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Summary. A familiar véctor current sum rule of the Fubini-Furlan-
Rossettl type 1s presented, and a model for the continuum corrections
evolved. The symmetry breaking is.introduced in a simple way by
coupling the spurion in the sum rule to the baryon line in the graphs
which contribute té the continuum terms. The decuplet does not
contribute in this low-energy model. The correction terms turn out
to be typically a few tenths of a magneton. The result for the

=t moment, which depends on the D/b ratio, is, for the usual choice

of this ratio, uT(Z+) = 2.6 nuclear magnetons.



1. Introduction.
s . . . (L) . . .
Recently, the existence of improving experimental determina-
tions of the baryon magnetic moments has increased interest in them and
the question of symmetry breaking. There now exists a body of knowledge
concerning the calculation of magnetic moments with the use of current
algebra and dispersion relations. We will discuss the questlion of the
(2)

+
broken I moment by the method of Fubinl and Furlan; Fubini, Furlan

and Rossetti;<5) and Furlan, Lannoy, Rossetti and Segré;(h)- The actual

(5)

formulation will be similar to that of Gasiorowicsz, although in a
different context. There exists a ealculatien of the broken moments
" by Donini‘et al.(6) With no clear relation to this one. The closest
analogous work 1s that of Pagels(7) who discussed the baryon moments
with = sidewise dispersion relation.

In Section II we present the model through consideration of the
commutator of a vector SU5 current and the electromagnetic current.
We point out the tenuous point of correspondence between the soft
spurion limit of Fubini, ?ﬁrlan and Rossetti and the v —%m limit of
Gasilorowicz. We then write the sum rule, pick out the one-particle
intermediate states (which give the symmetry limit), and then obtain the
amplitudes for the two-particle continuuum states from the reduction
. formalism. We consider only the pion-baryon intermediste states in the
dispersion integral which breaks the symmetry, since they have

thresholds nearest to the point where the dispersion relation is
sampled. (k —>Q). We then obtain the continuum contributidnvin a low-

energy approximation. In the last section we present the value for the

Z+ moment and discuss 1t briefly.
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2. Cdﬁ@@ﬁpm'
iConsidef the:matrix element -of the electromagnetic current jp‘ 
.,

.~ and a vector cﬁrrent JE with SU inaex

3
Tvu'-= jdh}é.eikix e(xé)xpysvb l [JS(X)" jH(O)] l:pSa? , } (l)

3.

whefe a and b are the SU, indices of the reépective states. 'Then

and’ there follows

x'T ij'dax e * (prsn| [55(x), § (0)] | psa)
v o ) . O u . LT X = +.OO'

+ i“; duxv'eiki‘X e(io>v<p's'b] [D%(x), j;(O)]AI psa.)

1 oJ

< O

6xv
we have for the RHS ‘equal to zero,

where D°(x) = ~—Y . If, in the limit k - O, the TLHS of (2) venishes, . ..

- lim.J[dux_eik'X @(xo) (p's'v| 0%(x), j (O)]:[ psa)
- xo | S

= = {p's'p| [IdBX'JS(g,_O),_'JH<O)]« | psa) ',..‘

~the familiar relation of Fubini, Furlan and Rossetti.“ 

We turn to the LHS of (2). The second term is, at  k'='O;;jgst:‘*“’

Lo e

S s T alpy - B

on

‘ vv' . . A t ¢ vv:
s(p" - B) (p's'0|dg]n)

H"'.'Px<nljulpsa) ) e crossed term.’

0, = faln @& ) 0 Gren] 1500, 3,001 [psa) ;"
: v : AR . L

cr [ TER e e, @1 T @



This vanishes-unless Pn = p' for the direct term or Pn' = p for

the crossed term. If the masses of the external states and a 5ne-particle
(op) intermediafe state satisfy M = M' (di;ect or M_, = M (crossed),
then this term will not vanish. It can be made to do so by choosing
the external masses so that M' AM , MAM , and taking the limit of
.equal masses at the end of any calculation. If méy occur that these
masses are broken by some interaétion, so that the limit is physically
realistic. If the mass splitting between the intermediate and external
particle is sufficiently large, it may happen that continuum states
satisfy the condition for (4) not to vanish. |

For small mass splittihg between?externél and internsl masses,
we are assured that the second term on the LHS of (2) vanishes. The
first term will likewise vanish provided there is no pole of Tvu at k = 0.
If the conditlions for the second term to vanish hold, then Tvu will
ﬁave no pole at k = O and the entire IHS of (2) vanishes. In the :
limit éf degenerate mésées, the two contributions exactly cancel one
another. These matters are discussed briefly in Appendix A.
The second term on the IHS of (2) can be compelled to vanish

another way, pointed.out by Gasiorowicz.(S) If k is not taken to Zero,
the offending term is zero unless (p!' + k)2 ; Mi for the direct term

cand (p - k)2 = Mi, for the crossed term. When the ancient variables

1l

v = PQ P=z(p'+p) Q

Il

t

i
o
1
<
i
>
D
i

=p'-p 2

. and used, the condition is that



5 g Rt it Rt it o A RS S ol

(AT, s i B o, St A A PP ST SV

fh_', f

2

M = ;(M2 + M+ 32‘+vk2) -gf + 2v. 4,
n 277 ' o
‘Mh' = %(ME +'M'2.+ ze + kg) -t +2y

. . 2 2 : 2 .

‘(where' p'2 =M » p2 =M, and 52 and k  are customarily taken to be

. zero).. Then if for v > no infinite-mass states contribute to the -

Xy =@ term, it will égain venish. If 'ju were a scalar current and
" the first term on the RHS of (2) obeyed an unsubtracted dispersion
" relation, we would get the sum rule of Gasiorowicz
_. ) . : : " .' , c '. . ] . X
1im -kVTW =i (p's'b| [@7(0), §(0)] | psa) , ) ()
' “at least in the absence of Schwinger terms in the equal-time commutator. -
Wevproéeed‘to discuss the k =‘O sum:rule, (5).- With our . -

_ Variablas, ¥ = 0 corresponds to v = o 5.-2-(M’2 - M?), and we will - -
take the photon on’shell and we set k° = 0. When the THS of (3) 1s
multiplied by a photon polarization vector €" (satisfying - ¢= 0), .
it becomés -

u(ptys') Aufe,s) = ulp',s') [av,t) I, +o(v,t) I R
o . - ' e

c+ev,t) I, +dlv,t) I3) u(p,s) -
- where Yoo e“zv'— evzu, and the standard choice for thet I is j_f
_ o a 2%y N e
(7).

Il

P + L = "k F . i
= Dy, g M)y oy IF Iq = P X, |
~ We write an unsubtracted dispersion relation (taking t = (p' -~ p)” = 0)

for the . first invariant
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1 fabs[a(v_,o)] S '
a(V;O) = TIJ v - v > A (8)
with absorptive péﬁt /

ebsla(v,0)] = - %.;{: (2n) <

s,s!

Sh(p +k-P)

ﬁf

"

St c (VR :
=, [ , -
(p's'v|D7|n). (n]e 3 | psa) oss.. \ (9)
- 6h(p -k =P ,) (p's'ble’j |nv) (n’]Dclpsa) 0 L
; n' l"L SS'!
n' j
i
where Oss" is a suitable projection operator, and the remaining
invariants blb, I,» I venish at k = O. To satisfy (3) we must
" then have '
| 1 {abs fa(v',0)] | '
a(vg:0) = ¢ | FEAEB v =0, (10)
h1s v - VO :
which is our sum rule.
The spin projection operator satisfying
Z E(p')sy) A u(P;S> OSS' = a(V:O>
© s : ' '
is
L = . tat . - ' B
5 u(p s) y-e yrgulp's')=Nuou' . (11)
2(w2 - M2) ' , L

. In order to calculate the projections, we may use for t = O:
prL =D 4y p‘k:p*-k, k-¢ =0, and e-p:ép-}_:e-k:e-&:O.
The kinematics are then collinear and the projections are easily

evaluated from
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2' Wp's') T (p8) 0, =N tr (I_0,)
ss’ o '
0, =) 0alp) =0, +05,
.. where
0= yreye MU+ y - pyep'] - 2p-ty-ey-p’
~and
'QOV' Qe-:M’ :
The. OP term in the'ebsorptiVe part is
epsa(v,0)] = -3 ) 2 {6[@' + )% - 2] -
S Uss : (12)
x u(p's >[1(v’—M )e ¢*(0) 10, 04y -k] 57 u(ps) 0L, -+_eroslsed}-';}_" "
" where
o . IC ‘ o o o " ' bcn 5 | ' L
(p's'v|D°(0)|p s n) = i(p' - P ) u(p s )[7 (&%) + «--1 u(ps)
and .
na _ _.ona . .o “\v.na
i, = CuFl . 1Guv(Pn D) F, g
‘since k° = O;_'Gbcn(k2=0) is Just the approprlate SU3 ngner
- . coefficient because of the Ademollo- Gatto theorem and the fact that we’,
are'interested'in‘only the lowest order symmetry-breaklng terms It 1s""
- important“that the,coeff1c1ents of the second-order terms we'have 1gnored -
. ~in - Gbcn' be of order l and not, -for example, ne,‘ and that ”seéopdi ﬂl.ﬂf,

order” not mean,’ for example,’ Mk /MK The model we will
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‘develop Will'satisfy both requirements, though for the particular
sum rule we study, the first is not essential.

The sum rule now becomes

' . 00 : . .
ben _na n'ca _bn' 1 f_ ’ absla(v ’o)]direct
-G OO+ GO F + = dvy —
e : 2 T J v~ VO
-VD , _
oo :
e - absfa(v',0)] :
1 ’7/-crossed . [T
.+ » j dy! T2 v = - Z(p s bl[Q N Ju]lpsa>oss' ,
Yo ss'!

(13)

where we assume that such combinations of indices are chosen as will give

;o

initial and final states definite (broken) masses and charges, and that
" more than one state n may appear. We will study only one case, for
. clarity: b eZ+ , ap. The dispersion relation is sampled at the

point v the OP pole is at Vg and the direct cut begins, for

O’
a varyon + pion intermediate state, at vp = Vo + Mm + %mﬂ and goes
12

to + o. The crossed cut goes from Vo T Mm- - §m to - . TFor

and the integral is to be interpreted

M:MN and M = M .

2 VoY

as a principal part.

For & two-particle (8 baryon'+ 8 PS meson) intermediate state

wsla(v,0) = - 520’ Y. Y ' v x -5 - a))
ss' m ‘
: o o (1ka) .

e _
X (p's'b|D Iplsld; qlve) (qle; plsldleugu]psa) .

and.



abs[a(v,O)J =‘--(2n> }: Z rk-m-m)
, ss' n . S
- “(1bp)
L g e .
x(prs'p] ety Ippsds ane) {aze5 Pps,alD7[psa) oy,
- If we write a disperéidn relation for the a:+'(photon)vetd +e
amplifﬁde'%ithfabsorptive part
1 i E: R : y RPN T
5(2n) 8 () + ay - By) (mp8,d|37(0) [n) (n]e"s ) [psa)

‘- B ’ _ P T A S

L e R GRS @R e

n'..

B Lo

_obtained by use of the reduction formalism, we may extract the usual

. “Feynmen amplitude by writing.

_(plsldle Julpnsnn> =

 ;'énd keebing only”the 0} staﬁés in:'n; fnf'with.

. Lo .e' . . . - .. ». .' e : '44 "
'<plslle (O)]pnsnn> = glgu(pgse?va u(Pnén)f

'_where 'Af_is an 8x8 matrix defined by . .

(4 ) gn = O",‘.idc—zn"‘Li(lnf d><'ifdeﬁ>/}:: 

- The Feynman amplitude is then

5.

(A )gpr 7 7oay Lyre Fp %+ o]

- 2ig uy(pys _ — S .
. ! v | | | |
Clyre T4

‘ .] (_7.ql) 75 (Ae)na:: g'v.i;‘ " ;:;. B :ki65
2 2 T o
~ (P:_- ql>.:- M L [ ‘



* engu <qlu + (o - pl)u)'. 2' L )2 ”75(Ae)dal‘ua(ps)
' )

mo-(p -2
'vwhere we have included the tQChénnel coﬁtribution of the mesonic current -
' fequired by gauvge invariance and obtained either by a tedious calculation
of the equal-time term left out of (16), or by selecting the't-chanﬂelA
part out of a dispersion relation obtdined by using the reduction formalism
to reduce out -the final—stafe baryon in»the a + photon - d + e
amplitude. The higher resonances in the s, u, and t-channels have been
left ouf of this amplitude in the expectation that near threshold the
amplitude is adequately given by the abové._ +The decuplet resonances may
later be inserted into the sum rule in the zero-width approximation.

The Feynman aﬁplitude for e‘+ d -»Db ¥ spurion éalculated in the

same way is

C ’ o
<pY S'b ID IPlSld5 ql’ e>
Feynman

i

_ -ig, -x . e G : ‘
1“[dxe (p's b[@(xo) (37 (x), D7(0)] I,Plsld>} P

R (ﬁ)m75 (o + - (p' - ql))i'(M' . M‘l) gred (A7)
- 2ig T(p's'): 2
o | (p' - g)% - M
s - ) P G 5o, + ) (%), 7
+ | L 5 é n.d 5 u(Plsl

It is amusing to ﬁote‘that the Feynmah amplitudes may be quickly ektracted
- from the reduction formalism by use of the Fubini-Furlan P - o trick .
Wifhout the intervention of a dispersion relation.

An equal-time term has been left out of (17). The form'of-tﬁis.

term can be obtained by the use of PCAC in the reducfion‘formalism

ot e MY b iy, sy neerin s



Land the-zero-momentum'pion'limit" The baryon pole terms,.of flrst

,-'f‘hy a K ;ub"spurionYWith a coupling-proportionaljto the baryon'masSf
o dlfferences hooklng onto the baryon llne An: the process baryon »J_
-“j;baryon + photon, with the mass dlfference in the coupllng cancelled
'3fby a s1mllar term 1n the propagator 1ntroduced by the spurlon In':;”i
_“the contlnuum terms this propagator is absent hence the finite: flrst-h
-;;order correctlon'terms Near threshold we flnd that the absorptlvett_f
*fvpart coming- from the above Feynman amplltudes consists of two pleces.-;

' nThe baryon pole amplltudes in the photoproductlon amplltude contrlbute‘,
B contrlbutes a part whlch also vanlshes at threshold, but rlses qulckly

K slowly. The denomlnator in “the dlspers1on relatlon enhances such a 5

low-energy contribution The situation is somewhat like that for the $};

1order Wn the symmetry breaklngh-vanlsh 1n thls llmlt The equal- tlme‘
C o term of‘rnterest lS'flnlte for . q > 0 and does not involve the symmetry
}fhreaking,.and'eyenvfactors m /M | cancel out Because the presence T
:'vof such a term in (l?) would destroy the symmetry limit by enforc1ng
;r-a symmetry-breaklng independent term in (l?), S0 this term has been
texcluded.« Moreover, we will use (17) as .the ‘entire baryon-plon -
;fbaryon spurlon amplltude Our model ‘for the symmetry breaklng is then
fc,essentlally one -in whlch a-soft spurlon couples to . the baryon llne in {ﬁhf
.'ffthe graphs contrlbutlng'&r&ecnntlnuum correctlons " This is the most »F:.‘:‘

;obv1ous‘extens1on of the way in whlch.the_symmetry limit is generatéd;;_}

BN

T a part wh1ch vanlshes at threshold and rises only very slowly above 1t g?

'ﬂhh as first and second powers of (w2 ME)/M The plon current graph

-~ 'Vto a value from which it falls off rather slowly for W > M. If we take“‘*ﬁ'

a".‘

‘;zero pion mass thls contrlbutlon is flnlte at threshold and decreases

"'s1dew1se dispers1on relatlon calculatlon of the baryon moments by

R i SR, W i
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Pagelé,(7) except that the relevant amplitude here cdntains the‘spurion
and contributes to the symmetry-breaking term. The threshold enhancement .
comes'difectly ffbm the singularity of the "extra' propagator introduced
in the baryon line by the spurion. We will use onlyvthe pion-current

rart of the amplitude in what follows.

We may extract the absorptive part with the help of
br 0,) =-be pg (M -M
(r, 0,) R )
tr (7,7.o)=.;2(M!+M)2 (e v -€2)
piv o+ pRovooovpt.
. .1 - !
+hp-efe (' +p) - e (@ +p) ]

finding for the direct term in the zero pion mass limit and with equal

baryon masses in{the expressioh multiplying (M' - M)' and with SU_-

3
indices_suppreésed,
.1 Mg f : i, .2
-1 ag ¢~ (M' - M) e =— (2ig)
(18)
‘x AG!crossed _ AGldirect '(e;q)2
2 2 ' 5 2/)7q. % current
(p'-q)"-M' (p+e)” - M/ &
“where
2 2 o2 ' .
W -M =2p-21; W = 83 q = c.m. pion momentum .
Then the absorptive part becomés (=M - M)
. . o
L1 o A My2 . 82 2W2
Torow W G (Bis) 16|y - =5 £(v) IAG,C Al o, (9)

where
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- == (1 - V) ;n ( ) V= IQI/Plo
av D ':_ '
‘_The term [EWE/(Wg + M )] f( ) is unlty at w M- and varies slowly
We w1ll approx1mate it by unlty The contrlbutlon of the direct term o
'bto the sum rule becomes,'when the dlspers1on relatlon is 1ntegrated to .
 the phy81cal threshold
S - IR A L\ 2 / ' )
T T o ow (Pie) KﬁGlD_ .Aglc:>A! S
. . . ',;. - : “ : - (20)-
M'2 _ (M-+'mn)2 :

. _.(M»f.mﬂ)g‘;

‘and the crossed term is -

[

" Putting in the =’ and p as final and initial states, and taKing the -

S baryon-baryon-spurion couplings from

. “(since tﬁeyvaré‘puie F-type), we find,fdr’the-Sﬁmgrulég;. o

- X [(O 70)("; }5‘6‘ 062 + 8 - 2)]= 0 , L . : .

© since the commutator on the RHS of (3) isAjuSt,proﬁortiondl”td'Tfizi v

PRERIIT - A
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[U+, jH(O)] =0 if jg is ésSumed to transfofmvés the "3 + 8 member of
an octet;'

In‘thisvparticular;model, there is no resonant.intermediaﬁe state
in the baryon + pion - baryon + épurion amplitude. If the model is used
in the calculation of the_bafyon-spurion—decuplet coupling, it turns out
to be very small (Appendix B). The model‘is thus consistent in that it
does not of itself générate such a coupling. Also, we can leave the (zerd

width) decuplet states out of the sum rule on account of the small coupling.



B

B .DiscuSsion '

' part of the symmetry breaklng then comes from the appearance of the 2y

.Hij~continue to do sotorinot There now exist . theoretlcal calculatlons w1th ?Qr

’:atlc treatment of thls vector current symmetry breaklng model Wlll have to

'walt on better Z moment experlments, since. thls is ‘the most unamblguous f,}."”

4'serlously or not.

"baryon spurlon coupllng belng glven by a unltarlty argument (8) Thesef‘F

commutators should agree. That they do not 1s_at present an unexplained Dol

e

For the conventlonal D/F ratlo, a ~ O 55, and the correctlon

‘ term in (22) is practlcally Zero. (O 03 nuclear magnetons) The maJOr',

Sl

. mass in the sum rule,_and_we flnd_for the total_moment.

TOT(z; y ~2.6 om.

7ffThe present'experimental‘valne(l)-ls;“B,Ofi'l.'nm;}vThe experiméhtal‘véiﬁéfq“'

2

has déclinéd sincenthe'first’experiment and it is tnclear'nhether”it will{ﬂ:,f,

.g”;a'spreadtasﬁgreat;as‘the‘experlmental,value In thls partlcular model “ﬁ?»]ﬁ'
. the moment can be increased by 0.2 nm. or decreased-by O.h nm«r=by'ggifhaj
5} a'choice of pure. D or”bure F‘-coupling, reSpectively. The- other octetff'

’ .rmoments are also obv1ously broken by rather small amounts. A more syStem--r

predlctlon of the model and should dec1de whether 1t is to be taken

L)

The corrections have also been calculated hy Donini et al,
“who aSsumed-thatvthe decuplet'satnrates'the corrections, the.decupletJ“iﬁt -+

"two models- are not-necessarlly contradlctory It is poss1ble that the;}vf'"
lilow-energy contrlbutlons can be mimicked by a pole in the contlnuum 1ntegralfff{

‘Vlldeally, the calculatlons of the moments by vector and axial vector
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fact. The’ax1al vector calculation glves 3‘5 nm., and the vectof cal-
culations 0.5 to 0.9 nm. less.

We have'presented a simple mddel, evolved;with respect to a
specific‘example; of the breeking of SU3v symmetry for the algebra ofb
vector current commutators. The'medel is a natural aﬁplication to the
symmetry breaklng continuum’ terms in the relevant dispersion .sum rules‘
of the type of spurlon-baryon coupling which generates the symmetry llmlt
predictions. The main contribution to the symmetry breaking is nonresonant
and low energy. The model ie eonsistent in the sense tﬁat it does not gen-
erate a large decuplet—baryon spurion coupling. It predicts rather small

symmetry breaking and ‘is con31stent though not dramatically so, with

experiment.
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APPEN'DIX A - THE x, = +o SURFACE TERM -

~ The fi'#=,+oo. term in. (2) is »,7>
1 [ d% elk.x (p 5 bl 13, (X),J (O)J fpsa)
x =+c0. : : o

0

= 274 )R - B - ey + kg - Pro)x)

i:kP;éflegc}ﬁ><an;!psd>_? drosééd ; ;1_.l: :;¥: .;;<Al?fi :

o

 If the contlnuum is Well separated from po at k = O 1t 1s suff1c1ent

to.cons1derquly the OP states in n- and q ;! and 1gnore the Seem'FJ'Hw

Cingly nénéovariaﬁficharacter of (A1), Slncevpa;r States-ln the sum Wlll';‘3 "’

'not‘cdhtribute..:Then,_if M %‘M" and M £ th. this term os01llates' g;;“‘

at k=0 and may be taken to be zero. If M gMn' and M = My then

. »-po

* '(=X'); (Al) is Just

0

4

'.f1 %% E (p s’b[J IP s, )(P s [3 !psa) + crossed
: o)
-0 . - } .

, n e

“ben ., na - _nea
i

'T.Sincé:at:5k = Ofﬁ"“-r

el = o e ae e

3  :.5.7 P _'+ i .(prﬁ_’P‘)v F bn . '; 5,_ i.ﬂ”-;- 3;F¥_ﬁnﬁVA[f
: ' 1 By S 'm? 72 o S o

and‘ G and Fl 5 afe_both taken at :t = O;'_, :?;~ L .'  ) ff;”’{;hl: S

yko " Fao 7 %o " (k p )/Po ‘as k—0; end if x, is “taken flnlte

= iu(p's){G 5 -G u(ps), -~ . T(A2) o
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In the unequal mass case Tvu clearly has no pole at” k = O

‘since the direct term, for example, is proportional to

direct term 1'2 5 = : = = 5
(p' + k)" - M 2p'k - M7 + M
- n : n
and (with Xy = o for this case) so lim k" TQH = 0 for the unequal-
mass case! For equal masses we again take. Xy = Xys and find for the . -

leading term in k +that

lim k” M7 p' E(p?s')Gbcn.j‘na u(ps) + crossed
k-0 0 v i [ .

If we consider both terms on the LHS of (2) for the equailmass,3 

case and x. = ®, the XO = o itself will oséillate for all finite

0
k, and we take it to be zeYo. In the second term, 'Tvu now has a polé :

at k = 0 and, in fact,

1
kY T oLz TP g na u o+ croséedg
Vi T 2 ) -p'k LT }
pole
. N jLben . na n'ca . an'j .
= iu(p's') (G 3, -6 T, u(p,s). . (A3)

This is just the same as (A2) wherein we took k - 0 before Xd - 0,
The LHS of (2) then vanishes only for unequal masses. For the unequal v
'mass case, the divergence term on the RHS of (2) is just (ef. (13) of .
the text)
. L ik-x ‘ ,', c . _
iJdx e O(xy) (p's' [ [D7(x), 3,(0)]|psa)
. , _ ‘ : _ _ pole

= ' . n'ca , bn' o .
= -1 u(p's') Gbcn juna - gt ju n u(ps), - o (Al)



ewhereasifor the‘eoual—mass case.it'vanishes because of the factor
D (x) For this case the m1ss1ng OP term is supplied by the LHS f;e;ﬁ;?‘l
: _of (2) Whatever the ch01ce of limits in the evaluation of (2) for ;,'f'
the degenerate—mass case, the result 1s the same as if the limit of:?ﬁf?“”:'J
degenerate masses-is approached through nondegenerate masses at theE
':end of a calculation, and there is no ambiguity in the ChOlce
When the continuum overlaps the p01nt where k =0, the apparent l
difficulty that the LHS of (2) might not vanish may be eas1ly overcome
‘We may choose 1ndices so as to put the lighter of- the external baryons
"khiv‘:”in the. final state, prov1ded the 1n1t1al baryon mass % pion mass is
;1::3§A¢ikless than the final Daryon mass. Alternatively, the masses may be ,;i:;,if‘f
' continued to their correct values after a calculation in which they

—'fare held SO as to keep ‘the cut away from k 0. Also, ‘the 1ntegral

2

H"fin the- sum rule can be interpreted as a princ1pal part. This is so*'*

RN

0

o since for;the continuum the X, = 4w term w1ll vanish even if it overlaps L

-k:= 0 because‘ofvthe integral over internal momenta implied in,(Al) etr;ci.'#’-:”*v'~
:ﬁ;ffthe osc1llating exnonential factor The\.Tvg term is finite:ifithéitfiﬂx

3ff-limit is taken as .

PR R S

2_[FTVIJ.(k + 16) + Tvu(k _le):,_ )'ﬂ

- :lso‘.lim,kv T, s O}, The limit on the RHS of (2) automatically becomes Q;fV; .
* T k_)o , : oL , TR T
L a princ1pal part, S0, that the disperSion integral in the sum rule is }5#“*'

Af gf S flikew1se 1nterpreted in the same way

B
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“APPENDIX B
In order to evaluate the decuplet céntribufion to the‘sum rule,
we need the coupling of the J = 5/2 intermediate-staﬁe particle to
the final baryon + spurion state. To obtain‘this We will use a‘reduction

formalism for the j = 5/2 particle. The Rarité-ﬁchwinger field

satisfies
(7p - M) u (g sp) = O

u ). oM o) =
7w (Pps sp) = pp w (b, sp) = 0

- o T _
uLL(pR, SR>'uV(pR’ SR)g - l .
and the reduction formula is

(p's'b|Dc|pR-sR a)

~ip, x - -
[ rmC - 1%
J[d xe = (p's blﬁ(—xo)[P (0), nV(X)Jl0> u'(pp sz)s
(B1)
' where _ﬁv(x) = (iy-a - ME)WV(X). There is an equal-time term involving
6(xo)[6x JX(O), w“+(x)] which we take to be ignorable, in the absence

of any means to calculate it. Then

(p's'leclpR Sp a)

bea, ,2 ..,2 2 2 2 -, s
= & T, ppt =M, K=0) u(p's')yg »' o (pg sp)y

(B2)

and we will write an unsubtracted dispersion relation in the J = 5/2

mass for the quantity G(p s pg, k =0) with p = M’2 fixed. Then,



 “following Bi'r'&Cérf(f:.L,o.)«' we write (32) as. (p's') u (pp sp) emd put o

u(p s’)r“ ‘l u(p s')[G<W)7 o, AV“(W) + G(-W>75 1 A“*(—W)J

PES
p° w?.
'-'?_Thi.s" differs from the spin 1/2 form by’ the presence ‘o;f"‘ the spin 3/2 - .i‘
o projectiorlj"opéré.tgrs : ' o ’
W . 7 p ) ) - L .
Dy ) —‘—-——-—-,[g e =% P, DL =F 7 v
LLTRT A w2 RS2

" on the right;»‘Sihée'it is in general impcssible to apply théfsubsidiary 1_me"
j condltlons for the Rarita- Schw:.nger field off ‘the mass shell,. “we can |

v only hope that the appearance of the A wi"_m _(B3) is correct'.j n’:’:,;;i

' principle »there mlght ‘be other,~ physl_cally meaningless, form _factdrs , o

.'G(p "M'(’ P —Mk r~0)

;»;B Jrii
.—. ]’f »

v"'dW‘ a.bs G§W2 abs Gf-W}
M"+m ! S
. T[ . i . - .. .

w1th threshold a.t (M" +m ), and we w1ll take only the 1owest ma.ss S

(baryon + plon) 1ntermed1ate state 1nto account The absorptlve part

is then
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'abs[G(fW)] =f--é- Z Z (Z_H_)LL B(PR v-‘.P'n)
x @) ([T JoNA () ws),  (m)

with a projection operator W(}W) which picks G(IW) out of (B3):

. ) 3 4

5 WM uo oy

vi(tw) = £ 12 AT (TW)pt oy
)t (s 5

We now use our model for the baryon + pioh - baryon + spurion amplitude,

| u(p's')y-q 75 u(@" s")
(p's'v|p |p",s"d; qe) =T 5
o - W -

- with
—~ . . v " - e :
F o~ (2ig)i(M' -~ M") (-A - G‘. A4 G

Moreover,

" S ’ql n IO>V = X E(P" S") p" VM

(p
5

with - K = W/_ pna, y wheré Cpna is an appropriate  SU5 Wigner
(11) ‘ |

A

m
1
and

coefficient A= 2.2,

To get a rough value fdr G we will use a threshold approximation,

putting M = M'v=_M" - M and keeping only the lowest order term in the

pion mass (apart from that in X), and the external factor (M- M").
After a trace calculation and integration over the varisbles in the

intermediate state, we fing



A e B

. Then only thé'fir$t€[abs<é(¥W)>] ’term”givéSfavqontfibutidn.oftérder;;}'"
mnfg,”andttbvlowest.ofder in the pion mass, and suppressing SUs |

indices,

P
B

- Gb?é‘§l i2£2(?i8)%A—§E;—g§ [AG1D 7 AGJd} <-w/§'x)_’ fg

>'la Very small reéult'iﬁdeed. Tﬁe_coupling'_é"is;ﬁypically of‘qfder-é;;:‘

1072 or so‘invthié model.




(2)
(3)
)

(5)

(6).

(7)
(8)
(9)

oy

(11)
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