -
o E 2 (po_ ~)2 _ iE] (p + 2') - iE J[ m(p) -/\/ 2 'V -,\, 

These approximations are most easily interpreted diagrammatically, the 

omition of the antinucleons leading evidently to the replacement of 

the sum of ladder graphs of Fig. 1 for the BSwave function by the 

sum of time-ordered ladder graphs of Fig. 8 for the T-matrix (with the 

replacement of the dressed V-quantum by the N-quantum). These considera-

tions indicate that the 
o p varj.able can no longer playa useful role 

in equation (9.5), suggesting that we should be able to perform the 

p
O 
-integration explicitly. In order to ree why this should be the case, 

we examine the analytic structure of M(PJk) in the 
o 

p variable, as 

deduced from equation (9.5) by an' iterative scheme. We easily verify 

by going through an elementary "pinch analysis, "that M(p,k) has 

only singularities in the lower half of the o 
p plane, as a result of 



the absence of the antinucleons. Moreover, basing again our arguments 

on perturbation theory, we verify that the 
o 

p integration converges 

sufficiently fast, such as to allow us to close the 
o 

p contour of 

integration in the upper half of the complex o 
p plane. Doing so, 

and defining the off the energy shell T-matrix by 

we arrive at the following integral equation for T(p, k): 

T(p,k) 

where 

V(p, k;E) 
1'\.1 ."\... 

(" M \ 

\2W(p) E(p )) 
r,.i 1'\: 

'v· ........ 

V(p, q;.E) 
,.~. /\,..' 

ij(£) 75 u(£ + ~) ij(£ + ~) 75 U(~) 

[E - E(p + k) - w(p) w(k) + ie] 
/\... ".... . ........ 

I 
(9.10) 

[E - E(p) - w(p) + ie] 

As our above remarks have anticipated, this is precisely the equation 

we would have arrived at by simply applying the "rules" of old 

fashioned perturbati.on theory39 to the sum of ladder graphs :i.n Fig. 8. 

It should be noted that Eq. (9. 8 ) is marginally singular, that 

is, our approximations did not destroy this particular feature of the 

original Eq. (9.5). However, it is clear that the sequence of approxi-
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mations leading to Eq. (9. 8 ) are certainly unjustified in the absence 

of a cutoff, and are in fact very questionable under any circumstances, 

" . 
as our Qualitative discussion in Bart A has indicated. We will there-

fore simply accept the approximations carried out so far, and proceed 

from here. 

If we attempted to solve Eq. (9. 8 ) as it stands, we would be 

faced with several difficulties. Since it is a marginally singular 

integral equation,the asymptotic behavior of T(p,k) in the off-shell 
/'V /t,... 

variable p is critically dependent on the coupling strength. Hence 

any attempt to solve Eq. (9.8) numerically would require us to take 

explicitly care of these asymptotic boundary conditions. However, even 

if proper care is taken in this respect, some preliminary calculations 

seem to indicate that there exist basic difficulties in solving such 

singular integral equations by the usual meshpoint techniques. Another 

unrelated difficulty \vhich we encounter, is the presence of the noh-

rotationally invariant quantities E(p + p') in Eq. (9.8). This 

complicates the partial way analysis of this equation considerably. 

We will not .try to overcome these difficulties, but will remedy these 

by simply in~roducing to begin with a cutoff in Eq. (9.5), and by 

makir~ an additional approximation in Eq. (9.8) designed to simplify 

the partial wave analysis. 

Denoting by q the momenta of the nucleons in the virtual 
I~' 

intermediate states of the ladder graphs of Fig. 8, vle could expect, 

in the presence of a suitably chosen cutoff, the inequality ·1 q 11M < < 1 
r .. 



to hold. Under these conditions we could go to the full static limit 

of Eq. (9. 8 ). It is in this full static limit that we recover the 

classic Chew-Low equations in the ladder approximation: which 19nore 

the nucleon recoil altogether. However: for reasons to be discussed 

later: we will choose a cutoff function g(p): having the asymptotic 

dependence -2 g(p) rv p as 
2 

P ~CX). For such a slow asymptotic fall-

off we cannot go to the full static limit of Eq. (9. 8 L but need to 

take into acc01mt at least some of the nucleon recoil. Keeping in 

mind the above mentioned dHftculties of solving Eq. (9.8) directly: 

we proceed to make the following approximations in (9.9): 

(9.11 ) 

E(p + pl)[E m(p) m(p I) E(p + pI)] 
(;p+p I )21 

2M !. 
-' 

(9.12) 

In making the approximation (9.11) we went to the full static limit 

in which E(p) .~.::: M. Wi.th these additional approximations, we arrive 

now easi.ly at a partial wave pro,iection of V(p: kj E) . Thus., making use 

of (A3) we note the following expansion: 

1 1 
2pp' 

/'\.0" ,~ .... 

where Q£(z) are the Legendre functions of the second kind: and 

x 
fl 

222 
P + p' + fl 

2pp' 
r\J 



'.' 

and introducing the expansion 

v(p~ P I ;E) L 
.£± 

we obtain with the aid of the formulas listed in Appendix A 

Finally, since we are interested only in the bound state problem it 

is convenient to rewrite Eq. (9. 8 ) as an eigenvalue equation for the 

bound state wave function cp(p). Proceeding as usual, and denoting 

by cp£±(p) the partial wave projection of cp(p), we arrive at the 

eigenvalue equation 

,0 (dp' 
A. ~ E(P) j 2 

. 2rr 

In continuing Eq. (9.8) to the bound state region we treated E, p 

and k as independent variables. 
IV 
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c. The ''Non-Relativistic'' Limit. 

We consider in this section another time-independent 

approximation to Eq. (2.11), which leads to the equation for a non-

relativistic (NR) pion and nucleon moving in the field of strongly 

singular, central forces plus a force arising from the coupling of the 

nucleon-spin to the orbital motion of the system. The apprCKimation 

to be considered has the disadvantage of not having a direct diagrammatic 

interpretation and being based instead on the intuitive notion that 

the dependence of the BS wave-function on the relative time is a 

relativistic effect. As we have tried to emphasize in the previous 

sections (see also Appendix E) such an intuitive notion can be misleading. 

Consider Eq. (2.11). We seek a limit in which the solution40 

o/(x) exp(i ~ 12t) is independent of the relative time. We call this 

the NR limit of the equation. Since the Green's function determines 

essentially the time-development of the solution, we expect GO(x) 

ill t 
GO(x) exp (i 2" 12 ) itself to be independent of time in this limit. 

A glance at Fig. 3 shows that for E slJ.fficiently close to threshold, 

Go(x) will asymptotically be essentially independent of the relative 

time. Now, letting m1 ,2 -> E ml ,2 and rescaling simultaneously E so 

that the ratio T) == E/(ml + m2 ) remains fixed, we have 

as 
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Hence, as we let the masses m
l
,2 tend simultaneously to infinity in 

the above manner, keeping E fiXed ,'(in units of ml + ~), the Green's 

function GO(x) becomes asymptotic at decreasing values of x. This 

limiting process is of course e~uivalent to letting the massM of the 

exchanged nucleon tend to zero, keeping all other parameters fixed. 

This was the point of view taken in Ref. 3, and shows that we must 

supplement the condition I f} I .~ 1 for a NR si tuati on with the 

re~uirement that M -, 0, in order to arrive at a time-independent 

e~uation. 

The precise asymptotic form of Go(x) for Ifll:-~ 1 was 

found in Sec. III to be given by [the same result applies here as 

to Ho(x)]4l 

where k 

ml 2 -7 00, fl , 

X(r) == 
N 

== 
e 
r 

ikr 

" 

in the bound state region. In the limit 

const :;:: 1, we may thus replace e~uation (2.11) by 

ik'r J 3 U(k) e ,'- ," - A dr' 
/i." 1'\/ 

x!r (r -r') V(r') X( -r ' ) o /\I'v "'1..1 /I .... : 

where we have performed the time integration in (2.11) and introduced 

the definitions 
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X(r) 

(9.18) 

- i 

1 
,--'--- -_.,,_.-_._-,:-, 

exp [ -V IYf - ~2 2 
r ] . r 

We are thus left with an energy dependent potential, with an energy 

dependent range given by 

ro " [Ii' -
By rewriting Eq. (9.17) in momentum space,. we may compare the approximations 

involved here with those made i.n the case of the static limit. We will 

not go into a discussion of this point. 

Eq'uation (9.17) is readily converted to the differential 

equation 

where we have made use of 

-+ -.. 0 
[ml - i y''7 - Y 

ill. 
- 2E v(r) X(-r) 
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It should be noted that Eq. (9.20) as it stands is "supersingular" 

and cannot be expected to follow from the original "marginally singular" 

equation (2.11) by the above limiting process in the masses ml ,2 . 

In fact, the solutions to such supersingular equations are known to 

exhibit essential singularities at the origin.
42 

Hence if our approxima-

tions are to be meaningful under the stated limiting conditions, we will 

have to consider Eq. (2.11) in the presence of a cutoff, just as in 

the case of the static limit. This will be done in the following 

section. For the present discussion we will assume Vo(r;M) in (9.18) 

to have been replaced by a sufficiently well behaved potential Uo(r) 

such as to make the approximations leading to Eq. (9.20) meaningful. 

Equation (9.20) is of the form of the Dirac equation for a 

relativistic spin ! particle moving in some fixed external, spin

dependent field, an interpretation not suggested by our approximations. 

We proceed therefore to cast Eq. (9.20) into a more manifest, non-

relativistic form, by rewriting it as an equation for the "dominant" 

(upper) component cp(r)· in X(r) 
!\...- / .... ' 

== [U(r) - ~ ~(r) ~.L) cp(-r) 
~ r ~ 

-7 -7 

where L -irx\7 

~(r ) == 
211: 
E 

U(r) == 



,. 
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and I(r) is the operator introduced in Sec. V. In arriving at (9.21) 

we have assumed that effectively Is Do(r)1 < < 1, where 

~ (M - w12 )/(ml + wl ). This condition can be met for weakly bound 

states and for a sufficiently weak coupling constant ~, if 

DO(r) '" r a (a ~ 0) as r -+ O. In particular, for M == 0 and 

ml m2 ' E~. (9.21) follows exactly from (9.20). 

D. Numertcal Results. 

Although our discussion in this section has been largely 

academic, it is still of some interest to compare the eigenvalue 

spectrum of the various e~uations considered in this paper. We have 

thus solved numerically E~s. (3.1), (9.14), and (9.20) for energies 

below the elastic threshold and for the choice of invariant cutoff 

where 
2 

P 

g(p) 

is the square of the four-momentum transfer from the 

nucleon to the pion in the exchange graph of Fig. 2. The reason for 

this choice is that it still allows for a simple connection between 

the various e~uations considered in this paper. Thus J when the 

definition s (A, M) 11.2/(11.2 - 2 ) . . t d d th 1 M- 1S ln ro uce, e rep acement 
·v r'../ 

I(p) -+ I(p) g(p) in E~. (9.5) leads in coordinate space to the 

replacement of I (x) by 43 

I I (x) 4 s(1I.,M)[M - i Yod] 
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in Eq. (2.1~,and to the replacement of VO(r;M) by 

(9.25 ) 

in Eq. (9.18). Thus, for A > M the introduction of the cutoff 

(9.23) leads to a modification of the short-range part of the force, 

leaving the long-range part unchanged. 

For Eq. (9.14) 01IT' choice of cutoff introduces of course 

undesirable singularities into the kernel of the original integral 

Eq. (9.5). Hence, rather than trying to justify the intermediate 

steps, we simply proceed by analogy with the substitutions (9.24) and 

(9.25) and replace the potential (9.13) by 

"'I t+ ( ) ,~.j - P p"E .. ' " s(A,M) [(2 YM Q,e( YM) - Q,e±l( YM» - (M ~ A)]. 

(9.26) 

Equation (9.20) was solved by again using variational techniques, 

the stationary expression considered in this connection being formally 

the same as in (7.2). Since the total angular momentum J and the 

parity are evidently good quantum numbers; we may take the solutions 

to be of the form 
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(-)£ . d't' with parity We easily deduce the boundary con 1 ,lons 

£ 
r J 

and the asymptotic behavior 

£±l 
r as r ~ OJ 

exp 
- '--2'---'2 
l -11m - Cl) , 

1 1 r] . 
On the other handJ E~. (9.14) was solved directly in momentum 

space by the usual meshpoint techni~ues. In order to maximize the order 

of the polynomial that could be integrated exactly for a given number 

of meshpointsJ we used the Gaussian integration teChni~ues:e still it 

was foundJ that we needed to invert matrices of sizes comparable to 

those inverted in the solution of E~. (3.1) if a comparable accuracy 

was to be achieved. 'Ihis nayl::e traced to tre fairly complicated singularity 

structure of the Kernel in (9.14), IndeedJ we also considered the 

conventional integral e~uation in the ve sector of the Lee model for 

some suitable choice of cutoffJ treating the V-~uantum as bare. This 

corresponds to taking the extreme static limit in Eq. (9.14)J and 

dropping the spin dependence. The analytic structure of this e~uation 

is particularly simple, and a remarkable accuracy of the computed 

eigenvalues was achieved already at fairly small matrix sizes. The 

singuJarity structure of the kernel is thus seen to playa very important 

role in the numerical solution of an integral e~uation. In practiee 

we may deal with these problems by incorporating, in the variational 

approach, the "leading" singularities of the solution (provided they are 

known) into our trial functions J or by absorbingJ in the meshpoint 
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approach, some of the singularities of the kernel into the weight 

function, using Gaussian integration techni<lues. 

In Table XIV, Fig. 12 . we have summarized our results for the 

three e<luations referred to above. For the choice m
l 

= m
2 

= M = 1.0 

0.95 we computed the coupling constant eigenvalues 

at several values of the cutoff parameter A. The <luantum numbers 

chosen were those of the N*. We have listed only the lowest, posj.ti ve 

value of /I. in the coupling constant spectrum. The sharp rise of the 

/I. vs. A curves in Fig. 12 as A ~ 0 is of course due to the choice 

(9.23) for the cutoff function. We have also studied the solutions for 

the choice m1 = M = 1.0, ffi2 = 0.144, corresponding to the actual 

pion-nucleon kinematics. As our discussion in Part A of this section 

would have antiCipated, there was no <lua1itative difference between 

these results and those presented in Fig. 12. 

•. 

,'. 
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X. SUMMARY 

Our calculation bas demonstrated that even marginally singular 

Bethe-Salpeter equations may be solved by standard numerical techniques, 

provided that proper care is taken of the boundary conditions at the 

origin (of the Wick-rotated space-time). From the computational point 

of view, the presence of spin in the problem did not in any fundamental 

way affect our ability to solve the equation, although the algebraic 

aspect of the problem was considerably more involved than in the 

absence of spin, the added complexity being principally due to the 

particular approach taken in this paper. Thus we could have chosen to 

solve the BS equation directly in the form of a two-dimensional 

differential or integral equation. 4 Other calculations have shown', 

however, that such an approach would require the inversion of typically 

100-by-100-dimensional matrices in order to compute the desired numbers 

to an accuracy of a few percent. This is to be compared with our 

calculation in which twenty-seven was the maximum "effective" matrix 

size ever considered, the corresponding accuracy of the computed eigen-

values being 'frequently better than 1%. In fact, in most of the cases 

the inversion of a 3 by 3 matrix was sufficient to obtain an accuracy 

of about 10%. Our particular treatment offers additional advantages 

as well. Thus we recall that in practice we needed to include at most 

the first five terms in the expansion of the solution in terms of the 

four-dimensional spherical harmonics, in order to achieve a 0.1% 

accuracy (or better). Moreover._ our approach allows us to give a 

proper treatment of the boundary conditions at the origin. In fact, the 
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critical dependence of these boundary conditj.ons on the coupling 

constant strength in marginally singular equations such as considered 

in this paper suggests, that our approach may well be the approach to 

the singular problem. Indeed, attempts to solve the marginally 

singular integral equation for the ve sector of the Lee model (in 

the full static limit and in the absence of a cutoff) by meshpoint 

techniques have led to difficulties even with a proper treatment of 

the boundary conditions at infin:Lty. This mal~es it questionable whether 

the singular BS equation, in the form of a two-dimensional integral 

equation, could, be solved successfully by the usual meshpoint 

techniques. 

As for the physical content of our calculation, we do not know 

the range of validity of the ladder approximation, nor is it generally 

believed that the forces in nature are as singular as the ones we have 

considered (in the absence of a cutoff). In addition, a more realistic 

treatment would have to include the forces arising from the exchange of 

higher spin particles, such as the N*" for example. We have thus 

strong:ty emphasized the mathematical rather than the physical aspect 

of this problem. 



. 1>, 

-101-

ACKNOWLEDGMENTS 

I am pleased to thank Professor Charles Zemach for suggesting 

this problem and for very helpful discussions, and Professor Charles 

Schwartz for his continuing guidance and advise during the progress 

of this work. I should also like to thank Dr. Richard Haymaker and 

William Kal~mann for many helpful conversations, and William Kaufmann 

for his many suggestions with regard to the programming of this problem • 



-102-

APPENDIX A: TIlE 3- AJlrD ~--DnIEJ'JSIOl'JAL SPINOR SPlI}:1\ICAL HARMONICS 

We list here some .Tell ktlcnm properties of the convcnt.ionally 

usecl spinor spherical harmonics in three and four d:Lmensions. The 

notation introduced in this appendb~ is used throughout this 'wrl~, 

Three-Dimensiona.l Spinor_ Spherical Harmonics 

DefJnit1on: 

yX±M({;)o; == I, i.e C(.e -?? .e ±-} m 0: M) '1.1,; (~) ct.<-nl (AI) 
m 

",here C(.e, s,J ;m, 0:, M) are the Clebsch-Gordon coefficients as defined 

4!~ 
by Rose, and 1;i.em (~) are the usual, spin-zel'o spher:lcal harmonics, 

Y JdQ y.e±IvI(;)* 
L. r 0: 
a 

and satis1~y the follmdng useful relations: ("\-Ie omit the magnettc 

quantum m:unber M) 

-~ A 
(G.r) 

-7 ->- J!. y(.e+lL(~) /d 
- ~) -i(o.\7) y +(~) 

(dr 

~ ->- y'€, " Y (J!.-l)+(~) ( ~ + ~;1) i(o.\I) -(r) == dr 

(A2 ) 

'. 

.... 
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In those cases in which the magnetic quantum number M is of no 

relevance (as is the case if we are dealing with rotationally invariant 

quantities) such as the T matrix, for instance) it is convenient to 

introduce the functions 

L 
M 

n M 1\ * yt-± (k)f3 • (A3 ) 

Evidently 

the additional theorem for the spherical harmonics (AI) then takes 

the form 
',- e 4\ 

! Z' ± (k' ) 
L... k" 

We also have the orthonormality 
± 

property 

r dnr 
J 4';! 

Finally, it follows directly from (A2) that 

~>'\ 

Co·k') (£. ±l) C""") ~ ~ k • 

Four-Dimensional Spin or Spherical Harmonics 

We introduce first the notation and conventions which are 

followed throughout our work. A point Cx) == a 

in the four dimensional Euclidean space can also be represented in terms 
1 

( 2 2)2 of the length R == r + 'T of the four-vector, the polar and 
.'''\.." 
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azimuthal angles l.r and ¢ in the (Xl X
2

X
3

) plane, and the angle 

e between the four-vector and the four-axis: 

X (Rsin9 sin'i,,:v sin¢, Rsin8 sin 17 cos¢, Rsin8 cos ,\J', Rcos8) • (A4) 

,.., 
We use the notation R (xaiR) to denote a four-vector of 

unit length. The differential element of solid angle d~ and the 

differential volume element d V are given by 

. 2,., . ,.(1, d8 Sln 0 Sln U 

The four dimensional spinor-spherical harmonics are defined by 

== 
. .e0. Sln <:7 

Here C 13 Ct ) 
n 

are the Gegenbauer polynomials23 and 

normalization constant 

N 13 
n 

The functions 

== 

.£+M(A)* Y - R 
n a 

are orthonormal, 

.e'M' "-Y ± (R) 
nla 

and satisfy the completeness relation 

P, 
N 

n 
is the 

(A5 ) 

(A6) 

(AB) 

.0 

t' 
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as vell as the addit:i.on theorem 

where 

/\ /\ 

cos, _. R'R I 

n + 1. C 1 (cos r) --2- n 
2rc 

cosB cose' + sine sine' cos m 

cos m ::: cos"" cos"" + sin'\)' sin""" cos($6 - $6'). 

(A9) 

(AID) 

(All) 
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APPENDIX B: THE FDUR-DTh1ENSIONAL ROTATION GROUP* 

In this appendix we construct the projection operators (j) 
n± 

and .:P 
n± 

for the irreducible spaces of the representations 

(n ± I, !!) (n n ± 1) 2 2 and 2' -2- of 04, the four-dimensional rotation 

group. It is well known45 that the group is characterized by 

the six Hermitian generators of infinHesimal rotations Ai and 

B. (i = 1,2,3) with the familiar angular momentum commutation 
1. 

relations 

Moreover [A.,B.] ~ O. A2 and B2 are the two Casimir operators of 
1. 1. "- "/ 

the group; in a particu1ar irreducible representation labeled by the 

pair of indices (a, b), A2 b(b + l)I; the 

representations (a,b) are unitarity and of dimensionality (2a + 1)1< 

(2b + 1). To give a specific example '.J'e note that on the space of 

scalar fields, Ai and Bi are just the differential operators 

A. 
1 [L. - i(x

i 
d4 - x

4 
d

i
)] = 2 1. 1. 

(Bl) 

Bi = ~ [Li + i(xi d4 - x 4 d i )] 

where L -i(r x d) are the usual generators of infinitesimal 
,v "'.~ ...... -

rotations in three dimensions. 

* I am indepted to Professor C. Zemach for very informative discussions 

on the four-dimensional rotation group. 

(" 
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In the following discussion we denote by 

generators in the (~,~) representation and by 

(A., B.) the six 
1. 1. 

(a., b. ), (8:. ,'1:;.) the 
1. 1. 1. 1. 

generators in the (~,O) and (O,~) representation, respectively. 

We have then in the (~,~) representation 

~ n (n + 2)1 , 
1 1+ n(n + 2)1 ) 

in the (~, 0) representat ion, 

1 
0. b. 0 a. 2" J. 1. 1. 

2 3 b
2 

a 1+ 0 . 
:" "V ) 

in the (O,~) representation, 

~J ".1 1 a. 0 , b, 2" °i 1. 1. 

",,2 
0 

"v2 3 a := b 1} "-, 

We have the following reduction of the direct product space, 

(~,~) (~~"': (~, 0) "" (n+l ~) 
\,~) 

(n-l !!) 
1,._/ 2 '2 2 ' 2 

, 

(~,~) 
,---"'\. 

( O,~) (~ n+l) (~ , n-l) , x I '" + . ., ....• / 2' 2 2 
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The combined set of functions 

in (A6) (,·6th the indices P, and M taking on all allovred values for 

a given value of n) form a basis for either of these tliO 2 (n + l)2_ 

dimensional direct product spaces. In Sec. IV vle make use of' preclseJy 

this fact, I-Then \-Te construct the basis functj,ons for the irreducj.ble 

spaces en ±1 !2.) '" 2 '2 an\.!. (!2. n~:) containe:i in 'the above reduction of the 
2' 2 

direct product space. 

We construct next the projectlon. operatOl's for the irreducible 

spaces (n±l n) d --;::;-, -. an 
<- 2 . 

which I-Te denote by tP 
n± 

a.nd 

respectj,vely. To thi send \-Ie define the generators of lnfinltesimal 

rota.tions in the above direct prol'Llct spaces (the direct product \-lith 

the identity is understood, so that Ai 

N 

G.. 
-1. == 

A. + 
), 

, 

, 

== 

== 

NOvl, in the-(n;l, ~) representation, 

== 

or 

2 
n + 4n + 3 

4 
n(n + 2) 

4 

~n(n+2) 

a'A == 
n 
2 '\..' '\.' 

B. + b. 
J, J. 

, 

"" B. + b. 
1. J. 

~f) 
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Similarly, in the (n-l 
2 ' 

~) 
2 

representat ion, 

" 
2 2 

1 n(n + 2) 3 (1 n - a-A == -1+ ~-- + 4+ 
"" 

N /V 

q} 2 == t n(n + 2) 

or 

In exactly the same msmner 'vie concluje th8.t 

(f-B n in the (~, n+~) representation -
"-' /'v 2 2 

(n + 2) ·n n-l) cr-B == - in the (2"' representation _ 
c'; IV 

--2- 2 

The desired projection operators are thus given by 

!(n + 2) + (J -A 1 aoA "2 n -
(Pn 

/V /V jJ 'V "oJ 

== , == , 
1 

n 
1 + n + n + 

tv ·!'(n + 2) + aoB ,..., ~n - (JoB 2 

J> "\; '-V cP '" "-' , == 1 n n n + + n + 1 

(B2 ) 

We easHy verify that 

== (P + cP 
n n 

+ 
== 1 (Pn rP n == 

± + 
o 

satisfying the sallle relationso 
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APPENDIX C: ffiOOF OF ELASTIC UNITARITY 

In this appendix we show that the scattering amplitude 

defined in (2.18) satisfies elastic unitarity. For the purpose of this 

discussion it is convenient to "rotate" the t-integration contour in 

(2.18) to the imaginary axis. The result is 

f(k',k) 
1', .... . .1" .. ' 

where ¢ (x) is the solution to Eq. (3.6). We easily show that 
k 

It follows then from (Cl) and (C2) that 

(Cl) 

(C2 ) 

where the "dagger" denotes the Hermitian conjugate in the spin space 

only, and ¢_t(x) evidently satisfies the equation 

¢ t( -x) 
-k r.. Jd4

X' ¢_!(x') V(-x·) Ht(x'- x). 
N 

(C4 ) 

We note here parenthetically that with the aid of 

U(k), C V*(x) C- l 
= V(x) 

tV 
(C) ) 
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where C is the usual charge conjugation matrix as defined in (4.14), 

we easily show that 

f(k',k) 
N /'v 

f(-k', - k) 
/V "" 

(c6 ) 

and 

* -1 C f (-k;- k) C . 
. ", IV 

statements (c6) and (C7) follow of COlITSe directly from the invariance 

of the theory under space inversion and time-reflection. Combining 

the above results we obtain 

(C8 ) 

f..2 Jd4
X d

4
x' ¢_t,(x l

) V(-x') [Ht(x,- x) - H(x'- x)JV(x) ¢k(-x). 

By making use of 

o [m - ')'-.p+ ')' 

(-~.-~- ----
122 Vp + m 

it is straightforward to show that 

= 

,.,... 

2m L u (p, ()) U (p J a) 
() IV 

'k 1 1 'r-~ 'T 
/v,'C-' 12 

e 

Substituting (C9) into (C8) we arrive then at the statement of elastic 

unitarity, 
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I~I J<Wn 
.21! 'j. 

(CIO) 

With introduction of the partial wave expansion 

,£ '" where Z ± (k! ) is the complete set of functions defined in (A3), 
'" a:t3 
k 

t,he statement of elastic unitarity (CIO) takes the followlng form for 

.£ t '±(E): 

where 

io.e+ 
e - sin at;!; 

Ikl 
/',,' 

Note that with the usual phase convention implicit in our 

definition (2.20) of the scatterlng amplitude, the sign preceding the 

coupling constant A. in Eq. (3.6) is lmiquely fixed by the requirement 

of elastic unHarity (CIO). 
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_~_ ~ApmmIX-D-:--SGME-BEI'AnJS-ON ~-STRUCTURE OF THE E = 0 SOLUTIONS 

It was stated in Sec. V, that we could have arrived at the 

explicit forms (5.15) for the E o solutions in a different way, 

independent of any group theoretical considerations. However, had we 

been unaware of the existing fOlIT-dimensional symmetry in the problem, 

we would most likely not have sought solutions involving only a few 

terms in an expansion such as (5.18). Thus, to repeat here our earlier 

arguments, the substitution of the expansion (5.18) into (5.1) would 

leave us with an infinite set of coupled e~uations for the radial 

functions Fk(R) and Gk(R). To seek a solution involving only afinite 

number cf te:ms in the expansion (5.18) would imply a truncation of this 

infinite set of e~uations which would lead in general to an overdetermined 

problem. Only for E o our analysis in Sec. V suggests that this 

overdetermined set of e~uations actually does have a solution. We will 

now present the details. 

By substituting the expansion (5.18) into (5.1) we arrive at 

an infinite set of coupled e~uations. However, instead of starting 

from this set of e~uations, we will simplify our discussion, by making 

the following ansatz (w:hich we know to be correct): 

/ .£ 
/ F(R) Y ± + 
I n 

= \ (D1) 
\ ,/ .... 

\ F(R) 

This ansatz will not detract from the point we are trying to make, and 

is only designed to simplify our presentation. From here on the 
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discussion will follow exactly the same lines as in the more general 

treatment. 
. £, 

We will only consider the X +(x) 
n 

solutions, the corres-

ponding results for the solutions being obtained in exactly 
,e 

same way. Moreover, we may always obtain the X - solutions from 
n 

with the aid of (5.17) which is a direct consequence of the 

commutation relations (5.4). Substituting the expansion (Dl) for 

X.e+ into Eq. (5.1) we arrive at a set of eight coupled equations for 
n 

the four radial funct:i.ons. This is in general an overdetermined 

problem. If a solution is to exlst at all we must require that the 

coefficients of Y and 
n-l Yn+2 in these equations vanish identically. 

This leads to the conditions 

j, (£+1 ) 
-'~ A .e G 

(.e-f·l) 
_'V 

A F C F = B G n n n+2 n+l 

(Ii2 ) 
,e 

f.+l "-' 
£ £+ 1 ,'/ C +F A . F B + G - A G n n n+l n+2 

Noting that 

(,eil ) 
it A £ A'c±l C + C ± 

n n n n 

(£±l) 
Bit± £, £±l B -t- A A n n n+l n+l 

(D3 ) 

we conclude that the equations (D2) do indeed have a solution. We 

are thus left with the following set of equations: 
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m
1 
~F + (~ + n + 3)· 

,dR R 

£ (£+1) ----'--- --~-~ 
~+1 [A G - C· - G] 

n+l n+l 

. .n+l /d n)" 
m.K. G+I---

1 \dR R 

. .n £ (£+1) _ ,'\/ 

.K. [A 1 F + B F] n+ n 

(D4b) 

~ (_)n+1 A [K1 (MR) G + IS(MR) (A~+1 F + B~£+lLF)] 

m
1 

If F + (~+ n + 3) ~+1 
,dR R 

£ + £+1 ,', 
[C 1 G - A G] n+ n+l 

(D5a) 

. .n+1 "l.' 

m.K. G-
1 

/d n '\ 
\dR - If) 

. .n £-1 £+1 ".. 

.K. [B - F + A F] 
n n+1 

(D5b) 

- . 

where If is the operator defined in (5.7). These are four equations 

for only two radial functions (~n account of (D2). However, multiplying 

(£+1)_ £ and _ B(£+l)_/A£ 
Eqs. (D5a) and (D5b) through by C /A 

n n n+l n+2 

respecti vely, making use of (D2) and noting that 

(.£+1 ) £ 
At A£ 

(£+1 ) t 
At £. - + - B + C C == B == A 

n n+l n n+l n+l n n+2 n+l 

A£+l 
(£+1)_ £ (£+lL £+1 (t+l)_ 

At 
(£+1) 

C A C . A B == B n+l n n n+l ) n+l n+l n+2 n 
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vle conclude that Eqs. (D5) are in fact identical to Eqs. (D4), as it 

had to be of course, if the problem is to have a solution at all. 

Finally, a little more algebra shows that, aside from an overall 

normalization constant, the solutions (Dl) are precisely of the form 

(5.15) • In fact,. comparing equations (D4) and (5.6) we easily verify 

with the aid of (D2) that they are the same equations. 

!> 
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APPENDIX E: A TIME-DEPENDENT FORMULATION OF THE LEE MODEL 

In this appendix we underline still further our remarks in 

Part A of Sec .IX concerning the role of the relative time variable in 

a covariant theory, by discussing a simple, "time independent," field 

theoretical model in the Bethe-Salpeter language. We are referring here 

to the familiar Lee mode1. 37 Such simple models have a.lready served in 

the past to clarify some poorly understood aspects of quantized field 

theories. In this section we give a very brief and elementary discussion 

of a particular sector of the Lee model, using the perhaps more familiar 

language of covariant perturbation theory. This might appear as making 

a "simple" problem unnessessarily complicated, but will serve to underline 

still further the eCluivalence of the "time-dependent" approach and the 

more old-fashioned "time-independent" approach to the theor:y of quantized 

fields. At the same time it will serve to clearify the connection 

between the Tamm-Dancoff techn1.ques for solving Eq. (9.1) and the 

covariant Feynman approach. We will limit ourselves to the presentation 

of only a few examples. This will suffice to underline the basic ideas 

and the readeJ:'may proceed from here to recover all the familiar results 

discussed extensively in the literature. 

The basic ingredient of our approach is, as we have pointed out 

already in Sec. X, that we will work in the "Interaction picture, '! rather 

than the "Schrodinger picture" as it is c:::nventionally done. In that 

case the Lee-model Hamiltoniandensity is given by 

( 4 
::: "-oj d x' p(x - x') [Vt(x) N(x) e(x') + Nt(x) vex) et(x')] 

(El) 
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where Vex), N(x) and sex) are the quantized fields in the inter-

action picture associated with the V,N and 8 pa.rticles, antiparticles 

being ignored here altogether. The source function p(x) has the 

effect of spreading out the distribution of the N and V quanta in 

space but not in time 

p(x) 'pC Ixl) oCt) , 
rv' 

so that we may still seek our solutions to be stationary eigensta.tes 

of Hs (see (9.1). From the Hamiltonian (El) we generate in the 

usual fashion the full, unitary S-matrix from the Dyson expansion. 

Substituting this' expansion into the siefinition (2.1) of the Bethe-

Salpeter amplitude, i'le easily arrive at an integral equation in the Ne 

and ve sectors of the Lee model. Let us consider first the rather 

trivial NS sector. Making use of the translational invariance of the 

theory we arrive as in Sec. II at the integral equation 

i:\S.}::-j~~/2 
:::: e :\~ (d

4
y d

4
yf GE(x-y)P(Y)VE(Y-Y' )p(Y' )tE(Y') ... 

(E3 ) 

for the wave function tE (x) in the scattering region, the notation 

being as in Sec. II. In the N-8 c. m. system (we neglect the kinetic 

energy of the N and V-quantum), 

.1Ey0 -12" 
_ i _-=e ____ _ 

M 0 _ E - iE 
V 

, E (E4) 
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iq:x e 

is the bare (and physical) mass of the 

(E4) 

N-quantum, ~O is 
1 

the mass of the bare V-qlantum andm(q) 
I'v 

(q2 + 112 )2, 11 being the 

bare (and physical) mass of the 8-quantum. 

It follows from the form (E2) of the source function, that 

Eq. (E3) is really time independent. Inspite of this, even this 

trivial sector of the Lee model still serves to illustrate our point, 

and we will continue to use a covariant notation. In momentum space 

Eq. (E3) takes the form 

·v 

where .0E(p), GE(p) and l .. 't·(P) are the Fourier transforms of 'ljrE(x), 

GE(x) and p(x) respectively. On account of (E2),'V(p) is of 

~ 
course only a function of p- so that we may write ''}'(p) f(m ), 

p 

where (l) ';:; m(p). If we continue Eq. (E5) from the scattering region 
p - ,'~ 

into the bound state region, then .0
E

(p) will exhibit a pole at the 

mass ~ of the physical V particle (by definition of the physical 

V particle). Hence writing 

(E6) 

and defining the bound state wave function ~(p) as RE(P) evaluated 

at the bound state pole E = ~, we arrive at the following homogeneous 

eigenvalue equation for cp(p) 



cp(p) . i :>-. 2 o 
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-v 
GMy (p) f(mp ) 

My0_~ 

r 4 
J ~ f(m ) cp(q) • 

(2Jr) q 

This eigenvalue problem can be solved, the desired eigenvalue My 

being given as the solution to the equation (notice the dependence of 

the "Greens function" on My itself) 

/ ..... 

GMy(p) (E8) 

which reduces of course to the familiar eigenvalue equation in the Lee 

model if we perform explicitly the 
o 

p integration. The f1mction 

RE(P) may also be obtained in closed form (in terms of ~) 

rv 

RE(P) i :>-. 2 
f(mp ) GE(p) f(mk ) 

0 1 + F(E) 

where, after performing the 
0 integration p 

(E9) 

(ElO) 

We have thus obtained by our slightly different, time dependent 

approach a few of the familiar results usually obtained by solving the 

eigenvalue problem directly in the form of Eq. (9.1). In exactly the 

same spirit we may discuss the Lee model in the ve sector. We will 

not do so since we note that the discussion of this sector (neglecting 

the self-energy effects for the V-quantum) has essentially been given 



'. 

-121-

already in Part B of Sec. X. We note, however, that a discussion of 

the ve sector in terms of BS amplitudes will lead to a genuine 

time-dependent integral e~uatian, the role of the relative time 

variable being here to combine the contribution of the two and three 

particle states communicating with the ve channel into a single, 

linear integral e~uation. 
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TABLE 1. Leading behavior at R '" 0 of the radial functions F~ (R) 

and in the expansion (5.22) 

first order in E. We use the notation 

of the solution cp~±(x) 
F£± (R) ~ G£± (R) '" RY 
n,k n,kH 

to 

as 

R ..... 0; a and a are the solutions to the indicia1 equations (5.lla) 

for the particular Ydlue of n considered. 

k Y Y 

1 1 ", 1 n - a + a + 

-'\.-' 

n a a 

1 1 
r..,. 

1 n --I- a + ex -

n + 2 a 2 
r,..v 

+ a 

i 
~ 



.. 
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TABLE II. Calculated values of the critical coupling constants ;>"'1 

and ;>"'0 corresponding to the solution ~£±(x) for several values 
c. 

of angular momentum and parity. 

i± ;>"'2 

0 1 -0.3849 0.3849 
+ 

1 , 2 -0.6311 2.1126 
+ 

2 , 3 -6.0611-6 0.8794 
+ 

3 
+ 

, 4 -1.1284 13.1284 

h r:." -24.19'26 1.3778 
+ .J 
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TABLE III. Computed values of E in the JP = 3/2+.. I == 3/2 channel 

at several values of the exponential parameter 7 and at several matrix 

sizes, for the choice of potential (7.9a) with a == b == 1.6 and 

m
l 

= m
2 

= M = 1.0, The form of the trial function is specified 

following the notation (7.12). The computed eigenvalues are seen to 

converge to the same extrapolated value E == 1.649 independent of the 

Value of 7 . 

i ! Form of 

! trial fn. 

, 
! 
: 2'10 I , 

3.:210 

4;3200 

5;43100 

; 5;54200 

5; 76410 

5 ;87520 

Extrapo1. 
value 

Matrix 

size 

6 

12 

26 

32 

46 

(:1'=0 •. 5 ) (7=.75) (7=1.0) (7=1.25 ) (7=1.5 ) 

E .E E E E 

1. 40361 1. 60520 1. 64251 1. 65616 

1.51648 1.63484 1.65056 1.65775 1.66522 

1.65514 

1.65211 

1.63243 1. 64804 1. 64931 1. 64984 1.65060 

1.64045 1.64863 1.64938 1.64975 1.65019 

1.64440 1.64893 1.64942 1.64968 1.64995 

1.649 1.649 1.649 1.649 1.649 

... 

... 
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TABLE IVa, b. Computed values of E in the JP = 3/2+, I = 3/2 channel 

at two values of I' and at several matrix sizes, for the choice of 

potential (7.9a) with a = b = 1.6 and ~ = m2 = M = 1.0. Bart (a) 

shows the effect of improving only on the radial dependence of the trial 

solution, and (b) shows the effect of improving only on the angular 

dependence of the trial solution. The correct value of E is 1.649. 

(a) 

Form of (/,=0.5 ) (/,=1. 0) 

trial func. E E 

2;22 1.44970 1.66377 

2;33 1.55127 1.67021 

2;44 1.61259 1.67060 

2;55 1.64267 1.67119 

2;66 1.65673 1.67138 

2;77 1.66357 1.67138 
' , , 

r 
I 

(b) 

Form of (1'=0.5 ) (/,=1.0) 

trial func. E E 

3;lll 1.349512 1.644824 

.. 4;1111 1.350293 1.645020 

5;11111 1.350098 1.644629 
,J 

6;111111 1.350098 1.644629 

7;1111111 1.350098 1.644629 

8;11111111 1.350098 1.644629 
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TABLE V. Values of the coupling constant required to gi've a bound 

state with E = 1.0 in the JP = ~ ~ I = ~ channel, as computed for 

a sequence of increasing matrix sizes and for two values of the 

parameter ~ in (7.13). The potential was taken to be of the form 

(7.9b) with Rc = 0.7, and ml = M = 1.0, ~ = 0.144 (the pion mass). 

The "convergence" of the numerical results is seen to be extremely 

poor for the choice ~ = 0, but is considerably better for the choice 

Form of ~. = 0.0 . ~ = 0.856 

trial func. ""- ""-

2;10 -0.9937 -0.9546 

4;3200 -0.9612 -0.8636 

5;54200 -0.7266 -0.8436 

5;76410 -1.0129 -0.8361 

" 
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TABLE VI. Computed values of E in the JP = 3/2+, I = 3/2 channel 

for several values of the parameters a and b in (7.9a), with 

m1 = m2 = M = 1.0. 

(b = 1.6) (b = 1. 4) (b = 1.2) 

a E a E a E 

1.6 1.649 1.9 1.757 1.9 1.946 

1.9 1.401 2.5 1.375 2.5 1.667 

2.5 0.856 3.0 1.012 3.0 1.394 

3.0 0.359 4.0 0.18 4.0 0.75 

5.0 1.890 6.0 1.82 6.0 1.94 

6~0 1.642 7.0 .1.61 7·0 1.78 

7·0 1.341 8.0 1.32 8.0 1.55 

8.0 0.987 9.0 1.01 10.0 0.96 

'rABLE VII. Computed values of E in the JP = 3/2+, I = 3/2 channel 

for a range of values of the parameter a in (7.9a)) with b = 1.6 and 

ml = M = 1.0) m2 = 0.144 (the pion mass). 

a 

1.6 

1.9 

2.0 

2.1 

E 

1.04 

0·77 

0.67 

0.579 

a 

2.2 

2·3 

2.4 

2.5 

E 

0.478 

0.373 

0.266 

0.156 
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TABLE VIII. Computed values of the coupling constant ~ re~uired to 

obtain a bound state at c E = 1.0 in the J'p = 3/2+, I = 3/2 channel, 

at several values of the cutoff parameter R 
c 

in (7.9b), with m = 1 

M = 1. 0, and m2 = 0.144 (the pion mass). (We present only the smallest 

positive value of ~ in the spectrum.) 

R c 

0·3 2.11 

0.5 2.25 

0·7 2.38 

1.0 2.53 

TABLE IX. Computed bound state energies in the JP = 3/2+, I = 3/2 

channel at various values of the exchanged mass M) for the choice of 

potential (7.9a) with a = b = 1.6 and m1 = m
2 

= 1.0. 

M E 

1.0 1.649 . 

! 0.8 1.702 
j 
I 0.6 1. 783 1 
1 
! 
i 
~ 

0.5 1.832 

~. 
0.4 1.890 j 

I 
! 

• 

• 



• 
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TABLE X. Computed bound state energies in the JP = 3/2+, I = 3/2 

channel at several values of m2 , for the choice of potential (7.9a) 

with a = 1.9, b = 1.6 and ml = M = 1.0. 

m2 E 

I 
1.0 1.401 I 

0.9 1.309 
I 

I 0.8 1.218 
I 

0.6 1.047 
r 
j 

i , 
0.4 • 0.903 , 

I 
'I 

0.2 0.83 \ , 
( 
I 0.144 0·77 I 
I 

~ ::l 

TABLE XI. Computed bound state energies in the JP = 1/2+, I ::; 3/2 

channel at several values of the parameters a and b in (7.9a), and 

(b = 0.35) (b = 0.25 ) (b = 0.1 ) 

a E a E a E 

1 
! 
i 

I 
i 

3.5 1.75 3.0 1.85 2.5 1.896 i 

4.0 1.52 3·5 1.625 3·0 1.652 

4.5 1.23 4.0 1.32 3·5 1.341: 
1 

5.0 0.90 4.5 1.01 4.0 0.963 1 

8.0 1.72 5.0 0.58 4.5 0.504 ; 

10.0 1.25 7.0 l.80 J 
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Positive and negative energy spectrum i.n the 1 
1="2 

channel as computed at several values of the coupling constant /I. for 

the choice of potential (7.9b) with R = 1.0 and ml = m2 = M = 1.0. c 

I 

----r 

E E 

I 
I 

I -0.5 -1.848 -1.0 -0.573 
i 
I 

f I 
I f 

f 

I -0.6 -1.678 
I 

-1.1 -0.173 I , 
I I 

I 
I I -0.7 -1.468 -1.2 0.302 I 

i 
; 

! -0.8 -1.215 -1.3 0.890 

I -0.9 -0.918 -1.4 1.705 ) , 
I • 
i 

TABLE XIII-Values of the coupling constant /I. required to obtain the 

"nucleon" (E = 1.0) as a bound state in the J p - J,'+ I 
- 2 , 

1 "2 channel, 

as computed for several values of the cutoff parameter R in (7. 9b), 
c 

with ml = M = 1.0, and m = 0.144 (the pi.on mass). (We present only 
2 

the smallest value of 1;\.1 in the negative coupling constant spectrum.) 
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TABLE XIV. Computed values of ~ for JP = 3/2+, I =.3/2, E = 1.8, 

m
1 

= m
2 

= M = 1.0, at various values of A for the choice of cutoff 

(9.23). Data (A), (B) and (C) refer to Eqs. (3.1), (9 .14) and (9 .20) 

respectively. 

----T 

I, 
(A) (B) (C) i 

I 

~ ~ ~ I , 
! 

8.37 6.77 
! 

0.5 2.92 I 

3.16 
! 

1.5 2.15 0.86 ! 
I 
I 

3·0 2.23 1.27 0.47 ! 
I 

5.0 1.91 0.95 0.32 I 
10.0 1.69 0.68 0.20 I 

i 

1.63 
i 

20.0 0.53 0. 15 1 
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29. 
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£. ..... -(.e + 1), so that we conclude that if la.e(r) is a solution, 

then so is -(£+1)( ) U r . However, if 
it 

U (r) is "regular" at 

r == 0 then -(£+1)( ) U. r is not; hence only ui(r) solves the 

eigenvalue problem. 

K. M. Case, Phys. Rev. 80, 797 (1950). 
--' 

It follows from (5.12) and the property a: m 
/'./ 

- a: that it is 
-m 

sufficient to calculate Al 2 for the first equation in (5.11a) , 
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coordinates. This is of course the basic difficulty of dealing with 

weakly bound states in our approach. 
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33. By "act" attractively (repulsively) we mean that the binding energy 

of the bound state increases (decreases) as we increase the magnitude 

of the coupling constant. We will call a force attractive whenever it 

is capable of giving a bound state. 

34. Note that the terms "ground state" and "excited state" refer here to 

a given quantum number n, and in particular to n = £ for the .e+ 

solution, and to n = £ - 1 for the .e solution. 
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.'\.1 /"v /'1' .... - ...... 

replace here our earlier notation ml(p) and m2 (p). 
,'1; rv 
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"rules" of "old fashioned perturbation theory" as applied specifically 

to the pion nucleon problem: 1) with each vertex in a given time-

ordered diagram associated a factor 

w(t) 1'5 W(£) 

AI 2m(k5E(~! )E(P) , 
N .,Iv '''v 

where W(p) 
.rv aa 

U (p, a) 
a""" 

(= V (-p, a)) is the Dirac spinor 
a "'" 

corresponding to an incoming (outgoing) nucleon (antinucleon) line, 

and k is the momentum carried by the meson and W(p) f3 W(p)f3. 

These factors are to be arranged from right to left as we follow 

continuously a particular nucleon line, reading the diagram from 

right to left. 2) for each intermediate state obtained by cutting 
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introduce a factor [E - L E(p.) - Lm(k. )]-1, where E(p.) and 
i- ....,J.i " .. J.. ",J. 

ru(k.) are the energies of the fermions and nucleons in the j.ntermediate 
. 1\1 J. 

state, respectively. This gives the T matrix. (Note that the sum 

over the intermediate spins is implicit in the matrix multiplication.) 
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The fact that 
im12t 

e 2 w(x) rather than W(x) itself is expected 

to be a slowly varying function of time in the "non-relativistic" 

limit is suggested by the inhomogeneous term in Eq. (2.11). The 

"physical" reason is of course that for our choice fl. == ~- in 
1. 

(2.9), the c.m. coordinate X as defined in (2.9) will not have 

the usual interpretation of c.m. coordinate in the non-relativistic 

limit. On the other hand, with the definition X = (wlxl + w
2 

x
2

)/E 

corresponding to the choice fl. = m./E [and to the transformation 
im t 1. 1. 

W(x) . ..,. e ;(l2 w(x)L we would recover the usual definition of the c .m. 

coordinate in the nonrelativistic limit. 
/v 

This asymptotj.c form is to be compared with Go(r,O) as given by 
,-v 

For the equal mass case this reduces just the Blankenbecler-Sugar 

Green r S function (see Ref. 36). 

Thus for· a potential VCr) with the property VCr) "-' as 

r ---->,0, the solutions 
f. 

uer) to the Schrodinger equation behave as 

follows as r ---> 0: 

u
e (r) '" exp [ ± 'y'A/r ] (repulsi ve potential) 

(attractive potential) • 
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FIGURE CAPI'IONS 

Fig. 1. Integral equation (in the ladder approximation) satisfied by 

the BS wave function above the elastic threshold. 

Fig. 2. Diagram representing the nucleon exchange force. 

Fig. 3. Leading asymptotic behavior of the solution to the (Wick rotated) 

BS equation for the c.m. energy E below the first inelastic 

threshold and for the choice l-1i ~ in (2.9). (Scale 

= corresponds to m
l 

Fig.4a,b.A plot of the solution 

1.0, 0.6 and M = 1.6). 

1; ",,1+ 
ex ± (sol:id curve) and ex- (dashed curve) 

to the indicial equations (5.11) as a function of the coupling 

constant A.. 

Fig. 5. Computed values of E as a flIDction of a, for b = 1.6 ( ), 

b = 1.4 (-----) and b 1.2 (--- - ---), corresponding to the 

data presented in Table VI. 

Fig. 6. A plot of the data presented in Table XI. 

Fig. 7. A plot of the data presented in Table XII. 

Fig. 8. Ladder graphs corresponding to the V-9 sector of the Lee model. 

The solid and shaded line refer to the fully dressed N and V 

particles, respectively. 

Fig. 9. Covariant "box" diagram. Solid and dashed lines refer to 

nucleon and meson, respectively. 

Fig. 10. Separation of the nucleon and antinucleon contributions in the 

Born diagram-of Fig. 2. 

Fig.lla,b. Typical time-ordered graphs contributing to the fourth order 

box diagram of Fig. 9. 

Fig. 12. A plot of the data presented in Table XIV. 
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