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ABSTRACT 

UCRL-17733 

There have been suggestions recently that the Pomeranchuk 

trajectory might have zero slope. It is shown here that the Mandelstam 

cut meehanism, vThich allmvs the existence of fixed poles at negative 

values of angular momentum, is not sufficient to allow the Pomeranchon 

to have zero slope. It is suggested that this fact makes it unlikely 

that the Pomeranchon is a fixed pole. 
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IS THE POMERANCHON A FIXED POLE?* 

The Pomeranchuk trajectory has had a rather interesting history. 

Some time ago it was thought to be a trajectory much like any other, 

giving rise to the fO when it went through spin 2) and having a 

1 . 01 t th th tot 0 1 s ope. SJ.ml ar 0 e 0 er raJec orles. More recently, the observed 

non-shrinkage of diffraction peaks has indicated that the Pomeranchon 

has an anomalously small slope, so that at present it is the only 

trajectory generally accepted by Regge phenomenologists which has no 

particles assigned to it. It is understood that, in the absence of any 

C1Jts in the angular momentum plane, no trajectory can be flat (i.e., a 

fixed pole); however, the realization that cuts can and probably do 

allow flat trajectories at negative values of .e has led to speculation 

that the Pomeranchon is also flat. This possibility has been suggested 

2 
in a recent paper by Oehme, who pointed out that it would provide a 

simple way to construct a model having both non-shrinking diffraction 

peaks and asymptotically constant cross sections. It would also 

eliminate the unpleasant feature, present if the Pomeranchon is not flat, 

of the amplitude having an infinite number of branch points} correspondi.ng 

to the exchange of all numbers of Pomeranchuk poles, converging at J = 1 

in the forward direction. 

Oehme also suggests that the cuts proposed by Mandelstam3 

might allow the Pomeranchon to be flat. In this note we would like to 

4 
review briefly the mechanism by which the Mandelstam cuts are thought 

to allow the fixed Gribov-Pomeranchuk poles at-negative integral values 
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of £, and show that this mechanism is not sufficient to allow the 
-

Pomeranchon to be flat. 
r.". 5 

The Gribov-Pomeranchuk argument does show 

that there is a fixed pole at J = +1, coupled to those channels for which 

J = 1 is "nons·ense;" Oehme I ssuggestion, however} would require a 

fixed pole coupled to· a "sense" channel) while·the Mandelstam cuts 

allow fixed poles only at "nonsense" values. We will point out what 

strange new features one who believes that the Pomeranchon is flat would 

have to postulate) and suggest that it is more plausible that the 

Pomeranchon is not a fixed pole. 

Consider the partial-wave amplitude a(£)s) for the elastic 

scattering of two spinless particles} a and b} where s is the square 

of the center-of-mass energy. If the unitarity equation could be 

continued in the £ plane) we would have) for fixed s above 

threshold and all real £) 

a(£} s + ie) - a(£) s - ie) pes) aCt} s + iE) a(£) s - ie). (1) 

A simple application of this equation shows that there cannot be fixed 

poles: if there were for all s a pole in a(£}s) at £ = £0 -- i.e.} 

a fixed pole in the £ plane--then the RHS of Eq. (1) would have a 

double pole) while the LHS would have at most a simple pole. 

Conversely} it can be shown that) if there is a fixed pole at 2 = £0) 

there must be a cut in the s-plane which moves as £ is varied} and 

which coincides with the elastic threshold at £ = f.
0

' This situation 

• 
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is illustrated in Fig. 1. Since sheet II of the s-plane can not be 

reached from sheet I at £ = £0' a(£O' s - iE) will not longer 

be the analytic continuation of a(£o' s + iE). It is then possible 

for the fixed pole not to be present on sheet II, in which case Eq. (1) 

does not lead to a contradiction. 

Some time ago, Gribov and Pomeranchuk5 showed that the left-

hand discontinuity of the partial-wave amplitude had poles at negati.ve 

integral values of £ This means that the partial-wave amplitude 

itself has fixed singularities which are at least simple poles; however) 

if there are no moving cuts, the above argument shows that fixed poles 

are not possible, and in fact that the partial-wave amplitude has 

fixed essential singularities at the negative integers •. Now, essential 

singularities are in general frowned upon; moreover, if one lets the 

external particles have spin, negative values of £ can correspond to 

large positive values of J, in which case it can be shown that any-

thing more singular than a pole will violate the Froissart bound. The 

requirement that the Gribov-Pomeranchuk singularities be simple poles 

leads to the-necessity for moving cuts which coincide with the elastic 

threshold at negative integral values of £. 

Mandelstam3 has argued that, corresponding to diagrams (SUCh as 

illustrated in Fig. 2(a)) containing in the intermediate state a 

trajectory a and a spinless particle of mass M J moving branch points 

exist, whose positions are given by 

1. 2 
a[(s2 - M) ] - n, n 1,2,3· .. . (2 ) 

" 
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There will also be cuts corresponding to diagrams such as Fig. 2(b), 

which, in the special case that the trajectories 0: and a are the 

same, are given by 

(2 ) 
(s) 2 0:(s/4) - n , n 1,2,3'" (3 ) 0: == , 

cut 

but these will not be important for our argument. We can see that the 

cuts in Eq. (2) have precisely the property which in the preceding 

paragraph vms found necessary: take the particle labelled M to be the 

same as the external particle b, and 0: the trajectory on which a lies; 

then Eq. (2) shows that these moving cuts coincide with the threshold at 

all negative integral £.. 

Thus whenever the Gribov-Pomeranchuk argument would otherwise 

require an essential singularity, the Mandelstam cuts fastidiously cover 

up every two-body threshold, and allow the fixed singularity to be a 

6 
pole. This., it seems to us, is a very beautlful and appealing result, 

especially as it does not depend on any. assumption whatever about either 

the shape or the spectrum of trajectoriesj the fixed pole in the (a, b) 

amplitude is -ailowed, because of the cuts produced by the trajectories on 

which a and b lie. 

So far we have not said in which of the two signatured amplitudes 

the fixed poles and the cuts appear. The Gribov-Pomeranchuksingularity 

at f, == £0 appears in the amplitude which is "wrong signature" at .eO' 

By an extension of Mandelstam's original argument,3 it can be shown that 

c,' 

( ,/ ., 

• 

the cut at 0:(1) 0:[ (s~ - M)2] - n appears only in the amplitude whose \) 
cut 
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signature is (signature of 0;) x (-1 )n+l. In view of the above discussion) 

we are not surprised that this is the right relationship) so that the 

Mandelstam cuts appear just when they are needed! 

Now we wish to see whether the Mandelstam mechanism allows a 

fixed pole at J:= 1 to couple to channels which are "sense" there. For 

this ~lrpose) let us consider the n n elastic amplitude. (We could also 

consider the amplitude whose s-channel is Jl n ~ NN) and to which) from 

the asymptotically constant n N cross section) 7 we know that the 

Pomeranchon is coupled) but for simplicity we continue with the example 

of spinless particles.) The moving cuts we have discussed will come to 

threshold only for negative values of £. It is easy to see from 

Eqs. (2) and (3) that none of the cuts generated by the Mandelstam 

mechanism) with any known trajectories) will in general coincide with 

the n n threshold at £:= J + 1. Conversely) if "\fe insist that 

there be a cut) generated by the Mandelstam mechanis% which coincides 

with the n n threshold) we have to assume something drastic about the 

trajectory functions. Probably the simplest assumption that would do is 

the assumption that there be some trajectory 
A 
0; such that 

The supposedly fixed Pomeranchon would seem to fill this need) until we 

realize that the Mandelstam mechanism requires at least one moving pole; 

flITthermore) any cut involving the Pomeranchon would itself be flat) so 

such a cut would contradict the assumption that for negative s the 

singularity at J:= 1 is just a pole. We would have to require that for 

every spinless particle a) 
, A 

there exists a moving trajectory 0; with 

/\ ( 2 
0; ma ) = 1. We do not suggest that this requirement is actually satisfied; 
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we mention it to illustrate the lengths to which one has to go to allow 

the Pomeranchon to be flat. 

Of course, we can not completely rule out the possibility that 

there are extra cuts, not produced by the Mandelstam mechanism, which 

might serve the purpose of covering up all thresholds of channels with 

vacuum ~uantum numbers. In fact, one might argue as follows: All known 

Regge trajectories are associated with physical particles, and the cuts 

in which they participate through the Mandelstam mechanism are thus 

associated with particular channels. Each cut is responsible for allowing 

the existence of a Gribov-Pomeranchuk fixed pole generated by its 

associated channel. But the Pomeranchuk pole, if fixed, is uni~ue; it 

is in some sense a reflection of the properties of diffraction scattering, 

and so is associated with an infinite number of (inelastic) channels. Is 

it not therefore to be expected that there be cuts connected in some way 

with the fixed Pomeranchon, which are not associated with any particular 

channel, and therefore do not arise from the Mandelstam mechanism? 

We certainly cannot prove that this is not the case, so let us 

observe that it would be a very clever cut which, although not associated 

with any channel, nevertheless comes precisely to the (a,b) threshold at 

J = 1. Also, a supposed virtue of the idea that the Pomeranchon could be 

fixed is that it would simplify the situation; however, if we are forced 

to postulate many extra cuts of unknown origin, the situation is far from 

simple. 

Finally, we should point out that none of these considerat:i.ons 

would prevent the Pomeranchon from being a fixed cut; this is a ' 

v 
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possibility which warrants further study. We have shown that, were the 

Pomeranchon a fixed pole, there would have to be either cuts not arising 

from the Mandelstam mechanism, or drastic restrictions on the trajectories. 

In view of the fact that, for all the fixed poles that have been estab

lished, the Mandelstam mechanism with no restrictions works so beautlfully, 

we feel that this result makes it unlikely that the Pomeranchon is a 

fixed pole. 

We would like to thank Prof. Geoffrey F. Chew and Prof. Stanley 

Mandelstam for several stimulating discussions • 
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FIGURE CAPrIONS 

Fig. 1. The s-plane of aCt,s) for t near to' the position of a 

fixed pole. I 

Fig. 2. Some diagrams which give rise to moving cuts. 

(a) One trajectory (a) and one particle (M) in the intermediate 

state. 

(b) Two trajectories (a and a) in the intermediate state. 
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