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. : . ABSTRACT

- The Pethe-Salpeter equation describing the interaction of pseudo~

for energies below the elastic threshold by use of variational techniques.

We conslider only the "ladder" approximation with a local votential corres-

ponding to the exchange of an elementary nuclecn. Simple- generalizations

.of this form of the interaction are considered es well. TIn the absence
of a cutoff thié leads to a‘marginaliy siﬁgular integrel equation. Ve
examine in detail'fhe'boundéry conditions to be irmposed on the solutions
in order to lead to a discrete eigenvalue spectrﬁm.' The study of this

. : . I3

problem is considerably simplified at zero total c.m. energy, where the

(Wick rotated) equation is invariant under four dimensional rotations. In

order to take full advantage of this symmetry, we construct a new set of

M n

ng to the representations 5 5 nd

-te

spinor spherical harmcnics belong
..nfl . . - s ‘ RSN s » i
5 5 of the four-dimensional rotation group. The discussion Is then
extended to the general case, in which we examine brizfly the formal

structure of the E £ 0. solutions.

R R e T



UCRL-1768k4

-1-
I. INTRODUCTION
-In.recent years there has been 'reneWed“interest in the relativis-
tic two-body equations of Salpeter and Bethe.l In the absence of a theory

f the strong interactions, these off-shell equations provide at least a

o]

means for performing dynamical calculations within a manifestly covariant

}

framework. However, even in the "ladder" approximatioﬁ, in which we retain
only the lowest-order term in the expansion of the interaction in powers

of GE (the square of the coupling constant), the equation has for some
time been considered intréctable, the difficulties being largely due to

the presence of a degree of freedom in the equation, the "relative time,"”
which has no analog in nonrelétivistic quantum mechanics.' The numerical
program initiated by C. Schwartz2 démonstrated, however, that the (Wick
rotatéd) BS (Bethe-Salpeter) equation, iﬁ the ladder.approximation, could
“be solved accurately by conventional numerical techniques. -This led to
renewed interest in the BS equétion as a computational tooi, a number

of calcwlations having extended since then the bound state calculation

3

by C. Schwartz to the elastic scattering region” and as far as the second
inelastic threshold.

In this paper we continue this numerical program by meking a
quentitative investigation of the "pion—nucleon”5 bound states in con-
ventional pseudpscalar meson theory, the dynamical framework being pro-
.vided by the BS equation in the ladder approximation (see Fig. 1).

This problem has received little attention within this particular frame-

work, although it has been extensively studied by the dispersion-theoretic

techniques of S-matrix theor in which it has served as a prototyoe
Y
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éf so—called'”bootstrap“ calculatidﬁs. In'the_preéent claculation we _y ' .hﬁ
consider the 3-3 resonance (which'wé refer té as the N*) and the
nucle?n as dynamical states';f the:AﬂN. system. Since we restrict our;
.selveé to the bound-étate;problem, we are left with tﬁe nucleon as the
only'dynamical‘state of immediate physical interestQ_ If the usual argu-
ments given withinAa dispersion-theoretic framework6 should serve as

én indicaﬁion,'we expect'thg N*- to contribute here the dominant force.
However, the,inclusibn of'thé N*—excﬁange_woﬁld force us_to.introduce

a cutoff right from‘the étart. Sinée if was oﬁr original gim, if»possibie,.
.not to introduce ény cutoff into the caléuiatioh,‘we'ha§e considered

here only the nucleon excﬁaﬁgé foicé.? This choice of ihteraction |

still leads to a marginally_singularlinteéral equation. It is ~ well

known ;';x that the eigenvaluetépéctrum éf such-siﬁgular‘(non-Ffedholm)
iﬁtegral eqﬁaticns may be contimwous, rather than.discrete;> An example

5f this is provided by the nucleqn—nucleoh_ BS equation,8 whose eigen-
.value speétrum.was found‘to be continous uniess the integral equétion |
was supplementedvWith addifional boundary conditions not already con-
tained in it. We are faced here with a similar situation; It is for

ﬁhis reaspnvthat we devote a substantial par£ of this paper to a detailed
sfgdy of the foﬁndary conditions to be imposed on the solutions. We find 4
- that the behavior of thé BS wave function neaf the light cone is

critically dependent on the strength of the potential, and that a , SR
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proper treatment of these boundary éonditions is imperative for our
numerical calculation to be successful. The pfoblem of giving a
?roper treatment of the equatidn near the light cone has also been
encountered in connection with the nucleon-nucleon problem, and has
been studied at great length in a ¢h field theory.9 In our case the
discussion of this problem is, hbwever,.considergbly more complicated
because of the.presence of Spin.

" The sﬁbject material has béen arraﬁged as follows: In Section II
we'motivate field-thecretically fhe precise form of the BS equation
of interest, defining all the reievant quantities. Section III is devoted
té a study of the asymptotic behavior of the solutions to the Wick-
rotated integrai equdtion; >In‘Section IV we present some mathematical
results which will be needed later on. In ﬁarticular'we construct

a new set of spinor spherical-harmonics belonging to the irreducible
(ntl n
272

tion group. The main properties of these functions are discussed and

representations and (%}E%i) of the four-dimensional rota-
g'number of useful_formulae are presented; In Section V we discuss in
detall the behavior of the‘solutions.near the origin of the (Wick
rotated) Euélideah sPéce, studying the BS ecuation in its differential
form. No attempt is made in this section to select among the "regular”
and "irregular" solutions. If a physical interpretation of the BS
amplitude is to be'avoided, the criterion for such a selection mus®

come directly from the integral ecuation itself. This is discussed

)

in Section VI. The numerical techniques and results of our calculation
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are preséntéd ih’éeéti6ﬁ33VII:and VIII; ;Alnﬁmﬁer of related topics
are left er the’Appéndicés,‘%hérg'we_preseht,vin addifion to some
mathematical detailsvreiating to the éonvéntional_sfinqr spherical
harmonics, a proof'of elastic_uhitarity;(énd the'groﬁp:theoretical
results which we use in Se¢£ion‘IV. '

We féliow'in genéfalfthe ﬁotation of Ref,v5.'_Three-vectOrs'
“are represenged byfbold-féce type, and-na£uralluniﬁs:€ﬁ'= c =1) are i

‘used throﬁghout this work.

mser o s Wy s ey
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II. THE BETHE-SALPETER EQUATTON
Since we.are concerned only with the bound-state problém, it will
be particularly convenient to work with the relativiétic two-body "wave

function” for the pion and nucleon” in a state [8); as definea™® by

T (xy,x,) = QT (u(x)) gH(x)) |8), (2.1)

where ﬁi(x) and  Y(x) are the ﬁeisenberg fields of the‘pion and nucleon
.-respectively, [Q} is the physical vacuumn, and- T 1is the time-ordering
operator; w(x) is an eight-component object in the combined spin and
isotopic spin space of the nucleon. Wé take the interaction Hamiltonién

density to have the conventional form
G- . . .
H(x) = >— 1Z00(x), 75 mv00) 187 (), (2.2)
-:-J
J

where T’ are the usual Pauli matrices, and' G is referred to as the

"pseudoscalar coupllng constant." Experlmentally G /hn ~ lh. Restrlcting B

ourselves to the ladder approximation (see Fig. 1), we arrive from the

definition (2.1) at the following integral equation for f(xl,x2 in

the scaoterlng region:
Y (Xl;X ) = YO<X11X )+ '(_L—)— Z‘/; X d X2 ( i>‘G2(x2 )I(X 2
xg‘QPlJ (5) _ 13 (E)j f(xg’xl)’ ' (2.3)

el (20t Xy = (xp0tp)-
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Here Gl(x) and G (x) ‘are the ‘one-particle Green s functions for the

nucleon and plon respect:n.v_ely,,ll

o (x) . [ml + iy a]@ix,ml),.

g, <x> CaGom), (@

where A(x;m) is the usual invariant function,

/m fFl(me’)
A(x m)._\g;> =] —~ -

K ( ) is-the first-order modlfled Bessel fuhction;lgi and
[x] = (r -t ) I(x) is the exchange potentlal” Correspondlng to

the Born amplltude of Flg 2 and 1s glven by

'I(a) w0 - 1) _Kl(Mlx!> - R
vx = ‘- 17.- ] —mm— o3 C | . v‘ (2.5)

go(xi?XE) is the wave function for the ffee'pion and nucleon,

ik ex A ik, x

§o(x1’x2)g;.U§5i>e * 'l_e- 22 ;o o | ,;h,: (é;6) -

: K : . A
: v ' g : 2 . .2 R
where ki =,§§& f»wi), w; = £§i -+ mi), and U(M) =U (Moc) is the

nucleon Dirac spinor with the covariant normalization UQV)UQN =:l{{ﬁ£§/o)

(M”c)yo]. The matriges P(I);g ‘are the usual isotopic spin projection
operators,

, p(l) =‘1 e

(3 2D,

@
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where ;3 _and-;g'.are the isotopic_épin operato?s of the nucleon and
meson respectively (In the Catesian basis, t§k = -ieijk). Using the

fact that P(I)P(I') = P(I), we arrive immediately at the 1ntegral

II'
equation for the tWO-dey wave function in a state of definite total

isotopic spin I:

I, o

+ b dux dux (xl x! )G (x2 %) I(xl xg)ﬁ (xg,x ). (2 )

" Here

; 2.8
( J[) ’ ..

- 51;- | ) -

‘We have omitted all other isotopic spin labels, since El(xl,xg) is only

a function of the total isotopic spiﬁ I. In the future we omit this label
as well. | | |

‘ We'proéeed how té eliminate one offthe_integration vafiables in
Eq. (2.7) by making use of the translational invariance of the theory.

To this - end we consider the canonical transformations

P = pl + :p2 . X = p,le + ugxg, | (2.9)
b= wp, - up, = (0,00) x =%, - %, 2 (5,%),
D= HoPy 7 Py TR o B e~ T P A

where “1 and “2 are_cohstants subject to the condition

T ‘ (2.10)



UCRL- 1768k

8-

Since we/arebdealing ﬁithfen exchange potehtiel 1t turns out to be con~-
venient to‘make the‘choicepl = = %. This is'the cholce made

uhroughout thls work unless expllcltly stated otherwise.

Translatlonal 1nvar1ance allows us to wrlte

}ig(kl’xé5 w(x)elK X

Substiﬁution into“(2,7)'leads,'then, to .the following integral equation
for y(x) (we nonlabel the wave function:byvthe momentum of the inci-.

dent wave):

o

(%) = U&)elk ~ T 1“—L5°/ ? - if a'x G<x-x >I<x )»vk(-x >, ) ;<.2,.ii>j"]

. where .y, = @i -, and G(x) ‘is'the_twonarticle Green's_function;for o

the pion and nucleon.. In.the c.m. ,sysﬁem of the pion and nucleonv'

a(x) = F?i +_i?ﬁé%l702]q§(x}, | e__ N - | '. - ;'(2.12?;

where E = ai'+-aé,. aﬁd ‘
| L o gt

.‘_Go<(x)"= dq — ' ‘ - (,2:1_5)":

2 2
(2ﬂ) &% (q +_) + ml - 1e][q (q - —) + mg" ie]

: Fls of course Just the two—partlcle Green S functlon in the absence of spin.

Because of the poles of the 1ntegrand it 1s des1rable for the purpose of
our later dlscuss1on to cast the integral (2.13) 1nto g different form.
Thus,_maklng use of,the,famlllar Feynman parameterlzatlon procedure we

arrive (as in Ref. 3) at

Gj
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e
: 2
; 1(B+—<x>] )(t=t"),
’ ol
Go(x-x!) = 12 —% 2 X [(B -k §]x -x' ]] (2.14)
8n ‘
. : |
where Ko(z) is the zeroth-order modified Bessel function, and (see Ref. 3)
h 5 ' L : :

1 [,2 .22 , 1 P :
- 5T < arg i(g -/-vl\:/ ) [x - X I]SE";.,&{V’ : wl cand a)2 .are related to
the c.m. energy E by

2 1 : |
F Rl (ml - fﬁ[E - (ml'-_m )3 (2.15)
2 : . |
—E'+(m1—m2) ‘ . : -<m1—m)

1 = oE 2 BT TR

and »
) . : : -y ‘
Wy = @y - Wy = - o .(2.16)

We may rewrite Eq. (2.11) as the differential equation

2

[m - iy-a - gj [D2._ 183, + EH_; m1¥(x) = AT(x)¥(-x), | (2.17)
o) 2 82
7'5.-=MZ°X+_7 9 0 =N‘Z,?'-50,

supp.'_Lemented. with suitable boundary conditions. Tt is this equation which
we solve in the calculational part of this éaper.
Finally_we would like.to_reﬁark'that‘unless additional information
- - 1is required'which is not already contained in the integral equatioh (2.11),
we do not need to give a bhysical interpretation to the two-body wave
function (2.1), but may regard it merely as one possible way of formulating
the given matheﬁétical problem. Thus,lwith the definition of the scatterin%

amplitude,
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N . - ”  3 ;' _  >h .;“ .
(k! 0'!:'/%2 lTl ~l§l.0;/v1§2.> =0 (K = K) 5=

2, 5K,

where T is relaﬁedffq_the' S-matrix.in ‘the usual way,
L . o
8 =1 -iT,
we ea51ly establlsh the' connectlon between f(k'/“) and the solution ..
wk(x) to the 1ntegral equatlon (2 ll) .
£k’ k) = ;ﬂl T )f i x I(m (—x), - S (2.28)
| 2 o .

the numerlcal factors belng flxed by simply looklng at the Born term
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III. ASYMPTOTIC BOUNDARY CONDITIONS
Since it is very difficult to solve numerically the eigenvelue
problem in thé form of Eq. (2.17), we should like tovconsider instead the
corresponding eigenvalue problem for @ﬁafT), ‘the analytic continuvation
of ﬂ(gft) to the imaginary time axis: @Qg,T) = W&g,-iT). Assuming
the solution to be an‘analytic‘fungtion of +t, .ﬁe arrive at the differen-

tial egquation

l 2 : .
(o - 172 - 20 BI04 By + B - Bl = AT(x) o) (3.1)
for QQ@,T), - where ’
V(x) = I(zx, -iT) =.£%—2-t Ky (MR) + iy. % KE(MR)]f . (3.2)

i
2

Here R = Qa? + 72) , and 'Kn(MR) is the nth-order modified Bessel function

with the asymptotid property

»Kh(z) >-<22_;% e_z;_ | as '[z[ —_ . | (3.3)

We have introduced the notation % = @b/R),

(x,) = (z, 7) (3,) = (% ) | (3.1)
o . O
o = 37 7 =1,

scalar products being now defined in terms of an Fuclidean metric:

| 2 2 2 2 2. 2
7.0 =Az-§z+ yuah, 0 f&f + 8&’ X = + 1o, _ (3.5)

r
N

The corresponding analytic continuation of the integral equation (2.11)

3,1k

has already been discussed in the literature. We do not repeat the
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arguments here éxcépt £otstate that for suitable festriétions (to be-

given at the end Qf’fhis éeétion) on the c.m. energy E, we may carry

out this_analytic'éontinuétibn by setting t = T.exp(-iw), 4 = 1 exp(-io)

in Eq. (2.11) and.letfiﬁg  ¢ range from zero to %ﬂ. Denoting the

. analytically continued solution. by" '¢k(x)," we arrive then at the integral

equation o ~
¢k<x> UQM) R %“i?T4'xL[€infﬁ{xég'>v<x?>¢k<<x'>, o f<5Q65»-
where _dux:'dzx\;-d'._r,; and | . o -
'v_>H(x)‘ = Imy +17'6+ 7° ] H (X), U  - | | | (57)

- HbQ&QT)__‘ -iG (r, —.iT). "j:‘  - o : -

© An-explicit expressién,for HOQa,f). may bé obtéine@ directly from (2.1k):
-(B + T 5
I Y P G- S P 2 2.2
Ho(x)—82 = e 7T k(BT - k)R] (3.8)
' O L . . :
“’l_
  -In the bound-state region ¢k(x) will have poles at(one hopes) a dlscrete
.set of values of E (for a glven value of A).. At these values of E,
. the residue of ﬁk(x) at the pole, @(x), 'satlsfles the homogeneous

"1ntegral equatlon

o) = o [abs Hew) V0e) w). (5.9)

'The asymptotic bdundary'conditions to be impbsed on the solutions to
(3. l) are those of ¢£(x) in the scatterlng reglon) and m(x) (1n the

"bound state reglon) as deduced from the integral equatlons (3. 6) and (3.9).
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Although the asymp'totic ?roioerties of Bet_he-Sélpeter amplitudes have
ready been discussed in the literature, we revie.w here briefly the
rehsults-[ with particular em@hésis on the unegual mass kinematics of the

problem. - o

Meking use of (3.3), we have, in the limit R —> «,
[¢)
2

s s . 2 _-glp)R
H.(x) ~—= - 2= e
0 e E (2(82 _}}3)2

Q/Nh_,l .
e

8. (3.10)

=

L

o=

- . v ' )
( 2 2)_, cos@=1/R. We note that (52 _}al_)a > 0

1 .
where g(B) = (B+§93l2)cos@ +:(B7-k
for. E <m +m, and B within the integration in‘terval (even if my # m, )

Hl5

Making use of the "method of steepest desc‘ent, we readily deduce the

asymptotic form of the integral (3.10). Introducihg the definition
. _ - ,
L 1 e(gcos@ - mi)R
Ai(R,cose) == (2 = ' s (3.11)
8nE 1/ (wi - miCOSG)R

we summarize the results as follows (we assume m, > mg):

(1) 0SEgm -m,

Here [see (2.15)], w >0, @, <0, ,\15\,2 > 0; g(p) takes on its

smallest value for B. = Wy .inde_pendentAof the value of cos®, so that
Ho(x) exhibits the asymptotic behelvvior | AQ(R, -cos@) for -1 < cosé £ 1.

(2) m -mSEL (mi - mg)2

Here a >0, w, <0, X' <O0; g(B) 1nas a relative minimum
2 .

within the integration interval at g = -(—/%:\/2) ctne for -'a>2/m2 < cos®

< a:l/m:L We distinguish therefore three domains in the (E,cos®) plane,

the boundaries being determined by the conditions g' (-wl) = 0 and

g' (a,) = 0:
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© (2a). ai/ml <1 B ‘”_ r - H (x) ~ A (R cos@),
| (Cb)'ff;_, cos@ g/ﬁ ‘ _':. Ho(x)j~ Ag(R -cos@), Lo
(2c) -, /m cos@ /) - 'vH'(x)ioe—;—Q'i exp[ (-k )2 & Q*%]
BT 2 S \“’1"‘1’ 0 TBRE T Tt
Here dﬁ > O m';> O54§? < O;"the'saﬁelconslusions hold here as

2
'rn (2)

(4) E mi -+, m

r\')'h—a

© Here g @ >0, @ >0, 53 >0; setting k= + (K) we have

_Ho(x) ';8rrE ._.r:e).cp(lkrf.:-z.gﬁzT/+Pji(R.,C_OSIIQ)V‘+ AQ(R,-cos@), | _(3.12)

as in Ref. 3. The leadlng asymptotlc behav1or of H (x) for, (a) ml/Ql- e

o cose <.l,_ (b) , cos@ - 2/ > and (c) -me/w cos © K ml/ci may

~ be.read off dlrectly from (3. 12), and 1s the same as that glven in. (2a),
' (2b), and (2c), respectlvely [w1th (—k )‘ = -ik].
| The above results are summarlzed in Flg 3, the‘asymptotlc form of
the solutlons belng the same as that of H (x). (We have exhlblted onLy‘ '
wf:the exponentlal dependence of these asymptotlc forms..To be epecific We‘
",'choee ‘mi 2, correspondlng to the phy81cal case . of 1nterest ) Follow1ng
- the same type of reasonlng as glven in Ref. 3, e fing, w1th the ald of |

| Flg 3, that the 1ntegratlon in Eqs (5 6) and (3. 9). does indeed converge

+ M and E < 2m1 + M; that is, for

2
the c.m. energy E below the first inelastic threshold For E > m._L + m

 v at 1nf1n1ty, prOV1ded that ‘E < 2m

these - restrlctlons 1mply of course the stablllty condltlons ml < m, + M

for the nucleon,- “and m2v< m1 +.M‘-for-the plon;ﬁ



~
{22

UCRL-1768k

_15;.'

Before concluding this discussion we should like to comment briefly
oh fhé negative energy spectrum of Eg. (3.1).‘ Ignoriﬁg for the moment.
thévquestipn_of bouﬁdary<conditions;'we readiiy“verffy that, if o(x) is
a solution to Eq. (3.1) for. E = E, (EO >0 to be §pecific}, then -

75 ¢(~x) is also a'solution fo# .E = - Eb, .gt'the same velue of the
coupling constant. In fact,. as we will see later on, the seme statement
can be made about the eigenvélué‘problem{‘ This shows: that the equation ad-
mits a positiﬁe and. é negative energy séectrum ﬁhenever the equation has
solutions at all. As will become evident later on, wﬁgn-we restate these

observations for the partial-wave projectioﬁs of ®(x), this is precisely

the statement of the\familiar.”MacDowell symmetry,”l6. It arises here as

a consequence of the transformation properties of the eguation under
space-time inversion, but can be shown to follow also from more general

principies.l7 Note that as a function of x, the solutions for E = -EO

have the same asymptofic behavior as the solutions o(-x) for E = EO.
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IV. MATHEMATICAL PRELIMINARIES

'A.” Some Useful Formulae

We'derive,hére some'useful formulae relatiﬁg to the four-dimensional.
spinor spherlcal harmonlcs deflned in (A.3). Specifically we are concerned

with products of the. form QY" R), " where Q  is any of the "operators"
B M LM '

‘ o _ | . .
v (g iéa), and’-(£L° V). The evaluatlon of T Y and- ahYn _
has already been given in Ref;v2.> We state here the result:18
TY (R) = R[AL, n+l(ﬁ) A Y § (R)], - (k.1)
@) Sl ) (S By e aby A s 1ER) | (g
L7n T Tn+l "n+l dR R n n-1 dR R 7 ? o
where _
PR | -
L _jn~-z)n + ¢+ 1 - _ "
A ‘-{ In(n + 1) } SR ' (4.3)
The evaluation of (c ';a)Yn‘ ~1is also straightforward. With the aid of

Formula: (A 6) and the recur51on relations for the Gegenbauer polynomials

ci(t),?
(n + wc%(t) = dlc? "(t) - c“l<t)1

ug(n_+ v+ 1)(1 ;Atg) £+l(t) = [(n+25)(n+2z+1)c3(t) - (n+1)(n+2)c‘ (t)1

wé obtain, after somé aigebra,
L 2 (Ll) e, (el).

il DR - miaty, O ot AL ()

where

‘ &%l [(h + 4+ 2)(n+ ¢+ j)J% 
b(n + 1)(n + 2) 2

(h-sa)
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B - e+ )(n - g +2)) 2
- hin + 1)(n + 2) ?
and
(211) 2
T Lt .
oy - =B. | (L.5Dp)
To evaluate (o 'JE?Ynf we consider first the Fourier transform
of this product as obtalned with the aid of the exnan51on (p X = DX + phxh),

(PR) !Z,M. L M
ip+x n n+l AN £ A
B &ﬂ § n‘<”a%'(my

+,M n

~and recover the desired result by taking the inverse Fourier transform.

Proceeding in this manner, and making use of (k.L) and the recursion

relations
n+2(PR> - o a ;_ n Jn+l(PR) v
R ST dR R PR ?
Jn(PR) _ (“g_ L b2 Jn+l(PR>_
R - rdR R PR
for the Bessel funétions, we obtain
L, e, (es1) e, - (exl)
- x & _n * A _d_ n+2
gD, ® = 3%, <% ) (= -ty TR ), (86)
2 2

‘where the coefficients Bni and. Cnt ‘have already been defined in (4.5).

(BEL2) ang Pni)ofo

B. Basis Functions for the Representations 55

L

Construction of Basis Functions

In this section we meke use of the group theoretical results of

Appendix B in order to construct explicitly the basis functions for the.




UCRL-1768L '

_18;
/5) and

dimensional rotation group. These functlons are simple linear combinations

n+l

irreducidble representations (—5— (n n_;>

‘f ‘Oh, the four-

of the four;dimensibnal spherica;‘harmdnics“défiﬁéd in (A.3)and are partic-
ularly suited for'our'discuséion:of qu (j.l)'at E = 0. As we indicate

in Appendix.B, we méy_obtain theéevbasis functions byvsimply projecting out,
wiﬁh.the aid of the ?rojection‘operators(Bih), the desired components from
the spheficél‘harmonics(A;3j, Specifically (we choose to label here the

spherical harmgnics(Aaﬁ) by J, ¢, M ahd_ﬁ);

vz, rIM = . J 1M
ffni_‘ - ¥ 'ﬂgni n ’
AIM N"’ J M -
ani - N~(th Ta ?

~ where Cph+ and E?n are the prOJectlon operators (B:k) for the irreducible

(ngl}g) nd’ (n n_l)

- N, ¥ are normalization constants. One.may readily verify that it is
. o R . 2, (e+1)_
immaterial whether we apply the. projection operators to Yn or Y

spaces of ‘the represéntatlons - respectively, and

n

'(same J).. After proper mormalization we end up with identical,results,;i'

as it has to be. To be'épecific wé’apply the projection operators to
. _ o R , .
'Yn+. Making use of

4

L
(g-L)Y ©
R n

R )
(R =Gy,
wherevfhe opérators Li are the usuval generators of infinitesimal rota-

_tions'in three-dimensional spéée, we obtain, with the aid of the results

of Section IV-A,
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R b e, . 2 (o)
. = = - ) 2
(gt - ot s oot ),
Lok, : o (L+l)_‘>'
(,S’«'? voo=5{y, - [(n..\- {é)(.r.l e+ 2)]2 Y y
where the operators Ai and Bi have been defined in (B.l1). Defining

L
Dni(2n+2) 2,

we obtain from (L.7)

,%{ifi = Dn {(ﬁ + 5 + 2>%Yi%i; (p —f;)%Yi£+l)_} , (4.8a)

Y p [ Q%xi* - ( + s g)%yim)'] ,

as Basis funcfions for the E%i, %) ?epresenfétion, and
G o (e - - o, (v.m)

B R R R L A

n

as basis functions for the (%}E%l) representation. The guantum numbers
. rIM ~rdM : '
- J and M labeling %fni andv’yn.i take on the values J = 1/2, 3/2, ---,

(n£d): and M = -J, -J+1, -+, J; we are thus left with (n +1) [(nsl) + 1]
basis functions for each of the irreducible spaces_‘(ggl, %) and (%, E%é),
in agreement with the dimensionality of these representations as given

in Appendix B.

Properties

We list here a number of propefties of the functions (4.8), which

we need in our later work. - To begin with we note the orthonormality

. '
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property,
, \3 | Q/JM Q[J M o
i [d‘QR (ﬁ) n+1 (R) JJ! Wf Sni_}ni_! " E - ()4"9)
and the cbmpleteness relation,
JM A 7 ‘ : :
= - : .10

J, M 1+

where 'dQR is the differential element of solid angleldefined in (A:Q).

The functions @;i% satisfy exactly the same relations. Under space~time
reflection H
nr JM Do dMay JM ' -
Yol = TYLE «g.n(-R) L(®). EECRIDI

From-(h.B) we see that fhese fﬁnctions_are not_all'indepéndent. "In fact,

' @{gv and gfifs aie related by space inversion -
~ IM A J- JM A Y '
GIR) = (072 KH nGP A= (o) (ba2),

By construcﬁion we have, of course,

@ Mm;ijWMﬂL+4ym. 2y =%(E+nyﬂ

- Jns T2 2 iYnz by n#* 2 7 . .
, _ ‘ ‘ : (k.13)
3 : : _
XD n ~ JM ~2an (n#l) {{n+1 e dM
a '@ﬁ?f -2 5 %f ne B Yne T3 { 2 +J'_jynt ’
M AW o
the notation being the same as in Appendix B. When the quantum numbers -
- J. and M are of no relevance (as in the case of Oh symmetry, for
example) it is conVenient to define the functions -
i, 2 ) IMAL Y 1 IMANK | ;
BT R )y = b ) YlED, Y@y . [CWELY

JM
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JIM -

i vy 2N TMAL DI
IR, = b ) YiB, Y, (h.100)
) S A emea. | L
. Since ,X%‘(R')’ and . X%"(R’) share ‘a number of properties, it is useful
to introduce ng(R') to represent either one of them. We have then

evidently,
g gh.

From (4.9) we obtain the orthonormality relations

d , ' ,\ | . )
(S5 aeant @@ - o @, (s)

Jllhrg.

and the addition theorem takes the form

—t
+

:j;ﬁ w§i<ﬁv> - 2(n + 1) Ci(cos 7)s ' o (4.16)
where cos v is defined in (A.10)..
‘Tn the remgining part of this section we give a list of formulae

~which will be particﬁlarly useful in our later work. Thus, introducing

" the notation

(0) = (g, 0) 5 (5)=(g, =0,) 5 o =1i, (4.17)
o-x = Ag',\x;/'*" ir, = 0:9 =,Ag/'~vv+ iau s | ‘etc.,

and making use of the résultsrobtained in Sec. IV~A, we readily derive

the following formulae [we suppress the quentum numbers J and M,
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which heré play no particular.roleﬁ our notation is 2= (ﬁy/R)]r

o) Yoo s Ypayy o

(o) Y, - Gy oD k)
 ~i(g'5)':y;; ='{?(n_l)+(7%{ + Eﬁg);

’:ki(gﬁs>.€¥n+ % g&n+l)-(7%? -;%)’

i

n+2"x
).

LED Y, - Y R

fCombining’théiabove'résults we obtain the additional formulae

l‘f<-é-a><g-?<> You = :y'm'(%}; %) |
ED Y- Y, -, _
(65)(0:3) ‘Un;; =Y ‘-§->_ , (29
ERGE Y, - -yn_’_'<-g—;"r;-:-%

1_the édrresponding‘formulaé for the functions @?iﬁ being obtained by
the ulmp;e,replacement Iy >_%x and CAU > G/nt in (4.19)..

We may write down'immediatély the corresﬁonding results for:fhe'spinor.
" functions (L4.1k). We will not do so except for noting in partiéular the

formula .
/

(o) B (D) -y ),  (20)

~which we need later on.

EY)
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V. BOUNDARY CONDITIONS AT THE ORIGIN

In this sectibn_wé'deduce the behaviAr of thevsolutions o (3.1)
near the origin of the four—dimensional'Euclidean space. The results
will include the so-called "regular" and "irregular" solutions. No
attempt is made in fﬁis_section to justify .the selection of one or the
other. Aside from physical considerations which we do not go iﬁto in
_this paper, the criterion -for such é selection must come from a sﬁudy
of the integral equation:(3;9) itself. This isvleft for Section VI,
where we find,'in fact, that evén the integral equation (3.9) does not
ﬁecessarily eiclﬁde the irregular Solufions.

The study ofvthe 5ehavior of the solutions to (3.1) at R =0 is
rather involved, if ﬁe consider the general cése in wvhich E £ 0. A
great deal of insight into this questién'may be obtained, however, by
Qonsidgring first the problem at zero total ‘c.m. energy E, where‘the
equation simﬁlifies cdnsiderabl . If the behavior of the sclutions at:
R = 0 should turn ouﬁ to‘be independent of E, as one might expect
on the basis of some familiar exampleé; it ﬁould’be sufficient to.
congider this speciai.case, although the generalization of the results

to the case in which E # O is not immediate, as we shall see.

AL B =0

For E =0, Eq. (3.1) is invariant with respect to the transforma-
tions of the group 'Oh' In order to take full advanfage of this symmetry

it is convenient to work in the representation in which

0 '%x\ 10
7a= 2 75= . >
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the matr;qes qu_,and_ % having been defined already in (4.17). We
call this the "Weyl representation;" Yo and 75 are matrices in the
direct sumfépaéevof the representations ($,0) “and - (0,%) of 0)-
' The reason for working in this direct sum space is of course . ‘the
‘reqﬁired inVarianCe of the theory under space. inversion. Indeed, as

(4.12) demonstrates explicitly, the bperation of spaée inversion takes

n n+l

27 2

- the representation _(—5—,5 into ( ),  and vice versa. Denoting
Lt i ‘. ) t X . ) ) ) i ) . N )

by DZ(R) the representation matricesvin the direct sum space
[($0) @ (0,D)], we'havé the following transformation law for the

y-matrices

1 o 1 -l _l'.'.'. |
CDHR) g DR = Reg 7g

It follows that for E = O Eq. (3.1) is invariant under four-dimen-

v sionai'rotétidns, so that its sblutions-may be labeled Ey_the eigenvalues .
J. of'the,completenset of commuting géneratofs'ofvfou. We write ﬁhe E =0

equatibn‘in,the form

Dy30) ox) =0, )

* where

B ) omye . B 2 .

‘ $E<é;>\) = [ml - i’}“.a -9 §][D + Edh + i m2] - XV(X)@(X). S (5.2)'
Here V(k).:is the "potential (3.2) and 6?(x) is the operatorVdefined

by | -

®x) : (g,r) —> (g,-m).
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Introducing
@g) %ﬂ)*éﬁﬁﬁ% - (5.3)
we define the ' parlty operators in three- and four-spacesx

m, =_-iyuic>§g);,. m, - 75”6?<x)5 N R

We note the COmmutation relations

i, ) 5 Dysn)d = o, 1, ml Ao '.  (5:5)

Because of these cdmmutation felations We may choose the solutions of

(5 1) to be also elgenfunctlons of H5 or »Hﬁ, but not of both.

In partlcular, the eigenfunctions of Hh will have to be of the

form?o

with space~-time parity .(-)n. Substituting (5.6) into (5.1) and using
" the results of Sec. iV, we arrive at the following set of coupled
";y,differential equations for the radial functions Fﬁ+(R) - and Gh+(R>:
a ne3yonel . n hM ~ '
mKF, (B) + (G + K0, (R) = (-)% 2k, 0m)F, <R> " TOm)G,, ()],

| | - (5.7)
+1 ' d n n+l hM
mKG, (R) + (G - K F,(R) = (<) [K (MR)G H(B) + KOR)F, (R)],

where

_M-me I (5.8)



P L

~ UCRL-1768k4

. BN . -26- ! .
Equatlons (5 7) exhlblt expllc1tly the degeneracy of uhe solutlons with
respect po‘the.quantum numbers, J vand _M; lIn‘exactly.the.same manner
we arrivevat aYSetdof-coupled-differential equaﬁione'for' F, (R) and

_G (R) Tt 1s, however,'31mnler to’ note that 1f ¢ (x) is a solution

JM

n+;_'0n _

~of (5 l) with elgenvalue x, then so is w(n+l)‘ cc HB

’nccount of’ the commutatlon»relatlons_(5.5). That is, we may obtain ".

d-uhe dlfferentlal equatlons for va(R)"ahdi«o' (R)” by simnly noting

ithat (we make a convenlent ch01ce of the proportlonallty constant)
F(ntl)’#_:::Gnt’ S I (5"9)
mWe conclude therefore.that for a glvenyvalue of n, tne-combined set‘

Cof solutlons q§¥:‘and @(n+ ) [w1th J{ and M taklng on the values.

CT=1/2, 3/2,5, (ard), M = -, -J'+l L ] ié 2(n+l)(n+2) fold -

,degenerate For eigenfunctions of lHB the additional twofold degeneracy

expressed by (5 9) would correspond to a’ degeneracy with. respect to the -

two values of the orbltal.angular momentum coupllng'to a glvenvtotal '
angular'momentum. J. | | | - |

— We now turnvour attentlon to a study of the behav1or of F (R)

and G (R) as R —> 0. Although the potential (5.2) has a,logarlthmic

'.s1ngular1ty at R = Q,vue nave'for.the leading?contribuﬁion, .

V(x)‘ '—‘-> 8(7 -’;})3‘5 as ‘R‘—'—> 0. ~ Hence .taking thisﬁ limit‘ in Egs. (5. 7)
we arrive at two coupled dlfferentlal equatlons of the Fuch51an type,
‘w1th R O a regular, 31ngular p01nt ‘We conclude therefore that

.', the six 1ndependent solutlons_gfor a ‘given value of“'x,' J, M, and n)

to Eq. (5.7) eﬁhibit the behavior V
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Fni(R)“~ R 5 ;Gni(B) ~ R , (with ; = 1,6), (5.10)
as R —> 0, proviged that ‘oz(i:-.Olj;éO;’ and B -ij 0, for i #£].
We must have, however,.di - Bi =m (integer). In-fact, a more detailed
examination of the equations’shows that m can have only the values
mfé + 1. The" qi's and Bifs are then found to satisfy the indicial

- equations

[an+ ﬁjtap} .(n+2>][03+‘+ (n+2)] (;)n+l &, 6n+.= P . 1,

L ‘ L (5.11a)
[+ n)[@ - (e2) )@+ (e2)] = ()7 B, B =T -1,
and
[0"7 - n][o"7 + n][a"7 - (n42)] = ()7 B, 877 = ' -, -
[6° - nl[E + 0] + (me2)] = (1) &, BYT =&+ 1,
We note the following useful relations:
Pt - ot(nirl)?r :1,
(5.12)

ght ':&(nil);_,il.

" For the purpose of later discussions 1t is-also convenient to'distinguish
'among‘the six independent solutions to Egs. (5.ll)Iby a subscript m,
, where m denotes the inﬁegral value which the solution in question

- approaches as A —> 0. Thus

B sn e n—o (5.15)
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Noté that &?i ';._agi; fiha%l& we gote'that_gxgept for some isplated
v&alues of N, -including..x =‘O; the soiutioﬁs_to Eqs. (5.11) do indeed
satisfy the above stated cohditiéns.for the vaiidity of the ansatz (5.10).
This can'aiso bevseep.frdm Fig. 4 for the special case n = 1, where we |

. present a plot_of- qli and ‘&li as a function of the coupling strength -

A

'B. E£0
We”nOw.turn,oﬁr'attention to the gctual casg of,intérest, that is,
when E # 0. In this case it is still desirable to expand thesolution in
‘terms of the four—dimensionallspinor sphefical‘harmohics, although this
leads néw tofanfinfihiﬁé set“of'éoupledﬂthird-orden ordinary differentigl
equations. Thélsituation is therefore mugh more complicated and the
discussion of the boundary conditions at the origin is correspondingly. '
more involved. - | | |
‘Wevbegiﬁ by.restating the résulfs‘of part A in a somewhat different
form, the reasontfor this being twofold: . | |
(a) In the<.E # 0 case it turns out to be ﬁére-éonvenient to work in
“the "Dirac represeﬁtatipn" relafed to the ﬁWejl feprésentétion” by a
unitary transformation. In this representatidn
: 76_ /1‘ 0;3 . <? §i>' %  ;<? ._I\
. - = B = .
_:KO' -l/’. w AR | = .1 O/ '
(b) 1If E Ov the space-time pafity is no longer a good quantum nu@ber,
whereas H3 still éommﬁtes with the operator JDE(B;x). Itvis thérefore de-

sirable to restdte our earlier conclusions in terms of the simultaneocus

eigenfunctions of i}v(ng)' and I .
, E 3
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We may obtain the E = O eigenfunctions of I, by simply applying

j)
the projection operator P, %(l + H3> (three-parity + 1) to the E =0

1

solutions (5.6). Doing so, and going to the Dirac representation, we arrive,
making use of:the‘results (M.8), at the following expressions for the E = O

solutions;l8

1 3
- ¢
2(n+p+2)12 [2(n-g+1) ] 2 + \
L /{ ] F(R)Y Y Tem G(R)Yn+l \
X " (x) =( - | (5.1ke)
i : y : L
\ig ng)] F(R)Y(H ). [2(ntes3)] 2 G(R)Y(£+l)_
n+l -+ t n+e n+1

with three-parity  (-)%, and

L (x).="(-) I, %, (x) | . . ’ (5.14p)

| v. 1 o . | :
with three-parity (-) Tt Here F(R) = Fn+(R) and G(R) = Gn+(R)’ S0
that

n-+
o an + 1 -
F(R) ~R~ , (R) ~ R 5
R 6’}'1‘*‘ ‘ an-!-_ 1 (5'15>
F(R) ~R~ , G(R) ~R
‘ n+ ~n+ L o ee s
as R —> 0, where ¢  and ¢ are the solutions to the indicial
equations (5.11a). The result (5.14b) together with the commutation
. 2 Co(er1)_

relations (5.5) shows that Xh+ and ‘Xh are solutions to Eq. (5.1)

. for the same eigenvalue' A This corresponds to the tﬁo—fold degeneracy
alréady noted in connection with (5.9). Hencez ﬁith the additional
degeneracy in ¢ vand the magnetic quantum number ‘M, we have again a
set of 2(n+l)<n+2) degeneraté E = O solutions.

If E %_O,-.the partial differential equation (3.1) is no longerv

separable and we obtain now an infinite set of coupled ordinary differential
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equationé fér(the-radiai functionslin‘the ;expanSiQn”6f thé:;ﬁrm
"B 40 solu%ion.in terms of the_sphérical harmonics.(ALB)Z:This_infiniﬁe
set df'eqﬁ@tions.no l@ngér decouples (for E-=0 this.set.did decouple5v 
as is>evideﬁ£'from the form of the E =0 solufionsgl) and the study of
the boundary'éoﬁditiohs‘af the'origin is cofféspondingly moré involved.
'We will show, howeyér,vthat if we devélop the solution as a power series
“in E, then,gg.to first érdér.in- E, we are 1ef£’%i£h only a fiﬁite setu
éf coupled equations'for the radial funqtions.‘ Indeéd,‘consider‘the
sélutions_ ¢k(X) fé'EqL§(3.6). For E bélow thé_elasﬁic threshéld

. 'k, ; . ,
vand at a givén.valﬁe‘of A gk(x) is expécted to have a discrete set. )
“of poles in zE;-,corféspondiné“;o’the'eigenvalues .ﬁm of Eq. (3.9).
' ‘ ~,-wé write

Consideriﬁg in pérticular one such pole af E = EO

#00)=F—g o (5.16)

The bouhdfstaté wave function o(x) corresponding to the eigenvalue -

. ~ - .
© B =E, was defined as §ZE(x) evalvuated at the pole: o(x) = ¢E (x);

' assuming that @;(x) can be developed into a power series in E with
' ;adius of convergence ro 2.[EO], and. notingvthat in the limit E —> Q
we must recover the results (5.1L4), we conclude that to first order in

EO (we omit'thé magnetic. quanum number ~ M)

3 2 ) _ I ‘
9 F(x) ~ % *(x) + Bgy f(x) , - - an

where -Xni(x) are the E = 0 solutions (5.14) and Wﬁi(x) is independent
' L o , :
- of Eb-- The general form of Wn# will be determined below. The E # O

solutions are of course no longer degenerate with respecﬁ to J and .
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Note, however, that both @n‘ and Xh" are labelled by the same guantum
numeers, implying a one-to-one correspondence bétweén the E =0 and
E 4 0 solutions.
In order to determine the form of uhi(x) we substitute (5.17)

o (3.1), keeping only the first-order terms in E,- We arrive then
at the following set of coupled equations for Xni and Whi

49 (a x) X (x) =0, | | (5.182)
D (o) v, (—7— (0F - 2] - Iy -y aJaQ O (5.18)

Here (5;l8a)bis of course.jugt the 'E = O-equation‘; (5.18b) is of the
formfbf an ”inhoﬁogenedus”' E”= O"equdtibn, the iﬁhombgeneoﬁs term being
already known from the solutiqn of Eq. (5}i8é). This suggests that we
seek a solution of such form as to lead tb_only avfinite set of cdupled y
differential‘équations,>.An examination of the inhomogenecus term in

L .
(5.18b) shows that wni(x) must in fact be of the specific forml8

X |
) /(.J&i&iil!g T (R)Y + Gi(R)Yif

: %— : (&'*‘l) ~ | (L+l)_
{ gn a- 2} (R)Y T+ Gl(R)Yn
, (5.19)
22
+ (n- g+22
‘/F2(R)Yn+l * [ n+5 R)Y
+ ' ' :
(M) 15 (a+1)
\F (R)Y . o [Rleett) n;f;h S e, ()Y,
‘ (e+1)_
the formal structure of = Uy (x) being the same as that of

Hu W (x) - The coeffic1ents_of“ Yn-l and Yn+2 have been chosen so
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that when the operator JDO(b;A) is applied to wh*(x) in (5.18b), the

ccefficients of Yn'2 5 in the resulting expressions vanish

identically. Thus we find that the substitution of (5.19) into (5.18b)

and Y
n+

leads to a set'of,eight coupled equations fdr the six radial'funétions
in (5.19), only six 6f the eight equations being,‘in facﬁ, independent.

Although we have demonstrated it only to first . order in EO’ our

results suggest'that, subject to theAassumed'analyticity properties. of
g_(x), we may obtain the E # O solution @ni(x) perturbatively by

: L, x 5L
starting from the E = O solution xn*(x), with only a finite number of

terms contributing to the partial-wave expansion of wni(x) to a given

0 of the expaﬁsion

U of ’aE(x) in powers of E, we noté that.cgrﬁainly_'ro <E,, where E

-is the first excited state in the'bound;State spectrum of Eq. (3.9).

order in Eo. As for tﬁe‘radius of conVérgence r

1

Having determined the structure of the E # 0 solutions.to first.
order in E, we examine now the behavior of the radial functions in
(5.19) at R = 0. 'This'is a.straightforward, although'tedious,faSk, since

we are dealing now with a finite set of coupledAequations. Introducing

the expansion™ : '£+ L,
- /Fnk(R)Yk \\
; i

<<pni<x>=2 SR (5.20)

_— + T
L\ (R)Yy /

 where we have followed the notation (5.17) (fhe:radial functions are of
course independent of the magnetic quantum number M), we may summarizé our

findings by the statements

RN
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L, agf + jk-n} . 4, az+ + [ (k£1)-n|
F (R}~ R" s Gu(R) ~ R » (5.21a)
:, EF -1 k(1) o, W1 v | (ke1)-(ne1) |
Fn£<R)fv_R . 5 th(R)’VI{ (5.21b)

as. R —> 0, ﬁhere‘ ag+ aﬁd 6&# are the six solutions té thg ‘indicial
equations (5.ila). ‘Although we have shown only the first-order solutions
(5.17) to exhibit the behavior (5.21) at R =0, we note that these
boundary conditions ére independent of J and M, and are_in fact
detéfmined oy thé. E=20 soluﬁion'itéelf. We therefofe assume the

results (5.21) to be correct independent of the value of E.
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| v:c THE INTEGRAL EQUATION A, BOUNDARY CONDITIONS |
» AT THE ORIGIN

In order folcomplete our d1scuss1on of boundary condltlons, we
_need to examine whlch of the boundary condltlons (5 21)- are actualTy
contalned in. the 1ntegral equatlon (5 9)

Our obaectlve 1n thls sectlon is actually twofOWd Tnzaddition
~to establishlng whlch of the 31x 1ndopendent solutlonS(for glven valuesd
of J "L, M and n) to Eq (5 l) are. also prosnectlve solutlons of the.
1ntegral equatlon () 9), 1t is also of some 1nterest to learn. hoﬁ the
- boundary condltlons (5 21) may be obtalned dlrectly from the 1ntegra1
equatlon 1tself.v We restrlct our dlscuss1on to the case in whlch
'E =0, since, as we have oeen 1o.Sec.AV this is entlrely sufflclent for :
odr purooéé "In. thls case the expre881on (5 7) for the. "Wick rotated" |
Green' s fuﬁctlon s1mpllf1es cons1derably5_ﬂleresult of taklng the lelt
E—>0 belng - . "f‘. f A ' 'i ﬂ "a7 . - K |
Ho(x)_=_gl—2-_';f . dB KO.[(mS + f}(mf’._:m2_%fa]j . R (6.1)
‘For simplicity we'tako ‘ﬁi_; m2‘='m; In ﬁoatloaéo:we obtaih};upooi

”'-'substituting (6;1) into (5?7),

H(x) = Lok (m]x]) = iy-® K (m]x])]. o ::'g S (6.2) .
V=52 Holmixl Atk PE LIRS S A
0 . ) 1 EE R ,
©As in Sec. V-A iﬁ is COnveoiént to wofk iﬁ:thei”Weyl representa- AR .
tion." The E = 0. solutlons are then of the form (5 6) Iﬁ order to

‘- carry out the partlal wave analys1s of Eg. (3,9) we make use of the

~expansions -
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R N A ~ - y 1 (A
buplolmlxxt 1) = ) ygiyle T, (R () - 21n+2(“13<>Kn+2(mR>)]"§'(R)as ’
' . nt : ' ' :
. - (6.3)
K_L(mlx-xf]) ] T I, (mR) Kn+l_(mR>) BER) R
8@5 x-x' "éig . mRR’ R\ op
n+t. . .
: . iy ' ‘ 2 2
as obtained with the aid of the addition theorem (4.16). Here R = @a/ + 17)
R Max{R R’ }, ete., and e, = 2 for all positive integers n  except for
n = O, where ey = lz In(x)' and K&(x) are modified Bessel functions

with the properties

P4

> as

_x-—-> J {6;h)

Meking use of the expansions (6.3), and of (4.20), we obtain the f0110w1ng

set of coupled 1ntegral equations for the radial functlons F (R) and

Gni(R> in (5.6):

(R> gsz n+lfo 240 IR__..)[e I mR<)Kr;(mR>)f21n%2'

(mR<) n+a

(mR )]

x [ (R (R) ) 0R )G (7))

R' “IFL n+l "

-2 T <H’R<)Kr‘l+1(mR>>’_I%'-I (m&)Knﬁul

(mR>)][Kl(MR’)Gni(R')+K2(MR’ani(R')]}

(6.5)

hV
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R n+l

,:(mR ‘1

(mR K n+1l

“ar! {[—, (mR M, ()T

n+l

T ]

Hz%;—)[e I_ (mR )K_(mR ) 21_;2(mR )K_ (mR )J[K (MR )G (R )K, (MR )Fni(R?)]}, :

'-_where | (n_l) -~ In order to deduce’thé'behavior bfvthefradial'functions

at R =~ 0 we agaln make the ansatz that in thls 11m1t F '(R) ~ Ra' and
n (R)‘~ RS In the llmlt R ———> 0 the dominant contrlbutlon to the

1ntegratlon in (6 5) comes from the nelghborhood of R'" =R, so that thev

;_leadlng term may be obtalned by 31mply qubstltutlng for F (R)

-Gn+(R) thelr-yalues at- R ~ O,_ We arrlve then at the follow1ng 1nd1c1al

TN

,
. n+l . S ; -1 : L
(=) < [a + 0+ l][O -0 - l] T [a + o+ 2][a - n] >=‘; (6.§a)

ﬁith B =0C ¥ 1, (and }
n+l ¢ - 1 L 1.
() L‘[B+r‘1+.2][séﬁ]' R R f (6 6"")'

Cwith o =8+ l.' ComParing Egs: (6. 6) w1th the indicial equatlons (5 ll)

obtained ear’ief, we see that they are 1n‘fact 1dentlcal Thls, uhen

completes our first obJectlve, that 1s, to learn how the boundary condl-

,,tlons (5 21) may be deduced dlrectly from the 1ntegral equatlon itself.
”,It remains now to be-seen for which -of the ‘six solutions' (5. 21) the 1ntevral

>equathn (6;5)_rema1ns well deflned An examlnatlon of the equatlons

leading to (6.6) shows that we need to Observe the inequalitie5r
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> c(me2), T > -, |
(6.7)
o >, 3T > -
if the integration in (6:5) is not to diverge at R' = 0. [Compare

(6.7) with fhé A= 0 - solutions.to the indicial equations!]
At this poiﬁt it'ié confeniént'to define what we will refer to
as the "regular" and:ﬁirregular” solutions. We.separate the solutions
to the indicial equations (5.11)'into tﬁo‘groups, depending on whether
they take onvpositiVe (includihg zéro) orvﬁegative values'for. by =»O,
We will refer to these as the "regular" and ”irregular”'solutions, respec-

and U 4o
7 Th+2

tively. Thus, to take an example, the solutions o§+, Qﬁig,

Eqs. (5.11&) belong to the first class, whereas dn2n+2)’(532n+2)’ and

 5?; belong to the second class. We make the corfesponding classification
of the six independent solutioﬁs”(for givén values of J, M, ¢, and n) to
Eg. (3.1). Consider then'a typical case such as représented in Fig. L,
where we have plotted ali and ‘&li as a funcfion of the coupiing
consﬁant' A- Ihe‘intersection gf a given line X\ = A with the:curves
gives the éix (poésibly pairwise cémpléx) solutioﬁs to the indicial_
eqqations;' We see that.the restrictions (6.7).d§ not necessarilyvexclude
‘the irregular solutions. Thus if we‘take,the lj- solutions in Fig. ka
as dn example, thé'conditioﬁs”f6.7) are seen to‘exclude:oﬁly one of the
irregular soiutions for A >0, vwhéreasvthey exclude all three for

A< 0. By merely counting the number of free parameters, we would therg- o

fore expect Eqg. (3.9) to have a continﬁoﬁs eigenvalue spectrum for X > O,

unless we supplement the integral equation with additional bdundary
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>-,conditions “To.. thls end we'. requlre the solutlons to be4'regular” at

.ﬁ =VQ} 'fhls cholce of boundary condltlons has the v1rtue that we treat
' fthe solutlons for pos1tlve and negatlve values.of the coupllnﬁ constant

lln a llke fashlon.‘ Another reason fordfavorlng thls ch01ce 1is that for
a non51ngular force the 1ntegral.equatlon mould 1nclude w1thout questlon
only the regular solutlons e |

Hav1ng thus completed our study of the boundary condltlons to be

‘ imposed on the solutlons to Eq (5 l), we. ShOUldllke to comment again
brlefly on the MacDowell symmetry (see Sec III).ln relatlon to.the

_elgenvalue:problem Labellng'ﬁm solutlons to Eq (3 1) by the correspondlng

T

'”v_values of the energy E e may now restate our earller conclu51ons as

}’

follows: If@ (x EO) is a solutlon of Eq (5 l) for E EO and coupllng- S
Uo(esl)s . i, :
constant A >then ?, +(x,-E ) ¢ oc’ HM @ (x,E ) is also s ‘solution
for ‘E.;_-EO;: at the same value of K ‘In fact both of these solutlons 1b

- are regular, 1f elther one of them is. Comblnlng thls with our earlier
remarks lanec III concernlng thelr asymptotlc behav1or, we conclude

. . z R

that if ® (x E ) solves the elgenvalue problem for E = Eg, then

(e£1).
o +(x,-E ) as deflned above,'solves the elgenvalue problem for

CE o= =E

B atvthevsame;value of the_coupl;ng constant.,3 That is

'_".:Eg(x;‘.-z;)';..EB'(x;(_}.;i_);j, . (68

Whichbisfa'more familiar way'of”stating'the MacDowell symmetry.
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VII. NUMERICAL TECHNIQUES

A. General Treatment -

In the preceding sections we have prepared ﬁhe ground for doilng
the calculation we have in mindj; that is, to solve Eg. (3.1) subject to
the conditions that ,@(k) exhibit the asymptotic behavior of Fig. 3 and

that it be regular at R = 0. Writing equation (3.1) in the form
D (d)e(x) = aw(x)o(-x), , (7-1)

we easily verify that the quotignt
jd”x #t(-x) (3) glx)
jdux_gﬂ(x) ¥(-x) g(x)

A] =

is stationaryiwith reépect to infinitesimal variations iﬁ #(x) about

the solution f0'<7.l). The intégrals in (7.2) convergé at infinity for.

E beiéw the two-body elastic threshdld, i.e., EKL m, o+ M. This can be
easily verified with the aid of the results of Sec. IIT as summarized in
Fig. 5, In the scattering region the integral in the numerator ceases to
converge, hﬁwe&er (the'integral in the denominator continues to converge
for E Ybelow the first iﬁelastic threshold), so that the stationary
expression_(?.E) can.bé ﬁsed only for calculations in the bound-~state
regidn. The éhéice of scalar producf was of course dictated.by the
aesired stationary properties; As an extra bonus we hotiée that the

~ operators DE<6) laﬁd. V(x) are self-adjoint with respect to the scalar
products chosen , so that we will have to deal only with Hermitian (actually
*

real, symmetric) matrices in the calculation. We also notethat A = A

as long as the dehbminator in (7.2) does not vanish.. However, since V(x)b
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‘ isvnot a positiVe'definite opefator,‘fhis is nof guafanteed, and Eg. (7.1)
doés in faét'havevcompiex as well as real'éigenvalués,,x. |
In Sec. VI we argued on the baéié of the integralvK;.(5{9) that.
| the solﬁtions to Eq. (5,1) sﬁqgla be‘regular at R = O; The.sOlﬁtions
to the éigenﬁalue proﬁlem are thén in~geﬁéral.a'li£ear combination of the
three iﬁdeﬁendeht>regular éolgtiéhs to Eg.(3.1) (for giveﬁ values‘of'the
: quantum numbers' J, M; z; and~ﬁ). Sincéja proper treatment of ali three .
solutions ét, R =0 would ha&é required the inversion of very lérge

matrices, we have incorporated into our calculation only the boundary

conditions - _ .
; e a§+ + |k-n| 1’34 "d2+ + |(k+1) - n] _ o
Fnk\R): 3. | o th(R) R o , as R > 0,

(7.3)
which feprésent the dominanﬁ contribution at' R=0, aﬁ léast for a |
 :’restricted rénge 6f coupling constant values.

Now, 1t follows from our éiscuésion in Sec;’V that the specificaf
tibn of the angular momentum.and:parity'of a. particular channel of interéstv
- is insﬁfficﬂam_to single outba unique solution, siﬁce we ére left with the

quantum number —n labeling the sol@tions (5.20) as én additional degree
of freedom. Since this quantum number has no direct physical inter- |
pretation, it follows that, to take an example,'the‘"nucleon” could in
-principle be cénsidered as & bound stgte‘in any‘oné of the infinite
number of JP ;,%f, I=3 channels distinguished by the guantum number
n; In view of thé role of thig guanitum number in labeling the solutions,
v wovld expect on a merely intultive basis fhat higher values of n would

correspond to higher excited states. The stability of the nucleon under

L
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'the stropv interactions would then suggest that 1tshouldﬁbe interpreted .
as a vound state ‘in the channel labeled by the lowest value of n.
We have(iﬁ$§ restricted our autentlon to.a study of the solutions @Z (x)

and ® (%) as a loglcal startlng p01nt for our calculation. We

will refer to these solutions Slmply as @ *(x), and write

- (7.4)

Then, accofding to our choice §f boundary cdnditions (7.3) we will., in .
the actual numerical calcﬁlétion;‘require'fhe'radial fﬁnétionS'to
Véxhibit the behavior - | | |
4, ot s Ik;z['_ | a+ ozfi-tlﬁ lx-o]
P 5(R) ~ R O S (7.5)
as R - O, ‘whére we have made uée_of (5.12) in order to put the
results into a more symmetric‘form._' 
Now, Withvthe usual defiﬁition”of the charge conjugation matrix,

o ;o3 ; vy o
C = ( ) ‘.66,_05 e@(.lﬁg2>aﬁ P . (7.6)

we have

- -1 x %
C @E(a.;x)c = °®E (3N ),

'whereiJDE(é;x) is the oﬁerdtor:défined in (5.2); Noting also that

_ I o L ~
we conclude that, for the bound-state problem, Fkt(R) and Gki(R) in

(7.4) may be chosen to e real, for x real. Specifically, we took the



Cof (reaT symmetric) matrlces DE(k'mfgkm)

E T A R e T s - . .
. - g LAY . 3 : N P A F T e b e T e b e e B i L L P

UCRL~1768k4

o | .

radial‘trial functions té be of.the from -

L

. %t : aﬁi +.(k—£)’JL : m ’7R o
‘7 (R) = R - > a. R e’
(7.7)
R P M o
L. ) OC + 1 + (k.-_z,) o
G, (R) = R ¢ R > b, Roe 7R,;

where k = 2, K.. The actual solutions have logarithmic singularities at

R = 0 "so that wé could very iikely.have improved on.the_convergence of
our é?lculation by including eXplicitLythese;ldgarithmic Singularities.

in the exoénsion'(7'7)' 'We have not doﬁevso for sake of simplicity.

‘In practlce only falrly low values of K -and M- in’(?.?) were: considered;

thus tynlcany 2 <KL 5 and 0 < M 8. The stationary expression (7.2)

'was then converted to a matrix equatlon for the expansion coeff1c1enus

(a 8ys © ),by performlng all the integrations. This left us with a set

s 2nd V(k'm’;km)ab.‘corres-
pondlng to the dlfferentlal operator and potential integrals respéctively,v
where m and k have the same meaning as in (7.7) and the indices a, b

label the upper and lower components in the expansion (7.4).

In the calculations involving the singular potential (5.2) we

'Vwere not free to con31der arbltrary values of the coupling constant.

strength x Ev1dently the six solutions to the indicial equations
(5.112) are real for,only a‘restrictedvrange (Xl,k2) of coupling-

constant values. = (We will refer to xl 2 as. the ”critical”lvalues of

the counllng constant. x ) Out51de this range we have two pairs of -

v complex conjugate solutions. 1In fact, as Fig. 4 illustrates, the

regular and irregular solutions do or do not mix at A = Xl o7 depending
. . . . ! b
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cn the sign of A and the particular quantunm ﬁumbefs involved. 8till,
from a purely mathematical'standpoint one would expect that, at least |
in ﬁrinciple, a well-cdefined eigenvalue problem could be fermulated even
for coupling qoﬁstant strengﬁhs'exceeding'the critical value. However,
for [a] > lxl)el the solutions develop an essential singularity at
R=0, oscillaﬁing infinitelybfast in the limit R = C. Aside from
presenting obvious numerical problems (the existence of an eigenvalue'prob~
lem evidentiy'depends critically on the choice of phasé of the solution
at R =0), it is very doubtful whether a meéningful physical interpreta-
tion can be'given to thé'solution.za We_have‘therefore restricted our |
attention to the coupling-constant range (xl,xg). ‘In Table I we hav¢

: l
listed the values of A, corresponding to the solutions ® t(x) for

1,2
L = 0 through 5.25
Although the present calculation was origihally intended to be free

of arbitrary parameters, the range (xl,xg) of coupling-constaht values
considered in the singular problem was too restrictive in the JP = %*
channel (see Table I) to give a bound state, so that we needed to modify

the nucleon exchange potential (3.2) appropriately if bound-state solutions

were to be obtained at all. We considered therefore the two modifications

Wix) = —ﬁ—[aKl(MR) + biy-% Kg(MR)], | (7.8a)
'v(x).= 3%3[K1(MR5 + iy-R f(R,RC) KE(MR)]. ' | (7.8b)

Here Rc is a éutoff parameter and f(R;RC) is a cutoff function which

was chosen to be of the form
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£(R5R,) = RV/I(V‘R + R,)- | | } o R <7'9).
The bound;state solution§ were’ﬁhu; studied as a function-qf the three

2

and_the cutoff parameter _Rc. ‘We were of course free to give a any

masses m, , m and- M, the parameters & and b -.appearing in (7.8&),

desirgd value; whéregs b.-was still reétricted to thé range‘ (xl,xg).
For a =1b the potentialT(7l8a)‘reduces'6f éoufs¢ t6~fhe fofm>(5.2)
correéponding to. the éxchanée of an.eléméntary nﬁélébn. We also note
~ that for the. choice of potential (7.80) tiﬁe_ -bo_undary-ccsnditions (7.5) |

need tovbeﬂreﬁlaced by

.

‘ + L k#
s G (R) ~ RT

.J& | R |
F,O(R) ~ R as - R—> 0. : (7.10)

'_lBefore we proceed to'é discussion of the numeriéai résulﬁs, there are
several<ﬁtechnical" points which seemx@i%ﬁ:ménti@niﬁg.- Iﬁ pfactice it

was found tﬁat the}”optimﬁm”fvalge of thé éprnential parameter 7y in the
. éxpansion (7.7).asvdetérmined in the course of the caléulatibn was in |
general far dff erm_thé‘one suggested by the knovn asymptotic propertiés
of the solution because of the short-fdnge character of the force.  The
sfarfing point of our numerical calculation therefore consisted.in
séarching'for a "good" value of the parameter 7y by Studying the
convérgence properties of'the:calculatioﬁvat small'but_increasing maprix:'~,
_ sizes.' We then imprgvedlon the_ac¢uracy'of.the caiculated eigenvalues
by systematically'enlarging our sbace of basis'functions; that is, by.
keeping an increasing number of termé in the expansions (7.4) and (7.7).

Since we expect the terms in the expansion (7.14) to become of decreasing
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importance as we go to increasing valﬁes of k, we made the index M
in the sum.(7.7) a function of k, 'observing at all times the inequality
M(k) > M(k+1). In practice we did‘not,invert4matrices larger than 54
by 54. TFor matrices of this size an accuracy of 1% and less was
common fér the case in which my ;‘mg, although an accuraéy of ~ 10%
could already be obtained for much smaller matrix sizes. This is to be

s 5k

compared with other calculations.

When making this comparispn it is
to e kept in mind, of course, that the presence of spin alone in our
~ problem doubles the matri#vsizes for a given choice of trial function.
Because of the orthogoﬁélity of the spherical harmonics 1t was
‘evidentiy»cfucial to determine prgcisély the total number of terms.Which.
‘ ﬁeeded to be inciﬁded in the’ekpahsion (7.4) if the computed eigenvalues
~were to Dbe accurate to some specified amoﬁnt. In'practice i£ wa.s found
- that we never had to inclﬁde mofe thaﬁ the first five terms in the
~expansion (7.4) if an accuracy of abouﬁ 19, Wés desired. This suggests
that our method of reducing the genuine two-dimensioﬁal paftial differ-
ential equation in the variables .R and cos® to an infinite set of coupled
rdinaﬁy differential equations‘by expanding the solution in the form
(7.4) has definite advantagés over solviﬁg the partial‘differential
equation directly, since it provides us with an approximaﬁion scheme
in which.we actually neéd to solve only a small set (in our case at
most five) of coupled ordinary differential eguations. v
Tables IT and. IIT illustrate the above observétions. In Table
IT we presént a fyﬁical sequence of approximations for three different
choices of the asymptotic behavior of the trial functions. The first column

specifies the form of the trial function, the notation being
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‘.where M(k)-»is thefmaklmum.valueAofuthe‘summation-index m in the expan-
sion (7. 7) as a functlon of the four= drmen51onal angular momentum k
‘ labelwng the radlal functlons, and K..is the max1mum value of k
con31oered in the partlal—wave expans1on (7 h) The table illustrates

how the ch01ce of the exponentlal parameter in (7 7) affected the
convergence rate as well as the dlrectlon from whlch the combuted
eigenvalues approached the flnal value We see that, 1ndependent of the'
“choice of'_y, the numbers do eventually converge to the same flnal value

| '-TablexlIIvlllustrates‘our ohservatlon‘that:speC1al'care had.

“to be taken to'include afsﬁfficiéﬁt"numbef of terms'ln “the expansion _
(7.&).v Table IIIa shows the effect of 1mprov1ng only ‘on the radlal |
ldep ndence,_the numbers are seen to.converge to the same flnal value
.vndependent of the ch01ce of y, as onenwould exoect,:s1nce we-mayl
‘correCt for 8 poor ch01ce of the exponentlal parameter by 1nclud1ng

: elmply a larger number of terms in the expan31on (7 7) Table IlIb :? 2
.shows, on the other hand that hy 1mprov1ng only on the "angular” o
,'denendence of the solutlons we cannot correct a poor ch01ce of 7, :

:so that the numbers are seen to converge to dlfferent values -for drffer-"'.
:-ent,ch01ces of ;7; _However,bln all cases‘the numberstare.seen to converge,;
- to thev"wrong”‘value, the ”correct”ivalue being | 1;6&9"as seen'from |
TableFII. Table IIIb also shows that 1t was entlrely suff1c1ent for our ~‘
purpose to include only the. first flve terms 1n “the expan81on (7 h) a we':

had already po;nted out. "
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We have outlined here the general numerical procedure which was
Fal

followed in the present calculation. We turn now to a discussion of

certain difficulties inherent in our choice of variational principlie.

B. Weakly Bound States with mg/ml << 1

If we want to study the physically interesting case, tha* is,
the boundvstates of the pions and nucleons with the experimentally
-measuredvmasses, we run into difficulties with the quleigh-Ritz
variational principle (7.2); The fact that we are dealing with weakly
bound states, such as the "nuclecn,” for example, and with a very small
mass ratio, mé/m.l = 0.14k, dimplies a very dsymmetricbasymptoticA
tehavior of the solution with respect to the forward and backward
light cone, so that even in the bound state domain, the solution is
actvally exponentially rising in one part.of the {cose, E) plane, and
decaying in another, although the product @f(—x)w(x) is 2lways
exponentially decaying. Theée circumstances made it in general rather
difficuit to obfain accurate solutions for the case in which mz/m1 = 0.1kk,
although the variational principle (7.2) pfoved guite adeguate for mass
ratios 0.4 g mg/m1v§_l, the lower bouﬁd being actually a function of
the boﬁnd~state energy consideréd. There have been presented, of course,
alternative ways of formulating the yariational prdblem5 which, in
addition to being ﬁuch more efficient, do overcome to some éxtent the
above difficulfies. However, instead of pursuing these alternatives,
we will try to "patch up" the variational calculation as presented
so far, by transferring some of the undesirable asymptotic properties

of the solution to the potential. To this end we consider the

PR
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transformation

B) = 9(x) em(fReose), (7.12)

where u 1s some parémeter whqse value we afe.free to choose._ Thus, 

to consider an'exémple, if we set p ; (ml -bmé),.,thenl P(x) will -

exhibit the aéYmptoticlbehaviOr $(X> yvéxp[%(E —fmi - mé)RJ .aloﬁg

both the Doéitive and negative time direction, reélacing.the‘original

' asympuotlc behavior (qee Flg 5) Q(x)/&/exp[(g ;vm1)Rj' for cos® = 1,

and @(x) A/exp[(— - mg)R] for cos® =’—l. We have thus achieved a

'complétg symmetry with respect to the forward and backward tiﬁe |

- directibniin the foﬁr;dimensional Eﬁclidéan‘sﬁace' Moreover, 1ﬁ the

aéymptétlﬂ domaln, : (x) now decays exponentlally everywhere in the

bound staue region, and is in. fact eSSentlally 1ndependent of the

vrelative time in the casé'of very.weakly.bognd-states ‘[E/(ml_+ mg)éi].26
From é practiCaivstandpoint,the transformation (7;12) complicates

matters considerably, since we are dealing.now with the potentiai

%Qx) = V(x)exp(ur),,whiCh is no longér rétationally:invarianf.( Howéver,

we still need to compute only one- dlmens1ona1 1ntegrals Thus, in order

to evaluate the 1ntegral J ] x ¢T x)V(—x)ﬁQx) in (7.2) we make use of .

the expansion

e'MRcoéé - (- ) (k+l) _§§Q£L_;Zvci(éos@) (7-13)—

and of the reduction of the dlrect product of two four-dimensional spheri-
cal harmonics. In practice we needed only the reduction coefficient

CL(nn’N) as given by the integral



UCRL-1768k

-Lg-

~TU . . .

4 ' _ +d f— o2 4L g+l 2+ gy .

c¥(mn'W) = Nil\n,/ a0 (sin ") ¥ ¢ T (cose)c T (cose)cr(cosa). (7.1%)
Jo

. i) - . A R .
Here Cn(cos@) are the Gegenbauer polynomials and Ni is the normaliza-

tion coefficient defined in (A.4). Note that Cg(nn’o) = 6qq,. and

'Co(nn’N) = 1. With the aid of the orthonormality property
~ 1 '

; ‘?/'{'7] 41, -+ -2
P .2 N AR S Ly.
[ e (=) ool 0 - 8 (01
-1 ’
we deduce that
’éz(nn'N) = 0 unless In-n'| <N g’ o : (7.15)

It also follows from (7.14) and the property Ci(—k) = (—)nCé(x) of the

Gegenbauer polynomials that

ct (M (7.16)

C(nn'N) =

so that

'Cﬁ(nn'N) 0, unless n+n'+N = even integer. ‘ h (7.17)

Because of the properties (7.15) and (7.17) of the reduction coefficients
the necessary potential intégrals were‘expressable'as g finite sum of one
dimenéional integréls which couldlbe“computed accurately by use of
Gauséian‘quadrature technigues. | In practice the coefficients f
Cg(nn'N) were computed numerically by expressing the integral (7vlﬁ)

as a quadruple sum over produets of gamma functions.
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The effect of 1ntroduc1ng the modlflcatlon (7 12) is illustrated )

in Taole IV where we have listed for a sequence of increasing matrlx -
_§1zes the com?uted_coupllng—constant values needed-to glve‘a bound
state of the actuai‘pion—nucleen‘systeﬁiat the.méss of the-nucleen,

E =1 .o‘.' The potential was taken 1o be of the ‘fo'rr'nv (7.85) with

RC = 0;7 and M = bl ; 1,0. For the ch01ce g -0 in (7.12) the
“convergence" of the calculatlon 1s seen to be extremely poor, whereas
the cheice b= O.856_(u ; m - mé) 1s.seen-tovlead to a sau;sfactqryv‘
eonvergeﬁceiof-the‘numerical_resulte; ,:n ﬁractice'the medificdtion
‘;(7;12) provided us Wifﬁ one additional‘variationaivparameter %hich

we ﬁerelfree to -adjust SO»eé:ﬁeroptimize the'cdnvéréencerpropeities

of the caleulation.

T v e o
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VIII. NUMERICAL RESULTS_'

In the present calculation we devote our attention exclusively
to thg. J = 3/2 and- J = 1/2 channels. 'Eor conyenieﬁce we‘divide
this disc¢ussion iﬁto Seﬁeral‘parts corresponding to the different values
of the total angular'momentum J, 1isotopic spin I, énd parity that
%eré‘conéidered. To.a'large ekfent‘we are concerned only witﬁ the
genefal features of the eigenvalue specffum of Eq. (3.1), which are not
expected to depend critically on fhe ratio mg/hl. Because of the
“technical difficulties éncountered when dealing(with a ratio me/m1 << 1
.(as in the pion-nucleon case), we have placed somewhat greater emphasis
én'the case in which '@1 = m2. The numérical results are summarized in
Figs. V through VIII, énd in Tables Vvénd VI. (For a listing of the

computed eigenvalues to several significant figures, see footnote 21.)

" A. The N (&8 =3/27, I = 3/2) Chennel

In this channel the coupling constant - I8 is poéitive [Recall'-
that A is related to the pseudoscalar coupling‘éonstant G as in (2;8)]; 
the parameters. a ‘and b in (7.8&)'were.takén to 5é ﬁositive,'asvwell.
- In Fig. 5 we héve summarized.our résﬁlts'for fhe'éhoiee of pqtential
(7.82) with mi = m, = M = 1.0. Tﬁe'énergy spectrum was computed for‘.
.séveral values of a and- 5. .We see that béth the singular and nonsingu-
.'lar>coﬁponehts'of the potential:(T.Ba)."act" attractively27_in this | -

" channel. Moreover, for the range of coupling-constant values considered
o8 '

here, there exist no excited states in the energy spectrum. We also

 note that for the undamped nucleon-exchange potential (3.2) we obtain

- & bound state of mass My ~ 1.65 (in our units) for A = 1.6(G?/hk =10.0).
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In Flg 6 we have summarlzed the correspondlng results for the’i

0

correct plon-nucleon klnematlcs, that 1s, for m1 M = l.O and

v
F

= 0. lhh the plon mass Agaln we- studled the. energy spectrum

as a functlon of the parameter a in (7 8a),5 w1th b =-l.6. We .
V :note that for the exchange potentlal (5 2), that is, for a =D

{.1n (7 8a), we obtaln a bound state of mass.'MB l Oh at a coupllng

;constant ,N 1. 6(G /hn _'lO) Tt is qulte reasonable to 1nterpret

| this bound”state.as the .N (1256), s1nce, for the 51ngular force (3 2),
the \N%; could emerge 1n our calculatlon as a weakly bound state, while
a more reallstlc treatment of the short-range part of the force may
predlct 1t as a resonance (for the same value of the coupllng constant)s
The- above value for the mass of thet; N%t ~should be'comnared w1tn'uhe
,:value calculated by Abers and Zemach 6 who obtalned the. N ' in'their
N/D calculatlon as a bound state w1th a mass m(N ) - 1.13: (1n our
’unlts) at the experlmentally measured value of the coupllng constant
ﬁhand for a force 1nput correspondlng to the exchange of an elementary
. ‘nucleon. |
| \v%;.ln"Table,V've give the boundestate energleS'as computed for_
several values.ofithe massh M. 'ofvthe eichanged nucleon, for: |
ml‘: mg__ 1. O and the potentlal (3 2) w1th N.= 1.6 We find that.
for 1ncreas1ng values of M (W1th a correspondlng decrease in the
3range of the force) the two-body system becomes more deeply bound whlch
- seems at flrst to contradict our 1ntu1tlon . Azglancevat the potent1al_~
H(5.2) shoWs,_hoyever, that_the ma.ss of_the’exchanged nucleon controls not;
:only the "range" Qf;thé force,fbut'also”the-effective:COupling-constant.

strength.
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'B. The J - 1/2", I = 3/2 Channel

:Again.only pbéitive values of A are to be considered here.
The parameters. a. and b in (7.82) were.taken to be positive, as well.
No stable particle with the above quantum numbers has been observed to
 date. Because.of.the-very restricted range of couplingjconstant values
nthat could be considered here in the singular éase (see Table I), we were
unabié to obtéin any bouﬁd’sﬁates unless we consi&red the more general
formé‘(7.8) for the potenﬁial, with a # b and. R, # 0. This was
. the case in all lJ =% channels; indepéndent of the isotopic¢ spin
and parity, andzwas of course the reason for‘considering at all the
modifications,(7,8); In Fig. 7 we give a plot of the computed bound-
~ state energies as a function of the paraméters a and b in (7f8a),
with m:L =m, = M.; l.Q. Qualitatively thg situation 1s very similar to
‘that represented in Fig.’5, except that now the singular component of
the potential (7.8a) écts fepulsively, whereas if acted attractively in
| ~the N* channel; The nonsingular component‘acfs attractively, as be-
fore. One might expect that the situation would be reversediif we
considered negativevvalues of the parameters a and b. In particular,
since the d&erall force was found to be aftractive for a,b >0, we
might.expect it to be repulsive for a,b < 0. This is not the case, -
bound-staﬁevsolutidns,having béen ébtained_in both cases, as the follow-

ing discussion will show.

C. The Nucleon (JP - 2" I -1) Channel

In this channel A < 0. The parameters a and b in

' (7.8a) were taken to be negative, as well. In Fig. 8 we have plotted
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the comﬁﬁﬁed.béuﬁd¥stéfé.snergies as a funCtion_of the coupling constant
A, Tor the chOice_of pofentia«_l (7.8b)_ with R/ =1.0 and m = m, =
M= 1.0. vWe'haVe.found it_instructiVe this time to study explicitly both
the positi&e and ﬁegatiVé energy spectruﬁ, Asvwe‘have pointed out
already, éuf eigenvalue-problemAis jﬁst as well defined in the negative-.
energy_ddmain'as iﬁ is in the positi?e one, provided that . -(ml + m2) <
E < (m:L + mz)ﬁ- The résulfs presented in Fig. 8 indicate a somewhat. =
. ”ébnormaiﬁ-situation;_tﬁe computed binding energigs beariﬁg invérse‘
relationship to the magnitudelof.the,couplihg cénstanf.l However; in
" view of the MacDowell symmetry as statedvin ﬁhe form (6.8), this "ab-
 normal” éituatioﬁ in.thé 1 chénnél-(we usé the.hofation z;) is a
difect consequence of the existence of a.ﬁnormél" sitvation in the
,O+ channel. This has been éxplicitl&'verified_ﬁumerically. Stated
" more generally, gi?en a normal situation in the ei channel, we will
have a corregpondiﬁg abnormal éituation in the '(Jiil)ﬁ_L channel. It
is clearly sufficient to compute the positive and negative energy
- spectrum in all angular momentum channels of é given parity, since the '
energy spectrum in the remaining channels of opposite parity mey be
obtained from ﬁere with the ai& of (6,8); " We note that the MacDowell
-symmetry,hés beeﬁ s,howml7 to be a conSequence of extended Lorentz
invariance (inﬁariénéé under complevaorentz transformations), which. .
o 1s itself'a cénsequence of the'invafiaﬁce'of fhe, S matrix vunder real
Lorenfz tranformatiéns.. Heﬁce, the usual requirement of Lorentz invari-

ance provides the physical reason for the existence of the abnormal

situation as observed above.

LT, - . N L et e BT T
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Finélly;.it is interesting to compare £he streﬁgth qf the force
iﬁ the N* channél_with that in the nucleon channel. Thus, fixing the
» bound-state energy at the nucleon mass (E = 1.0), we have computed in
thesé twé éhannels the.eigenvalues A as arfunction of the cutoff para-
meter Rc for the choice of‘poténtial (7.80), with m o= M=10 and
m, = O.lhh,'the pion mass. The results are summarized in Table VI. We
note that the computed values of Gg/ﬂn [see (2.8)] needed to give a bound
state of the . nN éystem at the nucleon mass are larger in the N*' channel, .
than in fhe nuéleon channel!, (Reéall that an es%i@até based on. the Born
term alonelwould predict thé nucleon as cdntributing the dominant force
in thé N channel, not'in‘the nucleon channel!) We observe, howeier,
that this statemeﬁt is misledding, since the situatibn in the N% channel
is a normal oné, whereas in the nucleén channel we are dealing with an |
abnormal situation.

We should like ﬁo conclude this discussion on a somewhat
pessimistic note. OQur results héve shdwithat any estimate of the relative
streﬁgth of.the forces in the various channels as based on the Born
diagram of Fig. 2 will fall completely in:the bouhd-state proﬁlem,.as
of.courée was to be ex@ected. Moreover, our’calculation has also shown
that, for the boﬁhd-staﬁe‘prbblem, the sign of the coupling conéfant doeéi
not in generdl provide a criterion for‘distinguishing between attractive
and. repuisive fqrceé (uﬁleés the operators involved are either positive_or»
negative definite; as is the case in a ¢5'-theory with equal-mass particles).
This-iﬁplies iﬁ partiéular that the study of crossing matrices alohe cannot
provide in general_an.estimate of'thevreiative sign and strength of the
forces in a bound state calcﬁlation, except'when this study is made in the

context of a particular-dynamical model.

PRI
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bur calculatlon has demonstrated that even marglnally s1ngular 1
_Bethe.Salpeter equatlons may be solved by standard numerlcal technlques,
ffprov1ded that proper care is taken of the boundary condltlons at the origin
'v(of the W1ck—rotated space tlme) From the computational p01nt of v1ew? |
the presencetof spln.ln the problem did not,in any<fundamental way affect
our ability to solve the‘eQuation,'althouéh the,algebraic aspect of the
problem'was considerably more>lnvolved than_in‘the absence,of spin, the
. ~added complexltybbeing_prdncipally due to the particular approach taken
'in'this paper. vThuS_We could have'chosenjto solve the “BS vequation
directly in_thevformtof*a{two-dimenSionalwdifferential or integral'equa-*r"
tion. notheru~calculations have'shown; houeyer, that-such an approach would
vrequire‘the inversion of'typically lOO—by-lOO-dimensional matrices in
order:to compute the desired numbersbto an:accuracy of‘abfeu percentr
. This is to be'compared with our calculation in whichbtwenty-seven was
the maximum effective matrix Size ever considered the correSponding
‘ accuracy of the Computed elgenvalues belng frequently better than l%
In fact, in most of the cases the approx1matlon of the trial solutlon by
the first one or two terms in the expan51ons (7.4) and (7.7) was sufficient
to obtaln_an accuracy better_than lO%. Our particular treatment;offers
‘additional advantages as well: Thus ue-recall that in practice we needed.
. to include at most the first fiye'terms in the'expansion (7.4) of the
' solution, in ordervto achieve a 0. l%.'accuracy(éndﬁbetter). Noreover, our _'
vapproach allows us .to glve a proper treatment of the boundary condltlons
at the origin. In fact, the critical dependencefof these boundary conditlons

on- the coupling-constant strength'inimarginally singular equations.such
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as considered in this péper suggests, fhat our aﬁproach may well be the
approach to the singﬁlar problem. -

. As for the physical content of our calculation, we do not know
the range.of validity~of_the ladder approximation, nor is it generally
believed that.thenforcés in nature are as singular as the ones we have
considered (iﬁ the absénce-of a cutoff). ‘In addition, a more realistic
treatment would have to include the forceg arising from the exchange of
higher spin particlés, such as.the N*; for example. We have thus
strongly emphasized the mathematical rather than the physical aspect of

this problem.
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| APPENDIX A: -THE FOUReﬁIMENSIONAL SPINOﬁ SPHERICAL, HARMONICS
We 1ntroduce first the notatlon and conventions which are
followed throughout‘our work. A p01nt (x ) = (x 17%p7%s ) = @a ) i
the four- dlmen51onal E%clldean space can alqo be represented in terms of the
length R = €$I‘+ T )» of the four-vector, the volar and azimuthal angles
\9 and ¢ .in the f(xl,xg,xﬁ) plane, end the angle © between the four-

vector and the foﬁr-axisf
(ga) = (Rsin@sin«jsinQ,‘Rein@sinﬂBCOSQ, Rsin€cos ¥, Rcos@). (A.1)

. L P N .
We use the notation R =,(x /R) to denote a four-vector of
~unit length. The dlfferentlaW element of solld angle dQR and the

ifferential volume element dV are glven by
g, = sin e sm«? ded’ d¢, ' o ’(A.2)
? arag,
The.four-dimensional spinef-spherical_harmpnics ere defined by
) M | | |

Yni (A)a NgY - (r s1n ec (cos@) ] : , »(A.B)

Here. Cg(cose) are the Gegenbauer polynomials, Né is the normalization

constant
. o oA » :
[,28+1 RVIRY-2 B ' o o
gt 2 (n+1)(n-2)t{g!) | . - ' . , (A.4)
noooy w(n+gtl)t J 7 ' '
. o

S A :
and Y ° (r)a are the conventional three-dimensional spinor spherical

harmonics
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wheré C(LSJ, mOtM) are the _Cle‘bsch-Gordéﬁ co'e_ffi‘c‘:'.L_e‘nt.s as :defined Ey v' »
.»Rosef¥2iand' Y;@(?)._are_the usual>spinézer§ spheridal harmoniés, with

QV=A§/rgﬂijﬁ;ﬂfunctions (Aﬁ5) are orﬁhbnérm&i and Satiéfy the useful

relation (wéioﬁit the magnetiéréﬁantum_number M)

() (4.6)

(g 9 Y ) =+ iy

Similarly, the functions (A.3) are orthonormal

; + A.y. i.v A L e . . - : ‘ )
/%R ?ni?(R)a‘Yn" i(R)a _',61‘f11$>§MM” S 7 : '(Ai7? .

and'satisfy the completeness relation

LT ., v, L R
> LR T R = ey m ), (a8)

’ &t’M’n
as well as the addition theorem

T M, M T e
E " £ _ 1 - S |
YT R), Yy (ﬁf) =55 8y Gleosy), . (a9)

- ;& +M ' ¢ . PR )

" where

L cosy

BB - cos@cos@k + sin@sin@’cosw ; o :
' ' ' o (A.10) -

c‘osgﬂ'co.s»ﬁ_ '+ sin s.in'\"» co.s.(¢-§23' ) . '

cosw
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APPENDIX B: THE FOUR-DIMENSIONAL ROTATION GROUP

In this appendix we construct thebprojection operators &+

i s +] o
and _CP;; for the irreducible spaces of the representations (EEZ,%) and
) %,Eél) of Oh’ the four-diménsional rotation g:{'ou:p.z;O It is well known51

that the group Ou 1s characterized by the six Hermitian generators of
infinitesimal rotations Ai and Bi (i = 1,2,3) with the familiar

angular-momentum commutation relations

[Bi,BjJ = i€,.. B

[ag ] = de, 0 Ay 13k
' » . 2 2 - -
Moreover, [Ai,Bi] = 0; ,é? and ﬁ/ are the two Casimir operators of the

group; -in a particular irreducible representatibn;labeled’ by the pair

of indices (a,b), j&? = a(a+l)T, 55

= b(b+1)I; the representations
(a,b) are unitary and of dimensionality (2a+1)(2b+1l). To give a
specific example we note that .on the space of scalar fields, Ai and

Bi are just the differential operators

o] b

A, =
i

[Lim-‘i(kiau - %001, (B.1)

I

YB.=
1

where %v=,-i§£ﬁ§? are the usual generators of infinitesimal rotations

~in three dimensions. We have the following reduction .of the direct product

space

- . - . _l
G @30 =« D e &Y
EHe 0,3 = G o &Y
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L+l) M(\ defined in

1The comblned set of functlons 'i (R) and. Y R)

'(A 5) (wlth the 1nd1ces & and M taklng on all ‘allowed values for

~a given Value of n) form a basis for elther of these two - 2(n + l) 2.

'dwmen51onal dlrect product spaces. In Sectlon»IV we make use of precisely

-this fact when we construct the basis functlons for the 1rreduc1ble

s aceﬁ' (n;l,g)
i " p2) )2

diréct'product space;p;

(n n_l)

d contained'in the above reduction of the'

We construCt-ncxt the projection operators for . the irreducibie
o n+l n n n+ 5
spaces  (—5=,5) e

tive1y.u'To,this end ue deflne the.generators of 1nf1n1tesimal fotations

and ~"), which we denote by dP aﬁd Zﬁ;+ respec-

“in the above- dlrect product spaces (the dlrect product w1th the 1dentluy

is understood, S0 ‘that A _1(5,5)” 1(5,0),uctc:):

in the direct product space "(%,%)Q@,(%,o),. and

CBea s Ben ek, e

i i ‘ i i

" in. the direct product space (%,%) ®.(0,%

(n+ n

Now; in the 5) representation,

@ ke, gR-be

so that we obtain with the aid (B.2),

o+ A
W

g s

(n -1 n>

> representation,



2 1,02 ‘ 21
@ = h—(n -l),» @ = Zn(n+2)
so that
o A — - M ..
N~ 2

In exactly.the:same manner ‘we conclude that

n_Nh . nn+ly :
g AE =7 . 1n the (2,——-2 ) representation,
L -1 ' .
o+ B= _{nt2) in the (E,E—_—_ representation.
WA 2 . 27 2 :

The desired projection opei‘ators are thus given by

o 1(n+2) + gd, - In = g.a
(F;+,= X i / , . 4?2_.: Efzﬁquga_b ,
jgl  2(n+2) + o-B, &E, "'= an - 2B
“n+ o n+l 7 n- n-+1

We easily verify that

2
@ni ; n+. n-
2%

‘with .lpn satisfying the same relations.

1+

=0?1i 3 "C‘pn‘téon.fﬁz 0 A Jo =1,

UCRL-17684
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o APPENDIX C - PROOF OF ELASTIC UNITARITY
k In thls appendlx we show that the - scatter¢ng amplltude f(k’.k).-
Gefined - in (2 18) satlsfles elastLC unltarlty " For’ the purnose of this |
vdlscu531on ;t 1s:conven1ent_to erate the = 1ntegratlon contour in (2. 18)
to tﬁe iﬁaginafy ;Xié.“iThis éaﬁ befd6ﬁé‘er the-:c.mL  energy' E Dbelow
the fir§t inelé$tic.thréshpl@,ﬁthe’resulf béing h .

xml 'u‘ "%§ g wie

o) - ) Y B,

Wheré '¢k(X) “is the sdlutioﬁ"to;Eg.'(5.6). xWe;éésily'show that
7 Eow DT e L
o : \ - ' W ' ",‘":: ’ . : s ] . . . T

Tt follows then from (c. 1) and (c 2) that ff).'

o -: v Am 1k r - 'T,"if , 4v}. f:V¢

op= e

where‘thé 'dagger denotes the Hermltlan congugate in the spln space only

We note here parenthetlcally that with the ald of -
- * a1 . _: ~;. S PR o
S cU (GE)e = U(}s);_: Lo (x>C_ ) =.v(;<)- s (e

where C is the usual charge-conjugation matrix as defined in (7.6),jwef e

'easily shoW‘thét ‘ 
o) = SR )
- and R :j'tf B L SRR

-’WN\/

f’(k k) - ot ( e SR e
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‘Statements (C.5) ‘and (c.6) f‘ollbw,_ of course, directly from the invariance
of the theory under space invei-sion‘- and time reflection. Finally, noting '
that
1
- S0, 4T

s k) fag T feew - |
H(x) - B (x) = z;LE"J ' :ﬁ; ) U050) Tgo) ¢ ™5 (c.7)

_U
we obtain with the aid of (C.1), (¢.3) and equatibn (5.6);
et I o et o) Foen),
e x) - Tgx0) = B Jaa, s(xa) i), ()

‘which is the statement of elastic unitarity.
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Teble I. Values of the critical coupling constants A

angular momentum ahd,parity.

s e e - A A

UCRL-17684

ahd xe

corresponding to the solution @ i(x) for several values of the

&i Kl
0,1 ., =0.384
o2 e
2,3 6.068
5, u_ "'.-1..1'28‘
'1&*, 5 73',..-24;192

| 0.384

o2.112

0.879

13.128

L1.377
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Table IT. Computed values of E 1in the = 5/2 , I = 5/2 channel
at several values of the;exponential parameter v and at several matrix
sizes for m o= m, = M = 1.0 and the choice of potential (7.8a) with
a =0 = 1.6. The form of the trial function is specified following the

notation (7.11). The computed eigenvalues are seen to converge to the

same extrapolated value E = 1.649 independent of the value of y.

Form of . Matrix (y=0.5) ~ (y=1.0) - (y=1.5)
trial size E I E
function '
2;10 6 1;51552 1.65943 1.74158
33210 ,.’ 12 | - 1.h0361 1.64251 1.67156
1453200 | f’ 18 1:516u8 ' ' '1.65056 - 1.66522
5343100 26 1.58347 1.64919 16951k
5;54200‘ '}52__ ‘,.1.61660 o 1.6L928 1.65211
5365%00 38 1.6%243 1.6ko31 1.65060
5576410 L6 1.64045 1.6L938 1.65019
5:87520 . 5k 1.61440 1.6L49k2 1.64995
Extrapolated . ' 1.649 1.649 1.6L9

value
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Table III a,b. Computed 'values of E in-the J° =3/2", I = 3/2
- channel at two,values Qfﬁfy and at several matrix sizes, for
mo=my, =M=1.0 ‘and the choice of potential (7.82) with a = b = 1.6.
Part (a) shows the'effect‘of-improving only on‘the radial dependence
of the trial solution, and (b) shows the effect of improving only on
 the angular'depéndenCe'bf the trial solution._*The‘Correct value of

CE is 1.6k,

(a) 'j» " Form of."' (y=0.5)- . {y=1.0)
- trial func. B IR 'E
f“_g;gglf o ':;1;uu§?o - 1;66577
255 sy 1.67021
Sk 1esg 1.67060
» 2;55 o .1;64267_ L 1.67119
2366 165673 o 1.67138
- 2;77:'“ -;; ,1.66557',Q.7, 167138
(v) ~ Form of . (y;o.5)‘- (y=1.0)
trial func. E - E
33111 1i3hos12 1.6L482k
'u;llll : 1.550295v. '1.6&5020
.5;1111i 1.350098 1.64L629
(63111111 1,350098 1.614629
'7;1111111 1.556098 1.6hk629
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Table IV. Values of the coupling constant )\ required te give a bound
. N JP I ] L -
state with E = 1.0 in the =5, I =5 channel, as computed for
a sequence of increasing matrix sizes and for two values of the parameter
p in (7.12). The potential was taken to be of the form (7.8b) with
R, = 0.7, and 'm = M=1.0, m, = 0.144  (the pion mass). The

"convergence" of the numerical results is seen to be extremely poor for

the choice u = 0O, but is considerably better for the choice p = 0.856.

Form of
_ . s
trial func. (1=0.0) (u=0.856)
A A
2310 -0.9957 -0.95h6
L 35200 -0.9612 - -0.8636
5354200 , ~0.7265 -0.8436

5376410 . -1.0129 -0.8361
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Table V. »Enérgy spectrun in-the JE = 5/2+, I= 5/2 channel as computed
o at several‘valueé of the exchanged mass M for ml = m2 = 1.0 and the

choice of potential (7.8a) with a =b = 1.6.

M '}; E
1.0 1.649
0.8 . 1.702
s 6.6 o ©1.783
0.5 o 1.832
o 1.890_

Table_Vka Valueé of the éoupling constant A required to cbtain é

bound stéﬁe ét"'Ef='l.O in the N*. and nucleon channel, as computed for
. several véiues of fhe cutoff pafgmeter Rc in (7.8b),‘with .ml =M=1.0"
_ gnd' m2,=vo.lhh (the pion mass). (We present only thg smallest value

of -In] in the eigenvalue spectrum.

| (Nx.channel) ‘ (N channel)
Be o | A
0.3 . 211 -0.69
05 25 - 0.77
o7 - 2.38 | . -0.83

1.0 2.53 :' -0.90
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"H‘hfélfunctlon for E above the elastlc threshold
‘.fFig; 2;5_D1agram representlng the nucleon exchange force

f}Fignijfvaeadlng asymptotlc behav1or of the solutlon to the (chk rotated)

w.:fithreshold and for the ch01ce rﬁif=?%t in (2 9) (The scale
<ff_corresponds to 'm1 O;"-m2.='0;6; l 6)
5}f{Fig34a}$:A plot of the solutions = (SOlld curve) and '&l (dashed o

“curve) to the 1ndlclal equatlons (5.;l) as;a;functlon of the

'%Tcoupllng constant x o =vf'h :h-,i7f{$“3t-;f »Piﬁﬁf

“;vZFig:fSCffBound-state energles versus a for .JP 3/2 I 3/2
my = m2 = M = l 0, and the ch01ce of potentlal (7 8a) as computed
1, 6 (
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'“:iat three values of the parameter b bj

() e -2 - —).

[ .

.{;Bound-state energles versus a. for _JP

:3tet1:0;?f 2

= O lhh (the plon mass), and the cholce of potentlal
";?;;(7 8a) with b 1, 6.
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. };;Integral equatlon (1n the ladder approx1matlon) ‘for the BS 'waveffﬁ:”

"BS equatlon for the n} energy E below the flrst 1nelast1c«;,_

.3'1/2+ | 5/2 : - M

. 7JﬁfBound-state energles versus 8 for 'JPf=ql/2+; T = 5/2 m = ﬁz'*

=M _.l O, and the choice of potentlal (7 8a) as computed at
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‘1?};{ ffﬂ.Fig;‘8;;;Bound-state energles versus x for .JP 1/2 1= 1/2'”
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Vt?ml ;gm:f; MJ" L. O, and the choice of potentlal (7 8b) w1th
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