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ABSTRACT

The Bethe-Salpeter equation describing the interaction of
pseudoscalar mesons and nucleons via pseuvdoscalar coupling is solved
numerically for energies below the elastic threshold by use of variational
techniques. We consider only the "ladder' approximation with a local
potential corresponding to the exchange of an elementary nucleon.

Simple generalizations of this form of the interaction are considered

as well. TIn the absence of a cutoff this leads to a marginally singular
integral equation. We examine in detail the boundary conditions to be
imposed on the solutions in order to lead to a discrete eigenvalue
spectrun. The study of this problem is considerably simplified at zero
total c.m. energy, where the (Wick rotated) equation is invariant under
four dimensional rotations. In order to take full advantage of this

symmetry, we construct a new set of spinor spherical harmonics belonging

ntl

to the representations ( 5

’ g ) and < g ’ 24§—l~> of the four-

dimensional rotation group. The discussion is then extended to the

e

,kuﬁé%J
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gengral case, in which we examine briefly the formal structure of the

E # 0 solutions. Attention is éiven to the role of the "relative time"
"in a relativistic theory, and the closely related problem of arriving at
a time-independent gpproximation of the BS equation. In particular, we
consilder the static and nonrelativistic 1limit of the eduation, and
discuss the validity of the approximations involved. The eigenvalue
spectrum obtained in the two limits is compared to that of the original
equation. Finally, a brief discussion is givén of the N® and VO
sectors of the Leé model, designed to illustrate still further our

observations on the role of the "relative time" in a relativistic theory.

@
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1. INTRODUCTION

In recent years there has been renewed interest in the relativistic
two-bgay equations of Salpeter and Bethe.l In the absence of a theory of
the strong interactions, these off-shell‘equationé provide at least a
means for performing dynaﬁical calculations within a.manifestly covariant
framework. A complete treatment of the field-theoretical problem would
require us to represent the kernel of the integral equation as the sum
of all irreducible Feynman graphs contributing to the elastic two-body
amplitude. The solution of the complete problem is evidently hopéless
at the present time. TIn fact, even in the "ladder" approximation, in
which we retain only the lowesf order term in the expansion of the
kernel in powers of G2 (the square of the coupling constant), the
equation has for some time been considered intractable, the difficulties
being largeley due to the presence of a degree of freedom in the equation,

1"

the "relative time, " which has no analog in nonrelativistic quantum
mechanics. The numerical program initiated by C. Schwart22 demonstrated
however that ?he (Wick rotated) BS equation, in the ladder approximation,
could be solved accurately by conventional numerical techniques. This led
to renewed interest in the BS (Bethe-Salpeter) équation as a computational
tool, a number of calculations having extended since then the bound state

b,

calculation by C. Schwartz to the elastic scattering region” and as Tar

as the second inelastic threshold.
In this paper we continue this numerical program by making a

5

quantitative investigation of the "pion-nucleon" bound states in conven-

tional pseudoscalar meson theory, the dynamical framework being provided
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by the BS equation iﬁ'the ladder approximation.(see Fig. 1). This
problem has received little attention within this partiqular framework,
although it has been extensively studied by the dispersipn theoretic
techniques of S-matrix theory, in which it has served as a prototype of
so~called "bootstrap" calculations. In the present calculation we con-
sider the 3 - 3 resonance (which we refer to as the N') and the
nucleon as dynamical states of the =l system. Since we restrict
ourselves to the bound state problem, we are left with the nucleon as
the only dynamical state of immediate physical interest. If the usual
arguments given within a dispersion theqretic framework6 should serve as
an indication, we expect the N* +to contribute here the dominant force.
However, thebinclusion of the N* exchange would force ué to introduce
a cutoff fight from-the start. BSince it was the original aim of this
paper, if possible, to introduce no arbitrary parameters into the calcula-
tion, we have considered here only the nucleon exchange force.7 This
choice of interaction stili leéds to a marginally singular integral
equation. Unfortunately standard mathematics has little to say about the
existence of solutions and the nature of the eigenvalue spectrum of such
singuiar equations. This has led to repeated speculation that these
equations may either have no solutions at all, or that their eigenvalue
spectrum may be continuous. An explicit éxample is provided by the
nucleon-nucleon BS equation, whose eigenvalue spectrum was found to be
continuous unless the integrél equation was supplemented with additicnal

boundary conditions not already contained in it. In this paper we are

d
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faced with a similar situation. It is for this reason that we denote
a substantial.part of this paper to a detailed study of the boundary
conditions to be imposed on the solutions. We find that the behavior
of the BS wave function near the light cone is critically dependent on
the strength of the potential, and that a proper treatment of these
boundary conditions is imperative for our numefical calculation to be
successtul. The problem of giving a proper treatment of the equation
near the light cone has also been encountered in connection with the
nucleon-nucleon problem, and has been studied at great length in a ¢l+

field theory.9

In our case the discussion of this problem is however
considerably more complicated because of the presence of spin.

Because of the difficulty of solving the BS equation even in its
simplest form, the ladder approximation, early efforts have been directed
toward obtaining approximate solutions by infroducing an instantaneous
interaction into the originally covariant equation. This procedure led
to a time-independent, three dimensional equation. However, the validity
of these approximations is particularly questionable if we are dealing
with a marginally singular equation, since they lead quite often to a
supersingular (as in the present case) or even a nonsingular equation
(as in the N - N problem). In either case, the original character of
the BS equation has been sufficiently changed so that no correspondence

need be expected between the eigenvalue spectrum of the original equation

and its approximation. In this paper we consider two such time-independent

approximations as applled to the pion-nucleon BS equation and discuss
in particular the "static” and "nonrelativistic" limits. We examine

in this connection the role of the "relative time" in the BS equation, or
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for that matter, in a relativistic theory in general. In pafticular we
will illustrate our observations by presenting a brief discussion of the
ILee model from a somewhat unconventional point of view. It is hoped that
the point of view taken in this:paper will help clarify some of these
important questions.

The subject material has beeh arranged as follows: 1In Sec. IT
we motivate'field-theoretically the precise form of the BS equation of
interest, defining all the relevant quantities., Section IIT is devoted
to a study of the asymptotic behavior of the solutions to the Wick
rotated integral equation. In Sec, IV we present some of the mathematical
results which will be needed later on. In particular we construct a new

set of spinor spherical harmonics belonging to the irreducible representa-

("ni 1

) 4 3
5 » g ) and <'§ B §*§_£,>. of the four-dimensional rotation

tions
group. The main properties of these functions are discussed and a number
of useful formulae are derived. In Sec. V we discuss in detail the
behavior of the solutions near the origin of the (Wick rotated) Euclidean
space, by studying the BS equation in its differential form. No attempt
is made in this section to select among the "regular' and "irregular"
solutions. If a physical interpretation of the BS amplitude is to be
avoided, the criterion for such a selection must come directly from the
integral equation itself. This is discussed in Sec. VI. The numerical
techniques and results of our calculation are presented in Secs, VII and

VIII. Finally, in Sec, IX we turn our attention to some additional

topics of particular interest. We discuss the role of the "relative time"

1%

|4
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in a relativistic theory and consider in this connection the "static"
and "nonrelativistic" limit of the equation, as well as presenting some
numerical results. A number of additional topics are left for the

Appendices, where we present, in addition to some mathematical details

. relating to the conventional spinor spherical harmonics, a proof of

elastic unitarity; the group theoretical results which we use in Sec. IV;
some details on the formal structure of the E = O solutions; a discussion
of the connection between the covariant and pld—fashioﬁed perturbation
theory; and a discussion of the NO and V6 sectors of the Iee model
from a somewhat unconventional point of view, but in line with our work
in this paper.

We follow in general the notation of Ref. 3. Three-vectors are
represented by bold-face type, and natural units (B = ¢ = 1) are

used throughout this work.
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II. THE BETHE-SALPETER EQUATION

We begin by motivating the precise form of the BS equation from
field-theoretic considerations. Although there exists no real need to
make this explicit coﬁnection with field thebry, it will allow us to use
the language of Feynman diagrams whenever this seems dgsirable, in t
éddition to providing us with an unambiguous definition of all the
reievant quanfities., Since we are concerned only with the bound-state
problem, it will be particularly convenient to work with the relativistic

>

two-body wave function for the "pion' and "nucleon'” in a state IB), as

definedlo by
Py, x,) = (0 Tlngle)) £ Gx)le)

Here ¢Hi(x) and WH(X) are the Heisenberg fieids of the pion and the
nucleon respectively, ‘9> is the "physical" vacuum, and T isvthe
time ordering operatorr WH(X) is an eight-comfonent object in the
combined spin and isotopic spin space of the nucleon. Denoting by

$*(x) and V¥{x) the pion and nucleon fields in the "interaction

representation, " we have the equivalent definitionll

Ve, xy) = (0] o(xy) #7(x,) S)| x5 k)

ks (2.1)

“*3

" for the relativistic two-body wave function in the scattering region.

o

Here S 1is the scattering operator, IO) is the "bare" vacuum state,

and .%1’ %2) is the state of a free nucleon and pion of momentum kl
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and kg respectively.12 (We have suppressed all spin and isotopic spin
guantum numbers.) We take the interaction Hamiltonian density to have

the conventional form

Hx) = L 15 0&), 75 v v0)) p) (2.2)
d
where Ti are the usuval Pauli matrices, and G 1is referred to as the
"pseudoscalar coupling constant.”" Experimentally GE/HK ~ 1k, By
inserting the familiar Dyson expansion of the S-mafcrixl5 into the
definition (2.1) we arrive in a straightforward manner at an integral

equation for Q(xl, X2) in the scattering region

ﬁl(xl) X2) = Q’Ol(xl} X2)
5 fa ax) G, (x,- x1) G, (x,- %) T(x)- %]
' ()2 3 1 - %y ) Gp(xy- %)) T(e- x4)
(2.5)
x [2P(2) - PY@E)] Pl kg = () X = (2pty),

where we have restricted ourselves to the "ladder'" approximation (see
Fig. 1). Here Gl(x) and Gg(x) are the one-particle Green's functions

for the nucleon and pion respectively

Gl(X) = [m +17:3] Alxsmy ), Go(x) = A(x5m,)
b (mlx]) 4
) a ip.x 2 K (m[x
pom) - -1 [ A e P eyt AT

(o) P+ m - ie m|x]
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1
where |x| = (r2 - te)- and Ki(z) is the first order modified Bessel
function.lbr I(x) is the nucleon exchange potential corresponding to the
Born diagram of Fig. 2 and is given by
K, (4]x|)

I(x) = f [M -1 73] vl (2.5)
Mix

@O(Xl,xg) is the wave function for the free pion and nucleon

ik, -x ik, *x
. ~ 171 2 "2
@O(kl,xg) = U(%l) e e (2.6)
where
- 3
2 2
ko= (B op) 0y = (B +myT)
and Udo(g) = qa(g,c) is the nucleon Dirac spinor with the covariant
normalization U(k) U(k) = 1 ([O(g0) = U'(k0)»°). The matrices

P(I)aﬁiJ are the usual isotopic spin projection operators

1 1-%t.7
P(é‘) = —‘5——'—' s
3, 2+t -7
P(’é‘) = ""'3 ¥

— -> .
where T and t are the isotopic spin operators of the nucleon and meson

respectively. (In the Cartesian basis, . R %

ik Using the fact

ijk)'

-
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that P(I) P(I') = P(I) B we arrive immediately at the integral

IT!

equation for £he two-body wave function in a state of definite total

isotopic spin I:

I@ QI(xl,xe) = @OI(xl,xg) + XIerxi dx} Gl(xl- Xi) GQ(XE- xé) I(xi- Xé) @I(Xé)
(2.7)
Here
T ¢ 1, 5, _
AT o= n(T) =, 1(3) = -L a5) = 2. (2.8)
(b )

We have omitted all.other isotopic spin labels, QI(xl,xg) being only a
function of the total isotopic spin I. In the futﬁre we omit this label
as well, The sign preceding KI in (2.7) is of course prescribed by
our "derivation." Moreover, the requirement of elagstic unitarity provides
here an additional check, as we point out in Appendix C.

We proceed now to eliminate one of the integration varisbles in
Eq. (2.7) by making use of the translational invariance of the theory. To

this end we corisider the canonical transformations

il
b

E = O. -
ﬁv P o= My Py mHyg By = O(pR) s x -

no
!
—~
eH
-
ct
~—
“

where Ry and . are constants subject to the condition

2

H
Xl)'
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Wy tHy, = 1. : ~(e.10)

Since we are dealing with an exchange potential it turns out to be

15
convenient to make the choice - %. This is the choice o
made throughout this work, unless explicitly stated otherwise.
Translational. invariance allows us to write
y _1K-X
’ {{(Xl) Xg) = \II(X) € .
Substitution into (2.7) leads then to the following integral equation
for VY(x) (we now label the wave function by the momentum of the
incident wave):
ik.r-im t/2 L
() = ) e 27 [ afet - x) T0e) (), (2e11)
J ' 13
where wlé = Wy -y and G(x) 1is the two-particle Green's function,
1 o1 iK-Z
b = - | (= x~ . (= .
G(x) JdL% Gl(ex Z)G2(2x+Z) e
P@rforming the integration we obtain
' o E ¢
a(x) = [ml + 1 y.0 +y > ] Go(x) (2.12)
¥

in the c.m. system of the pion and nucleon, where E = wl + o, and
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I : ig-x
d g © :
0y (%) _=f n > . (2.13)
(e @ B e selig (o B P a0

AL AL

is of course just the two-particle Green's function for itwo spinless
particles. Because of the polesof the integrand it is desirable for the
purpose of later discussions to cast the integral (2.13) into a different

form. Making use of the familiar Feynman parameterization technique we

arrive at
W, . 1
2 ap -i(p+3 wlg)t dhp Jipex
Golx) = T °© T T8 2 o )
- (2n) [p™+ B - k¥ - ie]
- ~
1
where %?, Wy and Wy are related to the total c.m, energy E as
follows:
2 1 .2 2 2 2
kK = Zgg [E™- (ml + m2) 1 [E - (ml - mg) ]
oali (m 2 2) B - (m 2. 2) (B2
o = 1 2 /. o - 1 2
= s =
L 2R e 2
and
- m 2 m 2
1 "2
Wy = @ m@, = ——E——- . (2.15)

The four-dimensional integrai in momentum space has been evaluated in
Ref. 3 to be proportional to the zeroth order modified Bessel functicn

KO . Hence,
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. w . 1. . 1
. =D ~i(B+z w, ) (t-t") C .=
12 2 2.2 .
G (x -x') = —=— a8 e ' K.[L(B°- &) |x - x'|]
Ras! : (2.16)
2 % 1 i
where ~ % n L arg [(B2 - %{) lx - x'l] R 5 nt , as explained in Ref. 3.
With the aid of ¥
A o E 2 2 E° R
[m) -1 yeO = Y 5] [-O0° +1E 50 +m,” - ] 6(x) = & (x)

Pt

we may rewrite Eq. (2.11) as the differential equation

g - 173 -2 E 1108 - 183+ E - mPlu) = A6 ¥(x),
| (2.17)

supplemented with suitable boundary conditions. It is this equation
which we solve in the calculational part of this paper.

Finally we would iike to remark that unless additional information
is required which is not already contained in the integral equation (2.11),
we do not need to give a physical interpretation to the two-body wa,ve
function (2.1), but may regard it merely as one possible way of formulat-.
ing the given mathematical problem. Thus, with the definition of the

scattering amplitude,

-

1 pee) 21 W, W o'ot~

(g o' BTl 0 k) = K- K) sl £, (k' X)
: : 12
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where T 1s related to the S-matrix in the usual way
S = 1-41iT,

we easily establish the connection between f(k', k) and the solution

W}JX) to the integral equation (2.11):

~

iAm A
£(xk) = ﬁ(%,Jdux e M 1(x) vy (), (2.18)

the numerical factors being fixed by simply looking at the Born term.
For later reference we give here also the momentum space version of
(2.11) and (2.18). Thus, denoting by ¥(p), 'E(p) and E(p) the

Fourier transformsl6 of w(x), G(x) and I(x), we obtain, from (2.11),

ras

bk ator o~
T - e et - ) vl - xfﬁ E() T + p') ¥ (). (2.19)
~ 7t .

The scattering amplitude (2.18) is now related to $k(p) by

1 Am b N .
(k) = g ﬁ(,%’)]'(‘i‘j‘f‘?‘); Fers 2) T (o) (2.20)
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ITT. ASYMFTOTIC BOUNDARY CONDITIONS

‘ Since it is very difficult to solve nu.merically‘the eigenvalue
prdblem.iﬁ the form of Egq. (2.17), we should like to consider instead
the corresponding eigenvalue problem for @(r, T), the analytic continua-
“tion of Y(r,t) to the imaginary time axis:_‘m(ggT) = ¥(r,- iT).
~Assuming the solution to be an analytic function of +t , we arrive at

the differential equation

) ' 2 2 2
my =173 -2 21 10% + B3, +F -m ) ox) = A v(x) o(-x)
(3.1)
for o(r,T), where
4
v(x) = I(x,-it) = —%ﬁ (X, (M) + 1 7% K,0R)] . (3.2)
2. 2.3
Here R = (r~ + 1 )%, and K (MR) is the nth order modified Bessel
function with the asymptotic propertylu
%
Kn(z) . (% e-z as lz, > 00 . (5-3)
We have introduced the notation
() = @™ Q) = @) 3 = =, 7,1 (3.1)

scalar products being now defined in terms of an Fuclidean metric:

ot
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v.d = ’2'.2+7 Bw DQ = 22+52, Xe = £2+T2. (5.5)

The corresponding analytic continuation of the integral equation (2.11)

17

has already been discussed in the literature:’ We do not repeat here
the arguments except to state, that for suitable resgtrictions (to be
given at the end of this section) on the c.m. energy E, we may carry
out this analytic continuation by "rotating" simultaneouslle the t

% 7 in the 2nd and
4th quadrants of the complex + and t' planes: t = 7 exp(-iﬁ),

and t' wvariables in Eq. (2.11) through an angle

t' = 1' exp(-if), o0 @ sﬁ% 7 « Denoting the analytically continued

solution by ﬁk(x), we arrive thus at the integral equation

: 1
iz -3

T |
g6 = ut et 2T [t ne - x) we) A() (5.6)

2

where dux = d r dt , and

»H(x) = [m

N~ e I}
, + i ¥.0 + ¥ 5 ] Ho(x)

HO(,.I:’T) = =1 Go(ﬁ)' i T) .

An explicit expression for HOQE,T) may be obtained directly from (2.16):

1

il

1 d[ a8 -(B+3 @, )7

() ® . WIE%-1E) R . (3.8)
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Tn the bound-state region @(x) will have poles at (one hopes) a discrste
set of values of E (for a given value of A). At these values of E,
the residue of _ﬁk(x) at the pole, @(x), satisfies the homogeneous

r

“integral equation

L ' :
op(x) = - fd x' H(x - x') v(x') o(-x') . (3.9)
The asymptotic boundary conditions to be imposed on the solutions to
(3.1) - are those of ¢£(x) (in the scattering region) and o(x) (in
the bound state region) as deduced from the integral equations (3.6) and
(3.9). Although the asymptotic properties of Bethe-Salpeter amplitudes
3,17

have already been discussed in the literaﬁure, we review here the
results in somewhat greater detail with particular emphasis on the
unequal mass kinematics of the problem.

Since the asymptotic form of the solution is determined by the
Green's function, we begin by considering the aéymptotic properties of
the integral (3.8). This form is particularly suited for the intended
discussion in the bound state region where (62 ~ E?) >0 for B within
the integration intefval (even in the unequal mass case!). In the
scattering region it is however preferable to consider the alternative
expression

. 1 e
I (X) = 1 elkr 8-2 (DleT - _]____ /
0] 8;[-’5 r 8‘1{2 \

/'-E_ ©

/

! ool
j’ . f \" d—B -(6+% U‘)lg )T
-00 w

2 (3.10)

N
SN
vf\.)lr—‘
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as derived in Ref. 3. Making use of the asymptotic property (3.3) of
the modified Bessel functions, we see that we will be interested in

studying in general the asymptotic form of the integral

b P &
1 (x) = a8 {/ — ) o8 (B R (3.11)

g(B) = P cos 6 + (;32 - ;f)g, cos 8 = T/R . (3.12)

The asymptotic properties of integrals of the form (3.11) may be discussed

by the "method of steepest descent."19

Let BO be the value of B in
the interval (a,b) for which g(p) takes on its smallest value (not

necessarily a minimum). We distinguish three possibilities:

(a) By = a and g'(a) # 0; in this case g'(a) >0 and
1
O R SR i
a { Lo g'(a) R
5 2 k2 2R/
\?(a - ) B
In particular:
g
1 L (— cos8-nm )R
L T S (L )2 e .
8ﬂ2E -y SxE ‘2nR /F? . (le_ m22> \\
- m, cos BiR
oF 1 )

(3.13)
(B) Bp = b and g'(b) # 0; in that case g'(b) <0 and
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b - // s % e"g(b)R
W ) FhE

2 .2
?(b-%) R/

In particular

1 (— 8 )R :
1 cos 6 + m .
-5 2
12 . 2 va)lQT‘ I‘,wg(x ~ BﬂE (21LR) (B.lu)
8r"E a o (m m, )
+ m,. cos BR
' oF 2 /
(C) e(B) has a true minimum for B = Bo Within the integration
interval (a,b), including the endpoints; in this case g'(BO) = 0, and
B, = - V¥ ctne. (3.15)
We arrive this time at the following asymptotic form for Iab(x) :
b \ e
Ia (x) - T § P s——
2 I H
e 41-}‘{’2 Rsine
=
Rsin®

the result being independent of the endpoints!

Having discussed the asymptotic properties of Iab(x), we turn
now briefly to the problem of interest. Because of the unequal mass
kinematics. of the problem,‘it is helpful to distinguish four separate

regions in the c.m. energy E (we take m, Zime): »
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(1) OSESm - m,

- 2

Here (see (2.1&)) @ >0, @ <0, kK >0; From (3.8) we
conclude that BO = db’ independent of the wvalue of cos 6, so that
Ho(x) has the asymptotic behavior (3.14) for - 1 L cos 6 < 1.

1l
2 242
@) m -m<ES (m” -n5)

Here ui > 0, “é < 0O, k2 < 0; Considering again the integral
[a%

(3.8) we easily see that g(B) does have a true minimum within the
integration interval for some values of cos 6. In fact, all three
cases (A), (B) and (C) are here relevant, so that we may distinguish
three regionsin the (E, cos ©) plane, the boundaries being determined
by the conditions g'(-uxl) = 0 and g’(wg) = O
(ca) Ual/ml Scos ©gl; HO(X) has the asymptotic behavior (3.13);
(?b) - 1gcos ®g-~ 032/m2 ; Ho(x) Illas the asymptotic behavior (3.1k4);

20T

2 ,
(2e) - a;a/mg Lcos 8K cul/ml ;3 817 e HO(X) has the asymptotic

behavior (3.16);

(3) le -meegE,gm +m

2
Here ml > 0, (.02 > 0, }i < 03 The same conclusions as for the

case (2) hold here.

(L) E > m, + m,
Here @ >0, w, >0, 5? > 0; from (3.10) we easily deduce with
the aid of the results (3.13), (3.14) and (3.16) the asymptotic form of

Ho(x):
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HO(X) - BiE

1’ 1ir-} @7 <m1 ')% | e(g cos6-m, )R
I_ :

(wl =m, cos )R

1
-(E cosO+n R
2 2

.'/mE\é- e
- QEnR//’ J :

(aé + m, cos ®)R

This asymptotic form was already obtained in Ref. 3, Again we may
distinguish three domains in the cos 8 +variable, whose boundaries
may be read off directly from the above asymptotic expression. They
evidently correspond to a) ml/di g cos 6K1; b) -1 cos O K -me/@ ;
and c¢) -mg/ﬂé.g cos 6 gﬁml/ai.

The above results are summarized in Fig. 3, the asymptotic farm
of the solutionsbeing the same as that of HO(X). (We have exhibited
only the exponentisl dependence of these asymptotic forms. To be

specific we chose m, >m

" corresponding to the physical casebof

1

interest.) Following the same type of reasoning as given in Ref. 3,
we find then, with the aid of Fig. 3, that the integration in Egs. (3.6)

and (3.9) does indeed converge at infinity, provided that E < om, + M

+ M ; that is, for the c.m. energy E below the first

and B < le

inelastic threshold. For E ;,ml + Y these restrictions imply of

course the stability conditions m, <m, + M for the "nucleon) and

m2 < ml + M for the "pion.

Before concluding this discussionwe should like to comment

¥

briefly on the negative energy spectrum of Eq. (3.1). Ignoring for ¥

the moment the question of boundary conditions, we readily verify that



-21-

if @(x) is a solution to Eq. (3.1) for E = Eq, (EO >0 to be

specific), then 75 ¢(-x) 1is also a solution for E = E, , at the
same value of the coupling constant. In fact, as we will see later

on, the same statement can be made about the eigenvalue problem. This
shows that the equation admits a positive and a negative energy spectrum
whenever the equation has solutions at all. As will become evident
later on, when we restate these observation for the partial-wave

projections of ®(x), this is precisely the statement of the familiar

~
ne

"MacDowell symmetry. It arises here as a consequence of the trans-

formation properties of the equation under space-time inversion, but can
be shown to follow also from more general principles.gl Note that as

a function of x, the solutions for E = - EO have the same asymptotic

behavior as the solutions @(-x) for E = EO’ and are again accéptable

solutions to the integral equation (3.9) with E subject to the above

0

stated restrictions.
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IV. MATHEMATICAL ERELIMINARIES

A. Some Ugeful Formulae

We derive here some useful formulae relating tothe four-dimensional

spinor spherical narmonics defined in (A6). Specifically we are concerned

£.M

4 A

" (R), where Q 1is any of the operators
LM ZM

T, Bh, (goxr), and (0.V). The evaluation of T Y - and Bu Y -

with products of the form Q§ Yn

has already been given in Ref. 2. We state here the result:22

£+A £ + £ A
Y, R) = R &An+l Yol “(R) Ay Tha _(R)]’ (4.1)
. th(ﬁ) ) p tq) (2 N /3_( ) (2 n+2>
4 *n = A Thn \dR "R T Y WIgE R ’
(4.2)
where
, _
2t {(n - 4) (n+ &+ 1)} . O 3)
n(n + 1)

£ M
The evaluation of (gﬂz) Yn * is algso straightforward. With the aid

of formulae (A2) and the recursion relations for the Gegenbauver

polynomials Cn'e(t),23

ALy B+ 1 { £+2 £+2 ]
Cn-ﬂ(t) T on+ 1 Cn-ﬂ(t) - Cn-£~2(t)

(16%) ¢275(8) = gy [eet)(mess1) ¢ 2 (6)-(a-241)(n-022) C__, A (t)]

s
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we obtain, after some algebra,

+ A 1 + =N T ]
bl . - = = + - + .l].
i(or) ¥ “(R) R !LBn Y., TR)-c TY (R)J; ; (b.4)
where
, 1
B 4, _ {(n + 8 +2) (n+ £+ 3)|2
n Lo Mn+1) (n+2)
1 (k.52)
Bz- _ in-4+1) (n-2+ 2)?5
U oym+1) (@e2) 4
and
(Etl); £,
el = B - (4.5p)
£, :
To evaluate (E-Y) Yn we consider first the Fourier transform of this

product using (4.4), and recover the desired result by taking the inverse
Fourier transform. Thus, expanding a general spinor field in terms of

the spherical harmonics (A6)

- £.M £.M a
o(x) = & F C(®R) Y (R)
Lo,m M
n
and making use of the plane wave expansion (p.x = p.r + puT)
8 eipoX _ (2jf>2 Z in Jn+l(PR) v EiM(ﬁ)* v EiM(ﬁ)
op c LM 53} n o n B’
2

n
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we obtain with the aid of (4.4). (We omit the magnetic ‘quantum number

] A
M labelling Fnz MRy and Yn_z*M(R).)

‘ - J m) .
() ¢6) = () L "7 {anif Par §,%4(7) e

£.Mn

Y-

J_(R) (61)_ .
-(R }

£, ' ~ 0, n
c, jPBdPVan (P) - el

where rFVnL"(P) is the Fourier transform of Fnﬂi(R):

", 3 (m)
Fn'ei(R) - (exf ianBdP Fnzt(P) o
R

Finally, making use of the recursion relations for the Bessel functions,

Jn+2(m) _ _[/4 _ny\ J.nJr_'L(IR)
R - dR R/ =R g
J <PR) ( n + Jn+l(PR)
dr / PR .
we arrive at the desired resulﬁ:
£:1) (££1) .
. Lyoly zi ( ; A n £, L 5 d n-+ 2
(oY) Y PR) = B Y (dR - §>' 0 Yoy TR (ﬁ TR )

(L.6)

. £, £
where the coefficients Bn * and Cn * have already been defined in
(h.5). We note that we could have arrived of course in exactly the same

manner at formula (4.2).
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+] n n+l
B. Basis Functions for the Representations (25—-, g) and (§ , —5—) of 0

Construction of Basis Functions

In this section we make use of the group theoretical results of

Appendix B in order to construct explicitly the basis functions for the

+] ntl
irreducible representations (25~ s g) and (g , 75—) of 0 , the four-

dimensional rotation group. These functions are simple combinations of
the four-dimensional spherical harmonics defined in (A6) and are
particularly suited for our discussion of Eq. (3.1)at E = 0. As

we indicate in Appendix B, we may obtain these basis functions by simply
projecting out, with the aid of the projection operators defined in (B2),
t.he desired components from the spherical harmonics (A6). These

functions are thus labelled by the total three-dimensional angular
momentum  J , the magnetic quantum number M, and the index n, labelling

the irreducible gpaces. We will distinguish between the basis functions

(nil

+
Tor the representations - %) and (g-, 9520 by the presence and

absence of a "tilde,' respectively. Specifically,

171 JM g4
gn - N P Y JIM ,

Nns n
. . ‘ (&.7)
I ¥ g Im
n. n+ It

. s s . ;
where J)n and f)n are the projection operators (B2) for the
+

+

A n:xl n n n:zl
703 et G, )

respectively, and N, N are normalization constants. One may readily

irreducible spaces of the representations (

verify that it is immaterial whether we apply the‘projection operators
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to v 4t or y (B
n n -

(same J). After proper normalization we end -

up with identical results, as it has to be. To be specific we apply the

2 .
projection operators to Yn t, Meking use of

S T : 4

(c.L)yy * = 2¥ * ,

- - y/ o £
(ch) yoTo= -(e+1)Y 7,

where the operators Li are the usual generators of infinitesimal

rotations in three-dimensional space, and noting the following properties

of the coefficients Anz,-ani defined in (4.3) and (4.5)

£ Ay L1 by £ A+l L1 _ Ay
Ah Bn-l * An Cn B An+l Cn+l + An+l Bn

Pl

§Tﬁli-i7 [(h-4£) (n+ £ +2)]

£ £y L+1 A4 £ £y 2+1 £y
Ay € = A ¢ ! An+l Bn+l - An+2 Bn

we obtain, with the aid of the results of the preceding sectionm,

(o-4) Ynz+ _ % (& Yn£+ +[(n-4) (n+ 2+ 2)]% Yn(2+l);>)
£ g 2 1
(/?,.E) Yl’l + — %‘_ <ﬂ Yn + - [(l’l - 2) (Il v 0+ 2)]% Yn(ﬂ—#l)a’.
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where the operators Ai and Bi have been defined in (B.1l). Making

use of these results and the definitions (4.7) we obtain then finally

JM - 1 g 1 I
1 =) - o
%ﬂl = e [(n + £ + 2)° Y T i(n - 2)2 Yn(***)-]
+ Woln + 1)
(k.82)
JM 1 1 N
y = = [(n - £)° Yn o (u+ £+ 2)° Yn(ﬁ*‘l)—]
. A2(n + 1)
; : : n*l n o L.
as basis functions for the (~§-, 5) representation, and
y M Lok 1 Ly
yn‘ = '7::_:%::::‘ [(n+ £ +2)° Yn o (n - £)2 Yn(f“l)—J
+ ve(n + 1)
(4.6b)
M 1 P 1 /
n = '_"T":.‘E‘l‘._:.':':': [(n - ﬂ)? Y + -+ (n +- [ + 2):1 Yn( +l)—]
- d%(n + 1 n
cas basis funcitions for the (g P Egi representation., The quantum

aM . {pIM
numbers J and M labelling 6Jn+ and &é * take on the values 1/2,5/2,---

Dy

(n#3) and M = -J, -J + 1,°+,J; we arec thus left with (n + 1)

[(n = l) + 1] basis functions for each of the irreducible spaces

n n*l
2’7 2

n+l n
2 )5)

and ( ), in agreement with the dimensionality of these

representations as given in Appendix B. That the functions (M.8) do
indeed gpan an invariant manifold under the transformetions of OM can

be readily verified with the aid of the commutation relations

il
@]
oo

| [&i'. ’Jgni] = OJ [LB:L G)nt]
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Properties

We list here a number bf'properties of the functions (4.8)

vhich we will need in our later work. To begin with we note that these

functions are orthonormal:

JM J'M' A
}; ‘[d.QR 'y , ®)

n, flé (04 = 6JJ' SM:M' 6n-_r_ni’—
. ' _ , (4.9)
J'M
A
[ dLZR ll:[ (R) gn{. (R)oz - 8JJ ' 61\@1' 6ni n;
where dQR is the infinitesimal solid angle defined in (A.5). The
addition theorem and compleleness relation take the form
IM A IJM , ) :
)} 'gr ®) yn (R) . 3(31-—*—-2-332 ¢ (cos 7) Sy » (4.10)
JM . Ly
+
IM L :
* 1 - 2 E Q -
P2 Y N Y G, - s, e, - gy (h.11)
ni
. rg JdM : 2 .
the functions. .. n satisfying exactly the same relations. Cn (cos 7)

are of course the Gegenbauer polynomials arnd cos 7 is defined in (A1l).

Under space~time reflection:

~ IM ~

M, JMAV ~ JM A
EARCOHREINS - AN VA A E I A A O I R

Fron (4.8) we see that these functions are not all independent.

' @J&ud %JJM
fact, 0 o are related by space inversion
+ +
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{ﬂJM A

:fni (R)

1 qpdM A
7% YR, R - (woR. (5.13)

By construction we have, of course, (we list only a few representative

examples )
w
JM JM JM A pd M
A2y (nx1) {(g—l)‘ ]’u 2 _ nm
P qiu: - 2 v n, ’ £§ Ny 2 (2 +1) J x
~IM AN i A SdM . P

se U . nm U =2 o {n 1) i(n 1) l] YoM
g Ny (2 +1) ‘ny’ "B “n. 2 i, * n,

the notation being the same as in Appendix B. Denoting by C the charge

conjugation matrix

1
_ (O3 _ 1
CaB = (-) 56,-06 exp( 1:r02)06B (h.1k4)
with the property C g ¢~ = - o¥, we have
7 M p Js =M % IM >, =M
Y J-M YT A Lo A J-M gt T A
cd, @ = MY @, ol ® = YT @
% 1y, * Ny

(4.15)

In those cases in which the quantum numbers J and M are of

no relevance (as in the case of O)+ symmetry, for example) it is

convenient to define the functions

w



nt ALy
Ry

A% n

X3 i(ﬁt)aB”

il
&
no
2
c
.
>
S
o
o>
ok

(k.16)

2 5 N‘JM 2, 1 I A%
lHt*“JZ_D;I yn-r (R )Oé J;,l (R% 2

which play the same role in the four-dimensional case, as the functions

zf’z #($') defined in (A3) do in the three-dimensional case. Since the

functions Xﬁni(ﬁ’) and iﬁni(ﬁ') share a number of properties, it

is useful to introduce the function w;n*(ﬁ’) to represent either one

R
of them. We have then evidently

From (4.9) we obtain the orthonormality relations:

d—% " ‘ ’
{ ngAanyt o ongany
f lkn:g WR 4 (R ) WR (R ) - 6nin;:

Ny,
Wa (R") (4.17)

and the addition theorem (%.10) can now be stated as follows:

E:
g

]

<§')aﬁ = 2(n +-lj Cnl(cos 7) 6&8 . (4.18)

In the remaining part of this section we give a list of formulae

which will be particularly useful in our later work,.

These formulae are

the analog of those listed in (A2) for the three dimensional spherical

3
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harmonics, and are readily derived with the aid of the results of

Sec, IV-A. To this end we introduce the notation

B n _ _ I I i
(OCZ) = (S) Ou); (GO,') = (i} GIL) 0 15 (+.29)
so that
~
0.X = 0.r + 1T, O.X = ,C‘II.:E -~ it , , (h,’gO)

for example. By considering an infinitesimal four-dimensional rctation

. . . 2
we easily prove the transformation laws

D(EO)(R)N D(O%)(R—l)

1l
S
1
Jomd
Qv

(h.21)

1
B
]
et
Q

D(O%)(R) Oa D(%O><R_l)

1 1
where D(2 )(R) and D(Oé)(R) are the unitarity, irreducible representa-
1)
tions of O~ and K~ plez (R). The transformation properties (L4.21)
suggest that the explicit expreséions for the products of the form
Q %Jn IM and Q @Jn I with Q representing such "rotationslly
+ *
invariant" operators as (4.20) may take a very simple form. This is
indeed the csse. We summarize our results below: <%e suppress the

gquantun numbers J and M since they remain unsaffected by the opera-

tions of Q; we use the notation X = (xa//R).>



s
~~
aQ
LD
S
-
S
o
!

159) Y,

+

1(5-2) Y

u
I (n-1),

(k.22)

Combining the above results we obtain the additional formulae

ey, - Y, (&
) Va7 O

(3’8) (GQ)Un . 'gn <%_

CHINCR) U‘n :

-+

(8:%) (0-3) Y,

the corresponding formulae for U

Oy

- ) A
here by the simple replacements o - Oa
[

ra
y, (&

e

n+5>
R

(k.23)

being obtained directly from

and yn;m > @/njli“ in (4.23).
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With the aid of these results we may write down immediately the
corresponding formulae for the spinor functions (4.16). We will not do

so except for noting in particular the formula
A ni A A A - - ‘
(%) Xg (R') (6:%) = Xo *(R"), (h.2k)

which we will need to make use of later on.
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V. BOUNDARY CONDITIONS AT THE ORIGIN

/

In this section we deduce the behavior of the solutions to (3.1)
near the origin of the four-dimensional Fuclidean space. The results -

will include the so-called "regular" and "irregular" solutions. No

v

attempt is made in this section to justify the selection of one or the
other. Aside from physical considerations which we do not go into in
this paper, the criterion for such a selection must come from a study
of the integral equation (3.9) itself. This is left for Sec. VI where
we find in fact, that even the integral equation (3.9) does not
necessarily exclude the irregular solutions, '

The study of the behavior of the solutions to (3.1) at R = O
is rather'involved, if we consider the general case in which E #£ O.
A great deal of insight into this question may be obtained, however, by
considering first the problem at zero total c.m. energy E, vwhere the
equation simplifies considerably. If the behavior of the solutions at
R = 0O should turn out to bé independent of E, as one might expect
on the basis of some familiar examples, it would be sufficientvto consider
this special“case, although the generalization of the results to the

case in which E % 0  will not be immediate, as we shall see.

A, E = O
For E = 0O Eq. (3.1) is invariant with respect to the trans-
formations of the group Oh' In order to make this symmetry most

explicit it is convenient to work in the representation where -



the matrices o and "Sa having been defined already in (4.19). We
call this the "Weyl representation.” o and. y5 are matrices in the
direct sum space of the representations (3,0) and (0,3) of 0) -
The reason for working in this direct sum space is of course the
required invariance of the theory under space inversion. Indeed, as
(4.13) demonstrates explicitly, the operation of space inversion takes

ns+l n \ n n=xly | ;
(__5__ s §) into (5', —75——), and vice versa.

the representation
1

Denoting by D®(R) the representation matrices in the direct sum space

[(50) & (0,3)], we have the following transformation law for the

y-matrices (see (4.21)):

5 5,1 "R -1
DER) 7, DERT) = KT v
Tt follows that for E = O Eq:*(3.1) is invariant under four-dimensional
rotations, so that its solutions méy be classified by the eigenvalues of
‘the complete set of commuting generators of Oh . We write the E = O

equation in the form

Lo(350) o) = o (5.1)

2

L_(3;0) = [m-iy.0 -2 (0f + & Sh + % - m22] - A v(x)Px) .

Mol

(5.2)
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Here V(x) is the "potential" (3.2) and P(x) is the operator defined
by

P): (g 0~ (=, -1) .

Introducing ‘ v

PE): (1) (or, 1)
we define the "parity" operators in three- and four-space:
o o _ p -
My = -1y, 7k), I, 75.f3(X)- | (5.3)
We note the following commutation relations:

(M ) LM = 0, [, M) £ o (5.4)

I,

Because of these commutation relations we may choose the solutions of

Eq. (3.1) to be also eigenfunctions of I, or M), but not of both. In

3
particular, the eigenfunctions of Hh will have to be of the form

ot q
o  (x) = | - ) (5.5)
+ . \\ , *IM ‘ A //’
\G’ni(R) y(nil) (R)/ -
T
with space time parity (-)". Substituting (5.5) into (5.1) and using w

the results of Sec. IV, we arrive at the following set of coupled
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differential equaticns for the '"radial" functions Fh (R) and

+
.25
G, (R):
+

MMQ

;il B3\ L = () 2Lk R) F (R) + n) ¢ R®)
my K Fn+(R) +<dR + R >h Gn+(R) = (=) A = LKl(MR) InER, ‘ Kg(m) knf\,]

MMQ

ml}tn'*‘lc;nJER) + (a%- %)Kn Fn'(kR) = (Y = [k (R) GniR) + X, 0R) ¥ "(R)]

(5.6)
where
_ 4 3 4 nmie) o 5.7
KW = ~5 +t FE ogm - Ts my . (5.7)
dR R

Fquations (5.6) exhibit explicitly the degeneracy of the solutions with
respect to the quantum numbers J and M. In exactly the same manner

we arrive at a set of coupled differential equations for F_ (R) and

G, (R). It is, however, simpler to note that if ®, JM(X) is a solution

. +
JIM JM
of (5.1) with eigenvalue A , then so is @(n+l) odl H5 ¢, » on

account of the commutation relations (5.4). That is, we may obtain the
differential-equations for F_ (R) and G, (R) by simply noting that

(ve make a convenient choice of proportionality constant)

F(ntl) - Gn+ : : 5-9)

We conclude therefore that for a given value of n, the cowvined sel of

. JM JM
solutions @n and Q( : [with J and M +taking on the valucs

n, n+l)_
J = 1/2, 3/2,¢0, (n+3%), M = -3, ~T +1,+++,3) is f{(n + 2)x
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x(n + 2) - fold degenerate. For eigenfunctions of _Hs the additional
twofold degeneracy expressed by (5.8) would correspond to a degeneracy
with respect to the two values of the orbital angular momentum coupling
to a given total angular momentum J .

We now turn our attention to a study of the behavior of Fnt(R)
and Gni(R) as R - 0. Although the potential (3.2) has a logarithmic

singularity at R = 0, The leading constribution exhibits an integral

power law

N
S
N ni

(n,' I'M'|V| n. M) - &

6 8 1 - .
L'ne ST MM b as R-=0

R \-l
‘ (5.9)
Substituting (5.9) for V(x) in (5.6), we arrive at two coupled
differential equations of the Fuchsian type, with R = O a regular,

singular point., We conclude therefore that the six independent solu-
tions (for a given value of A, J, M and n.) to Eq. (5.6) exhibit

the behavior

N Ny
. o, " . B, =
FR)~RY , e YR)~R'  (vith 1=1,6) (5.10)

as R~ 0, provided that oy - a £ 0, and By - B £0, for i# 3j.
We must have, however, o - B; =m (integer). 1In fact, a more detailed
examination of the equations shows that m only can ha&e the values

m = # 1. The qi’s and Bi's are then found to satisfy the indicial

equations
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n n n n n
T -nllat-@+2)lla’ + (n+2)] = (-)nfl &, B =a +1,

(5.11a)
oy oy My n My r
G +n]l @ -m+2) 1@ +(m+2))=(-)y 8,8 =a -1
and
n n n n n n_
" -nl o " +nlla”-m+2)] = (-) &, 8 = a -1,
(5.11b)
- n ~ n- /\,n- n+1i n- An-
@™ -nl] [ " +n)l @ +@m+2)] = (<Y " 8&,8 =0 +1.
We note the following useful relations:
- (n=:l)
o't = a i1,
(1) (5.12)
n+l
&' = G o1,

For the purpose of laterdiscussions it 1s also convenient to distinguish
among the six independent solutions to Egs. (5.11) by a subscript m ,
where m denotes the integral value which the solution in gquestion

approaches as A - O, Thus
o - as AN~ O . (5.13)

Note that ’&_m = = - amnt ;5 finally we note that except for some

isolated values of A , including A = 0, the solutions to Egs. (5.11)
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do indeed satisfy the above stated conditions for the validity of the
ansatz (5.10). This can also be seen from Fig. 4 for the special case
+

n = 1, where we present a plot of o}‘ and 8}i as a function of the

coupling strength A\ .

B. E 0
.We now turn our attention tb the actual case of interest, that
‘ ié, when E,% 0. In this case it is still desirable to expand the
solution in terms of the four-dimensional spinor spherical harmonics,
‘although this leads now to an infinite set of coupled third-order
ordinary differential equations. The situation is therefore much more
complicated and the discussion of the boundary conditions at the origin
is correspondingly more involved.

We begin by restating the results of part A in a somewhat different
form, the reason for this being twofold:
(&) In the E % O case it turns out to be more convenient to work

in the "Dirac representation" related to the "Weyl representation"” by a

unitary transformation. In this representation

(b) If E % 0 the space-time parity is no longer a good quantum

number, whereas I, still commutes with the operator iDE(B;K). It

3

is therefore desirable to restate our earlier conclusions in terms of

the simultaneous eigenfunctions of ,Z)E(B;h) and II

5 -

c’;
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We may obtain the E = 0 eigenfunctions of I, by simply

3

applying the projection operator

1 e . e .y
P;i = 5--{1 + (} 17, P ({i)]; (three-parity + 1)
to the B = 0 solutions (5.5). Denoting the resulting functions by
in+JI&E wvhere L = J I %~ specifies the three-~parity, we have
/ o \
\ IM L - - IM N
[, B AT GV e () Sy N
~ JIk : + \ .
Xy - | )
+ i B L" NJM _ ’LJM /
(-) Eni(R) ’yni + Gni(h) (n=1)_ //
e /
e

( _ )L-J'f*';

with three-parity . The Tunctions T (R) and G, (R)
:‘: R

+

appearing in (5.14) are of course identical to the ones appearing in

(5.5). We note that not all of the solutions (%.14) are independent:

Y JIM LI
~ X

n, (n=l1)_

F

F ~ G(nil)" .’

+

This property had already been noted in (5.8). To be specific we choose

Y JIM . . .
Xn (x) (with L = J 1 3) as the independent set of solutions to
.
. . JM IM
replace the originzl set of solutions @ " and Py (szme quantum
. N n_

numbers J, M end n). Coingnaortothe Dirac representation end making use
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of the definitions (4.8) we arrive at the following expreésions for the

E = 0 eigenfunctions of H5:22
/// 1 L 1 ‘e:\ -
fo{n + & + e)ji + [E(n -4+ 1)}2 +
/,[ n+1 F(R) Yn * n+ 2 c(R) Yn+l
L, , _ |
Xn (X) ={ L . N / %
\ = =
{2( )]2 (e+1)_ (Q(n + 4+ 3)]2 (e+1).
\ n + l . F(R)‘Yh D - ¢(R) Yol
(5.1%2)
with three-parity (-)°, and "
P
Iy I
/72(n )]% bﬂl 2(n+£+3)}§ (%+l;\\
./ L n + F( ) n + 2 G(R) Yn+l
(¢+1)_ { '
X (x) ,\ i . 3(5.151))
re 32 AT - 12 ¢ /
\\‘Mj F(R) ¥ + _n__'“.'!‘l; ¢(R) Y + /
it n+1 n Ln+?2 n+l
NG ' /
with three-parity (-)“l. Here F(R) = F (R) and G(R) = G, (R),
: + +
so that
By oy
1
F(R) ~ B* , e@®) ~ B* 7
_ (5.16)
A0 Al 1
FR) ~ B , G@R) ~ R*
0
as R -» O, where « are the solutions to the indicial equations
(5.11a). Comparing (5.15a) and (5.15b) we see that
(e+1). 3 w

n

X = (-)® m, X *. (5.17)
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Equation (5.17) together with the commutation relations (5.4) shows

I} (4+1).
that X T and X

1 N are solutions to Eq. (5.1) for the sane

eigenvalue A . Thig corresponds to the twofold degeneracy already noted
in connection with (5.8). With the.additional degeneracy in { and the
magnetic quantum number M we have again a set of 2(n + 1) (n + 2)
degenerate solutions.

‘We could have arrived at the results (5.15) also in a less direct
.way by substituling the expansion |

N

) Li N\
Fk(R) Y, B \\
| (5.18)
k=/ ' (£:2)_ ]

\G, (R) Y, )/
\k Xzl

into (5.1). This would lead at first to an infinite set of differential
equations coupled in the quantum number k . Our earlier grouvn theoretical
considerations have shown however that there exist solutions which
actually decouple this infinite set of equations. By studying this
question somewhat more closely wé find that it is precisely the choice
of coefficients in (5.1%5) which leads to such a decoupling via & number
of cancellations. We leave the details of this study for Appendix D
and turn now our attention to the case where E ‘£ 0.

If E # 0, the substitution of the expansion (5.18) into
Eq. (3.1) again leads to an infinite set of coupled differential
equations which can no longer be decoupled. This complicates the study

of the boundary conditions at the origin considersbly. We will show,



ke
however, that if we develop the solutidn as a poWef seriés.in B then,26
to a given ordér in E, only a finite.number of terms will contribute
in the expansion (5.18). Iﬁdeed, consider the solutions ﬁk(x) to
Eq. (3.6). For E below the elastic threshold and at a g;;en value
of N, ﬁk(x) is expected to have a discrete set of poles in E ,
correspondzgg to the eigenvalues E - of Hg. (3.9). Considering in
particular one such pole at E = EO , we write

%)

PO Sl

The bound state wave function ¢©(x) was then defined as ﬁ}ﬁx)
evaluated at the pole: o(x) = Bﬁo(x); assuming that ﬁE(x) can
be developed into a power series in E with radius 'of convergence
ry 2 IEO[ s and noting that in the limit E - O we must récover the

results (5.15), we conclude that to first order in EO

il

2, Lupy .

o2 (x) = xEx) + By V() (5.19)
£, . £,

where Xn"(x) are the E = O solutions (5.15) and wn-(x) is

independent of E. . The general form of Wﬁi(x) will be determined

0

]

below. The E # O solutions are of course no longer degenerate with
respect to J and £ . DNote, however, that both @ﬁi and Xﬁ* are
labeled by the same guantum numbers, implying a one-to-one correspondence

between the E = O and E # O solutions.
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In order to determine the form of Wﬁi(x) we substitute (5.19)

into (3.1), keeping only the first order terms in E We arrive then

Oo

at the following set of coupled equations for Xﬁi and Wﬁ* :
EA '24-
Do) ¥ex) = o, (5.20a)
e .
Ay, £, _(1_ 422y o £y
L) 426 = (B 07 mf) - (my - 17.9) ann (x).  (5.200)

Equation (5.20a) is of course just the E = O equation. FEquation
(5.20b) 1is of the form of an "inhomogeneous" E = O equation, the
inhomogeneous term being already known from the solution of (5.20a).
This suggests that_we seek a solution of such form as to lead to only
a finite set of coupled differential equations. An examination of the
inhomogeneous term in (5.20b) shows that Wﬁi(x) must in fact be of

the following specific form

// \\\
/ 1
A 5 )/
/ [M} F (R) Y+ s e (R)Y* \
£y i n n-1 1 n \
voTx) = .
\ [2(n-£-1)72 (£+1). (£+1)_ /
L IR AOR SRR /
, 5.21
// + 2(n-4+2) 3 AN ( )
/o n=4+2 . + N
SRR 03 ] Co(R) Y0 \

: (8+1). 2 (n+l+4)1 \ |
\FE(R) Lol '[ m ) C®) T
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(£+l)_(X

the formal structure of wn ) being the same as that of

2 . R
o, v +} The coefficients of Y and Y have been chosen so that
L *n n- n+2 -

1
- . B - » B Z . *
when the operator JDO(B;k) is applied to Wnt(x) in (5.20b), the

coefficients of Yh42 and Yh%j vin the resulting exfressions vanish

identically. Our discussion in Appendii D shows that the above choice

of coefficients does indeed accomplish this. In general.a truncation of

vthe expansion (5.18) as represented in (5.21) cannot be achieved without

funning into a contradiction. Thus, for the case in-question, the

substitution of (5.21) into (5.20b) leads to a set of eight coupled

equations for the six radial.function in (5.21), sé that we appear to

be left with an overdetefmined ﬁroblem. It is, however, the structure

of the equations (5.21) as considered from the group theoretical point

of view which assures us that only six out of the eight eqpations can

in fact be independent; This 1is indeed found to be thevcase.
Although we have demonstrated it only to first order in’ EO )

our results suggest that, subject to the assumed analyticity properties

of ‘Bﬁ(x), we may obtain the E £ 0 solution’ @ﬁi perturbatively by

starting from-the E = 0O solution Xﬁi(x), with only a finite number

of terms contributing to its partial wave expansion éuch as (5.18)) to

a given order in EO . Asvfor the radius of convergence Ty of the

expansion of @E(x) in powers of T, ve note that certainly r, <E,

where El is the first excited state in the bound state spectrum of

Eq. (3.9).

Having determined the structure of the E % O solutions to

first order in E, we now examine the behavior of the radial functions



-L7-

in (5.21) at R = 0. This is a straightforward, although tedious task, -
since we are dealing now with a finite set of coupled equations. We will-
not present the details which are purely algebraic in character. The

results of this study are listed in Table I. Introducing the expansion

/ ~
? .

AN

/ .
/Fﬁﬁ(R) Ykzi \\

/

, (5.22)

where we have followed the notation (5.19), we may summarize the contents

of this table by the statements

n, n,
a "+ |k-n| ot + | (k1)-n|
gl g M ¢l g™ (5.2%a)
nk 7 nk *
Ay sy
p & T-1+]x-(ne1)| p & T-1+] (k21)-(n+1)|
Fi~R ;) G2~ R (5.23b)

n n+
as R - 0, where Qﬁ+ and o~ are the six solutions to the indicial

equations (5.11la). Although we have shown only the first-order solutions
(5.19) to exhibit the behavior (5.23) at R = 0, we note that these
boundary conditions are independent of J and M, and are in fact
determined by the E = O solution itself. We therefore assume

(5.23) to be correct independent of the value of E .
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VI. THE INTEGRAL EQUATION AND BOUNDARY CONDITIONS
AT THE ORIGIN

In order to complete our discussion of boundary conditions, we
need to examine‘ﬁhich of the boundary conditions (5.23) are actually
contained in the integral equation (3.9). Our objective in this
section is actually twofold: In addition to establishing which of the
six independent solutions (5.23) to Eq. (3.1) (for given values of J,
£, M and n) are also prospective solutions of the integral equation
(3.9), it seems of considerable interest to learn how the boundary
conditions (5.2%) may be obtained directly from the integral equation
itself. IWe restrict our discussion to the case in which E = O,since, as
we have seen in Sec. V, this is entirely sufficient for our purpose.
In this case the expressién (3.8) for the "Wick rotatea" Green's function

simplifies considerably, the result of taking the limit E — O - being

1
3 1 ] 2 2 23
HO(X) = 5-5 _/ ap Kb[(mg + B(ml - mg_) R]. (6.1)
50
0
For simplicity we will take ml = m? = m. In that case we obtain

upon substituting (6.1) into (3.7),

m . N
1) = B Uglnl) - 0k, @l (6.2)
As in Sec. V-A it is convenient to work in the "Weyl representation."

The E = O solutions are then of the form (5.5). Introducing the

operator
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. //i _ ' .
od) - ) | (6.3)
\\\ -i(o.%)

we write-the E = O solutions (5.5) in the forsm

/RN
.

| - a® ! . e
ded) o RIYT J )

With the definitions
7~ Ag~1 -~ oL A - : :
Hx,x') = Q(x)7 H(x - x') Q') Tx) = o)™ vix) Q%) (6.5)

v
we may rewrite Bq. (5.9) as an integrel equation for ©(x):

il

B0 = o J e Hla) F) - 00) (6.6)

We have

ok ar)
o uf /X () K, (R)
. &K?(MR) K, (R)

and
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H,6ox) = 5 gyl - x])
7 .
Tolox') = 5 (33) Kylalx - x1]) (o:&0) (6.8) |
7T
~ 2 e K- x]) Ky (mfx - x'])] '
o) = I IR(eR) 2 (1) - e =2 |
8 L mlx - x'l m[x - x'l
2 [ Kmlx-x']) . (mfx - ') )
i, 0ox') = S5 tr 2 CRi(ER) 2 o-X" j
8rx~ L m|x - x'| mlx - x'|

Making use of the addition theorem (4.18) we have the expansions

\

80 Kolmlx-x' )= 3: Hn—}rl—;[enln(mR<)Kn(mR>)-2 Lip (B K, o (B)IEAR) o

(6.9)
8 Ki(m!x ? I) - 3‘ In+l(mR<) Kh+l(mR>> .wni (ﬁ)
e - x| n (uR) (nR') Rt TraB
2 23
where R = (¢~ + )%, R. = max (R,R'}, etc., and € = 2 for
n > n
all positive integers n except for n = O . where €y = 1; In(x)
and Kn(x)4'are'modified Bessel functions with the properties
x 1 N
In(x) M'n + 1) (5)
1 xy\"0
K,(x) ~ 5 T@) 3 (m #0) » as x-0
Ko(x) ~ - fnx, ) (6.10)
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With the aid of the expansions (6.9) and (4.2l4) we obtain the following

set of coupled integral equations for the radial functions Fn (R) and
’ +

Gni(R) in (6.4);
Fni.(R) - 2M27\'(—)n+lj R VEdR,{H(%lTlT [EnIn (mR<)Kn(mR>)—2In+2( <)Kn+2 (mR>)]
< [Ki(MR') Fni(R‘) + Ké(MR') Gni(R')]
_[é% Iﬁ+l(mR<)Kﬁ+l(mR>)- % 1 +1(mR<)Kn+l(mR>)][Kl(MR'>Gni(R')+Ké(MR')Fni(R!) f
o} 1 'r e}
Gnt(R) = oMa (=) J_vade{tﬁé I (mRIK - (mR)- % Iﬁ+l(mR<)Kﬁ+l(mR>)]

\

x [Ki(MR') Fni(R') + Ké(MR') Gnt(R')]

(R )1 (R 7)o, (R ek, (R )E, (R') }

"
- 7= [e.T_(mR )K (mR_)- 2T  (mR )K
n+1 nan <"H > T < Rep
(6.11)
where T = (n * 1). In order to deduce the behavior of the radial
0 we make again the ansatz that in this limit

functions at R
F (R) ~RY ana G, (R) ~ B¥; Bresking up the integration in (6.11),
+ *

0O

(@] \'"_\j

R
f dR', by making use of

Jo

we may then evaluate explicitly the integral
the dominant contribution to the

(610). Moreover, in the limit R - O
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¢o)

integral jr dR' comes from the neighborhood of R' = R, so/that the
leading terﬁ in this integral may be obtained by simply substituting for
Fni(R) and Gnt(R) ‘their values at R # O. Performing the indicated
integrations we arrive at the following indicial equations for «

and B

m\(-)n*l{[ L - L } =1 (6.12a)

a+n+1lla -1 - 1] la + n+ 2lla - n]

with B = o+ 1, and

n+l 1 ll .
) {[6+ﬁ+2][6-‘ﬁ1 - [5+n+1][6-n-1]} = 1 (6.a2m)

with o = B + 1; Comparing Egs. (6.12) ﬁith fhe indicial equations
(5.11) obtained earlier, we see that they are in fact identical. This
theh completes our first objective, that is, to learn how the boundary
conditions (5.23) may be deduced directly from the integral equation
itself. It remains now té be seen for which of thesix solutions (5.23)
the integral equation (6.11) remains well defined. An examination of
the equations leading to (6.12) (we do not present the details here)

shows that we need to observe the inequalities

a >-(n+2), o >-n

(6.13)
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if the integration in (6.11) is not to diverge at R' = 0. [Compare
(6.13) with the A = O solutions to the indicial equations!]

At this point it is convenient to define what we will refer to
as the "regular" and "irregular" solutions. We separate the
solutions to the indicial equations (5.11) into two groups, depending
on whether they take on positive (including zero) or negative values
for N = 0. We will refer to these as the "regular" and "irregular"
solutions, respectively. Thus, to take an example, the solutions

n+ n+

@, a4, an to Eqs. (5.11a) belong to the first class,

n
o ~+
a
n Oh+2

Ny T+ n Dy
whereas a_(n+2) s a_(n+2) , and o2 belong to the second class.

We make the corresponding classification of the six independent solu-
tions (for given values of J, M, £ and n) to Eq. (3.1). Consider
then a typical case such as represented in Fig. 4, where vwe have plotted
ali and 5}1 as a function of the coupling constant A . The
intersectién of a given line A = xl with the curves gives the six
(possibly pairwise complex) solutions to the indicial equations. We

see that the restrictions (6.13) do not necessarily exclude the irregular
solutions. Thus, if we take the 1, solutions in Fig. ba as an
example, the conditions (6.13) are seen to exclude only one of the
irregular solutions for AN > O, whereas they exclude all three for

A < 0. By merely counting the number of free parameters, we wéuld
expect therefore Eg. (3.9) fo have a continuous eigenvalue spectrum for

A > 0, unless we supplement the integral equation with additional

boundary conditions. To this end we require the solutions to be regular
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at R = 0. This choice of boundary conditions has the virtue that

we treat the solutions for positive and negative values of the coupling
constant in a like fashion. Another reason for favoring this choice is
that for a non-singular force the integral equation would include
without question only the regular solutions.

Haviﬁg thus completed our study of the boundary conditiocns to be
imposed on the solutions to Eq. (3.1), we like to comment again briefly
on the MacDowell symmetry (see Sec. III) and its relation to the eigen-

value problem. Iabeling the bound-state solutions by the corresponding
values of the energy £ and coupling constant A , we may now restate

our earlier conclusions as follows: If $ﬁ*(x;k,E0) is a solution of

] - (£=1) ' Y
- ; . - * M
Eq. (3.1) for E E, , then @ (30, EO) e T, ¢ (X,X,EO)
is also a solution for E = - EO , at the same value of ‘k + In fact

both of these solutions are regular, if either one of them is. Combining
this with our earlier remarks in Sec. III concerning their asymptétic
behavior, we conclu_de that if tpfl*(x;}\., EB)- solves the eigenvalue
problem for E = E, , then ¢£2i1)¥ (%3N, - EB), as defined above,

28

solves the eigenvalue problem for E = - EB .

That is,

Eg(h; £.) = - EB(X; (¢ l);) (6.14)

which is a more familiar way of stating the MacDowell symmetry.
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VII. NUMERICAL TECHNIQUES

A. General Treatment

In the preceding sections we have prepared the ground for dbing
the calculation we have in mind; that is, to solve Eg. (5.1) subject
to the conditions that o(x) exhibit the asymptotic behavior of
Fig. 3 and that it be regular at R = 0. Writing equation (3.1) in

the form

DL(0) o(x) = & V(x) (- x) (7.1)

we easily verify that the quotient

a* (=) Dy(3) #x)
N = (7.2)
J!d x BT(x) v(-x) Bx)

is stationary with respect to infinitesimal vafiations in ¢(x) about
the solution to (7.1). The integrals in (7.2) converge at infinity for

+ m.. This can be

E below the two-body elastic threshold, i.e. E < my 5

easily verifiéd with the aid of the results of Sec. III as summarized
in Fig. 3. 1In the scattering region the integral in the numerator
ceases to converge, however (the integral in the denominator contimes
to converge for E below the first inelastic threshold), so that the
stationary expression (7.2) can be used only for calculations in the
bound state region. The choice of scalar product was of course dictated

by the desired stationary properties. As an extra bonus we notice that
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the operators DE(B) "and V(x) are self-adjoint with respect to the
scalar products chosen, so that we will have to deal only with
Hermitian (actually real, symmetric) matrices in the calculation. We
also note that A = A as long as the denominator in (7.2) does

not vanish. However, since V(x) dis not a positive definite operator,
this is not guaranteed, and Eq. (7.1) does in fact have complex as
well as real eigenvalues A .

In the actual Ealcﬁlation we considered Eq. (7.1) as an eigen-
value problem in either E or A , depending on our choice of potential,
Thus, in the case of a non—éingular potential, such as the potential
(3.2) in the presence of a cutoff, it was clearly preferable to regard
Eq. (7.1) as in eigenvalue problem in A , since this allowed us, at
least in principle, to represent correctly the asymptotic boundary
conditions, as well as the boundary conditicns at the origin. On the
other hand, in the case of a singular potential it was preferable to
regard Eq. (7.1) as an eigenvalue equation in E, since then the
boundary conditions at the origin could still be incorporated correctly
into the caléﬁlation, although the asymptotic boundary conditions would
have to depend implicitly on the comﬁuted values of E, It was
important that not the converse point of view was taken, since for an
aﬁtractive potential the boundary conditions at the origin are expected
tb play the dominant role. In fact, our numerical calculation showed
that it was absolutely crucial that the boundary conditions at the
origin were treated properly, as it was to be expected, since we are

dealing with a non-Fredholm equation,
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In Sec, VI we argued on ‘the basis of the integral equation (3.9)
that the solutions to Eq. (3.1) should be regular at R = 0. The
solutions to the eigenvalue problem are then in general a linear
combination of the three independent regular solutions to Eq. (3.1)
(for a given set of quantum numbers J, M, £ and n). To take proper
account of all three of these solutions would require the inversion of
exXtremely large matrices in the actual variational calculation. Hence,
if the matrix sizes are to be kept at reasonable values, we need to
compromise by either building into our "trial" functions the correct
boundary ccnditions at the origin and representing the radial functions
otherwise poorly; or by including only the dominant contribution at |
R = 0 and improving instead on the form of the radial trial functions.
From the numericél point of view the latter choice is definitely to be
preferred. An inspection of (5.23) shows that at least for a restricted
range of the coupling constant the boundary conditions (5.23a) with
m = n can be considered as leading at R = O although this choice
will not represent the dominant behavior for all the radial functions.
We will thus consider in the actual calculation only the leading
boundary conditions as given by

p ozn++'k-n| P o, +] (k1) -n]
F'* ~R , G ~ R as R~- 0. (7.3)

Now, it follows from our discussion in Sec. V that the

specification of the angular momentum and parity of a particular
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channel of interest is insufficient to single out a unique solution,

since we are left with the quantum number n labeling the solutions

(5.22) as an additional degree of freedom. Since this quantum number
has no direct physical interpretation, it follows that, to take an

example, the "nucleon" could in principle be considered as a bound

+
state in any one of the infinite number of JP = % s I = %
channels distinguished by the quantﬁm number n . In view of the role

of this quantum number in labeling the solutions, we would expect on
a merely intuitive basis that higher values of n would cérrespond to
higher excited states. The stability of the nucleon under the strong
interactions would then suggest that it should be interpreted as a

bound state in the channel labeled by the lowest value of n . We have

£
thus restricted our attention to a study of the solutions $z+(x) and
(£+1)_
Y’

refer to these solutions simply as mzi(x), and write

(x) as a logical starting point for our calculation. We will

. - ///Fﬁi(R) Yﬁi \\
?f_(%) gg \ (22),

3, z /
N * v y
<Gy (R) Y . -

. (7.4)

Then, according to our choice of boundary conditions (7.3) we will, in
the actual numerical calculation,require the radial functions to exhibit

the behavior

Ly
a£—+|k-£l

5 ;
) 0 o " £+ k-4 [
Fki,(R) ~ R s Gki(R) ~ R

(7.5)
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as R - 0, -where we have made use of (5.12) in order to put the

results into a more symmetric form. Noting also that
3 -1 ™ .
Catd (350)CT = ,iJE*(a;x*) , (7.6)

where zi?E(a;X> is the operator defined in (5.2) and C is the charge
conjugation matrix (L4.1L), we conclude with the aid of (4.15) [the
spherical harmonics (A6) satisfy the same relations] that, for the
bound state problemn, Fﬁi(R) and Gﬁ*(R) in (7.4) may be chosen to

be real, for X real. Specifically, we took the radisl trial functions

to be of the form

aﬁi+(k—£) M

2. - m -7R
FAR) = R 2: a, R e ,
m=0
L (5et) (7.7)
o, 1+ (k- M . :
¢hr®) - r* y b R TR
- km
m=0
where k = £, K. The actual solutions have logarithmic singularities
at R = O "so that we could very likely have improved on the convergence

of our calculation by including explicitly these logarithmic singularities
in the expansion (7.7). We have not done so for the sake of simplicity.
In practice only fairly low values of K and M in (7.7) were
considered; thus typically 2 <K 5 and 0 M g8 . The statiénary
expression (7.2) was then converted to a matrix equation fof the

expansion coefficients (akm B bkm) by performing all the integrations.
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This left us with a set of matrices DE(k'm'i';kmi)ab and
V(k'm'i';kmi)ab corresponding to the differential operator- and
potential -integrals respectively. Here m and %k have the same
meaning as in (7.7) and 1 labels the three independent regular
solutions. (in the actual calculation only one value of 1 was
considered,vcorrespondingto the cholce of boundary conditions (7.5).)
The indices. a, b label the upper and lower components in the
expansion (7.%). 1In order to speed up the calculation we expressed

5

1 in. . _ TN . .
DE(I,J) as a polynomial in® E : D = Dy + ED, + ED, + B D5 5

the matrices Dj and V were real, symmetric: Dj(k'm’i';kmi)ab =

)ba

In the calculations involving the singular potential (3.2) we

Dj(kmi;k’m‘i' , with the corresponding statement for V(I,J).

were not free Lo consider arbitrary values of the coupling constant
strength X . Evidently the six solutions to the indiciél equations
(5.3)a) are real for only a restricted range (Kl, AE) of cdupling—
constant values. (We will refer to xl,E as the "critical” values
of the coupling constant A .) Outside this range we have two pairs
of complex conjugate solutions. In Fact, as Fig. 4 illustrates, the
regular and irregular solutions do, or do not mix at AN = hl,e 3
depending on the sign of A and the particular guantum numbers
involved. Still, from a purely mathematical standpoint one would
expect that, at least in principle, a Well-défined eigenvalue problem
could be formulated even for couplihg constant strengths exceding the

critical value. We would thus expect that ouwr bourdary condition of
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regularity would continue to lead to a discrete eigenvalue spectrum for

lk! > ]X In particular, if there should be no mixing between the

12l
regular and irregular solutions at the critical values of the coupling
constant (such as for A < O in Fig. 4a, for example) we could

continue to choose these boundary conditions at the origin to be real:

q;++lk-nl

ny
2. o +lk-n| £. _e R
Fn};(R) ~ R by Fnl-i(R) ~ AR cos(aIJr nR +B),

Z, n
with the corresponding statement for Gné(R). Here o ' and

n n
QR+ i aI+ denote the real and complex solutions to the indicial

equations (5.11a), and A, B are constants to be fixed by the eigen-
value problem. (The overall normalization constant is of course
irrelevant.) The solution is thus seen to oscillate infinitely fast

at R = 0, the existence of an eigenvalue problem depending of course
critically on the choice of phase B . Aside from the obvious numerical
problems, it is very doubtful whether a meaningful physical inter~
pretation can be given to these solutions.g9 We have restricted.
therefore our attention to the coupling constant range (Xl, kej,

where the values of A corresponding to the solution @ﬁ*(x) are

given by5o

1,2

Moo o= (G (aenB)B (7.8)

where
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o 5 )
A = (Qa2 -9 o, &, + 27 ao)/é7

5
B = -8 [(3a, -8,")/31 /5h

and a, = n(n + 2)2, a, = ~(n + 2)2, a, = -n ; in Table II we

have lisﬁed the calculated values of hl,e corresponding to the
solutions wzi(x) for £ = 0O through 5.

Although the present calculation was originally intended to be
free of arbitrafy parameters, the range (7.8) of coupling constant
values considered-in the singular problem was too restrictive in the
JF - %+' channel (see Table II) as to give é bound state, so that ﬁe
bneeded to modify the nucleon exchange potential (3.2) appropriately if

bound -state solutions were to be obtained at all. We considered

therefore the two modifications

e

AV = A ek 08) +b 1R KR, (T.9%)
Vix) = %ﬁ ['Kl(MR) +1 7% £(R, R)) K,(R)] . (7.90)

Here R, 1s a cutoff parameter and f(R;RC) is a cutoff function

which was chosen to be of the form

f(R;RC) = R/(R+Rc). : (7.10)

"1
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The bound-state solutions were thus studied as a function of the three
masses Mmy, m, and M, the parameters a and b appearing in (7.9),
and the cutoff parameter Rc . We were of course free to give a any
desired value, whereas the parameter b was still restricted to the
range (kl, KE) as given by (7.8). For a =b the potential (7.%a)
reduces of course to the form (3.2) corresponding to the exchangé of
an elementary nucleon. We also note that for the choice of potential

(7.9b) the boundary conditions (7.5) need to be replaced by

k k]l

Fﬁi(R) ~ R, Gﬁ*(R) ~ R as R~ 0. (7.11)
Before we proceed to a discussion of the numerical reéults, there
are several "technical' points which seem worth mentioning. In practice
it was found that the "optimum" value of the exponenﬁial parameter y
in the expansion (7.7) as determined in the course of the calculation
was in general far off from the bne suggested by the known asymptotic
properties of the solution because of the short range character of the
force. The sfafting point of our numerical calculation therefore
consisted in searching Tor a "good" value of the parameter 7y by
studying the convergence properties of the calculation at small but
increasing matrix sizes. We then improved on the accuracy of the
calculated eigenvalues by enlarging systematically our space of basis
%unctions; that is, by keeping an increasing number of terms in the
expansions (7.4) and (7.7). Since we expect the terms in the expansion

(7.4) to become of decreasing importance as we go to increasing values
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of k, we made the index M in the sum (7.7) a function of Kk,
observing at all times the inequality M(k) > M(k + 1). In practice

we did not invert matrices larger than 54 by 54, For matrices of this
size an éccuracy of l% or less was common for the case in which

m, = m,, although an accuracy of 2 10% could already be obtained

1 2

for much smaller matrix sizes. This is to be compared with other-

3,4

calculations. When making this comparison it is to be kepﬁ in mind,
of course, that the presence of spin alone in our problem doubles the
matrix sizes for a given choice of trial function.
Because of the orthogonality of the spherical harmoniés it was
evidently crucial to determine.precisely the total number of terms
which ﬁeeded to be included in the expansion (7.4) if the computed eigen-
values were to be accurate to some specified amount. In practice it
was found that we never had to include mbre than the first five terms
in the expansion (7.4) if an accuracy of about .1% was desired. This
'suggests that our method of reducing the genuine two-dimensional partial
differential equation in the variables R and cos © to an infinite
set of coupled ordinary differential equations by expanding the
solution in the form (7.4) has definite advantages over solving the
'partial differential equation directly, since it provides us with an
approximation scheme iﬁ which we actually need to solve only a small
set (in our case at most five) of coupled ordinary differential
equations. _ -
Tables III and IV illustraté the observations Jjust made. 1In

Table IIT we present a typical sequence of approximations for five
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different choices of the asymptotic behavior of the trial functions. The

first column specifies the form of the trial function, the notation being
K ; M(£), M(£ + 1),--,M(K) (7.12)

where M(k) is the maximum value of the summation index m in the
expansion (7.7), as a function of the four-dimensional angular momentum
k¥ labeling the radial functions, and K 1is the maximum value of k
considered in the partial wave expansion (7.4). The table illustrates
how the choice of the exponential parameter in (7.7) affected the
convergence rate as well as the direction from which the computed
eigenvalues approached the final value. We see that independent of

the choice of 7 , the numbers do eventually converge to the same

final value.

Table IV 1illustrates our above observation that special care
had to be taken to include a sufficient number of termé in the expansionv
(7.4). Table IVa shows the effect of improving only on the radial
dependence; the numbers are seen to converge to the same final value
independent of the choice of ¥ , as one would expect, since we may
correct for a poor choice of the exponential parameter by including
simply a larger number of terms in the expansion (7.7). Table IVb shows
on the other hand, that by improving only on the "angular" dependence
of the solutions we cannot correct a poor choice of 7y , so that the

numbers are seen to converge to different values for different choices
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of y . However, in all cases the numbers are seen to converge to the

"wrong” value, the "correct" value being 1.649 as seen from Table III.

Table IVb also shows that it was entirely sufficient for our purpose

to include only the first five terms in the expansion (7.4), as we

had already pointed out. N
We have outlined here the general numerical procedure which

was followed in the presenﬁ calculation. We turn now to a disucssion

of certain difficulties inherent in our choice of variational principle.

B. Weakly Bound States With m,/m < <1.

If we want to study the physically interesting case, that is,
the bound states of the pions and nucieons with the experimentally
measured masses, we run.into several difficuities with the Rayleigh-Ritz
variational principle (7.2). The fact that we are dealing with weakly
bound states, such as the "nucleon," for example, and with a very small
mass ratio, m.g/}nl = 0,1hL, implies a very asymmetric asymptotic
behavior of the solution wifh respect to the forward and backward light
cohe, so that in the bound state domain the solution is actuall&
exponentially rising in one part of the (cos 6, E) plane, and decaying
in another, although the product ¢T(§Q o(x) is always exponentially
decaying. These circumstances made it in general rather difficult to
obtain reasonably accurate solutions for the case in which mg/ml = 0.1kl

although the variational principle (7.2) proved quite adequate for mass

ratios 0.k g mg/hll & 1, the lower bound being actually a fupction of

the bound state energy considered. There have been presented, of course,
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alternative ways of formulating the variational problem3 which, in

addition to being much more efficient, do overcome to some extent the
above difficulties. However, instead Of pursuing these alternatives,
we will try to "patch up" the variational calculation as presentéd S0
- far, by transferring éome of the undesirable asymptotic properties of

the solution to the potential. To this end we consider the transformation
N
~ SuRcos6 -
Bx) = 0 o), (7.13)

where p  1is some parameter whose value we are free to choose. If we
set u = (ml - mg)w then ‘6(2) will exhibit the asymptotic behavior
$'~ exp[%(E - my - mE)R] along both the positive and negative time

direction, replacing the original asymptotic behavior (see Fig. 3)

P~ exp[(g - ml)R] for cos ® = 1, and O ~ exp[(g - m,)R] for

5)
cos 8 = = 1., We have thus achieved a complete symmetry with respect
to the forward and backward time direction in the four-dimensional

Fuclidean space. Moreover, the solution is now exponentially decaying

for all E <m, +m. . We also note that this particular choice of u

1 2
replaces the asymptotic expression (see again Fig. 3)
' ~ 2 W -2 w
expl- -k r - 5 12 1) by‘ expl - v-kTr - 312 (1 - n)1], where
n o= E/(ml + mg). Hence for weakly bound states (n =« 1) we have

reduced the original asymptotic expression to an essentially time
independent form?l Another choice for the parameter p would obviously
be p = By and would correspond to the choice Hi = wi/E

in (2.9). The result of the transformation (7.13) is
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now that ®(x) is exponentially decaying everywhere in the (cos 6, %)
plane for (mJ- m2) <E <m + m,; hovever, the asymptotic behavior

of'la(x) with respect to the forward and backward time direction is

still asymmetric,
From the practical point of view the transformation (7.13) s

‘merely involves the substitutions
m ~>‘m - K 70 E-E -y
1 1 7 ' )
. ,\., \. ) : ~ HT
e(x) » o(x) , V(x)->V(x) = & v(x)

~din (7.2). As trivial as this change may appear, from a practical
standpoint the situation is now considerably more complicated, since
we are no longer dealing with a rotationally invariant potential.
However, ve still need to compute only one-dimensional integrals. Thus
Lo~y ~ ,
in order to evaluate the integral ax g(x) v(-x) #{x) in (7.2)

we make use of the expansion

% Ty, (HR)
o"MRcos® ) (_)k (k + 1) ,Eilﬁ___ Ckl(cos 9) (7.14)
k=0 e '

and of the reduction of the direct product of two four-dimensional
spherical harmonics. In practice we needed only the reduction coefficient

Ez(nn’N) as given by the integral
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o P 282 841 2+1 1

¢"(on'N) = NN ,[ de (sin @) C (cos ©) Coug (cos ©) CN(cos 8).
o

(7.15)

Here Cnf(cos ®) are the Gegenbauer polynomials and an' is the

T

normalization coefficient defined in (A7). ©Note that éﬂ(nn'O) = 6nn

and ao(nn'N) = 1. From the orthonormality property
1 1
P £+__
. 277 4+l £+1 2,72
J e T e e - sy, @)
-1

we deduce immediately that
ey ,
C"(an'N) = 0 unless |n-n'l <Ngn+n'. (7.16)

Tt also follows from (7.15) and the property Cnﬂ(-t) = (=) an(t)

of the Gegenbauer polynomials, that

~

Al ! ~ g
Fnw) = O ) (7.17)
so that
"l
C(hm'N) = 0 unless n +n' +N = even integer. (7.18)

s

, p ‘
In practice the coefficients C (nn'N) were computed numerically by
. expressing the integral (7.15) as a quadruple sum over products of

gamma functions.
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Making use of the above results we may now convert the variational
" expression (7,2) to a matrix equation just as before. In particular, with
. . . v
the expansions (7.4) and (7.7) for our trial function @(x) corres-
ponding to the transformed solution (7.1%) we obtain for a typical
element of the matrix {v(nm;n'm')ab] replacing the integral

-

j dux B'f(x) %K-X) akx) in the stationary expression (7.2)

A g v
V(nm;n'm')11 = L (—)k(k + 1) [Cﬁ(n,n',k) Ulﬂ(n +n'+m+m'k)
, ; k :
v | (7.19)
L ok, ) O , ,
. [An'+l o] (n,nv+ 1,k) + A, C (n,n'- 1,k)] Ue(n,+ n'+ m+ m ;k)}

where

2(aﬁ+—£)+N+l
k,r) 1, (R)  (7.20)

1%

utanx) - %Df—g_-de e’ L(R) R

is now a fypical integral that had to be computed, with p(R) denoting
a cutoff function. (For the singular problem p(R) = 1.) Only the
Bessel functions Ty, (HR) and T, (1iR), with X = max(k) in the

sum {7.19), were computed explicitly, the rest being obtained with the

aid of the recursion relations

&) = 1 G+ B (x) .

(Note that as a consequence of (7.16) and (7.18) only a finite number
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of terms need to be summed in (7.19).) The integrals were computed
numerically by use of Gaussian integration techniques.32
The effect of introducing the modification (7.13) is illustrated
in Table V where we have listed for a sequence of increasing matrix
sizes the computed coupling constant values needed to give a bound-
state of the actual pion nucleon system at the mass of the nucleon,
E = 1.0. The potential was taken to be of the form (7.9b) with
RC = 0,7 and M = m, = 1.0. For'the choice p = 0 in (7.13)
the "convergence" of the calculation is seen to be extremely poor,
whereas the choice pu = 0.856 is seen to lead to a quite satisfactory
convergence of the numerical results. In practice the modification
(7.13) provided us with one additional variational parameter which we

were free to adjust so as to optimize the convergence properties of

the calculation.
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VIII. NUMERICAL RESULTS

In the present calculation we devote our attention exclusively
to the J = 5/2 and J = l/é channels. For convenience we
divide this discussion into several parts corresponding to the different
values of the total angular momentum J , isotopic spin I and parity
that were considered. To a large extent we are concerned only with
the general features of the eigenvalue spectrum of Eg. (3.1), which
are not expected to depend critically on the ratio mg/%ﬁf Because of
the technical difficulties encountered when dealing with a ratio
mg/ml < <1 (as in the pion-nucleon case), we have placed somewhat
greater emphasis on the case where m, = me . We note that the last

significant figure of the computed eigenvalues as listed in Tables VI

through XIII is uncertain.

A. The W (3% =3/0", T = 3/2) Channel.

In this channel the coupling constant A 1s positive (recall
that A dis related to the pseudoscalar coupling constant G as in
(2.8)); the parameters a and b in (7.9a) were taken to be positive,
as well. 1In Table VI (Fig. 5) we have summarized our results for the
choice of potential (7.% ) with m, - m, = M = 1.0, The energy
spectrum was computed for several values of a and b. We see from
Fig. 5 that both the singular and nonsingular components of the
potential (7.%) Nget "0 attractively in this channel. We also note

that, for the range of coupling constant values considered here, there

exist no excited states in the energy specltrum.y'L We see from Table VI
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that for the undamped nucleon exchange potential (3.2) we obtain a
bound state of mass M, = 1.649 (in our units) for AN = 1.6
(Gg/hﬁ = 10). Finally, although we have not verified this explicitly
for this particular éhannel, we expect the curves for E vs. a in

Fig. 5 to continue smoothly into the negative energy region, since

the eigenvalue problem is well defined for all energies |E| < m, + m,,
as we have noted already in Sec. VI. We will see this explicitly in

. . P 1t 1
our discussion of the J = 50 I = 5 channel.

In Table VII we have summarized the corresponding results for
the correct pion-nucleon kinematics, that is, for m = M = 1.0

and m, = 0.14k, thg pion mass. Again we studied the energy spectrum
for several values of the parameter a in (7.92), with b = 1.6. For
the choice p = O in (7.13) the convergence of the calculation was
rather poor for energies close to threshold, that is, for 1.6 La gl.9.
(See Tablé VII.) The modification (7.13) did lead however to some
improvement for a suitable choice of the parameter p . Table VII

shows that for the exchange potential (3.2), that is, for a = b in
(7.9), we obtain a bound state of mass M, = 1.04 at a coupling
constant A = 1.6 (G%/Hn = 10). It is quite reasonable to interpret
this bound state as the N¥(1236), since, for the singular force (3.2),
the N° could emerge in our calculation as a weakly bound state, while

a more reallstic treatment of the short range part of the force may

"predict" it as a resonance (for the same value of the coupling constant).

The above value for the mass of the n* should be compared with the
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value calculated by Abers and Zemach,6 who obtained the N* in their
N/D calculation as a bound state with a mass m(N*) = 1,13 (in
our units) at the experimentally measured value of the coupling .
constant, for a force input corresponding to the exchange of an

elementary nucleon. The results of Table VIIT give qualitative

support to our observation that with the modification (7.10) of the

shbrt range part of the force and a reasonable choice of the cutoff
parameter Rc , we would not obtain the N* as a bound state at the
experimental value of the coupling constant.

In Table IX we give the energy spectrum as computed for several
values of the mass M of the exchanged nucleon, for m, = m, = 1.0
and the potential (3.2) with A = 1.6, We find that for increasing
valhés of M (with a corresponding decrease in the range of the force)
the two-body system becomes more deeply bound, which seems at first to
contradict our intuition. A glance at the potenfial (3.2) shows
however, that the mass of the exchanged.nucleon controls not only the

range of the force, but also the effective coupling constant strength.

Finally, we have summarized in Table X +the bound state energies

as computed for several values of m, with m, = M = 1.0, and for

the choice of potential (7.95) with a - 1.9 and b = 1.6. The

convergence of the numerical results was quite good for m2 in the

range from O.4 to 1.0, even for the choice pu = 0 in (7.13). -
B. The J° - 1/%, 1=3/ Channel, -

Again only positive values of the parameters é,b and A are

to be considered here. No stable particle with the above quantum
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numbers has been observed to date. Because of the very restricted
range of coupling constant values that could be considered here in

the singular case (see Table II), we were unable to obtain any bound
states unless we considered the more general forms (7.9) for the
potential, with a # b and R, # 0. This was the case in all

Jd = % channels, independent of the isotopic spin and parity, and
was of course the reason for considering at all the modifications
(7.9). In Table XI (Fig. 6) we present the bound state energies as
computed for several values of the parameters a and b in (7.%),
with ml = mé = M = "1.0. Qualitatively the situation is very
similar to that represented in Fig. 5, except that now the singular
component of the potential (7.9a) acts repulsively, whereas it acted
attractively in the N* channel. The nonsingular component acts
attractively, as before. One might expect that the situation would
be reversed if we considered negative values of the parameters a and
b . In particular, since the overall force was found to be attractive
for a, b > 0, we might expect it to be repulsive for a, b < 0. This

is not the cdsé, bound state solutions having been obtained for both

signs of the forces, as the following discussion will show.

1+
C. The Nucleon (JP = %, I = %) Channel.

In this channel A < O, The parameters a and b in (7.9a)
were taken to be negative as well. 1In Table XIT we list the computed
bound state energies at several values of the coupling constant N\ ,

for the choice of potential (7.9b) with R, = 1.0 and
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m, = m. = M = 1.0, We have found it instructive to study this

time explicitly both the positive and negative energy spectrum. As we
Ahave.pointed oﬁt already, our eigenvalue problem is just as well defined
in the negative energy domain as it is in the positive one, provided that

~(m

7t mg) <E < (ml + mg). The results of Table XTI as plotted in

AFig. 7 indicate a somewhat "abnormal' situation, the computed binding
energies bearing an inverse relationship to the magnitude of the
¢oupling constant. However, in yiew of the MacDowell symmetry as
stated in the form (6.14), this "abnormal" situation in the 1
.channel (we use the notation £,) is a direct consequence of the
existence of a "mormal" situation in the O+ channel. This has been
explicitly verified numerically. Stated more generally, given a
normal situation in the £. channel, we will have a corresponding
abnormal situation in the (£ : l); channel. It is clearly sufficient
to coﬁpute the positive and negative energy spectrum in all angular
momentum channels of a given parity, since the energy spectrum in the
remaining channels of opposite parity may be obtained from here with
the aid of (6.14). We note that the MacDowell symmetry has been
shown21 to be a consequence of extended Lorentz invariance (invariance
under complex Lorentz transformations) which is itself a consequence
of the invariance of the S matrix under real Lorentz transformations.
Hernce, the usual requirement of Lorentz invariance provides the
physical reason for the existence of the abnormal situaﬁion observed

above.
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Finally, Table XIII summarizes for the nucleon channel, the

data complementary to that presented in Table VIII for the v

channel. Fixing the energy of the bound state at the nucleon mass

(E = 1.0) we have computed the eigenvalues A as a function of

the cutoff parameter R, in the potential (7.90), with m. =M= 1.0

1

and m. = 0,144, the pion mass. [Since we are dealing here with a

2
very weakly bound state in addition to a very small mass ratio

mQ/%ﬁﬁ we found it imperative to consider the modification (7.13). For
the choice u = 0.856 the convergence of our numerical results was
quite good.] Comparing the contents of Tables VIII and XIII we note

that the values of the pseudoscalar coupling constant G needed to

give a bound state of the =N system at the nucleon mass is approximately
three-half times larger in the N* channel than in the nucleon channel!

(Recall that an estimate based on the relative sizes of the Born term

in the various channels would predict the nucleon as contributing the

4

dominant force in the N* channel, not in the nucleon channel!) We
observe however that the situation in the N* channel is a normal one,
whereas in the nucleon channel we are dealing with an abnormal situa-
tion, so that the strength of the force (as measured in terms of the
binding energy of the bound state) is here inversely related to the
strength of the coupling constant.

We shouid like to conclﬁde this discussion on a somewhat
pessimistic note. Our results have shown that any estimate of the

relative strength of the forces in the various channels as based on
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the Born diagram of Fig. 2 will fail completely in the bound state
problem, as of course was expected. Moreover, our calculation has also
shown that, for the bound state problem, the sign of the. coupling
constant does not»in general provide a criterion for distinguishing
between attractive and repulsive forces (unless the operators involved
are either positive or negative definite, as is the case in a ¢5
theory with equal mass particles.). This implies in particular that
the study of crossing matrices alone cannot provide in general an
estimate of the relative sign and strength of the forces, except when

this study is made in the conteéxt of a particular dynamical model.



-T79~

IX. TIME INDEPENDENT APPROXIMATIONS TC THE BS EQUATION

As we have seen, a great deal of effort was involved in the
solution of Eq. (3.1). It is clear that the presence of the '"relative
time" in the BS equation presented the greatest difficulties in our
analytical discussion as well és in the actual numerical solution.
This motivates us to ask a number of questions: What is the role of
the relative time variable in the BS equation? Under what conditions
would a time-independent description of a physical situation be just
as adequate? Is it possible to arrive under these conditions at a
time independent equation (with a local or nonlocal potential) by
starting from the original covariant equation? In particular, we méy
ask whether the static lirﬁit of Eq. (3.1) exists, and if it exists,
what particular form it would take. Static models for the =N inter-
action have received a great deal of atfention in the past, nost of the
discussions having been given, however, within a dispersion theoretic

35

framework, although the pioneering work of Chew and Low”~ was presented
in a field theoretic context.

Tn order to answer the above questions, we must begin by
understanding the role of the relative time variable in a covariant
theory., This is discussed in the following sectioﬁ, where we find that
this role is intimately connected with the presence or absence of anti-
particles in the theory. 1In Secs.B and C we will then consider two

particular time-independent approximations to Eq. (3.1), which we will

call the "static" and "nonrelativistic” limits. The "static limit"
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involves approximations which have a simple diagrammatic interpfetation
and which will lead, at least formally, to the well known Chew-Low
_static model for the pion-nucleon interaction (in the ladder approxima-
tion). The "nonrelativistic" limit will involve the approximations
already considered by Blankenbeckler and Sugar56 and by Schwartz and
Zemach.3 In every case, however, we need to introduce a cutoff in

order to make the approximations at least somewhat meaningful. In

Sec. D we will then compare the solutionsto the equations in the static

and nonrelativistic 1imit with those of the original BS equation. The

discussion of a related topic is left for Appendix E,

A, The Role of the "Relative Time!l

We begin by considering our problem from a somewhat "old

‘fashioned" point of view., We like to solve the eigenvalue equation

HSIB> = EB}B> (9.1)

where HS is the full, time-independent Hamiltonian in the "Schrédinger
picture" and ]B) are the statiomary eigenstates of HS . This is in
general a hopeless problem since the exact treatment of Eq. (9.1)
within a relativistic framework would necessarily lead to an infinite
set of coupled, three-dimenéional integral equations for the probability

amplitudes A(m,ki;n,pj;ﬁ;ﬁk) of finding the "bound state" |B) in a
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state of m bare mesons with momenta ki’ n ba;e nucleons with
momenta pj, and T bare aptinucleons with momenta ﬁk, Hence, in

any practical calculation we have to truncate somehow_thisvsét,of
coupled equations. Thus, speaking diagrammatically, one might ignore
all higher (than some given number) intermediate particle states, and
include the contribution from the lower lying intermediate particle
sbtates exactly. Another less ocbvious possibility would consist in
including some well defined contribution from all intermediate particle
states. Since we are dealing with off-shell equations it is by no
means clear which of these truncations would be most realistic. This
is an interesting question, but has not been consgidered hereeany further
in this paper. The presence of an arbitrary number of particles in the
'intermediateystates is characteristic of any covariant treatment, since
particle;antiparticle pairs must be included. On the other hand, in
some field theoretical models ignoring the antiparticle contributions,
only a finite number of particles in the intermediate states may
contribute. A classic example is provided by the VO sector of the

57

Lee model, corresponding to the time- ordered ladder graphs of Fig. 8.
Only one- and two-particle intermediate sﬁates contribute here, corres-
ponding to the fact that the IVG} and lNee> represent a complete set of
free particle states for this particular sector. Returning to our original
problem, we would like to consider now the second type of truncation
suggested above., Using again the diagrammatic language, we would like

to truncate the infinite set of coupled, three-dimensional integral

equations arrived at from Eq. (9.1) by including only the contribution
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from the laddef.graphs,:ignoring "crbssed fungs,” ete. This will
.léavé us again_with an infinite set of coupled equations, which_ére

in fact equival'ent'to the covarianﬁ equation‘ (211) Indeed, from
the point of view of perturbation theory we Tind that, grouping to-
gether all time-ordered diagréms of é given order N , we obtain
invériably N . diagramsiwhiéh differ merely in the ordering of the
vertices.b The;e N l‘ non-covariant diagrams may be collected however
into a single covariant Feynman diagram by introduéing an additional
degree of freedom éorrespondiﬁg to the time-variable in’coordinate
:space. To give a specific example, we conslder the box diagram of

8
Fig. 9, as represented by the integral5

 fﬁuq’ Uk, 00 )M + 7.(k'+ a)lM - 7’(% + )M+ 7 (k + q)] U(k, 0)
@x)* [(c'+ o)+ - ie][(g- v Q) - iE]f(k+C1)2+‘M2- ie]((é{' - a)ffr e

(9.2)

aside from irrelevant kinematical factors. It is convenient to
séparate the particle and antiparticle contributions in the integral

(9.2) by writing

(9.3)

[’U(g) Gp)  V(-p) F(-p) )

o . o .
| E(p)-p -ie | E(p) + p ~.ie J

for the nucleon propagator, with the corresponding separation of the
) tor. = . = =
meson propagator. Here U(B)ac U(g,o)a a?d V(E)ac V(g,c)a

[75 U(p) C-l]ao are the usual Dirac spinors for the nucleon and
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antinucleon feSpectively.* The separation (9.3) corresponds to the
diagrammatic decomposition of Fig. 10, and leads to the replacement

of (9.2) by the sum of sixteen separate integrals. It is however our
claim that by a careful algebraic manipulation of the individual terms
in this sum, we may rewrite it asg the sum of twenty-four integrals
bearing a_one—to;one correspondence to the time-ordered diagrams of
old fashioned perturbation theory. The reason that the decomposition
of Fié. 10 does not lead immediately to such a‘one—fo-one correspondence
is of course, that even for a detailed specification of the quantﬁm
numbers labeling the particles in the virtual intermediate stétes, the
interactions at the vertices may still proceed in more than Jjust one
given time-order. Figure 11 illustrates our point. Thus, the time-
ordered diagram of Fig. lla is the only fourth order diagram contri-
buting to the oaN interaction if no antinucleons are to be present in
the intermediate states. On the other hand, all four diagrams of

Fig. 11b are characterized by the same quantum numbers labeling the
particles in the virtual intermediate states, and merely differ in the
time-ordering of the vertices. In practice the "rules of the game" as
applied to the box-diagram of Fig., 9 were found to be very simple:
Having made the separation (9.3) in the integral (9.2), and performing

the po integration, a particular integral was found to correspond

¥ Note that the sum over spins in (9.3) is implicit in the matrix multi--
plication: [U(p) i'J(p)]@B D) U(p,o)aﬁ(p,o)ES , ete. We will make
A ~ (o] ~ -~

frequent use of the shorthand notation used in (9.3).
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to 1) a single time ordered diagram, as in Fig. lla, if the integrand
ianlVed only one polé in’either the upper of lower half of the po
plane; 2) tﬁe sum of several time-drdered diagfams, such as in

Fig., 1lb, if the integrand'exhibited-more than oné pole in either half
of tﬁe po "plane. It is a simple, although tedious, algebraic
excercise to verify these statements explicitly for the box diagam of
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Fig. 9, aﬁd becomes é forbidding task forbhigher order diagrams. The
‘correctness of our observationS'éan‘however be demonstrated in general,
as well. |

The above consideratioﬁs have led then to a clear interpretation
of the role of tﬁe relaﬁiVe timé variabie in the BS equation (or a
covarianf_theory”invgeneral). Its introducfibn repreéents thus merely .
~an alternative mathematical way of dealing with a difficulty intrinsic |
to any relativistic problem, that is, the infinite dimensionality of
the Hilbert space of particle states.. In particular it follows, that
if for some reason (such as conservation laws ) only one time-ordering
of the diagrams should be permissible, the time-varisble no longer
plays a‘usefﬁirrole, and we should bé able to eliminate it explicitly
from the theory. We will make specific use of these ideas in the
following sections.

We like to conclude this discussion by commenting briefly on
the importance of the antipafticle contributions in a relativistic
theory. It appears that it is difficult to make a reliable statement
in this respect. An examination of the“time—ordered graphs of '"old
fashioned perturbation theory" shows (we refer here specifically té

the zN problem) that individual diagrams (of a given order) involving
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antinucleons in the intermediate sﬁates are supressed with respect to
the diagrams (of the same order) involving no antihucleons at all, if
the ratio of the meson mass to the nucleon mass is small (b/M < < 1),
provided that the dominant contribution comes from intermediate particle
states-with momenta small compared to the respective particle masses.
This presupposes the presence of a sufficiently strong damping mechanism.
However, even if all these conditions should be met, it should still be
remembered, that by neglecting the antinucleons in the theory we are
excluding N ! - 1 (perhaps "small'") Nth order diagrams out of the

total of N . diagrams.

B, The Static Limit,

- Starting from Eq. (2.19) we arrive, by making a number of
approximations, at the "Chew Low equations” (in the ladder approximation)
for the static pion-nucleon interaction. For the discussion we have in
mind it is convenient to work with the equation for the scattering
amplitude. Thus, introducing the Stapp M- function by

(kk) = gy 00) MGk, K) U(K) (9.4)

where f(g’,%) is the on-shell scattering amplitude defined by (2.20),

we arrive from (2.19) at the following off-shell equation for M(p,k):

" PL TR "
M(px) = inI(pk) - | ‘2—23—)17 T(p + ') Tpp') Mp', k). (9.5)
T
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For later convenience we have labeled the momentum space Green's function
explicitly by the total C;m..ehéfgy B . We proceed to méke a series

of approximations, which, métiﬁated by our earlier coﬁsiderations,
require however the presence of a properly chosen cutoff in order to

have any validity. Assuming then a suitable "damping mechanism” to be
present in Eq. (9.5), we proceed to neglecﬁ the antinucleon contributions,
cofresponding to the replacements

75 Ulp) U(p) 75

) -0 = a0 () =

[E(p) - p°- ie)

. (9.6)
u(p) O(p)

¥() - Eo) ) — .
<E(P7 (E(p) - (p+ éE-) - 16][@(3)2- (p°- éE')2' ie]

These approximations are most easily interpreted diagrammatically, the
omition of the antinucleons leading evidently to the replacement of
the sum of ladder graphs of Fig. 1 for the BS wave function by the

sum of time-ordered ladder graphs of Fig. 8 for the T-matrix (with the
replacement of the dressed V-quantum by the N~quantum). These considera-
tions indicate that the po variable can no longer play a useful rple
in equation (9.5), suggesting that we should be able to perform the
po—integration explicitly. In order tose why this should be the case,
we examine the analytic structure of M(p;k) in the po variable, as
deduced from equation (9.5) by an’ iterative scheme. We easily verify
by going through an elementary "pinch analysis," that M(p,k) has

only singularities in the lower half of the pO plane, as a result of
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the absence of the antinucleons. Moreover, basing again our arguments
on perturbation theory, we verify that the pO integration converges
sufficiently fast, such as to allow us to close the po contour of
integration in the upper half of the complex po plane. Doing so,

and defining the off the energy shell T-matrix by

T(pk) = (o) ulp, - op) 5 & 5 - alk)) U() (9.7)

o~ e A e Y

we arrive at the following integral equation for T(p,k):

d5q n
T(ok) = A V(pE) ¢ ’\f@ S vipgE) Gy k) 90)
P Pl 7t oA e A
where
( ) " ) Vs \ ﬁ( U(p + k) ﬁ(p + k) 7s U(k)
V(p,k;E) = - -
g i E(p + k_‘) (B - B( D+ k) - m(p) - w(k) + ie]
(9.9)
Gee) = (=) : . (910)
- \Ew(p) E(p)/ (B - E(p) - ofp) + 1c]

As our above remarks have anticipated, this is precisely the equation

we would have arrived at by simply applying the '"rules™ of o0ld

fashioned perturbation theory59 to the sum of ladder graphs in Fig. 8.
It should be noted that Eq. (9.8) is marginally singular, that

is, our approximations did not destroy this particular feature of the

original Eq. (9.5). However, it is clear that the sequence of approxi-
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mations leading to Eq. (9.8) are éé;;éinly unjustified in the absence
of a cutoff, and are in fact very queéstionable under any circumstances,
as our qualitative discussion in Part A has indiééted. We will thére—
fore simplyvaccept the approximations carried out so far, and proceed
from here. '

If we attempted to solve Eq. (9.8) as it stands, we would be
faced with several difficulties. Since it is a marginally singular
integral equation, the asymptotic behavior of T(p{%) in the off-shell
variable p is crifically dependent on the coupling strength. Hence
any attempt to solve Eq. (9.8) numerically would require us to take
explicitly care of these asymptotic boundary conditions. However, even
if proper care is taken in this respect, some preliminary calculations
seem to indicate that there exist basic difficulties in solving such
singular integral equations by the usual meshpoint techniques. Another
unrelated difficulty which we encounter, is the presence of the non-
rotationally invériantvquantities E(B'+,§') in Eq. (9.8). This
complicates the partial way analysis of this equation considerably.

We will not.try to overcome these difficulties, but will remedy these
by simply introducing to begin with a cutoff in Eq. (9.5), and by
making an additional approximation in Eg. (9.8) designed to simplify
the partial wave analysis.

Denoting by 9‘ the momenta of the nuclecns in the virtual
intermediate states of the ladder graphs of Fig. 8, we could expect,

in the presence of a suitably chosen cutoff, the inequality Jq[/M <<1

L
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to hold.v Under these conditions we could go to the full static limit
of Eq. (9.8)., It is in this full static limit that we recover the
classic Chew-qu equations in the ladder approximatilon, which ignore
the nucleon recoil altogether. However, for reasons to be discussed
later, we will choose a cutoff function g(p), having the asymptotic
dependence g(p) ~ p-2 as pz-* ., For such a slow asymptotic fall-
off we cannot go to the full static limit of Eq. (9.8), but need to
take into account at least some of the nucleon recoil. Keeping in
mind the above mentioned difficulties of solving Eq. (9.8) directly,

we proceed to make the following approximations in (9.9):

(0(s) 75 Ulp + ") o + ') 75 UG") = - T EENED) ()
: (P+P')2‘
ME+£WHE-m@)-w%u-ME+FW]$MF4LM£%MEW——ﬁﬁr-r
(9.12)

In making the approximation (9.11) we went to the full static limit
in which E(p) == M. With these additional approximations, we arrive
now easily at a partial wave projection of V(p,k;E). Thus, making use

of (A3) we note the following expansion:

1 1
2pp'

(-)' o, (x) z

il o

(p + p' )

where Qp(z) are the Legendre functions of the second kind, and
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Defining
2 2
. P+ P 1 M
= - - - ' . X o~
Tm T B-M w@) <M£) 2M 1 2pp'
and introducing the expansioh
: A Ly a
v(p,p'E) - L Ve pE) Z34(E)
VA ﬁ+

we obtain with the aid of the formulas listed in Appendix A

; 2
vte(p,p1;8) = %— (2 vy q(vy) - @ (v )] - (9.13)

Finally, since we are interested only in the bound state problem it
is convenient to rewrite Eq. (9.8) as an eigenvalue equation for the
bound state wave function $(P) . Proceeding as usual, and denoting
by @ﬁi(p) the partial wave projection of @(p),.we arrive at the

eigenvalue equation

o) = Gy [ By pf vt ¢ . (9.14)

In continuing Eq. ( 9.8) to the bound state region we treated E, p

As

and k as independent variables.
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C. The "Non-Relativistic" Limit.

We consider in this section another +time-independent
approximation to Eq. (2.11), which leads to the equation for a non-
relativistic (NR) pion and nucleon moving in the field of strongly
singular, central forces plus a force arising from the coupling of the
nucleon-spin to the orbital motion of ﬁhe system. The appra imation
to be considered has the disadvantage of not having a direct diagrammatic
interpretation and being based instead on the intuitive notion that
the dependence of the BS wave-function on the relative time is a
relativistic effect. As we have tried to emphasize in the previous
sections (see also Appendix E) such an intuitive notion can be misleading.

Consider Ey. (2.11). We seek a limit in which the solutionuo
v(x) exp(i g th) is independent of the relative time. We call this
the NR limit of the equation. Since the Green's function determines
essentially the time-development of the solution, we expect ao(x) =
GO(X) exp (i ;—D 12t) itself to be independent of time in this limit.

A glance at Fig. 3 shows that for E sufficiently close to threshold,
Eb(x) will asymptotically be essentially independent of the relative

time. Now, letting m and rescaling simultaneously E so

1,0 0 €M,

that the ratio n = E/(ml + mg) remains fixed, we have

GO(X) - Go(e x) as mppvem o (9.15)
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Hence, as we let the masses tend simultaneously to infinity in

M,2
the above manner, keeping E -fikxed - (in units of m o+ mE), the Green's
function GO(X) becomes‘asymptotic at decreasing values of x . This
limiting process is of. course equivalent to letting the mass M of the
exchénged nucleon tend to zero, keeping all other parameters fixed.
~This was the point of view taken in Ref. 3, and shows that we must
supplement the condition Inl 2% 1 for a NR situvation with the
requirement that M — 0, in order to arrive at a time-independent
eguation.

The precise asymptotic form of Gb(x) ror |n| 2 1 was

found in Sec. ITII to be given by [the same result applies here as

to Hy(x))*
= % i e Tkr
Go(x) = Axio(r) = 8= 7 s (9.16)
N -l . .
where k = i 7\/-k” in the bound state region. In the limit
m o5 - 00, = const ¢ 1, we may thus replace equation (2.11) by
2
iker 3 o ' :
X(r) = Uk) e  -n[ar A (x -x) V(') X(r') (9.17)
PV / ’ o ey Nr Y AL

where we have performed the time integration in (2.11) and introduced

the definitions
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X(l”) = [W(r't) exp(i ;_L_)lgt )]t=0
o (’}:) = [m +1 75 + »° @ ] ‘)270(1') |
(9.18)
V(;;) = =i (k) (M- 1 PN 70 a\12] Vo(r,-M)
Vo(rsM) = = exp [ - "‘V{Jj\;équ;?r ).

We are thus left with an energy dependent potential, with an energy

dependent range given by
r o= | M - (";L‘“—“ii‘ {J . (9.19)

By rewriting Eq. (9.17) in momentum space, we may compare the approximations
involved here with those made in the case of the static limit. We will
not go into a discussion of this point,

Equation (9.17) is readily converted to the differential

equation

=17V =% @l X)) = - Z& @) x(x), (9.20)
where we have made use of
. T2 0 &% i 3
(m-17v-7" o) () = 5 (@) .
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It should be noted that Eq. (9.20) as it stands is "supersingular"
and canrot be expected to follow from the original "marginally singular"
equation (2.11) by the above limiting process in the masses my o o
In fact, fhe solutions to such supersingular equations are known to
exhibit essential singuiarities at the origih.hg Hence if our approxima-
tions are to be meaningful under the stated limiting conditions, we will
have to consider Eg. (2.11) in the presence of a cutoff, just as in
the case of the static limit. This will be done in the following
section. For the present discussion we will assume Vb(r;M) in (9.18)

- to have been replaced by a ;ufficiently well behaved potential Uo(r)
such as to make the approximations leading to Eq. (9.20) meaningfﬁl.

Equation (9.20) is of the form of the Dirac equation for a
relativistic spin %. particle moving in some fixed external, spin-
dependent field, an interpretation not suggested by our approximations.
We proceed therefore to cast Eq. (9.20) into a more manifest, non-

relativistic form, by rewritingvit as an equation for the "dominant"

(upper ) component @(r) - in X(r) :
. A A

(Ve + /lf) o(r) = [u(r) - 12; o(r) 5.T] o(-r) (9.21)
where L = -i; x _V’,
o(r) = = Uyx), Tr) = Z a ur),
(9.22)

i) =m0 - ) o) - o) + o) Plx)
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and F (r) is the operator introduced in Sec. V. In arriving at (9.21)

e

we have assumed that effectively |[¢ Uo(r)l < < 1, where

¢ = (M - u)l,))/(m:L + wl). This condition can be met for weakly bound

states and for a sufficiently weak coupling constant AN , if

(04

UO(r) ~r" (@ >20) as r - 0, In particular, for M = O and

m = m, , Eq. (9.21) follows exactly from (9.20).

D. DNumerical Results.

Although our discussion in this section has been largely
academic, it is still of some interest to compare the eigenvalue
spectrum of the various equations considered in this paper. We have
thus solved mumerically Egs. (3.1), (9.14), and (9.20) for energies

below the elastic threshold and for the choice of invariant cutoff

elp) = 53 (9.23)

o)
where p is the square of the four-momentum transfer from the
nucleon to the plon in the exchange graph of Fig. 2. The reason for
this choice is that it still allows for a simple connection between
the various equations considered in this paper. Thus then the

. 2,2
definition &AM = AT/(A" - M?) is introduced, the replacement
S (ev3 ‘
I(p) » I(p) g(p) in Eq. (9.5) leads in coordinate space to the

replacement of I(x) by)+5

- X Ax
I'(X) = k4 &(A;M)[M- i'y.a] [MK]—(MI I) - A Kl( I I)}

x| |x]

(9.24)
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in Egq. (2.11),and to the replacement of Vo(r;M) by
Up(r) = &(A,M) [V(rsM) - V,(r;n)) (9.25)

in Eq. (9.18). Thus, for A >M the introduction of the cutoff
(9.23) leads to a modification of the short-range part of the force,
leaving the long-range part unchanged.
For Eq. (9.14) our choice of cutoff introduces of course
undesirable singularities into the kernel of the original integral
Eq. (9.5). Hence, rather than tryihg.to‘justify the intermediate
steps, we simply proceed by analogy with the substitutions (9.24) and
(9.25) and replace the potential (9.13) by
ek hﬂe g
AT EpE) = g 80 L@ vy 4 yyy) - Qs (1) - (- M)
(9.26)
Equation (9.20) was solved by again using variational techniques,
thé stationary expression considered in this connection being formally
the same as in (7.2). Since the total angular momentum J and the
parity are evidently good quantum numbers, we may take the solutions

to be of the form

/,‘, .
N

N i O NN

4. M / \
¢ (x) = | &
\
3y

Lo i
£ Ay A,

L ettr) (1 e 8) YR
l". . N ’/'
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with parity (=)’ . We easily deduce the boundary conditions

F'*(r) ~ rz,_ Gﬂi(r) ~ rﬂil, as r ~ 0,

ks b S

and the asymptotic behavior Fﬂi(r), Gﬂi(f) ~  exp [-\A;ng- le r] .
On the other hand, Eq. (9.14) was solved directly in momentum

space By the usual meshpoint techniqués. In order to maximize the order

of the polynomial that could be integrated exactly for a given number

of meshpoints, we used the Gaussian integration techniques.}2 Still it

was found, that we needed to invert matrices of sizes comparable to

those inverted in the solution of Eq. (3.1) if a comparable accuracy

was to be achieved. This may e traced to the fairly complicated singul‘ar.ity

structure of the Kernel in (9.14). Indeed, we also considered the

conventional integral equation in the V6 sector of the Lee model for

some suitable choice of cutoff, treating the V-quantum as bare. This

corresponds to taking the extreme static limit in Eg. (9.14), and

dropping the spin dependence. The analytic structure of this equatibn

is particularly simple, and a remarkable accuracy of the computed

.eigenvalues was achieved already at fairly small matrix sizes. The

singularity structure of the kefnel is thus seen to play a very important

role in the numerical solution of an integral equation. In practice

we may deal with these problems by incorporating, in the'variational

approach, the "leading" éingularities of the solution (provided they are

known) into our trial functions, or by absorbing, in the meshpoint



98-

approach, some of the singularities of the kernel into the weight
function, using Gaussian integration techniques,

In Table XIV, Fig. 12 . we have summarized our results for the
threg equations referred to above. For the choice ml = m2 =M= 1.0
and’ E/(m1 + mg) = 0,95 we computed the coupling constant eigenvalues
at several values of the cutoff parameter A . The gquantum numbers
chosen were those of the N* . We have listed only the lowest, positive
“value of A 1in the coupling éonstant spectrum. The sharp rise of the
X vs. A curves in Fig. 12 as A -~ O 1is of course due to the choice
(9.23) for the cutoff function. We have also studied the solutions for
the choice my = M= 1.0, m, = 0.14k4, corresponding to the actual
: pi0n¥nucieon'kinematics. As our-discussion in Part A of this section

would have anticipated, there was no qualitative difference between

these results and those presented in Fig. 12.
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X. SUMMARY

Qur calculation.has demonstrated that even marginally singular -
Bethe-Salpeter equations may be solved by standard numerical techniques,
provided that proper care is taken of the boundary conditions at the-
origin (of the Wick-rotated space-time). From the computational point
of view, the presence of spin in the problem did not in any fundamental
way affect our ability to solve the equation, although the algebraic
aspect of the problem was considerably more involved than in the
absence of spin, the added complexity being principally due to the
particular approach taken in this paper. Thus we could have chosen to
solve the BS equation directly in the form of a two-dimensional |
differential or integral equation. OtherlL calculations héVe“éhowﬁ;
however, that such an approach would require the inﬁersion of typically
lOO-by-lOO-dimensional matrices in order to compute the desired numbers
to an accuracy of a few percent. This is td be compared with our
calculation in which twenty-seveh was the maximum "effective" matrix
size ever considered, the cdrresponding.accuracy of the compﬁtéd eigen-
values being frequently better than 1%. In fact, in most of the cases
the inversion of a 3 by 3 matrix was sufficient to obtain an accuracy
of about 10%. Our particular treatment offers additional advantages
as wellf Thus we recall that in practice we needed to include at most
the first five terms in the éxpansion of the solution in terms of the
four-dimensional spherical harmonics, in order to achieve a 0.1% _
accuracy (or better). Moreover, our approach allows us to give a

proper treatment of the boundary conditions at the origin. In fact, the
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critical dependence of‘these boundary. conditions on the coupling
constant étrength in marginally singular equations such as considered
ih this paper suggests, that our approéch may well be the approach to
the singular problem. Indeed, attempts to soclve the marginally
singular integral equaﬁion for the VO sector of the Lee model (in
the fﬁll static limit ahd in the absence of a cutoff) by meshpoint
techniques have led to difficulties even with a proper tregtment of
the boundary conditions at infinity. This makeé it questionable whether
the singular BS equation, iﬁ the form of a two-~dimensional integral
equation, could, be solved successfully by the usual meshpoint
techniques.

v As.for the physical.content of our calculation, we do not know
the range of validity of the ladder approximation, nor is it generally
believed that the forces in nature are as‘éingular as the ones we have
considered (in the absence of a cutoff). In addition, a more realistic
treatment would have to inclﬁde the forces arising from the exchange of
higher spin particles, such as the N for example. We have thus
strongly éemphasized the mathéméfical rather than the physical aspect

of this problem.



~101-

ACKNOWLEDGMENTS

I am pleased to thank Professor Charles Zemach for suggesting'
this problem and for very helpful discussions, and Professor Charlés
Schwartz for his continuing guidance and advise during the progress
of this work. I should also like to thank Dr., Richard Haymaker and
William Kaufmann for many helpful conversations, and William Kaufmann

for his many suggestions with regard to the programming of this problem.



~102-
APPENDIX A: THE 3- AND L4-DIMENSIONAL SPINOR SPHERICAL HARMONICS
We list here some well known properties of the conventionally
used. spinor spherical harmonics in three and four dimensions. The

notation introduced in this appendix is used throughocut this work,

Three-Dimensional Spinor Spherical Harmonics

Definition:

W
N

y?iM(i’i)a - Y P tesdnan Y. &) (A1)
) m

where C(4£,s,J;m,0,M) are the Clebsch-Cordon coefficients as defined
L A
by Rose, ' and b%m(r) are the usual, spin-zero spherical harmonics,

. A . L. M, A
with r = Iyﬁ*. The functions >/ * (rl} are orthonormal,
lad .

*

N >/,C:':M'(/I\) - 8

g* ,61M A
‘a‘ dgr y (I‘) o ks b 81\'1[\/1'

and satisfy the following useful relations: (we omit the magnetic

quantum number M)
- A ,E_*_ . Z:1 e
G2 Yh@) = 1 Yy

169 Ve - YU (&8 (12)

r

r

1@ENY®) = YU (LA
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In those cases in which the magnetic quantum number M 1is of no
relevance (as is the case if we are dealing with rotationally invariant
gquantities, such as the T matrix, for instance) it is convenient to

introduce the functions

r'ei' Aq — 3 \A/"’aiMAl ziM ’\ *
B gy = b LY,y T (43)
Evidently
Loont £y .0
Z. (k") = ZuE(k) ;
(k) o ()

the additional theorem for the spherical harmonics (Al) then takes

the form Z: Zﬁi(i') = (22 + l).}}(i-%'). We also have the orthonormality
*
property
4 )
[ T Lot Lyoay £, .~
J T Zﬁ (I‘) Zl,&' (I‘) = 6‘61;'21' Z}’;’ (K) .

Finally, it follows directly from (A2) that
> £y, > ~ (,@il) o
(0k)zi(k)(0k)—zfi (k') .

Four-Dimensional Spinor Spherical Harmonics

We introduce first the notation and conventions which are
followed throughout our work. A point (xa) = (Xl, Xpr X35 xh) = (r,T)
in the four dimensional Euclidean space can alsoc be represented in terms

1
of the length R = (;? + T2)2 of the four-vector, the polar and
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azimuthal angles 7 and ¢ in the .(xlx2x5) plane, and the angle
8 between the four-vector and the four-axis:

;
x = (Rsin® sin?¥ sing, Rsin® sin v cosf, Rsin® cos ¥, Rcos®) .

(ak)

We use the notation ﬁ

(xO/R) to dencte a four-vector of
unit length. The differential element of solid angle 'dQR and the

differential volume element d V are given by

dQ, = sin“e sin U de 4w ag . (85)
av = RPdRag, .
The fqur dimensional spinor-spherical harmonics are defined by
YﬂiM - N £ AMA . £ £+1 v
” (R)a- = N" Y (r)a sin’6 C (cos 8) . (A6)
£, . 23 £
Here Cn (t) are the Gegenbauer polynomials ~ and Nn is the
normalization constant
R "k
¢ (2% 1) - £)1 (01)P ]2
N o= | . (AT)
L aln + £ + 1)! A ‘
o £.M
The functions 'Yn' - are orthonormal,
- LM fow o BIMT AL
\%;jdﬂR Ta (R)a Tar (R)a N aziz; 6nn' vyt (a8)

and satisfy the completeness relation
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. 2{4 v MR vMR, = ey, 88y - %) - (n9)
M,

as well as the addition . theorem

£+M AKX £ M,z n+ 1. 1
Y yiMEY yrMRy) - s L ¢t (cos 7) (A10)
LM n o n B af 21:2 n
where
A A
cosy = R°*R' = co0s€ cos6®' 4+ sin® sinb' cos w
(A11)

cosw = cos¥ cosV' + sinV sin¥"' cos(g - £').
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APPENDIX B: THE FOUR-DIMENSIONAL ROTATION GROUP*

In this appendix we construct the projection operators JDn
+

and JDn for the irreducible spaces of the representations
+

'(nilé

n n+ 1

I
45

) of 0y, the four-dimensional rotation
group. It is Weli known that the group Oh ‘is characterized by
the six Hermitian generators of infinitesimél rotations Ai and
B, (i = 1,2,3) with the familiar angular momentum commutation

relations

[Ai’Aj] = i Eijk Ak, [Bi,Bj] = i eijk‘Bk .
Moreover [Ai’ Bi] = 0. A2 and B2 are the two Casimir operators of
the group; in a particular irreducible represéntation labeled by the
pair of indices (a,b), 2 ala + 1)I, B - b(b + 1)I ; the

Ea v N
representations (a,b) are unitarity and of dimensionality (2a + 1)x

(2b + 1). To give a specific example we note that on the space of

scalar fields, Ai and Bi are just the differential operators

1 .
Ay = 5l -1l 9y, - x, 04)]
(1)
B, = =I[L. +i(x, d) - x, d.)]
i 2 i ik |
where L = -i(r x 0) are the usual generators of infinitesimal
gy % i

rotations in three dimensions.

* I am indepted to Professor C. Zemach for very informative discussions

on the four-dimensional rotation group.
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In the Following discussion we denote by (Ai’Bi) the six
generators in the (g,g) representation and by (ai,bi); (ai;ﬁi) the

generators in the (%,0) and (0,3) representation, respectively.

nn

We have then in the 5350 representation
2 1 2 1
A" = fon (n+2)I, B = n n(n +2)I

in the (3,0) representation,

1 _
@3 = 209, by =0

2 3 o

g =% - K =0

in the (0,2) representation,

o
1
(@)
a
[o2P
1
-
a

We have the following reduction of the direct product space,

nny o +1 1y o mel

2z (0 B0) ~ (FHp) ) G5 )
nny -\ 1y . (antly ooon n-l
(5) (x) (0,3) >3 i, 5.
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(£+1) S M2

£,M,A
The combined set of functions Yn*M(R)v and (R) defined

in (A6) (with the indices £ and M taking on all allowed values for
a given value of n) form a basis for either of these two 2(n + 1)2-
dimehsional direct product spaces. In Sec. IV we make use of precisely

this fact, when wve construct the basis functions for the irreducible

n n+l

(nil 2y ana .(§3~§ﬁ0 contained in the above reduction of the

spacegs '—2—,5
direct product space.

We construct next the projection operators for the irreducible
~S

nont J) which ve denote by P and @n

spaces (Fom sl n) and (

2 %

respectively. To this end we define the generators of 1nfinitesimal
rotations in the above direct product spaces (the direct product with

the identity is understood, so that A, = A ( )xx 1(3,0), ete):

i i i 1 i
S
~ ~ v
@1=Ai+ai,@i=3+bi.
Now, in the- - n;l 2) representation,
@2;9_2.1}2_12 . onm+2) 3 0
a ; ; Fr ok

B = folm2)

or
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(n-l

Similarly, in the (7=, g) representation,

+ 'E 4 S.,‘é,

or

In exactly the same manner we conclude that

n . n n+l . R
gfﬁ, = 5 in the 5 5 representation
6B = =~ ~2—; 2) in the (& n-l) representation.
v NS .

> 3
The desired projection operators are thus glven by

1
z(n +2) + 0.A
@ - /u/v, JD - ,

+ n+1 - n+1

N
=
)
2 Q
o

o 2(n +2) + o- ~ ()
iPn - N , LP -

+ n+ 1 -

[z

o=
=3 B e
1

+
Hixa

We easily verify that

~~
" with LF; satisfying the same relations.

L)




-110-
APPENDIX C: FROOF OF ELASTIC UNITARITY

Tn this appendix we show that the scattering amplitude f(E},%)
defined in (2.18) satisfies elastic unitarity. For the purpose of this
discussion it is convenient to '"rotate" the t-integration contour in
(2.18) to the imaginary axis. The result is

ik’ ere= 127

Nn v ~ o
£(k',k) = HE% U(g')—[ a* e 2 W(x) g (x) (c1)

where ﬁk(x) is the solution to Eq. (3.6). We easily show that

e

70 ¢k('5)'r) = ﬁ-k(E’T) . (c2)

It follows then from (Cl) and (C2) that

. w
Y= T
1kr212

M e

My

+ + .
Tlok) = g fax A0 V(=) Ul) e (c3)
where the "dagger' denotes the Hermitian conjugate in the spin space

only, and ﬁ;g(x) evidently satisfies the equation

o

—iker4s 107

i) = Te 75 - [t AL Vi) G- ).
(ck)

We note here parenthetically that with the aid of

cu(-k) ¢ = uk), ¢ V() ¢ = V(x) ()
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where C is the usual charge conjugation matrix as defined in (k.1h),

we easily show that

il

fx', k) £(-k', - }3) (c6)
and

k') = ¢ (- k) ¢ (c7)

Statements (C6) and (C7) follow of course directly from the invariance
of the theory under space inversion and time-reflection. Combining

the above results we obtain

MnE
l

[£(x} k) - fT(k k)]
(c8)
-2 er X d X' ¢ xt) v(-x') [HY(x'- x) - H(x'- x)1V(x) ¢k -x).

By making use of

- > - -
[m - yep .+ 7° ‘up+m ] = 2m ). U(p,0) T(p,o0)
0 favd /‘\_,

it 1s straightforward to show that

i mlfk| iker-3 T

A dsz ~ ‘/ f -gb
H(x) - B (x) = : f m & Ulso) Tke)e ™7 T F L (09)
ank o ~

Substituting (C9) into (C8) we arrive then at the statement of elastic

unitarity,
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| xl
ek’ x) - oK) = &= fdszq £(k'q) £7(x q). (c10)

With introduction of the partial wave expansion

%2 () zéi(ﬁ’)

™~

k', k) =

=
=+

. AR .
where 'Z,ﬁl“(k')oé5 is the complete set of functions defined in (A3),

k ,
‘the statement of elastic unitarity (C10) takes the following form for
£
t7*(E):

) IR A I TR T

where

Note that with the usual phase convention implicit in our

definition (2.20) of the scattering amplitude, the sign preceding the

coupling constant A in Eq. (3.6) is uniquely fixed by the requirement

of elastic unitarity (C10).
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;UA_»_AIEEWDIXFD%—~SOME*DETATLS—ON'THE'STRUCTURE OF THE E =0 SOLUTIONS.

It was stated in Sec. V, that we could have arrived at the
explicit forms (5.15) for thev E = 0 solutions in a different way,
independent of any group theoretical considerations. However, had we
been unaware of the existing four-dimensional symmetry in the problem,
we would most likely not have sought solutions involving only a few
terms in an expansion such as (5.18). Thus, to repeat here our earlier
arguments, the substitution of the expansion (5.18) into (5.1) would
leave us with an infinite set of coupled equations for the radial
functions Fk(R) and Gk(R)’ To seek a solution involving only afinite
number f tams in the expansion (5.18) would imply a truncation of this
infinite set of equations which would lead in general to an overdetermined
problem., Only for B = O our analysis in Sec. V suggests that this
overdetermined set of equations actually does have a solution. We will
now present the details.

By substituting the expansion (5.18) into (5.1) we arrive at
an infinite set of coupled.equations. However, instead of starting
from this set of equations, we will simplify our discussion, by making

the following ansatz (which we know to be correct):

/ .
[F@R) v + o) ¥ P N\

Xﬂi 5 v n+1 \

n (X) = E N ﬁil)_ (Eil)_ (Dl)
‘-\‘VF(R) Y + + G(R Yo +

This ansatz will not detract from the point we are trying to make, and

is only designed to simplify our presentation. From here on the
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discussion will follow exactly the same lines as ih the more general
treatment. We will only consider the‘ Xﬁ+(x) .solutions, thé corres-
ponding results for the Xﬁ"(x) solutions being obtained in exactly
the same way.‘ Moreover, we.may always obtain the Xﬁ' solutions from
'Xj+ Wwith the aid of (5.17) which is a direct consequence of the -
commutation relations (5.4). Substituting the expansion (D1) for
‘X£+ into Eq. (5.1) we arrive at a set of eight coupled equations for
the four radial functions. This is in general an overdetermined
problem. If a solution is to exist at all we must require that the
coefficients of Y and Y | in thesé equations vanish identically.

n-1 n+2

This leads to the conditions

’ (1) 0 (£+1)
An Fo= Cn F An+2G =07 Bn+l G
, , (p2)
"+ ) + £+1
C F = An F Bn+lG = - An+2 G .
Noting that
(££1) ,
- b, ) &
C Tobs Lopfoate
n n n n
(D3)
n n n+l n+l

we conclude that the equations (D2) do indeed have a solution. We

are thus left with the following set of equatims:
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‘ - (B41) e e — o —
m KT ¢ (g_fi * 5 5) g, e - Cn+; "l
‘ ey, g
P : _ £+1)
B gm0 e 0 (0 )]
s N (ﬂ—i—l) w
my Kn+l a + %ﬁ - g:) K [Aﬁ+l F + Bn T )
(plib)
LBy [1,08) 6 + 1, 0m) (a2, 7+ L)

' y)
d ., n+3 +1 + 2+1
lenF+<dR+——-———R>Kn (c ¥ o -a"" 03]

n+l n+1l
, (Da)
we . v r b 241 m‘]
= = () » XK, (R) F + K,(R) (Con @ - A G)
+1 v /d nx by L4172
len ¢ - (7 -5/ Kn[BnFJrAIH_lF]
(D5b)
af [y o) 6 e 4 3]
= = () MK OR) G - K, OR) (BT F + 4 ) F

where X' is the operator defined in (5.7). These are four equations

for only two radial functions (5n account of (D2)). However, multiplying
(£+1)_ (4+1)_, #

Egs. (D5a) and (DSb) through by C, /Arl and - B, /An+2

respectively, making use of (I2) and noting that

C(£+l)_ C£+ o Aﬁ ' B(Z+l)_ B£+ ) Az Aﬁ
n n+tl = "1 “n+l : n+1. n  ‘n+2 Tn+l
(£+1)_ (£+1)_ (£+1) (£+1)
A£+l o _ AE o . £4+1 - £ B -

n+tl n n “n+l ) ntl Pnil A By
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we conclude that Egs. (D5) are in fact identical to Egs. (D4), as it
had to be of coufse; if the problem is to have a solution at all.
lFinally,‘a little more algebra shows that, aside from an overall
normalization constant, the solutions (D1) are precisely of the form
(5.15). 1In fact, comparing equations (D4) and (5.6) we easily verify

with the aid of (D2) that they are the same equations.



-117-
APPENDIX E: A TIME-DEPENDENT FORMULATION OF THE LEE MODEL

In this appendix we underline still further our remarks in
Part A of Sec.lX concerning the role of the relativé time variable in
a covariant theory, by discussing a simple, "time independent,” field
theoretical model in the Bethe-Salpeter language. We are referring here

to the familiar Lee model.57

Such simple models have already served in
the past to clarify some poorly understood aspects of quantized field
theories. In this section we give a very brief and elementary discussion
of a particular sector of the Lee model, using the perhaps more familiar
language of covariant perturbation theory. This might appear as making
a "simple" problem unnessessarily complicated, but will ser?e to underline
still further the equivalence of the "time-dependent' approach and the
more old-fashioned "time-independent' approach to the theory of quantizéd
fields. At the same time it will serve to clearify the connection
between the Tamm-Dancoff techniques for solving Eq. (9.1) and the
covariant Feynman approach. We will limit ourselves to the presentation
of only a few examples. This will suffice to underline the basic ideas
and the reader may proceed from here to recover all the familiar results
discussed extensively in the literature.

The basic ingredient of our approach is, as we have pointed out

1

already in Sec. X, that we will work in the "Interaction picture," rather
than the "Schrodinger picture" as it is conventionally done. In that

case the Lee-model Hamiltoniandensity is given by

r

34I(x) = Kodjdux' o(x - x") [V*(x) N(x) e(x') + Nf(x) V(x) ef(x')]

(E1)
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where V(x), N(x) and 6(x) are the quantized fields in the inter-
action picture associated with the V,N and 6 partiéles, antiparticles
being ignored here altogether. 'The source function p(x) has the

effect of spreading out the distribution of the N and V quanta in

space but not in time

o(x) - Bllxl) s(t), (r2)

so that we may still seek our solutions to be stationary eigenétates

of Hs. (see (9.1)). From the Hamiltonian (E1) we generate in the
usual fashion the full, unitary S-matrix ffom the Dyson expansion.
Substituting this expansion into the definition (2.1) of the Bethe-
Salpeter amplitude, we easily afrive at an integral équation in the N©
and V6 sectors of the Lee model. TLet us consider first the rather
trivial N® sector. Making use of the translational invariance of the

,

theory we arrive as in Sec, II at the integral equation

iker-iom /2 N
SRR 2 [dy e on ey Doty Dyl (m3)

v(x) = e
for the wave function WE(X) in the scattering region, the notation
being as in Sec. II. In the N-6 c.m. system (we negléct the kinetic
energy of the N and V-guantum),

-ikmy°

v.(y) = -i— E = + w(k) , (EM)
E w0 - E - e R
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o (X) ) 1 dhq elqcx v
E L E 0 . E 0 c
(ex)” 7 2o(q) (Mg - (5+a7) - iellw(q) - (5 - a7) - ie]
(EM)
Here My is the bare (and physical) mass of the N-quantum, MVO is

the mass of the bare V-quantum and 'w(%) = (q? + u2)§; i being the
~

bare (and physical) mass of the e-qﬁantum.

It follows from the form (E2) of the source function, that
Eq. (E3) is really time independent.' Inspite of this; even this
trivial sector of the Lee model still serves to illustrate our point,
and we will continue to use a covariant notation. In momentum space
Eq. (BE3) takes the form
N

s p - k) + 1 A

8.0 o) [t
& (E5)

A
where P, P and 1U"{(p are e Fourier transforms o X),
L(®), Go(p) and wr(p) are th ier & JAEY

GE(X) and. p(x) respectively. On account of (E2), A¥(p) is of

o .
course only a function of p  so that we may write %V(p) = f(wp),
N .
where o = o(p). If we continue Eq. (E5) from the scattering region

into the bound state region, then ¢E(P) will exhibit a pole at the
mass MV of the physical V mparticle (by definition of the physical

V particle). Hence writing

R.(p)

By

bk
g(p) = (2n) 8 (p - k) + (E6)
and defining the bound state wave function @(p) as RF(p) evaluated
at the bound state pole E = MV » we arrive at the following homogeneous

eigenvalue equation for o(p) :
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o GMV(P) f(wp) . duq
' My - My (ex)

2(0,) @la) - (=7)

This eigenvalue problem can be solved, the desired eigenvalue MV
being given as the solution to the equation (notiéé the dependence of

the "Greens function" on M, itself)

o ..,2 /' dp 2

- - i —= o))" ¢ (p) (88)
B R . o J (2x) P My

which réducés of course to the familiar eigenvalue equation in the Lee

model if we perform explicitly the po integration. The function

RE(p) may also be obtained in closed form (in terms of MV)

o ) Gule) £(w,)

< (E9)
1 + F(E)

Rp(p) = 1A,

where, after performing the po integration
. 1 ©p 2o )°

5.j -2 . (EL0)
ox) 4 2w(p) M. + w(p) - E - ie] (M_+ o - - ie]
(2xt) p) [y (,—L,) My +o(p) - M,

F(E) -

We have thus dbtained by our slightly different, time dependent

approach a few of the familiar results usually obtained by solving the
eigenvalue problem directly in the form of Eq. (9.1). In exactly the
| same spirit we may ‘discuss the Lee model in the VO sector. We will
not do so since we note that the discussion of this sector (neglectiﬁg

the self-energy effects for the V-quantum) has essentially been given
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already in Part B of Sec. X. Wé note, however; that a discussion of
the VO . sector in terms of BS amplitudes will lead to a genuine
time~dependent integral equation, the role of the relative time
variable being here to combine the contribution of the two and three
particle states communicating with the V6 channel into a single,

linear integral equation.
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£,
TABLE I. Leading behavior at R ~ O of the radial functions F nl;(R)
£y ' | £,
and G * (R) 1in the expansion (5.22) of the solution ©_*(x) to
n,k¥l - . n
e . P £y o s o nY
first order in E . We use the notation Fn,k(R) -Gn, kH(R) R’ as

R~0; o and O are the solutions to the indicial equations (5.11a)

for the particular value of n considered.

k Y Y
: n -1 o+ 1 T+l
~
: n o] fo’
_? : o
; n -+ 1 a + 1 a -1

—




R
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TABLE IT. Calculated values of the critical coupling constants Kl

and A, corresponding to the solution @z*(x) for several values
s

of angular momentum and parity.

|
% , £y %1 _ )2

z O » L. -0.38L9 | 0.3849
% 1,52 ~0.6311 2.1126
3 2y 5_ -6.0646 0.8794

3 , k4 -1.128L i3.128u

b 05 24,1906 1.3778
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TABLE III. Computed values of E 1in the JP = 5/é+, 1= 5/2 channel
at several vélues of the exponential parameter y and at éevefal métrix
sizes, for the choice.ofvpotential (7.9a) with a ; b - 1.6 and

m, = m2 =M= 1.0. The form of the trial function is specified
fdllowing the notation (7.12). The computed eigenvalues are seen to

converge to the same extrapolated value E = 1.649 independent of the

value of v .

| Form of Matrix  (7=0.5) (y=.75) (y=1.0) (y=1.25) (y=1.5)
§ trial fn. size E B E E E
% 2:10 6 1.31352 1.53813  1.65943  1,6995L4 _ 1.74158
§ 5;210 12 1.40361  1,60520 1.64251  1.65616 1;67156
% 433200 18 1.51648  1.6348L  1.65056 1.65775 1.66522
é 5343100 26 1.5834k7 | 1.643L4k5 . 1.,6L019 1.65171 1.6551k i
; 5354200 | 32 1.61660 1.64671 i.6h928. 1.6504k 1.65211 %
% 5365300 758 1.6%243 i.6480h 1.64931  1.6L498L4 1.65060 ;
g 5376410 46 1.64045  1,64863 1.64938  1,6L975 1.65019 §
.5;87520 54 1.644k0 1.6&893 1.6hok2  1,6L968 1.64995
Extrapol. . 1.649 . 1,649 1.649  1.6k9 1.649
value : A

i

: , 4
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TABLE TVa,b. Computed values of E in the J° = 3/2%, T = 3/2 channel
at two values of 7 and at several matrix.sizes, for the chdice of
potential (7.92) with a =D - 1.6 and m =m, =M= 1.0, Eart‘(a)
shows the effect of improving only on the radial dependence of the trial
solution, and (b) shows the effect of iﬁproving only on the angular

dependence of the trial solution. The correct value of E is 1.649.

<a ) - -
Form of (7=o.5) (y=1.0)
trial func. E E
| 2322 1.44970 | 1.66377
% 2353 i.55127 S 1.67021 |
% 234k 1.61259 1..67060
% 2;55 1.64267 1.67119
os66 1.65673 1.67138 |
E 2377 ' 1.66357 | 1.67138 |
i
(o) ’
Form of (y=0.5) (y=1.0)
trial func. E E
35111 | 1.349512 1.64482Y
h;1111 1.350293 1.645020
% 5311111 1.350098 1.644629
§ 65111111 1.350098 1.644629
% 7;1111111 - 1.350098 1.644629
|

8;11111111 } 1.350098 1,64k4629
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TABLE V. Values of the coupling constant reQuired»to give a boundv _
state with E = 1.0 in the JP SR chennel, as ¢omputéde6r
a sequence of increasiné; .ma'trix sizes and ‘for two values of the
pararheter n vin (7.15.). The potential was taken to be of tﬁé form
(7.9v) with R, = 0.7, and nil =M = i.O, m, =.O.1M+ (the pion mass).
" The "féonvergence" of the numerical results is seen to be extremely

poor for the choice p = 0, but is considerably better for the choice

o= 0.856.__;’;_”_ ’
Form of g= 0,0 u = 0.856
trial func. A A
2310 -0.9937 -0.9546 |
b 153200 ~0.9612 -0.8636 |
5554200 -0.7266 -0.8L436 ;
: j
5376410 -1.0129 -0.8361 {
' I
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TABLE VI. Computed values of -E in the J° = 3/2%, I =3/2 channel

for several values of the parameters a and b in (7.9a), with
ml = m2 =M= 1.0.
(b = 1.6) (b =1.4) (b = 1.2)

a B a B a E
1.6 1.649 1.9 1.757 1.9 1.946
1.9 1.4o1 2.5 1.375 2.5 1.667
2.5 0.856 3.0 1.012 3.0 1.394
3.0 0.359 4,0 0.18 4.0 0.75
5.0 1.890 6.0 1.82 6.0 1.94
6.0 1.6k 7.0 1.61 7.0 1.78
7.0 1.34 8.0 1.32 8.0 1.55
8.0 0.987 9.0 1.00 10.0 0.96

TABLE VII. Computed values of E in the J° = 3/2, I = 3/2 channel

for a range of values of the parameter a

1

m, =M=1.0, m,

in (7.92), with b = 1.6 and

= 0.144 (the pion mass).

a B a E
1.6 1.0L4 2.2 0.478
1.9 0.77 2.3 0.373
2.0 0.67 2.k 0.266
2.1 0;579 2.5 0.156




-128-

TABLE VIII. Computed valﬁes of the coupling constant A required to
obtain a bound -state at- E = 1.0 in the JP = 3/é+, I-= 5/2 channel,
‘at several values of the cutoff parameter R, in (7.9b), with m, =
M= 1.0, and m, .= 0.14%4 (the pion'mass). (We present only the smallest

positive value of AN 1in the spectrum.)

R, A

0.3 2,11 i
0.5 2.25

0.7 2.38

1.0 2.53

TABLE IX. Computed bound state energies in the JP = 3/é+, I-= 3/2
channel at various values of the exchanged mass M , for thHe choice of

potential (7.%9a) with a=b =1.6 and m, =m_ = 1.0.

1 2
M B
1.0 1.649"
0.8 1,702
- 0.6 1.783
0.5 1.8%
0.4 1.890 "
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TABLE X, Computed bound state energies in the JP = 3/é+, I=3/2

channel at several values of m, , for the choice of potential (7.92)

2
with a = 1.9, b= 1.6 and m =M= 1.0.
m, E
1.0 1.ko1
0.9 1.309
0.8 1.218
0.6 1.047
0.4 0.903
0.2 0.83 ;
0.1h44 0.77 §
_g

TABLE XI. Computed bound state energies in the JP = l/é+, I = 5/2

channel at several values of the parameters a and b in (7.9a), and

m, = m2 = M =_;f0.

(b = 0.35) (b = 0.25) (b = 0.1) %

a E a E a E
3.5 1.75 3.0 1.85 2.5 1.896§
k.0 1.52 3.5 1.625 3.0 1.652§
b5 1.23 4.0 1.32 3.5 1.341 |
!
5.0 0.90 4.5 1.01 4,0 0.963 |
8.0 - LT2 5.0 0.58 45 o.5ou§

10.0 1.25 7.0 1.80
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P +
TABLE XII. Positive and negative energy spectrum in the J = %‘, 1=

-

channel as computed at several values of the coupling constant A for

[

the choice of potential (7.9b) with R, =1.0 and m =m, =M= 1.0,

12
A E A E
-0.5 -1.848 -1.0 -0.573
-0.6 -1.678 -1.1 -0.173
-0.7 -1.468 1.2 0.302 |
-0.8 -1.215 -1.3 ~0.890 %
-0.9 -0.918 -1.b 1.705 |

TABLE XTIT. 'Values of the coupling constaﬁt A required to obtain the
"nucleon” (E‘: 1.0) as a bound state in the af - Forod channel,
as domputed for several values of the cutoff parameter Rc in (7.9),

with m, =M= 1.0, and m, = 0.1kl (the pion mass). (We present only

the smallest value of ’Kl in the negative coupling constant spectrum. )

R A |
(&

|

0.3 -0.69 ;

: !

0.5 -0.77 g

i

0.7 -0.83 §

v i

1.0 -0.90 :

1 i

§
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TABLE XIV. Computed values of N for J° = 3/2%, I =.3/2, E = 1.8,

m, = m2 =M= 1.0, at various values of A for the choice of cutoff

(9.23). Data (A), (B) and (C) refer to Egs. (3.1), (9.14) and (9 .20)

regpectively.
(A) (B) (c)
A A A A
;0.5 8.37 6.77 | 2.9
§ 1.5 3.16 2.15 0.86
3.0 2.23 1.27 0.47
5.0 1,91 0.9 0.32
£10.0 1.69 0.68 0.20
20.0 1.63 | 0.53 0.15
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Throughout this paper we label the variables refering to the nucleon

and pion by the indices 1 and 2 respectively.
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See G. N. Watson, A Treatise on the Theory of Bessel Functions |
(University Press, Cambridge 1962), énd ed. ‘

This choice turns out to be undesirable in the case where the masses
of the "pion" and "nucleon" are very differeﬁt. This point will be
discussed in Sec. VII-B.

We use the following normalization of the Pourier transforms:

F(x) - f I F(p) oM
(2x)"

G. C. Wick, Phys. Rev. 96, 1124 (1954).

Rigorously speaking, the continuation should be performed by

analytically continuing first in the t¢-variable and distorting

subseqﬁently the t' integration contour as desired, picking up

the contribution from the singularities which are encountered in this

process. Since FKO(Z) is regular in the z-plane cut along the

negative real axis, it follows from the definition (2.16) of the

Green's function that we need to specify the sheet of £(t) =\é;(33.=

2]%

((r - E,)Q - (t -t") (r, r' and t' being treated as

N

parameters) when performing the continuation in t . If we cut the
x~plane along the negative real axis, the argument of the Bessel
function in (2.16) will remain inthe first and fourth quadrants so

that the desired continuation in t and subsequent distortion in the

t'-integration contour may be completed.
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See, for example, P. M. Morse and H. Feshbach, Method of Theoretical

Physics, Part I (McGraW-Hill Book Company, Inc., New York, 1953), 437.
S. W. MacDowell, Phys. Rev. 116, 77k (1960).

J. D. Stack, A Study of Regge Dynamlcs in pion-nucleon scatterlng

(Ph. D. thesis), UCRL-16115, Apr. 27, 1965.

We oﬁit in general the label. M for the magnetic Quantum number
unless its presence is strictly required, in order to simplify the
notation.

We take the definitions from W. Magnus and F. Oberhettinger, Functions

of Mathematical Physics (Chelsea Publishing Company, New York, 1949).

To prove these transformation laws we consider an infinitesimal

rotation R = 1 - 4w J = 1-iM 8 - iN- vwhere the
. z ap ap wg}

Hermitian matrices M, and N, (i =1, 2, 3) are evidently related

Sigk g Ny = Iy 0

i
and ﬁ; =) - In particular we have

=

to the genefators J as follows: M, =

ap

_ X
and where 8., = 5 €ijk wjk

1

A

in the (3,0) representation M=N-= %‘N ; and in the (0,%)
representétion %’z - E = %,S' Notice that in some other conventions
Mi = Jhi.- In these cases our representation (s,s') would corres-
pond to the representation (s',s) in the other convention.

We do not label the radial functions by the gquantum ﬁumbers J and
M, since they are independent of them.

I should like to thank Dr. L. Schlessinger for suggesting this approach

to the problem.
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(Reference 27Ahas been skipped).

This statement is not quite sd empty as it may‘appear. To give an
example, the Schrodinger equation is left unchanged by the substitution
2 - -(£ + 1), so that we conclude that if @Lz(r) is a solution,

then so is 14—(£+l)(r). However, if 1Lz(r) is "regular" at

r = 0 then 14-(£+1)(r) is not; hence only z¢£(r) solves the
eigenvalue problem.

K. M. Case, Phys. Rev. 80, 797 (1950).

Tt follows from (5.12) and the property o = e that it is

sufficient to calculate A, for the first equation in (5.1la)

,2
only.

This does not represent an improvement, since our basis functions
(7.7) place the time coordinate on equal footing with the_space
coordinates. This is of course the basic difficulty of dealing with
weakly bound states in our approach,

For a review of the Gaussian Integration techniques see, for instance,
R. E. Kreps, "Comments on Gaussian Integration and Integral Equations," .
Dept. of- Physics, University of Pittsburgh.

By "act" attractively (repulsively) we mean that the binding energy

of the bound state increases (decreaseé) as we increase the magnitude
of the coupling constant. We will call a force attractive whenever it
1s capable of giving a bound state.

Note that the terms "ground state” and "excited state" refer here to
a given quantum number n, and in particular to n = £ for the £

+

solution, and to n = £ - 1 for the £_ solution.
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G. F. Chew and F. E. Low, Phys. Rev. 107, 1570 (1956).

R. Blankenbecler and R. Sugar, Phys. -Rev. 142, 1051 (_1956)°

T. D. Lee:, Phy;s. Rev. _9_5_, 1329 (1954); see - also R. D. Amado, Phys.
Rev. 122 696 (1961), Taizo Muta, Phys. Rev. 35, 666 (1965)

We refer here speclflcally to the plon—nucleon problgm. We will

denote the nucleon and pion mass by M and p respectively. The

]

1 L
: = 2 2.2 .

notation E(p) = (p2 + M2)2 and o(p) (p~ + u™)° will

Y] . e e V) :
replace here our earlier notation . (p) and . (p).

. : - l v 2 L7

In order to establish this connection we remind the reader of the
"rules" of "old fashioned perturbation theory" as applied specifically

to'the,pion nucleon problem: 1) with each vertex in a given time-

ordered diagram associated a factor

iow W) 75 W(p)
(en )/ «/a»(k)E(p 2(p)

"

where w(ﬁ)ad = _UQQEfO) | <= Wu(ig,o)> is the Dirac spinor
corresponding to an incoming (outgoing ) nucleon (antinucleon) line,
and k is the momentum carried by the meson and W(p)‘ = B W@g)ﬁ.
piy) ) ‘ w

These factors are to be arrahged from right to left as we follow
continuously a particulaf nuéleoﬁ line,‘reading the diagram from
right to left. 2) for each intermediate state obtained by cutting
the diagram vertically in as many distinct plaéés as possible, we

introduce a factor [E - Z:E(p ) - Z:w(k )] , where E(P ) and

w(k ) are the energies of the fermlons and nuc]eons in’ the intermediate

_ state, respectlvely. This gives the T matrix. (Note that the sum

over the intermediate spins is implicit in the matrix multiplication.)
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The fact that e 212 V¥(x) rather than V(x) itself is expected

to be a slowly varying function of time in the "non-relativistic"

1limit is suggested by the inhomogeneous term in Eg. (2.11). The

"physical” reason is of course that for our choice Hy =

(2.9), the c.m. coordinate X as defined in (2.9) will not have

the usual interpretation of c.m. coordinate in the non-relativistic

limit. On the obher hand, with the definition X = (@ x; + @, X, )/E

corresponding to the choice Hy = @i/E [and to the transformation

Y(x) + e ©

1wt

coordinate in the nonrelativistic limit.

¥(x)], we would recover the usual definition of the c.m.

v
This asymptotic form is to be compared with Go(r,O) as given by
¥

(E = @+ aé)

ip-r

Gy(r,0) = = | 2 [ 2 ] R
nY) = 3w ] 77 ot ‘ 52 '.
0'n £ oeny Wom® f2, 2 ) (p-x-e)

A 2

For the equal mass case this reduces Jjust the Blankehbecler-Sugar

Green's function (see Ref. 36).

Thus for- a potential V(r) with the property V(r) ~ (l/r)3 as

r ».0, the solutions u?r) to the Schrodinger equation behave as

follows as r -~ 0

uﬁ(r

uE(r

) ~ exp[i'Vﬁ;a: ]

) ~ expl2i V/r ]

(repulsive potential)

(attractive potential) .
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For the special case where A = M, we obtain upon taking carefully

the limit: A-=M
I'(x) = 2M3-[KO(MR) iR Kl(MR)].

M. E.'Rose, Elementary Thebry of Angular Momentum (John Wiley and

Sons, Inc., New York, 1957).

Paul Roman, Theory of Elementary Particles (North-Holland Publishing

Company, Amsterdam; Interscience Publishers Inc., New York, 1960).
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FIGURE CAPTIONS

Fig. 1. Integral equation (in the ladder approximation) satisfied by

Fig.

Fig.

2.

5.

the BS wave function above the elastic threshold.

Diagram representing the nucleon exchange forcé.

Leading asymptotic behavior of the solution to the (Wick rotated)
BS equation for the c.m. energy E below the first inelastic
threshold and for the choice ‘“i = %‘ in (2.9). (Scale

corresponds to m, = 1.0, m, = 0.6 and M = 1.6).

Fig.ba,b.A plot of the solution ozl’i (solid curve) and G (dashed curve)

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10.

to the indicial equations (5.11) as a function of the coupling
constant A .

Computed values of E as a function of a , for b.= i.6'(~————);
b=l (--me- ) and b = 1.2 (—— - —), corresponding to the
data presented in Table VI.

A plot of the data presented in Table XI.

A plot of the data presented in Table XII.

Tadder graphs corresponding to the V-é sector of the Lee model.
The solid and shaded line refer to the fully dressed N and V
farticles, respectively.

Covariant "box" diagram. Solid and dashed lines refer to

" nucleon and meson, respectively.

Separation of the nucleon and antinubleon contributions in the

Born diagram.of Fig. 2.

Fig.l1lla,b. Typical time-ordered graphs contributing to the fourth order

box diagram of Fig. 9.

Fig. 12. A plot of the data presented in Table XIV.
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with the Commission, or his employment with such contractor.



S




