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ABS'l'RACT 

'l'he Bcthe··Sa1peter equation describing the inte.raction of pseudo-' 

scala:::- rnesolls and nucleons via pseudoscalar coupling is solved nurr.ericalJy 

for energies belOi'[ the elastic threshold by use of varia tj onaJ. techniquE:'G. 

Pe c()IJsideI' only the "ladder" approximation with a. local potc!1t.ial o~orrcs-

ponding to the exchange of an elementary nucleon. ,Simple generalizations 

of this 'form of the interaction are considered as "'Tell. Tn the a.bsence 

of a c'..l.toff this l.eads to ar.lD.rginally singu.lar integral. equation. He 

examine in detail the boundary coneli tions to be imposed on the solutio!1s 

in order to lead to.a discrete eigenvalue s!lectruir... The stud.:..' of this 

problem' is considerably simplified at zero total c.m. energ-.f~";here the 

(Hick. rotated) equation is invariant under four dimensional rotatio!1s. In 

order to ta.ke full advantage of this symmetry; 'lIe construct a new set of 

. h' 1 h' h t' ~l±l_ _n\ "", ,d sInnor sp !crlca' armC!11C3 bclo!1g:Lr..g to t e represen 'atlons \. 2 ' 2) a .• 

e, n~ of the four-dimensional rote.tion group. T:"1e di sC'..l.ssion :'s then "< 27 
extended to the general case, in 'tl:lich 1,"e examine bri02fJ.:,- the ,forma.l 

structure of theE I O. solutions. 
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I. INTRODUCTION 

In recent years there has been reneweQ.,interest in the relativis-

1 tic two-body equations of Salpeter and Bethe. In the absence of a theory 

of the strong interactions, these off-shell equations provide at least a 

means for performing dynamical calculations within a manifestly covariant 

framework. HO'N'ever., even in the "ladder" approximation, in which we retain 

only the 10west-oTder term in the expansion of the interaction in powers 

of G
2 

(the square of the coupling constant), the equation has for some 

time been considered intractable, the difficulties being largely due to 

the presence of a degree of freedom in the equation, the "relative time,!! 

wh~c~ has no analog in nonrelativistic quantum mechanics. The numerical 
2 . 

program initiated by C. Schwartz demonstrated, however, that the (Wick 

rotated) BS (Bethe-Salpeter) equation, in the ladder approximation, could 

be solved accurately by conventional numerical techniques. This led to 

renewed interest in the BS equation as a computational tool, a number 

of calculations having extended since then the bound state calculation 

by C. Schwartz to the elastic scattering region3 and as far as the second 

inelastic threshold. 4 

In this paper we continue this n~~erical program by making a 

quantitative investigation of the "pion-nucleon,,5 bound states in co::.-

ventional pseudoscalar meson theory, the dynamical frame"\vork being pro-

vided by the BS equation in the ladder approximation (see Fig. 1) . 

This problem has received little attention '.vi thin this particular fr~~e-

work, although it has been extensively studied by the dispersion-theoretic 

techniques of S-matrix theory, in which it has. served as a prJtotY-:)'? 
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of so-called'''bootstrap'' calculations. In the present claculation we 

* consider the 3-3 resonance (v.Jhich we refer to as the N ) and the 

nucleon as dynamical states of the rr:N, system. Since we restrict our-

selves to the bound-state, problem, we are left with the nucleon as the 

only dynamical state of irrimediate physical interest., If the usual argu­

ments given within a dispersion-theoretic framework6 should serve as 

* an indication, we expect the N to contribute here the dominant force. 

* However, the ,inclusion of the N -exchange would force us to introduce 

a cutoff right from the start. Since it was our original aim, if possible, 

not to introduce any cutoff into the calculation, we have considered 

here only the nucleon exchange forc~.7 This choice of interaction 

still leads to a marginally singular integral equation. It is' well 

knoWn ", that the eigenvalue spectrum of such singular (non-Fredholm) 

integral equations may be contimous, rather than discrete. An example 

of this is provided by the nucleon-nucleon BS equation,S whose eigen-

. value spectrum was found to be continous unless the integral equation 

was supplemented with additional boundary conditions not already con-

tained in it. We. are faced here with a similar situation. It is for 

this reas,on that we devote a substantial part of this paper to a detailed 

study of the boundary conditions to be imposed on the solutions. We find 

that the behavior of the BS wave function near the light cone is 

critically dependent on the strength of the potentialj' and that a 

~ •• 1 
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proper treatment of these boundary conditions is imperative for our 

numerical calculation to be successful. The problem of giving a 

proper treatment of the equation near the light cone has also been 

encountered in connection with the nucleon-nucleon problem, and has 

r/,4 been studied at great length in a 'f field theory.9 In our case the 

discussion of this problem is, however, considerably more complicated 

because of the presence of spin. 

The subject material has been arranged as follows: In Section II 

we motivate field-theoretically the precise form of the BS equation 

of interest, defining all the relevant quantities. Section III.is devoted 

to a study of the asymptotic behavior of the solutions to the Wick-

rotated integral equation. In Section IV vle present some mathematical 

results which will be needed later on. In particular· w~ construct 

a new set of spinor spherical harmonics belonging to the irreducible 

representations (n±l E.) 
2 '2 

and (E. n±l) 
2' 2 of the four-dimensional rota-

tion group. The main properties of these functions are discussed and 

a nu.'Uber of useful formulae are presented. In Section V we discuss in 

detail the behavior of the solutions.near the origin of the (Wick 

rotated) Euclidean space, studying the BS equation in its differential 

form. No attempt is made in this section to·select among the "regular" 

and "irregular" solutions. If a physical interpretation of the BS 

amplitude is to be avoided, the criterion for such a select.ion mus:, 

come directly from the integral equation itself. This is di::,c';.ssec. 

in Section VI. The nu.rnerical techniques and results of our ce,lculc.:'ion 
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are presented in Sections VII and VIII. A number of related topics 

are left for the Appendices, where'we present; in addition to some 

mathematical detail$ relating to the conventionalspinor spherical 

harmonics, a proof of elastic unitarity; and the group theoretical 

results which we use in Section .IV. 

We follow in general the notation of Ref . .3.. Three-vectors 

are represented by bold-face type, and natural units ~= c = l} are 

used throughout this work: 

I 
I 
! 
~ 
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II. THE BETHE-SALPETE~ EQUATION 

Since we are concerned only with the bound-state problem, it will 

be particularly convenient to work with the relativistic two-body Hwave 

function:! for the pion and nucleon5 in a state /(3), as definedlO by 

(2.1) 

where ¢l(X) and ~(x) are the Heisenberg fields of the pion and nucleon 

respectively, \0) is the physical vacuum, and T is the time-ordering 

operator; ~(x) is an eight-component object in the combined spin and 

isotopic spin space of the nucleon. We take the interaction Hamiltonian 

density to have the conventional form 

J:!(x) = 2: i~[*(X), 15 ,.j~(x)J¢j(x), 
j 

(2.2) 

where ,.j are the usual Pauli matrices, and G is referred to as the 

f:pseudoscalar coupling constant." Experimentally G2/4rr ~ 14. Restricting 

ourselves to the ladder approximation (see Fig. 1), we arrive from the 

definition (2.1) at the following integral equation for ~i(xl,x2) in 

the scattering region: 
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Here Gl(x) , and G2(x) are the one-particle Green's functions fot the 

nucleon and pion respect'i vely, 11 

where .6(x;m) is,the usual invariant function, 

m2'~(mlxl) 
.6(x;m) =6n7 "mlxl' 

, . '," 12' 
Here K, (z) is the first-order,modified Bessel function, 

-L 1 

(2.4) 

and 

1 '1 2 2 2" x == (ft.t - t ) . r (x) is the "exchange potential" corresponding to 

the Born ampli tude of Fig .2, and is given by 

r(x) 
2 " ~(Mlxl) 

= 4M [M - ir· d] Mlxl ; 

, ' 

is the wave function for the free pion and nucleon, 

ik ·x 
2 2 e " 

1 

fk'.,) fk2 ' 2)2 (k) - (k)' where ki =YNl "wi' Wi = 'mi + mi " ,and U AM Cttr ;;: Uo;l..iVn a is the 

nucleon Dirac spinor ,wi th'the covariant normalization ij~)U~) = 1\ [ij(,tya) 

to'] = U (~, a)y • 

operators, 

The matrices P(I)~~ ,are the usual isotopic spin projection 

P(~) 1 - .tv .. ;i;, 
= 

3 
, 

P(~) I 2 .+ ~j~fi, - 3 
, 

.~ 

, . 
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where ,x . and .,t are the isotopic spin operators of the nucleon and 

meson respectively (In the Catesian basis, -iE. 'k). lJ 
Using the 

fact that P(I)P(I') = 0II,P(I), we arrive immediately at the integral 

equation for the two-body wave function in a state of definite total 

isotopic spin I: 

Here 

We have omitted all other isotopic spln labels, since is only 

a function of the total isotopic spin I. In the future we omit this label 

as well. 

We proceed now to eliminate one of the integration variables in 

Eq. (2.7) by making use of the translational invariance of the theory. 

To this· end we consider the canonical transformations 

x = 

, 
where !J.l 

and !J.2 are constants subject to the condition 

!J.l + !J.2 = 1. (2.10) 
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Since we are dealing with an exchange ~otential it turns out to be con-
·13: . . 

venient to mak~ the choice fll = fl2 =~. This is·the.choice made 

throughout thiswork,unless. explicitly stated otherwise. 

Translationalinvariance allows us to write 

Substitution into· (2.7) l~ads,then, to the following integral equation 

for 1Jr(x) (we now. label the wave function·by the momentum of the inci­

dent wave): 

() ( ~, ik·r - iill. 2t/2 
1Jrk x = U ~ e "": IW. .L 
~. 

(2.11) 

where~2 .:= ~ - (.1)2 andG(x) is' thetwo-~article Green's functionJor 

the pion and nucleon. In the c .m. .system of the pion and nucleon 

(2.12) 

where E = ~ + (.1)2' . and 

iq'x 

GO(X) ;,~d4g4 ----O:2~--e-----~2----
( 2rr ) [2 ( 0 E) 2. ] [ 2 (0 E) 2. ] .. 1t ~ q ~ . + ~ H ~ - q - '2 + m2 "- H 

(2.13) 

1 is of course just the two-particle Green·' s function in the absence of spin. 

Because of· the .~oles of the integrand it is·· desirable for the p~ose of 

our later discussion. t.o cast the integral (2.13) into a different form. 

l'hus, making use of. the .familiar Feynman parameterization procedure we 

arrive (as in Ref. 3) at 

;, 
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·w"here KO(Z) is the ~eroth"'ordermodified. Bessel function, and (see Ref. 3) 

- ~ .::; arg [((32 - )};2) 21x - xII] -:s.~;. ~2, (.1)1 and (.1)2 are related to 

the c .. m. energy E . by' 

k2 1 
== 

4E2 NV 
[E2 _ (~ + m~f][E2-

E2 + (mi - m;) 
(.1)1 2E , 

and 

(m;:- m2)2] 

E2 - (mi 
2E 

. 2 
- m ) 

2 

(2.16) 

We may rewrite Eq. (2.11) as the differential equation 

2 
[m., - i)'"o - ?~] [02 - iEo +~ 

.L 2 0 ,+. 

, 

2 . 
m2J~(x) == ~I(x)~(-x), 

02 == if _ '02 
NY. 0 ' 

supplemented with suitable boundary conditions. It is this equation which 

we solve in the calculational :part of this paper. 

Finally' we would like to remark that unless additional information 

is required which is not already contained in the integral equation (2.11), 

we do not need to give a physical interpretation to the two-body wave 

function (2.1), but may regard it merely as one possible way of formulating 

the given mathematical problem. Thus, with the definition of the scattering , 

amplitude, 
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'ilhere Tis related to. the S-matrix in the usual way, 

.S = 1 - iT, 

've easily establish the· connection between i(£;:J and the solution .. 

lVk(X) to the integral equation (2.11): 
tvI 

. iA.IrJ.. J. 4 
f(k' k) = T--:;::;- U(k')· d :ie' 

IW 'M1 '+nE /IN 

the numerical factors being fixed by simply looking at the Born term. 

. .. ' 

.. 
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III. ASYMPTOTIC BOUNDARY CONDITIONS 

Since it is very difficult to solve numerically the eigenv~lue 

problem in the form of Eq. (2.17), we should like to consider instead the 

corresponding eigenvalue problem for cp~; T), the analytic continuation 

of ~r(~ t) to the imaginary time axis: cP(J:" T) == 1.jJ~~, -i T). Assuming 

the solution to be an analytic function of t,we arrive at the differen-

tial equation 

for cp( r , T), 
"/'v-l 

where 

Here a..l1d K (MR) is the nth-order modified Bessel function 
n 

with the asymptotic property 

K (z) --:> L n ~~ e - z 
n \.2z .J 

We have introduced the notation ~ == ~alR), 

d 
d4 == --o T' 

(d ) = (J.; (4), a 

scalar products being now defined in terms of an Euclidean metric: 

222 x r + T • 
N'I 

The corresponding analytic continuation of the integral equation (2.11) 

has already been discussed in the literature. 3,14 We do not repeat the 

(3. 4 ) 
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arguments' here except to. state that for sui table restrictions (to be-­

given at the end of ihis ~ectiori) on the c.m. energy E, we may carry 

out this analytic continuation by setting t = T. exp( -iCP) , ·t' = T' exp:( -icp) 

in Eq. (2'.11) and letting . cP range from 
.' 1 

z~ro to zt. Denoting the 

analytically continued solution by ¢k(x), we arrive then at the integral 
NV . 

equation 

H(x) 

An explicit expression.for HO(~,T) may be obtained directly from (2.14): 

. ( 1 ) 1 

9J2. . - r3 + n2 T 2' _ k 2 )2R' J. 
E e " ' Ko[ (r3 "'" 

In the bound-state region ¢k(x) will have poles-at (one hope~a discrete 

"'" set of values of E (for a given value of A)" At these values of E, 

the residue of ¢k (x) at the pole" cp(x),' satisfies the homogeneous 
"-IV 

. integral equation 

The asymptotic boundary conditions to be imposed on the solutions to 

(3.1) are those of ¢k(x) (in the scattering,region) and cp(i) (in the 
MI 

bound-state region') as deduced from the integral equations (3.6) and (3.9). 



'., 

-13-

Although the asymptotic properties of Bethe-Salpeter amplitudes have 

already been discussed in the literature, w~ review here briefly the 

r~sults, with particular emphasis on the unequal mass kinematics of the 

problem. 

Making use of (3.3), we have, in the limit R -> co, 

f
m2 

1 

HO(X) 
1 df3 

~(f32 
T( "2 -g(f3)R 

rv 8:/ k2)~ ;) 
e 

(3·10) E , 
'-(,01 IVY 

1 

where g(f3) = (f3+h2)c'OSg + (f32 _~2)"2, cos9'rr/R. We note' that 

for E < ~ + m
2 

and f3 within the integration interval (even if ~ I m2 :) 

, ' 15 
Making use of the "method of steepest descent," we readily deduce the 

asymptotic form of the integral (3.10). Introducing the definition 

l (~oS9 - m.)R 
A. (R cosg) =:_ ~ (mi ~2 e l 

l ' '8 \2rrR ' rrE ~ (w. - m.cos9)R 
l l 

we summarize the results as follows (we assume ~ ~ m2 ): 

(1) O<E<IQ. -m 
-.. --.1 2 

Here [see (2.15)], ~ > 0, takes on its 

smallest value for f3 =: w
2
,independent of the value of cos9, so that 

exhibi ts the asymptotic behavior, A2 (R, -cos9) 
, 1 

for -1 ~ cosg <: 1. 

, ,2 2 "2 
(2) ~ - m2 ~ E ~ (~ - m2) 

Here ~ > 0, 
2 

w2 < 0, ~ < 0; has a relative minimum 

within the integration interval at 
1 

2 "2 
f3 =: -(-k ) ctn9 

/'N 
for 

~ ~/~. We distinguish therefore three domains in the (E,cos9) plane, 

the boundaries being determined by the conditions g' (-~) =: ° and 

g' (w
2

) =: 0: 
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(2a) 'CLJ./II]. ~ cose~i;. 

(2b) ; -1 ~ cose ~ '.~(.l)2/~2 

(2c) '. ~w2/m2.:;S co se ~ ID.t(II]. 

.' l' 
2 '2 2 ' 

(II].-m2 ) . ~ E .( m,+ m2 . 

HO(X).-vA2 (R,-cose), l' 
.-

.' 1 ·1 2 2 
. HO(X).-v 8

lt
Er: exp[-(~~) r ~2;rJ . 

Here ~ > .0, 
. . 2 . 

w2 > 0, ~ < 0;. the same . conslusions hold here as 

in (2). 

(4) E 3 II]. +m
2

" 

Here k
2 > o· CLJ. > 0, .w2 > 0; -w' , setting 

1 
'\,2 2 

k = + . (k:) '\ve have 
./IN 

as in Ref. 3. The leading asymptotic behavior of HO(X) for (a) ~~~ 

cose ~l,. (b) . -l~. cose.::s. -m
2
/w

2
, and '(c) -m2/w2 ~ cose ~ II]./CLJ. may 

be read off directly from (3.12), and is the same as that gi'(en in (2a), 
I 

(2b),and(2c), respectively [with (-i)2.= -ik].: 

The above results are summarized. in Fig. 3, the asymptotic form of . 

the solutions being the same as that of . HO(X)' (We. have exhibited only 

the exponential dependence of these asymptotic forms .. Tobe specific we 

chose mi ~,m2' corresponding to the physical case of interest.) Following 

the same type of reasoning 'as gi vi:m in Ref. 3 ,we· find, with the aid of . 

Fig.;;, that the integration in Eqs. (}.6) and (3.9).does indeed converge 

' .. at infinity, provided that ".~ < 2m2 + M and E < 2ir). + M; that is, for 

the c.m. energy E below the firstinelastic.threshold. For E ~II]. + m2, 

these. restrictions imply of course the stability con(l~i tions II]. < m
2 

+ M 

for the "nucl,eon," and m
2 

< II]. + Mforthe "pion.'." 

, ' 

iJ: 
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Before concluding this discussion we should like to comment briefly 

on the negative energy spectrum of Eq. (3.1). Ignoring for the moment 

the question. of boundary conditions: we readily v.eriTy that, if cp(x) is 

a solution to Eq.(3.1) for E = E (EO> 0 , 0 to be specific), then 

y 5 cp( -x) is also a solution for E = - EO' ,at ,the sam.e value of the 

coupling constant. In fact, as we "rill see later on, the same 'statement 

can be made about the eigenvalue problem. This shows that the equation ad-

mits a positive and a negative energy spectrum ·whenever the equation has 

solutions at all. As ",,-rill become evi.dent later on, when ,-re restate these 

observations for the partial-wave projections of cp(x), this is precisely 

the statement of the familial:' "MacDovrell symmetry. ,,16 It arises here as 

a consequence of the transformation properties of the equation under 

space-time inversion, but can be shown to follow also from more general 

. . l' 17 prlnClp es. Note that as a function of x, the solutions for 

have the same asymptotic behavior a,s the solutions cp( -x) for E = EO. 
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IV. MATHEMATICAL PRELIMINARIES 

A. Some.Useful Formulae 

We . derive here some useful formulae relating to the four-dimensional .. 

spinor spherical harmonics defined in (A~3). Specifically we are concerned 
.t M '. 

with products of the form Q,Y.± (R), ' where 
n 

Q' is any of the 
,t+M 

T) 04' ("sz,' Jv), and ,(~. J). The evaluation of T Yn - and, 

18 has already been given in Ref. 2. We state here the result: 

t • , t4- . t .' 
TY ±(i{) ~R[A t 1 Y - (ft) + A ty ± (~) l (4.1) 

n n+ n+l n . n-l ' 

where 

. 1 - tt (n + t + 1)]"2 
4n n.+ .1) 

. . 

. t·:: 
(0 . r)Y ± is also straightforward. 
"'" .~ n 

With the aid of The evaluation of 

Formula.' (Po ;\6) and the recursion relations for the Gegenbauer polynomials 

C~(t),19 

we obtain, after some algebra, 

ti 1\ t+ (t±l)T, /\ t+ (t±l) - 1'\ . 

. ~i(o . r)Y -(R) R[B - Y -r (R) - C - Y +(R)]' 
IW /V'J. n. = n n+l n n-l ' (4.4) 

where 

B tt = [.(h + t + 2) Cn + t + 3 )] ~ . 
n 4(n+l)(n+2) , 

L 



~. 

and 

t 
B 

( ttl) 
C + 

. n+l . 
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= [Cn. - t + 1) ~n - t +2)1 ~ 
4(n + 1 (n + 2).· J ' 

To evaluate 
t+ 

(a • V)Y- we consider first the Fourier transform 
I'N "W n 

of this pro,duct as obtained with the aid of the expansion(p· x = p. x + Phxh), 
MI fW " 

ip·x o e 
o:~ 

(2n)2 L 
t ±,'M,n 

and recover the desired result by taking the inverse Fourier transform. 

Proceeding in this manner, and making use of (4.4) and the recursion 

relations 

J 2(PR) d· - ~) 
J l(PR) n+ n+ 

= _.(- , 
R dR R PR 

J (PR) d n+2 In+l(PR) n 
c'dR + R) PR· R 

for the Bessel functions, we obtain 

t+ A. h (t±l~ r6 d . n t+ (t±ll .. ~ d n+2 
-i(a·V)Y -(R) = B ~ 1 ,R) (dR - -R) - C - Y 1 +(R)( dR + -R ), (~.6) 

NV/W n n n+ n n-

t t+ 
vlhere the coefficients B ± and 

n 
C - have already been defined in (4.5). 
n 

B. Basis Functions for the Representations 

Construction of Basis Functions 

(n±l ~) 
2 '2 

and . (~ nil) 
2' 2 

In this section we make use of the group theoretical results of 

Appendix B in order to construct explicitly the basis functions for the. 

j 

I 
! 

~ I 
I 

I 
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irreducible representations (n±l !!) 
2 '2 and '(!! n±l) 

2' 2' of °4' the four-

dimensional rotation group. These funct~ons are'simple linear combinations 

of the four-dimensional spherical harmonics defined in (A.3)and are partic-

ularly suited for our discussion of Eq. (3.1) at E 0. As we indicate 

in Appendix B, we may obtain these basis functions by simply projecting out, 

,vi th the aid of the projection operators (K4)" the desired components from 

the spherical harmonics (A.}).. Specifically (we choose to label here the 

spherical harmonics (A'<3) by J, t, M and ri), 

N ,tP "yJ.eM 
n± n 

, ',N J.M .;;;. N ':(p ,y -VC" 

, n± n 

, 

, ' 

1" ".-

where <P and ';1) are the proJ'ection, operators ((B~4.·:) for the irreducible , n± ,u- n± 
spaces of the representations ,(n~l,~) and (%/:l~)" respectively, and 

it is N, N are normalization constants. One ,may readily verify that 
t+ 

immaterial whether we apply the projection operators to Y 
( t+l) 

or y 
n n 

(same J)., After proper mormalization we end up with identical results, • 

as it has to be. To be specific we apply the projection operators to 
t+ 

Y Making use of 
n 

t+ t+ 
(cr'J;}Y tY , , 

NY n n 

t t 
(cr·t)Y ~ -(t + l)Y -= , 
Mf n n 

where the operators Li are the usual generatorsof'infinitesimal rota­

tions in three-dimensional space, we obtain, with the aid of the results 

of Section IV-A, 
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where the operators A. and B. have been defined in (B .1) '. Defining 
l l 

we obtain from (4.7) 

1 t : lc (t+1) yJM 
·Un - ] = D + t + 2)2y + +(n - t) 2y (4.8a) 'n+ n n n , 

t(J JM [Cn ..:', J. n_ =,D 
n 

as basis functions for the 

1 t 
t)2y + -

n ' 

(n±l ~) 
2 ' 2 

1 ( .(',+1) 
-J (n + t + 2)2y 

n 

representation, and 

1 t i ( t +1) _], 
= D [Cn + t + 2) 2y + - (n - t) 2y , n n n (4.&) 

as basis functions for the 

J and M labeling 
, JM 

ItJn ± 

(~n±l) representation. The quantum numbers 
2' 2 

and ~JM take on the values J n± 1/2, 3/2, , 
(n±;t). and' M = -J, -J+l,"', J;we are thus left with Cn + 1) [(n±l) + IJ 

basis functions for each of the irreducible spaces ' (n~,~) and (~ n±l) 
2' 2 ' 

in agreement with the dimensionality of these representations as given 

in Appendix B. 

Properties 

We list,here a number of properties of the functions (4.8), which 

v!e need in our later work. . To begin with we note the orthonormali ty 
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property, 

, 

and the completeness relation, 

(4.10) 

J ,M,n± 
where . dD

R 
is the differential element of solid angle defined in (A~;:8).. 

The functions cVJM 
.:; n± ~atisfy exactly the same relations . Under space-time 

reflection 

,''Y ~(-R) (4.1l') 

From (4.8) we see that these functions are not all independent. In fact, 

and 
"",JM 

V' ; are related by space inversion ...In± . 

" R 
P 

(-r,-r)/R. 
/IN , 

By construction ''le have, of course, 

/YJ,2QjJM _ (n±l) [(n±l) II (UJM /Q 2 ".,.JM n (n )yJM 
u.. ,J + - 2 2 + J J. +' u;,.;' ;j",+ = '2 '2 + In±' 

IV\; n_ . . . In- /VV .n_ 

,(}3"'" 2 'it.y"'" JM+ = (n±l) r(n±l) + lly,JM 
A/v' n - 2 l 2 J n ± 

(4.12) , ' 

(4.13) 

, 

the notation being the same as in Appendix B. When the quantum numbers' 

J. and Mare of no relevance (as in the case of 04 symmetry, for 

example) it is convenient to define the functions 

= 4 2 \VJM(RI)' 
.:rt Un± . ex 

JM 

il.· 
",' -,:' n 

, . '-, . ..!. 

(4.148.) 
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(4.14b) 

_..rl -I- 1\ . ~ + 1\ 
Since .Ii{ -'-(R') and "~-(R') share a number of properties , it is useful 

_n+ 1\ 
to 'introduce w~ -(,R t) to represent either one of them. We have then 

evidently, 

From (4.9) we' obtain the orthonormality relations 

(4.15) 

and the addition theorem takes the form 

(4.16) 
± 

where cos "j is defined in (A.10). 

In the remaining part of this section we give a list of formulae 

which will be particularly useful in our later work. Thus, introducing 

the notation 

i , 

a·x = a·r + i~ , . 
NV IW 

a·d = a·7 + id4 ' 
.,,-", N\I 

etc. , 

and making use of the results obtained in Sec. IV-A, we readily derive 

the fol1ovTing formulae [we suppress the quantum numbers Jand M, 
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'(,;hieh here play no particUlar role; our notation is ~ == (x /R)J:­ex 

'1\ 
-i(a· x ) 1] == tfl( .)'. _ n± , Q n±l --:t:- , 

. (N A) , lit (Ii! 
la'X ::1 n ±==-,J(n±l);+' 

, , .. 'd 

-i (a' c ),~11+ == g (n+l) J cffi . - ~), 

~i(a'c) 'Yn-1f(~-l)+(! + n;2)" 

i(';"'a) ;Y 
n+ 

i(a·a) V ... n-

Combining the above results we obtain the additional ·formUlae 

'i(;. 0) (a';() Yn + Yn+' (~ dR 
·n+3) 

:+R ' 

Cd' d) ( a'~) Yn - 'SIn -
'd' n-l) 

== (dR -
R ' 

(cr·~)( a;'a) Yn + 
u. "d _ E.) ,== (-
: "n+ dR R' , 

(~.Q)( a' d) Yn - == V .I
n

_ (~ 
dR 

'n+2) +-
R ' 

the corresponding formUlae for the functions 9'~~ being obtained by 

( 4-.18) 

(4.l9Y 

. "'. , 1JJJ:.1 '- 'If JJ:.1 
the simple replacement a -' -> a and .:;r n+ .--> :J n+ in (4.19). a: ex _ _ 

tiJ'e may write doW!?- immediate,ly the corresponding results for the spinor 

functions (4.14). We will not do so except for noting in particular the 

formula 

,(4.20) 

,which we need later on. 

.", 
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V. BOUNDARY CONDITIONS AT THE ORIGIN 

In this section we deduce the behavior of the solutions to (3.1) 

near the origin of the four-dimensional Euclidean space. The results 

will include the so-called "regular" and "irregular" solutions. No 

attempt is made in this section to justify the selection of one or the 

other. Aside from physical considerations which we do not go into in 

" this paper, the criterion for such a selection must come from a study 

of the integral equation (3.9) itself. This is left for Section VI, 

where we find, in fact, that even the integral equation (3.9) does not 

necessarily exclude the" irregular solutions. 

The study of the behavior of the solutions to (3.1) at R = 0 is 

rather involved, if we consider the general case in wh~ch E I o. A 

great deal of insight into this question may be obtained, however, by 

s:onsidering first the problem at zero total c.m. energy E, where the 

equation simplifies considerably. If the behavior of the solutions at 

R = 0 should turn out to be independent of E, as one might expect 

on the basis of some familiar examples, it would be sufficient to 

consider this special case, although the generalization of the results 

to the case in which E lOis not immediate, as we shall see. 

A.E = 0 

For E = 0, Eq.(3.1) is invariant with respect to the transforma-

-i 
tions of the group 0

4
, In order to take full advantage of this symmetry 

it is convenient to work in the representation in which 

Ya (: 
-~a \, 

15 = (: -:\, 0 ) J \ 
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the matrices CJrv and CJ h . b d f' dId . (4 17) ~ ex aVlng een e lne a rea Y. In ._ . He 

call this the "Weyl representation; " Yex and Y5 are·matrices in the 

direct sum space of the representat:i,ons ( t, ° ) .and '. (O,~). of °4' 
The reason for working in this direct sUm space is of course the 

required invariance of the theory Under space inversion. Indeed, as 

(4.J2) demonstrates explicitly, the operation of space inversion takes 

the representation (n~l,~) 'into (~ n±l) . and vice versa, 
2' 2 ' 

Denoting 
1 

by D2(R) the representation matrices in the direct sum space . 

[(~,O) (B (O,t)]; we have the following transformation law for the 

y-matrices 

It follOlfS that for E;" 0' Eq. (3.1) is invariant under four-dimen-

sional rotations, so that its solutions· may be labeled by the eigenvalues 

of the. complete set of cOnllnuting generators of.04. We write theE = ° 
equation in,the form 

0, 

where 

. AV(X)@(x), 

Here V(x) ,is the "potential" '(3.2) and CP(x) is the operator defined 

by 

. (? (x) (r, 1") -> (-r, -1") . 
MJ Nil 

" 

;.. 
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Introducing 

(5.3) 

've define the "parity" operators in three- and four-space.': 

We note the commutation relations 

Because c;>f these COlTHllutation relations we may choose the solutions of 

Eq. (5.1) to .be·alsb~igenfunctions of II3 orII4 , but not of both. 

In particular, the eigenfunctions of 

20 
form 

F (R) '1.JJM 
n± 3 n ± 

JM 
CPn± (x) 

II4 will have to be of th~ 

, (5·6) 

with space-time parity 
n 

( -) . Substituting (5.6) into (5.1) qnd using 

the results of Sec. IV, we arrive at the' following set of coupled 

";' differential equations for the radial functions F'- (R) _. and 
. n+ 

G (R): 
n+ 

.,' 2 . 
mlrF (R) + (dR

d 
+ n

R
+3)r+1G (R) = (- )nA; 4RM [Kl(MR)F (R) -+: K

2
- (MR)G (R) J, 

n+ n+ - n+ n+ 
2 (5.7) 

m r+1G (R) . + (~ - ~)rF (R) = (- )n+1A. 4MR [K
l 

(MR)Gn+(R) + K
2

(MR)Fl (R) J, 
1 n+ dR R ' n+ n+ 

where 

. 2 
r = ~2 + L~ _ n(n+2) 

dR R dR R2 

2 
- m 

2 
(5·8) 
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Equations (5.7) exhibit explicitly ,the· degeneracy of the solutions with 

respect to .the-quantum nUmbers· J- and M~ In 'exactly the. same manner 

"Fe arrive at a set bf coupled differential equa"tions' for 

GnJR) .It is, however, simpler to note that if .. ' cp~(x) 

F (R) and n- _ 

is a solution 

of (5.1) with eigenvalue, ~, then so is on 

-!:'.ccount of the commutation relations (5.5) . That' is, we may obtain 

the differential eguationsfor F (R) 
n- .' . 

and c:;.n_ (R)' by simply noting 

. that (-we make a convenient choice of the proportionality constant) 

F . 
(n±l):!: G 

n± 

We conclude therefore that for a given val1.1e o,f n; the combined set 

of solutions JM and cp +. n ' 

JM­
CP(n+l)";' [with J and . M taking on the v~lu~~'-

J= 1/2, 3/2,';', (n+~),M = -J, -J+l,"', JJ is 2(n+l)(.n+2),..fold 

degenerate . For eigenfunctions of - IT3 the additional twofold degeneracy 
- . . 

expressed by (5.9) would correspond to a degeneracy with respect to the 

tw'o values of the orbital angular momentum coupling to a given total 

angular momentum J. 

We now turn our attention; to a study of the behavior of ,Fn±(R) 

and G -+.(R} as R --> 0.' Although the potential (3.2) has alogarithrriic n_ 

singularity at R = 0, we have for the leading contribution, 

V(x) -> 8(),,1c)R-3 as R-'-> O. Hence taking this limit in Eqs. (5.7) 

we arrive at two coupled Ciifferential equations of· the Fuchsian type, 

with R o a fegular, singular point. We conclude therefore that 

the six independent solutions- (for agiveh vaJ,ue of'~, J, M, and n,±) 

to Eq. (5.7) exhibit the behavior 

.f 
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(with i 1,6), 

as R -> 0, provided that a. - a. f 0, 
1. J 

for i l j. 

We must have, however, a. - ~. :;= m (integer). 
1. 1. ' 

In,fact, a more detailed 

examination of the equations shows that m can have only the values 

m:"" ± 1. The a.' s and ~. 's are then found to satisfy the indicial 
1. ,1. . 

equations 

[an+ _ n][an+ - (ri+2)] [an+. + (n+2)] (_ )n+l 8A, ~n+ n+ 
:;= a + 1, 

(5·11a) 

(_)n 8A, "'n+ 
~ 

"'n+ 
:;= a - 1, 

and 

n- n- ' 
~ :;= a -~l, 

r ",n - ,] [",n - ] [ ",n - ( ) ] "a - ,n a + n a + n +2 
",n - ",n-
~ :;= a + 1, 

We note the following useful relations: 

n± a(n±l)+ 1, a :;= + 

",n + a - == 'cx(n±l):;: ±1. 

For the purpose of later discussions it is also convenient to distinguish 

among the six independent solutions to Eqs. (5.11) by a subscript m, 

where m denotes the integral value which the solution in question 

approaches as A -> ° . Thus 

n+ 
a -:--> m as A -,-> 0. 

m 
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Note that "'n± 
0: 

-m 
n± = -0: ; m 

finally we note that except for some isolated 

values of A, including, A = 0, the solutions to Eqs. (5.11) do indeed 

satisfy the above stat¢d conditions for the validity of the ansatz (5.10). 

This can also be seen from Fig. 4 for the special' case n = 1, where we 

1 + . "'1+ ,present a plot of 0: - and ,0: - as a function of the coupling strength 

B. E t- 0 

We now ,turn our attention to the actual case ofinte'rest, that is, 

vlhen E f. o. In this case it is still desirable to expand the solution in 

terms of the four-dimensional spinor spherical harmonics, although this 

leads now to· an infinite set of coupled. third-order ordinary differential 

equations. The situation is therefore much more complicated and the 

discussion of the boundary conditions at the origin is correspondingly 

more involved. 

We begin by restating the results, of part A in a somewhat different 

form, the reason for this being twofold: 

(a) In the E f. 0 case it turns out to be more·convenient to work in 

the "Dirac representation" related to the "Weyl representation" by a 

unitary transformation. In this representation 

o (1 0) 
)' . . 

\0 -1/' (
0 jJv~" )' = , 

,w -;J.., <.0 

1) 
oj 

(b) If E -I 0 the space-time parity is no longer a good quantum number, 

vThereas TI3 still commutes with the operator DE(o;A). It is therefore de­

sirable to restate our earlier conclusions in terms of the simultaneous 

eigenfunctions and 
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We may obtain the E = ° eigenfunctions of II3 by simply applying 

the projection operator ± 1) to the E = ° 
solutions (5.6). Doing so, and going to the Dirac representation, "re arrive, 

making use of the results (4.8), at the following expressions for the E = ° 
1 t " 18 so u lons: 1 

![2(n+t+2)1~ F(R)y t
+ 

= ( n+l J n 
+ 

\[ ( r.1. U+l) 2 n-t i 2 F(R)Y' , -_ 
n+l J n 

with three-parity (_)t, and 

r2~n-t+12 1 
L n+2 ) 

f2(n+t+3) 1 
l n+2-

.1. t 2 
G(R)Y +1 \ 

\ n+ \ 

) 
1 

(t+l) ) ~ 
G(R)Yn+l -

(_) t+l. with three-parity Here F(R) = F (R) n+ and G(R)- G (R), so n+ 

that 

n+ cP+ + 1 
F(R) rv Rex , G(R) rv R 

an+ rvn+ 
F(R) G(R) rv Rex - 1 

rv R , 

as R -> 0, 
n+ rvn+ 

where ex and ex are the solutions to the indicial 

equations (5.11a). The result (5 .1J+b) together with the commutation 
( t+l) 

(5· 14a ) 

(5 :15) 

relations.(5.5) shows that 
t 

X + 
n 

and X are solutions to Eq.(5.1) 
n 

for the same eigenvalue A.. This corresponds to the two-fold degeneracy 

already noted in connection with (5.9). Hence, with the additional 

degeneracy in t and the magnetic quantum number M, we have again a 

set of 2(n+l)(n+2) degenerate E = ° solutions. 

If E I O,the partial differential equation (3.1) is no longer 

separable and we obtain now an infinite set of coupled ordinary differential 
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equations for, the radial functions in the -expansion' 'of the , ';,':' 

E =I 0 solution in terms of the spherical harmonics (A(.3)~· Thisinfinlte 

set of equations no longer decouples (for E= 0 this set did decouple; 

as is evident from the form of the E = 0 sOlutions2l ) and the study of 

the boundary conditions, at the origin is correspondingly more i'nvolved. 

He will shov!, however , that if w.e develop the solution as a power serie s 

in E , then, 22 to first order in - E, ,.,re are left . with only a finite set 

of coupled equations for the radial functions. - Indeed, -consider the 

solutions (i\(;X.) to Eg.' (3.6). For E below the elastic threshold 
NV 

and at a given value of 'A., 9'k(x) is expected to have a discrete set 
N\/ 

'of poles in E, corresponding to the'eigenvalues E of Eq. (3.9). 
m 

Considering in particular one such pole at E = EO' we write 

9
E

(X) , 

The bound-state vTave function cp(x) corre;sponding to the eigenvalue 

- "'-
, E= EO was defined as .¢E (x) evaluated at the pole: cp(x) i ~E (x); 

o 
assuming that 1~(x) can be developed into a power series in E with 

.w 

(5. 16) 

radius of convergence rO;;' lEo I, and noting that in the limitE --> 0 

we must recover the results (5.14), we conclude that to first order in 

EO (we omit the magnetic- quanum nUmber - M) 

t+ t' 
(5·14) 

+ where X -(x) are the E = 0 solutions and \V, -(x) is independent 
n n 

of E . - The general form of 
,t+ 

will be determined below. The E d 0 
o ' \lin - I , 

solutions are of course no longer degenerate with respect to 'J and t. 

:.' 
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Note) hm"rever, that both 
t+ t+ 

~ - and X - are labelled by the same quantum 
n n 

numbers, implying a one-to-one correspondence between the E = 0 and 

E d 0 solutions. 
I 

In order to determine the form of we substitute (5.17) 

into (3.1), keeping only the first-order terms in EO' We arrive then 
t 

at the follo1,ving set of coupled equations for X ± and 
n. 

Here (5.1Sa) is of course just the ·E = 0 equation; (5.1Sb) is of the 

form of an "inhomogeneous" E= 0 . equation, the inhomogeneous term being 
, 

already knOvffi from the solution of Eq. (5.1Sa). This suggests that we 

seek a solution of such form as to lead to only a finite set of coupled 

differential equations. An examination of the inhomogeneous term in 

( l ·Sb ) h th t t +() . .J..' f t b f th . f . f lS 5. s O\vS a tV - x musu In ac e 0 e speCl.lC orm 
n 

([r2 (n+ t +l)1 ¥F (R)Y t+ 
l. n .J 1 n-l 

~ 1 (t+l ) 
r2(n-t-l)12 F (R)Y - + 

:J 1 n-l . 
. n. 

+ 

+ 

(t+l) 
the formal structure of tV -(x) 

n t 

t 
G
l 

(R)Y
n

+ 

( t+l) 
G

l 
(R)Y

n 
-

being the same as that of 

IT4 lVn + (x) .. The coefficients of Y 1 and Y 2 have been chosen so n- n+ 
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that when the oper'ator oVo(C;\.) 
-t+ 

is applied to ~ ~(x) in (5.18b), the 
n . 

coefficients of Y
n

- 2 and Yn+
3 

in the resulting expressions vanish 

identically. Thus we find that the substitution of (5.19) into (5.18b) 

leads to a set of eight coupled equations for the six radialfunctio~s 

in (5.19), only six of the eight equations being, 'in fact, independent. 

Although we have demonstrated it only to first.order in EO' our 

results suggest that, subject to the assumed analyticity properties of 
~ . t+ 
0H'(x), we may obtain the E I 0 solution cp -:-(x) perturbatively by 

D t n 

starting from the E = 0 solution X ±(x), with 
n 

only a finite number of 
t+ 

cp -(x) to a given 
n 

terms contributing to the partial-wave expansion of 

order in EO· As for the radius of convergence rO of the expansion 

of 9E(x) in pOvlers of E, we note that certainly rO < El , where El 

is the first excited state in the bound-state spectrum of Eq. (3.9). 

Having determined the str'ucture of the E I 0 solutions to first. 

order in E,. we examine now the behavior of the radial functions in 

(5.19) at R = O. This is a straightforward, although tedious:task, since 

vle are dealing now with a finite set of coupled equations. Introducing 

. 18' 
the expanSlon 

vlhere we have followed the notation (5.17) (the radial function·s. are of 

course independent of the magnetic quantum number M), we may sw~arize our 

findings by the statements 
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nK 

as 
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exn+ +!k-n! 
tV R m 

) 

- 1 + Ik-(n+l)! 

n+ ~n+ where ex and u; 
m m 
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) 

~ '(Xn+ - 1 + ! (k±l) -(n+l) I 
G'±(R)'VRm (5.21b) 
nk 

are the six solutions to theindicial 

equations (5.11a). Although we have shown only the first-order solutions 

(5.17) to exhibit the behavior (5.21) at R = 0) we note that these 

boundary cond.i tions are independent ofJ and M, and are in fact 

determined by the E = 0 solution itself. We therefore assume the 

results (5.21) to be correct independent of the value of E. 
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VI. THE INTEGRAL EQUATION AND 'BOUNDARY CONDiTIONS . ." - "" : "" "." . . 

.ATTHE ORIGIN 

In order to. ~omplete our disc.ussic:m of boundary coridi tions, we 

need to examine which, of, the boundary condi tions(5 .21), .are actually 

contained in th~.integral equ~tion(3.9)~ 

. Our objective in this section is actually twofold: In addition 

.to establishing. whic):l of tl;le six independent '. solutions (for given values' 

of . J, t, M, andn) toEq. (3.1):' are also prospective solutions of the 

integral equation (3.9), it is aiso' of someinter€,st to learn hoV{ the 
. , 

boundary conditions.(5.21) maybe obtained directly from the integral 

equation itself. Weresti'ict" our ,discussion 'to the case in which 

E ==0, since, as we have seen in Sec. V, this is entirely sufficient for 

our purpos~. In this. case th~expression(3.7) for the "Wick rotated" 

Green f s function simplifies considerably, .-the result' of taking the limit 

E --> 0 being . " 

, (1 
1 . [( 2 21 .d$ KO m2 811") . o , 

" .. : 

. 1 . 

( 2_ m2
2

.)"2 RJ +t3 m
l · 

'For simplicity we take '~== m2 - m. In that case wE: obtain,' upon 

substituting (6.1) into (3.7), 

(6.1) 

(6.2) 

As in Sec. V-A it is cqnvenient to work in the ~"Weyl representa-

tion. " The E == 0 solutions ar~ .then of "the form (5.6). In. order to 
'. 

carrY.out the partial wave analysis of Eq. (3.9).we make use of the 
-,'" 

expansions 
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carlo (mJ x-x' I) = ), 4(n:l) [En1n (mR)Cn(mR) - 2In+2 (mR<)Kn+2 (mR) ]~;(~) a(3 , 

~ (mJx-~' I) 
°aB lx-x' J 

n± 

1 
2 2 "2 

as 0 btaine,d vlith the aid of the addition theorem (4.16). Here R = (r + T) , , AN 

R> = Max{R,R'}, etc., and en = 2 for all positive integers n except for 

n = 0, where eO = 1; In(x) and Kn(X) are mOdified Bessel functions 

with the properties 

I (x) n ' 

n I 
r(n+l) ,(~) , 

l 
1 

I 
1 -n 

'" 2" r(n) (~) , (n 'I 0) as x->b (6.4) 
2 K (x) 

n 

mx 
J 

Making use of the expansions (6.3), and of (4.20), we obtain the following 

set of coupled integral equations for the radial functions Fn±(R) and 

G (R) in (5. 6 ) : n± ' 

>< [K
l 

(MR' )Fn±(R' )+K2 (MR' )Gn±(R')] 

", ~[~,ID+l (mR<)Ku+l (mR)~~In+l (ml\)Kn+l (mR)][Kl (MR' )Gn±(R' )+K2 (MR' )Fn±(R')]} 
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x [K (MR')F .(R')+K (MR')G (R')J 1 n± 2 n±' 

where n = (n±l). In order to 'deduce 'the behavior of the radial functions 

at R "'" 0 ,-le again make the .ansatz that in this limit and 

ex )R) '", R$ .. In the limit R -. > 0 ·the dominant contribution to the' n_ 

integration:Ln (6.5) comes from the neighborhood of R' =R,. so that the 

leading term may be obtained by simply 'substituting for' F + (R) and n_ 

G + (R) their values at R "'" O. We arrive 'then 'at the following iridicial , n_ 

equations for 0: and [3: 
( I I , 

4A.(_)n+l ~ 
1 1 \ '. 

[0: :1- n + IJ [0: - n tJ [0: + n' + 2][0: - nJ ( = 1 .., 
l j 

with $ =,0: + 1, and 
! r I 
! 

4A.( -: )n+l 
I 1 1 r ( 

1 . r + n +2J [$ - nr [$ + n + 1][$ 1J = 1 L L$ 
- n -

j:, 

(6.6a) 

(6 .. 6b) 

. vlith 0: =$ ,+ 1. Comparing Eqs; (6.6) with the indicial equations (5·11), 

obtained earlier, we see that they are in fact identical. This, then, 

completes our first objective, that is, to learn how the boundary condi-

. tions (5.21) may be deduced directlyfrbm the integral equation itself . 
.. 

It remains no"Tto be seen for which of the six solutions' (5.21) the integral 

. equation (6.5) remains "Tell defined. An examination of the equations 

leading to (6.6) shows that we need to observe the inequalities· 
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, Cin+ > -(n+2) , 
rvn+ 
Ci > -n, 

n-
Ci >-n , rvn-

Ci >-n 

if the integration in (6.5) is not to -diverge at R' =0. [Compare 

(6.7) with theA. = 0' solutions to the indicial equations;] 

At this point it is convenient to define what we will refer to 

as the "regular" and "irregular" solutions. We separate the solutions 

to the indicial equations (5.11) into two groups, depending on whether 

they take on positive (including zero) or negative values for A. = O. 

We will refer to these as the "regular" and "irregular" solutions, respec-

tively. Thus, to 'take an example, the'solutions 
n+' .n+ n+ 

Ci ,ex 2' and e:;: 2 to n n+ n+ 

Eqs. (5.11a) belong to the first class, whereas 
n+ rvn+ 

Ci~(n+2)' Ci_(n+2)' and 
'rV!1+ 
Ci belong to the second class. We make the corresponding classification 

-n 

of the six independent solutions ( for given values of J, M, t, and n) to 

Eq. (3.1). Consider then a typical case such as represented in Fig. 4, 

,vhere Ive have plotted 1+ ex - "'-'1+ and ex- as a function of the coupling 

constant A.. The intersection of a given line ,vi th the curves 

gives the six (possibly pairwise complex) solutions to the indicial 

equations. - We see that the restrictions (6.7) do not necessarily exclude 

the irregu~ar solutions. Thus if we take the 1+ solutions in Fig. 4a 

as an example, the conditions (6.7) are seen to exclude ,only one of the 

irregular solutions for A. > 0; whereas they exclude all three for 

A. .:S. O. By merely counting the number of free parameters, we vlould there-

fore expect Eq. (3.9) to have a continuous eigenvalue spectrum for A. > 0, 

unless we supplement the integral equation with additional boundary 
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~oridi tioris; ,To this' e'nd we. require the solutions to be "regular" at 

R = O. "This choic'eof:boUndaryeonditions has the virtue that Ive treat 
, I 

the solutions for p~sitive and negative valuesof"the coupling constant 

" in a like fashion. "An~'ther :reason fo,rf~vorihg this choice is that for 

a nonsingular force the integraL'equation would include without question 

only the regula.:r solutions. 

Having thus completed our study of the poundary conditions to be 

imposed on the solt\.tions to ,Eq. :(3.1) "we should like toconpnent again 

briefly on the MacDowell sYmmetry (see Sec: III) in re;t-ation to ,the 

eigenvalue problem. Labelingthe'sol:u..tionsto Eq. (3.1), by the corresponding 

valu~s of the energy 'E, "we may ,now restate o#, earlier conclusions as" 
p 
',J + ." ~ '. . .. '. . 

follo,.;s:IfCPn -(X;E
O

) 'is a solution of Eq. (3.1) for E = EO and coupling 
, ., (t±l)":,t+ ' 

constantA. ) then CPn +(x;,-E()) oc 114 Cfn -(X;E
O
)is also a solution 

., '. . . 

for E = -EO' 'at the" same value of A.. In fact both of these solutions 

are regular, if either one of them is. Gombining'thiswith our earlier 

remarks in Sec. III concerning their asymptotic'behavior, we conclude 
, t+ ' 

that if CPn -(X;E
B

) solves the eigenvalue problem for E = E
B

, then 
U±l).:. , 

cp. +(X;-E
B
') as defined above:, ,solves the eigenvalue problem for 

n ' 

E= :~EB' at the' same value of the c,oupling constant. 23 That is 

(6.8) 

" ' 

which is a more famiiiarway of stating the MacDowell symmetry . . : ., .' 

'. 
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VII. NUMERICAL TECHNIQ,UES 

A. General Treatment 

In the preceding sections we have prepared the groRDd for doing 

the calculation we have in mind; that is, to solve Eq. (3.1) subject to 

the conditions that. cp(x) exhibit the asymptotic behavior of Fig. 3 ana. 

that it be regular at R = O. Writing equation (3.1) in the form 

DE(d)cp(X) = AV(X)CP(-x), 

we easily verify that the quotient 
('4 j d x ¢t ( -x) DE ( d) ¢ ( x) 

= J d4
x¢t (x) v( -x) ¢(x) 

is stationary with respect to infinitesimal variations in ¢(x) about 

the solution to (7.1). The integrals in (7.2) converge at infinity for 

E below the two-body elastic threshold, i.e., E < ~ + m2 . This can be 

easily verified with the aid of the results of Sec. III as summarized in 

Fig. 3. In the scattering region the integral in the numerator ceases to 

converge, however (the integral in the denominator continues to converge 

for E below the first inelastic threshold), so that the stationary 

expression (7.2) can be used only for calculations in the bound-state 

region. The choice of scalar product was of course dictated by the 

desired stationary properties. As an extra bonus we notice that the 

operators DE(d) and V(x) are self-adjoint with respect to the scalar 

products chosen, so that we will have to deal only with Hermitian (actually 

real, symmetric) matrices in the calculation. We also no~that A 

as long as the denomina.tor in (7.2) does not vanish. However, since V(x) 
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is not a positive definite operator, this is not guaranteed, and ECi. (7.1) 

does in fact have complex as'lvell as real eigenvalues 'A.. 

In Sec. VI we argued on the basis of the integral Eq. (3.9) that 

the solutions to Eq. (3.1) shouJ_d be regular at R = o. The solutions 

to the eigenvalue problem are then in general a linear combination of the 

three independent regular solutions to Eq. '(3.1) (for given values of the 

quantlli~ numbers J, M, t, andn). Since a proper treatment of all three 

solutions at R o would have required the inversion of very large 

matrices, we have incorporated into our calculation only the boundary 

conditions 

n+ a: 
,"-' R n 

+Ik-nl 
. , 

n+ a: 
R n 

+ I(k±l) - nl 
, as R --> 0, 

which represent the dominant contribution at R 0, at least for a 

restricted range of coupling constant values. 

Now, it follovlS from our discussion in Sec.' V that the specifica-

tion of the angular momentum and parity'of a particular channel of interest 

is insufficient to single out a unique solution, since I';e are left ,vi th the 

quantu..rn number n labeling the solutions (5.20) as an additional degree 

of freedom. Since this quantum number has no direct physical inter-

pretation, it follows that, to take an example, the "nucleon" could in 

principle be considered as a bound state in anyone of the infinite 

number of }' = ;}+, 1= -~ channels distinguished by the quantum number 

n. In view of the role of this quantum number in labeling the solutions, 

'ilevlO1J~d expect on a merely intuitive basis that higher values of n vlOuld 

correspond to higher excited states. The stability of the nucleon under 

i 

j 
I., 

I 
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the strong interactions would then suggest that it should be interpreted 

as a bound state in the channel labeled by the lowest value of n. 

We have thus restricted our attention toa 
( .e,+l) 

t+ 
study of the solutions CPt (x) 

cP -(x) 
t 

and as a logical starting point for our calculation. 
t .... 

cP ~(x), and write 

We 

,vill refer to these solutions 

Then, according to our choice of boundary conditions (7.3) ,-ie will: in. 

the actual numerical calculation, require the radial functions to 

exhibi t the behavior· 

, 

as R -> 0, where vle have made use of (5.12) in order to put the 

results into a more symmetric form .. 

:Now , with the usual defini tionof the charge conjugation matrix, 

(. )cx+.l . ( . . ) 
. ;.. <' 0 =exp ~l:rr() .. [3 , -cx 2 cx[3 

we have 

. C1'\ ( -1:J) * . * C ~E O;A)C = E (O;A ), 

. whereJ)E(o;A) is the operator defined in (5.2). Noting also that 

t+,M 1\ .. ..f.,±-k-M t+,-MI\* 
CY

n 
- (R) = (-),~ Y

n
- (R) , 

we conclude that, for the bound-state problem, and in 

(7.4) may be chosen to be real, for A real. Specifically, we took the 
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radial trial functions to be of the from 

t .... ex t ± + (k-t) ') ,"/,R .. .e. m 
. Fk -'-(R) == R a

km 
R e ) 

'm==6 

b R
m -/,R 

~ . e km· . ) 

where k= t) K. The actual solutions have logarithmic singularities at 

R == 0 'so that we could very likely have improved on the convergence of 

our calculation by including ,explicitly these logarithmic singularities. 
j 

in the expansion· (7.7) ;We have not done so for sake of simplicity. 

In practice only fairly low values of K and M in (7.7) 1tlere considered; 

thus typically 2 ~ K_~ 5 and O.~ M~ 8. The stationary expression (7.2) 

was then converted to a matrix equation for the expansion coefficients 

(a
km

, b, )by performing all the integrations. This left us with a set _ KIn 

of (real symmetric) matrices D .(k' m' 'km) 
E 'ab and V(k'm' 'krri) , ab corres-

pondin~ to the differential operator and potential integrals respectively, 

where m and k have the same meaning as in (7.7) and the indices a, b 

label the upper and lower components in the expansion (7.4). 

In the calculations involving the.singular potential (3.2) we 

were. not free to consider arbitrary values of the coupling constant. 

strength ". Evidently the six solutions to the indicial equations 

(5·1la) are real for only a restricted range ("1)"2) of coupling,.. 

constant values .. ' (We will refer to "1 2 as the "critical".values of , 
the coupling constant.,,: .. ) Outside this range we have tvlO pairs of . 

complex conjugate solutions. In fact, as Fig. 4 illustrates, the 

regular and irregular solutions do or do not mix at " == "1 2' depending , 



on the sign of A and the particular quantum numbers involved. Still, 

fro:n a purely mathematical standpoint one would expect that,. at least 

in principle, a well-defined eigenvalue problem could be fcrnulated even 

for coupling constant strengths exceeding the critical value. Hoc·rever, 

for IAI >IAI 21 the solutions develop an essential singul2..rity at , 
R = O~ oscillating infinitely fast in the limit R = O. Aside from 

presenting obvious numerical problems (the existence of an eigenvalue prob-

lem evidently depends critically on the choice of phase of the solution 

at R = 0), it is very doubtful whether a meaningful physical interpreta-

. 24 
tion can be given to the solution. We have therefore restricted our 

attention to the coupling-constant range In Table I we have 

listed the values of 

t = 0 through 5. 25 

corresponding to the solutions 
t 

cP '±(x) for 

Although the present calculation was originally intended to be free 

of arbitrary parameters, the range (A
l

,A2 ) of coupling-constant values 

considered in the singular problen was too restrictive in the 

channel (see Table I) to give a bound state, so that we needed to modify 

the nucleon exchange potential (3.2) appropriately if bound-state solutions 

were to be obtained at all. We considered therefore the two nodifications 

2 
AV(X) = 4~ [aKl (MR) + birX K2 (MR) J, 

V(x) = 4f[K
l 

(MR) + irQ f(R,R
c

) K2(MR)]. 

Here R 
c is a cutoff paraneter and 

was chosen to be of the form 

f(R;R ) 
c 

is a cutoff function which 
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f(R;R ) = R/(R + R ). c ' c 

The bOUc'1d-state solutions were' thus studied as a function of the three 

masses ~) m2 
and M; the parameters a and b "appearing in (7. 8a)) 

and the cutoff parameter R We ,,,ere of course free to give a any 
c 

desired value) whereas b ' was still restricted to the range (Al )A2)· 

For a = b the potential' (T.8a) reduces of course to-the form (3.2) 

corresponding to the exchange of an elementary nucleon. We also note 

that for the choice of potential (7.8b) the boundary conditions ('7.5) 

need to be replaced by 

as 'R--> -0. (7. 10) 

Before we proceed to a discussion of the numerical resuits, there are 

several "technical" points which seem warth mentioning. In practice it 

was found that the "optimum'" vahle of the exponential parameter y in the 

expansion (7.7) as determined in the course of the calculation was in 

general far off from the one suggested by the known asymptotic properties 

of the solution because of the short-range character of the force. The 

starting point of our numerical calculation therefore consisted in 

searching' for a ,"good" value of the parameter y by studying the 

convergence properties of the calculation at small but increasing matrix 

sizes. We then improved on the accuracy of the calculated eigenvalues 

by systematically enlarging our space of basis functions; that is) by, 

keeping an increasing number of terms in 'the expansions (7 . 4) and (7.7). 

Since we expect the terms in the expansion (7.4) to become of decreasing 

"I 
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importance as we go to increasing values of k, we made the index M 

in the sum (7.7) a function of k, observing at all times the inequality 

M(k) > M(k+l) . In practice Ive did not invert. matrices larger than 54 

by 54. For matrices of this size an accuracy of 1% and less I-ras 

common for the case in I-lhich ~ =m2, although an accuracy of ~ 10% 

could already be obtained for much smaller matrix sizes. This is to be 

d . th th l ul .l-' 3, 4 T.n. k' th . .. t . compare _ loll o! er ca_c aulons .vwen ma lng lS comparlson l lS 

to be kept in mind, of course, that the presence of spin alone in our 

problem doubles the matrix sizes for a given choice of trial function. 

Because of the orthogonality of the spherical harmonics it. was 

evidently crucial to determine precisely the total number of terms which 

needed to be included in the expansion (7.4) if the computed eigenvalues 

were to be accurate to some specified amount. In practice it was found 

that we never had to include more than the first five terms in the 

expansion (7.4) if an accuracy of about 1% was desired. This suggests 

that our method of reducing the genuine two-dimensional partial differ-

ential equation in the variables Rand cose to an infinite set of coupled 

ordinary differential equations by expanding the solution in the form 

(7.4) has definite advantages over solving the partial differential 

equation directly, since it provides us with an approximation scheme 

in which ive actually need to solve only a small set (in our case at 

most five) of coupled ordinary differential equations. 

Tables II and III illustrate the above observations. In Table 

II we present a typical sequence of approximations for three different 

choices of the asymptotic behavior of the trial functions. The first column 

specifies the form of the trial function, the notation being 
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" K;, M( t), M( t+l),·· . ,M(k), (7·11) 

,vhere M(k) is the maximum. value of i:;he summation index m in ,the expan­

sion (7.7) as a function of the four'::'d~mensionalangUlarmomentum k 

labeling the radial functions, and K"is the maximum value of k 

considered in the :partial-wave expansion, h. 4).' ' The table, illustrates 
, , 

hOvl the choice of ,the exPone'ntial :parameter in (7.7) affected the 

convergence rate as well as the direction from which :the com:puted 

eigenvalues a:p:proached the final value. 'We see that;, inde:pendent of the' 

choice of 1, the numbers do eventually convergE: to the same ,final value. 

Table 'III 'iliustrates ~~r observation i:;hat sp~Cial care had 

to be taken to include asufficientnu.mber bfterms in the expansion 

(7.4) . Table IIIa \3hows the effect of improving only on the radial 

de:pendence; the numbers are seen to converge to the same final value 

inde:pendent of the choice' of 1, as one would expect,' since we may 

correct for a :poor choice 'of the exponential :parameter 'by including 

" sim:ply a larger number of terms in the· expansion (7.7). Table HIb' , 

shows, on the other hand, that by im:proving only on the "~angular" 

de:pendence of the solutions we cannot correct a :poor choice of " 

,so that the numbers, are seen to" converge to different values for differ- : ' ' 

'ent choices of ,1' However, in all cas,es the numbers are seen' to converge, 

to the "wrong" value, the "correct" value being ,,1.649 as seen from 

Table H. Table IIIb also shows that, it vlas entirely s.ufficient for our 

:purpose to include only the first five terms in the expansion (7.4) as we 

had already :pointed out. 
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We have outlined here the general numerical procedure '!ll-:c:~ch '<Jas 

followed in the present calculation. We turn now to a discussio::: of 

certain difficulties inherent in our choice of variational :princ2.:ple. 

B. Weakly Bound states with m2/ml « 1 

If I"e want to study the physically interesting case,. tha-:, is, 

the bound states of the pions and nucleons with the experimenta1=_y 

. measured masses, we run into difficulties with the Rayleigh-Ritz 

variational principle (7.2). The fact that we are dealing '!lith ,,,eakly 

bound states, such as the "nUCleon," for example, and "lith 3. very small 

mass ratio, m2/m
l

== 0.144, implies a very asymmetric asy:n:ptotic 

behavior of the solution with respect to the forward and backward 

light cone, so that even in the bound state domain, the solution is 

actually exponentially risj_ng in one part of the (cose, E) plane, and 

decaying in another, although the product cpt(_x)CP(x) is always 

exponentially decaying. These circlli~stances made it in general rather 

difficu~t to obtain accurate solutions for the case in which m2/~ == 0.144, 

although the variational principle (7.2) proved quite adequate for mass 

ratios 0.4..:s m2/~ ~ 1, the lower bound being actually a function of 

the bound-state energy considered. There have been presented, of course, 
7-

alternative ways of formulating the variational problem~ which, in 

addition to being much more efficient, do overcome to some extent the 

above difficulties. However, instead of pursuing these alternatives,. 

we will try to "patch up" the variational calculation as presented 

so far, by transferring some of the undesirable asymptotic properties 

of the solution to the potential. To this end we consider the 
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transformation 

cp(x) cp(x)· eXP(~RCose)) 

where !J. is some parameter whose value we are free to choose. Thus) 

to consider an example) if we set.!J. = (m
l 

- m2 )) then cp(x) will 

exhibit the asymptotic behavior cp(x) ~ exp[ ~.(E _. ~ - m2)R] along 

both the positive and negative time direction) replacing the original 

asymptotic behavior (see Fig. 3) for cose - 1) 

and for cose = -1. We have thus achieved·a 

complete sym.metrywi th respect to the forward and backward time 

direction in the four-dimensional Euclidean space. Moreover) in the 

asymptotic domain) . cp(x) now dec~ys exponentially everywhere in the 

bound-state region) and is in.fact essentially independent of the 

relative time in the case of very weakly bound-states 

From a practical standpoint.the transformation (7.12) complicates 

matters considerably) since 1-re are dealing now with the potential 
tV . 

Vex) = V(x)exp(wr)) .which is no longer rotationally invariant. However) 

we still need to compute only on·e -dimen s ional integrals. Thus) in order 

to evaluate the integral (4""t rJ ~ J d x ~ (x)V(-x) (x) in (7.2) we make use of 

the expansion 

00 

Ik+l(!J.R) -!J.Rcose 

~ 
k . 1· (7. 13) e (-) (k+l) 

!J.R 
ck(cose) 

and of the reduction of the dlrect product of two four-dimensional spheri-

cal harmonics. In practice we needed only the reduction coefficient 

Ct(nntN) as given by the integral 

Y; 
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n: 

Ct(nn 'N) N~t,/( de(sin 2e)t+l 
n n 

t+l t+ 1 1 C (cose)c ,- (cose)cI~(cose). (7.14) n-t n -t ~ . 
.)0 . 

Here ct(cose) are the Gegenbauer polynomials and Nt is the normaliza-
n n 

tion coefficient defined in (A.4). Note that Ct(nn'O) = 0 , and 
nn 

O( .) C nn'N = 1. 

we deduce that 

With the aid of the orthonormality property 

-2 
o (Nt) 
nn' n 

° unless In-n'l .:s N ~ n+n' . 

It also follows from (7.14) and the property of the 

Gegenbauer polynomials that 

(7·16) 

so that 

. 0 

C"(nn 'N) 0, unless n+n'+N = even integer. 

Because of the properties (7.15) and (7.17) of the reduction coefficients 

the necessary potential integrals were expressable as a finite SUJn of one 

dimensional integrals which could be computed accurately by use of 

Gaussian quadrature techniques. In practice the coefficients 

C t(nn' N) ,.;rere computed numerically by expressing the integral (7.14) 

as a quadruple sum over products of ga~~a functions. 
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The effect of introducing the modification (7.12) is illustrated 

in Table IV, where we have listed for a .sequence of increasing matrix 

sizes the computed coupling.,.constant values needed to give a bound 

state of the actual pion-nucleon. system at the mass of the nucleon, 

E = 1.0. The potential was taken to be of the form (7.8b) with 

Rc = 0·7 and M = ml =1.0. ·For the choice I-L = 0 in (7.12) the 

"convergence" of the calculation is seen to be extremely poor, whereas 

the choice I-L = 0.856 (I-L = In.. '- m) is seen to lead to a satisfactory . ~ 2 

convergence of· the numerical results. In practice the modification 

(7.12) provided us with one additional variational parameter which 

we were free to 'adjust so as to optimize the convergence properties 

of the calculation. 

I 

'-1 
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VIII. NUMERICAL RESULTS 

In the present calculation we devote our attention exclusively 

to the J = 3/2 and- J = 1/2 
, 

channels. For convenience we divide 

this discussion into several parts corresponding to the different values 

of the total angular momentum J, isotopic spin I, and parity that 

were considered. To.a large extent we are concerned only with the 

general features of the eigenvalue spectrum of Eq. (3.1), which are not 

expected to depend critically on the ratio m2/~' Because of the 

·technical difficult~es encountered when dealing with a ratio m2/~« 1 

.(9-S in the pion-nucleon case), we have placed somewhat greater emphasis 

on the case in which The numerical results are summarized in 

Figs. V through VIII,and in Tables V and VI. (For a listing of the 

computed eigenvalues to several significant figures, see footnote 21 ) 

In this channel the coupling constant A is positive [Recall 

that A is related to the pseudoscalar coupling constant G as in (2.8)]; 

the parameters a and b in (7.8a) were taken to be positive,as well. 

In Fig. 5 we have summarized our results for the choice of potential 

(7.8a) with ~ = m2 = M = 1.0. The energy spectrum was computed for. 

several values of a and b. We see that both the singular and nonsingu­

lar components of the potential (7.8a) "act" attractively'27 in this 

channel. Moreover, for the range of coupling-constant values considered 

here, there exist no excited states in the energy spectrum. 28 We also 

note that for the undamped nucleon-exchange potential (3.2). we obtain 

a bound state of mass v~ ~ 1.65 (in our units) for 
2' -. 

A = 1. 6 (G /!~rr = 10.0). 
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• j' . Iri.F1.g~6 weha,ve summari~ed :thecorrespondi~g results for the ' 
....... .. 

' .. 

correct p"im~~n1,lCleon:kirie~atics" that is" for, 'llJ.== M ==LO, and 
'I' I' 

m
2 

0 .144;< the 'pion mass . Again we ~tudie,dthe energy spectrum 

as a functiOn ot:' the parameter ,a in (7 ~,8a) , with ,'6, ==' 1.6. We 

note that for 'theexchan:ge potential (3.2), tmt is, for a == b 

in (7.8a), we obtain abound state of mass at a coupling 

constant It is quite reasonable to interpret 

, *' ' 
N (1236), since" for ~he singular force (3.2), this bound state as the 

the 
\ .. -r.­
N" could emerge in our calculation as a.weakly,bound state, while 

a more realistic treatment of the short-range part of the force may 

:'predict" ,it as a resonance (for the 'same "value of the coupling ,cOnstant). 

The above value ,for the mass of the 'N-*' should, be 'compared with the 

, 'v~lue calculated by Abers and Zemach,
6 

who obtainedtlie 
*, 

N in their 

NjD calculatj!on as a bound state with a mass 
'* ' .. 

m(N ) = 1.13 (in our 

\111i ts) at the experimentally measured value of the coupling constant, 

,and fora force input corresponding to the exchange of an elementary, 

nucleon. 

\_-\.." In Table Vwe give the bound-state energies as computed for 

several values of the mass M, 'Of the eichanged nucleon, for 

m
l 

== rri2 ;, LO andthe potential (3. 2 ) with, Ii.== L6. We find that 
, , 

for increasing values of M (with a cOrresponding decrease in the 

range of the force) the two~bOdy systerri. becomes more deeply bound, which 

seems at 'firsttocontradict·our intuition. A glance at the potential 
, , 

(3.2) shows, however, that the mass of the exchanged nucleon controls not 

only the "range" of the force, but also 'the effective coupling-constant 

strength. 
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B. The ~ = 1/2 , I = 3/2 Channel 

. Again only positive values of A. are to be considered here. 

The parameters a and b in (7.8a) "",ere taken to be positive, as well. 

No stable particle with the above quantum numbers has been observed to 

date. Because of .the very restricted range of coupling-constant values 

that could be considered here in the singular case (see Table I), we were 

unable to obtain any bound states unless we considTed the more general 

form~ (7.8) for the potential, with a Jb and. Rc J O. This was 

the case in all J = ~ channels, independent of the isotopic spin 

and parity, and was of course the reason for considering at all the 

modifications (7.8). In Fig. 7 we give a plot of the computed bOUnd-

state energies as a function of the parameters a and b in (7.8a), 

with ~ = m2 = M = 1.0. Qualitatively the situation is very similar to 

that represented in Fig. 5, except that now the singular component of 

the potential (7.8a) acts repulsively, whereas it acted attractively in 

* the N channel. The nonsingular component acts attractively, as be-

fore. One might expect that the situation would be reversed'if we 

considered negative values of the parameters a and b. In particular, 

since the overall force was found to be attractive for a,b > 0, we 

might expect it to be repulsive for a,b <. O. This is not the case, 

bound-state solutions having been obtained in both cases, as the follow-

ing discussion .will show. 

c. The Nucleon (}' I = -}) Channel 

In this channel A. < O. The parameters a and b in 

(7.8a) were taken to be negative, as well. In Fig. 8 we have plotted 
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the computed b6und-stateenergies as a function of the coupling constant 

for the choice of potential (7.8b) with R c 
1.0 and 

M == 1. 0. We have found it instructive this time to study explicitly both 

the positive and negative energy spectrum. As we ha"e pointed out 

already, our eigenvalue problem. is just as well defined in the negative-

energy domain 'as it is in the positive one, provided that -(~ + m2 ) < 

E < (~ + m
2
). The results presented in Fig. 8 indicate a somev.'hat 

"abnormal" situation, the computed binding energies bearing inverse 

relationship to the magnitude of the. coupling constant. lim,rever: in 

view of the MacDowell symmetry as stated in the form (6.8): this "ab-

normal" situation in the 1 channel' (vie use the notation t) is a 
± 

direct consequence of the existence of a "normal" situation in the 

0+ channel. This has been explicitly verified numerically. Stated 

more generally, given a normal situation in the' t± channel, we v1ill 

have a corresponding abnormal situation in the (t±l)_ channel. It 
+ 

is clearly sufficient to compute the positive and negative energy 

spectrUm in all angular momentu;11 channels of a given parity, since the 

energy spectrum in the remaining channels of opposite parity may be 

obtained from here with the aid of (6.8). We note that the MacDOIV'ell 

symmetry has been shown17 to be a consequence of extended Lorentz 

invariance (invariance under complex Lorentz transformations), which 

is itself a consequence of the invariance of the. S matrix under real 

Lorentz tranformations .. Hence, the usual requirement of Lorentz invari-

ance provides the physical reason for the existence of the abnormal 

situation as observed above. 



UCRL-1768~-

-55-

Finally, it is interesting to compare the strength of the force 

* in the N channel with that in the nucleon channel. Thus J fixing the 

bound-state energy at the nucleon mass (E 1.0), we have computed in 

these two channels the eigenvalues ~ as a function of the cutoff para-

meter Rc for the choice of potential (7.8b), with ~ = M = 1.0 and 

m2 = 0.144, the pion mass. The results are summarized in Table VI. We 

note that the computed values of G
2/4n [see (2.8)] needed to give a bOUIld 

* state of the nN system at the nucleon mass are larger in the N channel: 

than in the nucleon channel; (Recall that an estimate based on the Born 

term alone would predict the nucleon as contributing the dominant force 

* in the N channel, not in thenudeon channel;) We. observe, hOlvever, 
-)(-

that this statement is misleading, since the situation in the N channel 

is a normal one, whereas in the nucleon channel we are dealing with an 

abnormal situation. 

We should like to conclude this discussion on a somewhat 

pessimistic note. Our results have sh~nthat any estimate of the relative 

strength of the forces in the various channels as based on the Born 

diagram of Fig. 2 will fail completely in the bound-state problem: as 

of course was to be expected. Moreover, our calculation has also shown 

that, for the bound-state problem, the sign of the coupling constant does 

not in general provide a criterion for distinguishing between attractive 

and repulsive forces (unless the operators involved are either positive or 

negative definite, as is the case in a ¢3 theory with equal-mass particles). 

This implies in particular that the study of crossing matrices alone cannot 

provide in general an estimate of the relative sign and strength of the 

forces in a bound state calculation, except when this study is made in the 

context of a particular dynamical model. 

., , , 
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IX. SUMM.ARY 

Our calcUlaticn has demcnstrated that even marginally singular 

Bethe-Salpeter, equaticns may be sol vea.by standard nu."Uerical techniques, 

prcvided that prcper care is taken .of the bcundaryccnditicns at the .origin 

(.of the Wick..,rctated space,-time). From the ccmputa ticnal point .of view, 

the presence .of spin in the prcblem did nct in any fundamental way affect 

cur ability tc sclve the equaticn,althcugh the algebraic aspect .of the 

problem >vas ccnsiderably mcre invcl ved than in the absence of spin, the 

'added complexity being principally due to the particular apprcach taken 

in this paper. Thus we cquld have chcsen tc sclve the BS equaticn 
, , 

directly in the fcrri{cf a: twc-dimensicnal differential .or integral equa-' 

ticn. 
, 4 ", 
',Othercalculaticns have shcvffi, however, that such an apprcach wculd 

require the inversicn .of typically 100-by-IOO-dimensicnal matrices in 

.order tc ccmpute the desired numbers to an accuracy .of a few percent. 

This is to be ccmpared with cur calculaticn in which twenty-seven was 

the maximUJU effective matrix size ever ccnsidered, the ccrre'spcnding 

accuracy of the computed eigenvalues being frequently better than, 1%. 

in fact, in most .of the cases the apprcximaticn .of the trial scluticn by 

the first .one .or twc terms in the expansions (7.4) and (7.7) was sufficient 

tc .obtain an accuracy better than 10%. Our particruar treatment .offers 

additicnal advantages as well; ThuS we recall that in practice we needed, 

to inciude at most the first five terms in the expansion (7.4) .of the 

scluticn, in order tc achieve a 0.1% accuracy C~ndbetter). Mcreqver, cur 

apprcach allcws ustc give a prcper treatment .of the bcundary ccnditicns 

at the .origin. In fact, the cri t'ical dependence .of the,se beundary cendi tiens 

en the ceupling-censtant strength in marginally singular equaticns such 
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as considered in this paper suggests, that our approach may well be the 

approach to the singUlar problem. 

As for the physical content of our calculation, we do not kno,v 

the range of validity of the ladder approximation; nor is it generally 

believed that the forces in nature are as singular as the ones we have 

considered (in the absence of a cutoff). 'In addition, a more realistic 

treatment would have to include the forces arising from the exchange of 

* higher spin particles, such as the N, for example. We have thus 

strongly emphasized the mathematical rather than the physical aspect of 

this problem. 
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APPENDIX A: THE FOUR~DIMENSIONAL SPINOR SPHERICAL HARMONICS 

We introduce first the notation and conventions which are 

followed throughout our work. A point (xa;) = (xl ,x2,Xy x4) = ~~,:'T) in 

the four-dimensional Euclidean space can also be represented in terms of the 
1 

2 2 "2 
length R = (r + 'T) of the four~vector, the polar and azimuthal angles 

IVV 

V and ¢ in the . (xl ,x2 ,x
3 

) plane, and the angle e bebTeen the four-

vector and the four-axis: 

(:lea;) = (Rsinesin.J sin9, Hsrl.nesin~ cos¢, Rsinecos -J, Rcose). 

A 
We use the notation R = (xa;/R) to denote a four-vector of 

unit length. The differential element of solid angle d~ and the 

differential volume element dV are given by 

The four-dimensional spinor-spherical harmonics are defined by 

Lt+M A t t+l . 
N-y - (r) sin ec (cose) 

n . a; n-t 

(A.i) 

(A.2) 

Here Cm(cose) n . are the Gegenbauer polynomials, Nt is the normalization 
n 

constant 

t M 
·and Y ± (Ar) 

harmonics 

; 

a; are the conventional three-dimensional spinoI' spherical 
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, t M V'"'" 
" + (1\) \ '~(' 1 
,~ -', rq;= 1___ i -vc t, 2'; 

m 

where C(tsJ; ma M) are the Clebsch-Gordon coeffi(:!ients as defined by 

29, , "1\ 
Rose " and Y tm (r) are the usual spin~zero spherical harmonics., w'i th 

j\ 
r = .r/r. The ,functions (A.5) are orthonormal and satisfy the useful 

IVJ 

relation (we omit the magnetic quantum number M) 

Similarly) the functions (A.3) are orthonormal' 

\[, tM , t'W ' 
.L;d~ Yn ±, (R)ci Yn ;, (B.)a =~\t±,;"t'±' °MM' ann' • 
a " 

and sat,isfy the completeness relation 

as "Tell' as the addition theorem 

where 

L 
'tM 

± 

cosy 
1\ ~ = R'j:{' = cos9cos9' + sin9sin9'coal) 

COal) = cosJcos-l)' + sinJ sin,J, cos(~-~,) 

(A.6) 

, (A.8) 

(A.10) 

',",;-
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APPENDIX B: THE FOUR-DIMENSIONAL ROTATION GROUP 

In this appendix we construct the projection operators UO 
~ n± 

and (P for" the irreducible ,spaces of the representations (n;1'~2) and 
n± ~ 

(~, n;-) of 04' the four-dimensional rotation group,30 It is well knovm31 

that the group 04 is characterized by the six Hermitian generators of 

infinitesimal rotations A. and B. (i:= 1,2,3) with the familiar 
l l 

angular-momentum commutation relations 

[ A. , A .] := i E. • k A
k

, [ B. , B . ] 
, l J lJ l, J 

Moreover, [A.,B.] := 0; 
l. l 

'2 
A 

NV 

2 
and ~ are the two Casimir operators of the 

group; in a particular irreducible representation labeled by the pair 

of indices 
, 2 2 

(a,b), A = a(a+l)I, B := b(b+l)I; the representations 
NV 'N 

(a,b) are QDitary and of dimensionality (2a+l)(2b+l), To give a 

specific example we note that on the space of scalar fields, 

B. are just the differential operators 
l 

B. 
l 

A. and 
l 

(B.J.) 

where hv = -i \J./'0 are the usual generators of infinitesimal rotations 

in three dimensions. We have the following 'reduction of the direct product 

space 

(n n) .0.. (J) (n+21'~2) = (n2-1'~2)' " '2'2' v."...>' 2,0 ,~ \:I;I 

(~ n+l) 
2' 2 (~ n-l) 

2' 2 ' 
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·The combined set. of functions 
(t+1L,Mn· " YR) '. n 

defined in 

(A.3) (with the' i~dices" t and M taking on all allowed valu~sfor 

a given value of' n). forma· basis for either of these two 
2 

2(n + 1) -

dimensional direct product spaces. In Section IV we make use of precisely 

.' this fact, when we construct the basis functions for the irreducible 

spaces (n~\~). and (~,n~l) contained in the above reduction of the 

direct product space. 

We construct next the projection operators for the irreducible 

spaces 
nn±l (2'T)' which we denote by tPn± and respec-

tively.Tothis end we define the. generators of infinitesimal rotations 

'. in the above direct product spaces (the direct product with the identity 

n n 'tC'\ - ' 
is understood, so that Ai = Ai(2'2)'L'VI(~,O), etc~): 

d." 
~ 

B. 
~ 

in the direct product space -(~,~)~ (~,O), and 

A. 
~ 

, '" 1 U5. = B~ + '.-:::-0'2 '. , " l -'- ' ~ 

in the direct product space (~,~) ®(O,~). 

Now, in the 

. 2 '1. . . 
'.~ = J+(n+l)(n+3) 

(n+l £) representation, 
2 '2 

So that we obtain with the aid (B.2), 

Similarly, in the .(n;l,~) representation, 

(B.2) 

I. 
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so that 

,
/.)2 __ l( 2 ) u"4 n -1 , 

:' .I'vV 

a . A = _ (h+2) 
"'"II~" 2 

In exactly. the same manner we conclude that 

in the (~ n+l) representation, 
2' 2 

(~n-l) representation. 
2' 2 . 

The desired projection operators are thus given by 

rP' -:t(h +2} +IN!A, rP ~ - a·A 
n+l , = I'\.VtW , n+ n- n+l 

tV t(n+2) + ~'B 
. ,,-, 

.~ - I!/,'&v fP t.P = '" ;:y 
n+ n+l , 

n- n+l 

We easily verify that 

0;+ + iP n- 1, 

, (V 

. vIi th !P 
n± satisfying the same relations. 

(B. 4) . 
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,APPENDIX C: PROOF OF ELASTICUNITA1UTY, 

In this appendix we showthat,thescattering amplitude 

defined 'in (2.18) satisfies elastic unitarity. For> the purpose of this 

discussion it is convenient to rotate thet-integration contour in (2.18) 

to the imaginary axis. This can be done for the c.m. energy E below 

the first inelastic threshold, 'the result being 
" ' ,'1' , 

A.ITL., 'f ' , -ik' • r+::::m. '[ " , J. - ,,' 4 ' /'>'I 1V'/,2J.2 ,,' ) 
f(}J;/ ,}j)= 4nE' U(~;) d x e. ., " " V(x) ¢);}-x , 

where¢k(x) is the solution toEq. '(3.6). ,We easily show that 
, 1\"-/ 

It follows then from (C.l) and (C.2') that 

'ft(k k') i,':J 1'001 

ik·r 
'1wMl 

e , , 

(c.i) 

(C.2) 

where the "dagger" denote,s the Hermi tian conjugate in the spin space only. ' 

,We note here parenthetically that with the aid of ' 

-* -1 
CV (x)C = v(x) , (C.4) 

where C is the usual charge-conjugation matrix as defined in (7.6), we 

easily show that 

and 

f(k' k~ = f(-k' -k~ , MI'M!,/w' ;.;..j, 

" 

" ' 

",' 
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Statements (C.5) and (c.6)· follow, of course, directly from the invariance 

of the theory under space iuversionand time reflection. Finally: noting 

that 

e 
'k 1 l . r - -::.ill2 12'[ 
f>/ll I'IV 

we obtain with the aidof (C,l), (C.3) and equation (3.6): 

which is the statement of elastic unitarity. 

(C.8) 
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Table 1. Values of the 'critical coupling coristimts 11.1 and 11.2 
t+ 

corresponding to the solution ~ -(x) for several values of the 

angular momentum and parity. 

t+ 11.1 'A. 2 

0 , 1 ,-0.384 0·384 + 

1 2 
+ -0.631 2.112 

2 , 3 -6.064 0.879 + 

3+ , 4 -1.128 13·128 

4 , 5 -24.192 L377 + 
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Table II. Computed values of E in the ~ = 3/2+, I = 3/2 channel 

at several values of the exponential parameter / and at several matrix 

sizes for m1 = m2 = M = 1.0 and the choice of potential (7.8a) ,,'lith 

a = b = 1.6. The form of the trial function is specified following the 

notation (7.11). The computed eigenvalues are seen to converge to the 

same extrapolated value E = 1.649 independent of the value of ;. 

Form of 

trial 

flLl1ction 

2;10· 

3;210 

4;3200 

5;4-3100 

5 ;5l~200 

5 ;653.00 

5;76410 

5;87520 

Extrapolated 

value 

Matrix 

size 

6 

12 

18 

26 

32 

38 

46 

54 

(;=0·5) (;=1. 0) (;=1. 5) 

E E E· 

1.31352 1. 65943 1. 74158 

1.)+0361 1.64251 1.67156 

1.51648 1.65056 1.66522 

1.58347 1.6~919 1.65514-

1.61660 1.64928 1.65211 

1. 63243 1.64931 1.65060 

1.64045 1.64938 1.65019 

1.61+440 1.64942 1. 6l~995 

1.649 1.649 1.649 
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Table III a,b. Computed'values of E intheJP =3/2+, I 3/2 

channel at two values of - y and at several matr~x sizes, for 

~ ~ m2 = M = 1.0 and the choice of potential (7.8a)vlith a = b 1.6. 

Part (a) shows the effect of improving only on the radial dependence 

of the trial solution, and (b) shows the effect of improving only on 

the angular-dependence of the trial solution. The correct value of 

E is 1.649. 

(a) Form of (y=0·5) (y=1.0) 

trial func. E -E 

2;22 1 ~-~.4970 - 1.66377 

2;33 -';1.55127 1.67021 
- -

2;44 1.61259 - 1.67060 

2;55 1.64267 1.67119 

2;66 1. 65673 1.67138 

2;77- 1. 66357 1.67138 

. (b) Form of (y=0·5) . (y=1. 0) 

trial func. E E 

3;111 1;3~·9512 1.644824 

4,;1111 1.350293 1.645020 

5;11111 1.350098 1.644629 

.:6 ;111111 1.350098 1.644629 

7;1111111 1.350098 1.644629 
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Tab} e IV. Values of the coupling con2,tant A. required to give a bound 

state with E = 1.0 in the }' ~ channel, as co~uteQ for 

a sequence of increasing matrix sizes and for blO values of the D8~rameter 

f-L in (7.12). The potential was taken to be of the form (7.8b) ~'Tith 

and '~. M = 1.0,. m2 = 0.144 (the pion mass). The 

"convergence" of the numerical results is seen to be extremely poor for 

the choice f-L = 0, . but is considerably better for the choice f-L = 0.856. 

Form of 

trial func. ( f.J.~O. 0) ( [J.=O. 856 ) 
A \. 

2;10 -0·9937 -0. 95)~·6 

4;3200 -0.9612 -0.8636 

5;54200 -0.7266 -0.8436 

5;76410 -1.0129 -0.8361 
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Table V.Energy spectrum in the .? = 3/2+, I = 3/2 channel as computed 

at several values of the exchanged mass M for ~ = m
2 

= 1.0 and the 

choice of potential (7.8a) ~ith a = b = 1.6~ 

M E 

1.0 1.649 

0.8 1·702 

0.6 1.783 

0·5 1.832 

0.4 1.890 

Table VI. Values of the coupling constant ~. required to obtain a 
.J(-

bound state at·· E =1.0 in the N and nucleon channel, as computed for 

several values of the cutoff parameter R in (7.8b), with rrL = M = 1.0· 
. C ..L 

and m2 = 0.144 (the pion mass). (We present only the smallest value 

of I~I in the eigenvalue spectrum. 

R c 

0·3 

0·5 

0·7 

1.0 

-)(-

(N channel) 

~ 

2.11 

2.25 

2·38 

2·53 

(N channel) 

~ 

-0.69 

-0·77 

-0.83 

-0·90 

~. 
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This report was prepared as an account of Government 
sponsored work. Neither the United Siates; nor the Com~ 
mISSIon, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
i~plied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the u~e of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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