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ABSTHACT 

Two causality conditions that refer only to mass-sheJ.J. 

quantities are formulated and their consequences explored. 

The first condition, called Weak Asymptotic Causality, 

expresses the requirement that some interaction between the 

initial particles must occur before the last interaction 

from which final particles emerge. This condition is shown 

to imply that if a two-body scattering function is analytic 

except for singularities in the energy variable at normal 

thresholds, then a) the physical scattering functions in 

two adjacent parts of the physical region separated by any 

normal threshold are parts of a single analytic function, 

b) the path of continuation joining these two parts bypasses 

t'l.' , . rn ~', done under the auspices of the United States 
Ato~ic Energy Commission. 

Present Address: Depar';~ment of Phy~;Jcs and Astronomy, 

University of New Mexico, Albuquerque, New Mexico. 
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the singularity in the upper half-plane of the energy 
! , 

t,' '" 

variable~ and c) the ihtegral over the physical function 

can be represented as'ati(integral over a contour that is 
" 

distorted into the 1..!:ppe~'-half energy plane (hence not, for 

example, by a principal-value integral). Singularities , 

possessIng finite derIvatives of all orders with respect to 

real variations of the energy are not encompassed by this 

result. 

The second causality condition, called Strong Asymptotic 

Causality, expresses the requirement that, apart from contri-

but ions whose eftects falloff faster than any inverse 

power of Euclidian distance, momentum-energy is ca~ried over 

macroscopic distances only by stable physical particles. 

This condition implies th~t alln-particle scattering functions 

(n)4) are analytic, apart from infinitely differentiable 

singularities, at physical points not lying on any positive-a 

Landau surface. Moreover, the scattering functions on the 

two sides of any such Landau su~f~ce are analytically connected 

by a path th~t passes around the singularity surface in a 

well defined manher, which is the same as in perturbation 

theo~y. Thu~, apa~t from pos~ible infinitely differentiable 

singularities, the physical region singularity structure is 

derived from a mass-shell causality requirement. Several properties 

of the set !.., + , of physical region positive-a Landau surfaCES are derived. 

':r' 

f' 
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I . INTRODUCTION 

By a causality requirement we shall mean a requirement that events 

identified as effects occur later than events identified as their 

causes. $uch requirements hav~ led to important properties of the 

basic functions of classical electrodynamics,l nonrelativistic quantum 

mechanics,2 and quantum field theory. 3 The aim of the present work is 

to formulate causality requirements within a mass-shell S-matrix 

theory and to derive from them certain properties of the physical-region 

~·5 scattering amplitudes. ' 

The procedure is as follows. The momentum-space wave functions 

representing the initial and final particles of a scattering experiment 

are chosen to be Sch''lartz test functions, and the scattering functions 

are shown to be SCh1ilartz distributions. The mass-shell constraints on 

these wave functions implY that the space-time wave functions defined 

by Fourier transformation are solutions of the free-particle Klein-

Gordon equation. Consequently the regions over which these space-time 

functions are nonzero cannot be bounded; these wave functions have appreci-

able values on cones, called velocity cones, running from the infinite 

past to the infinite future. It is argued in Section II that these 

velocity cones can be interpreted as the trajectory regions of the 
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corresponding particles in the sense that the transition 

amplitude of a reaction will be small unless the velocity 
-. . ~ 

cones of appropriate particles intersect. These intersections 

are interpreted as the locations of the possible particle 

collisions. It is their space-time ordering that is 

restricted by the causality conditions., 

The space-time wave functions are not strictly confined 

to their velocity cones, but have "tails" that extend over 

all space-time. This means that the locations of collisions 

are not sharply defined. This presents a difficulty that 

must be surmounted. 

In Section III a condition called Weak Asymptotic Causality 

(WAC) is formulated. This condition expresses the general 

idea that if a time t can be found such that none of the 

collisions between initial particles occur at times earlier 

than t, and none of the collisions from which final particles 

emerge occur at times later,than t, then the corresponding 

transition,~mplitude should be small. In other words, the 

first collision between initial particles should ~ccur no 
..... '4': 

later than the last collision that produces final particles. 
• 

The WAC condition is formulated so that it re'fers only to 

the asymptotic regions long before or long after the relevant 

collisions take place. Indeed, it is only in these r~gions 

that the free-particle wave functions should have physical 

significance. From the WAC condition we derive the iE rule 

for continuation past any physical region Landau singularity 
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surface of the two-body scattering functions. This weak 

condition is not strong enough, however, to give the rule 

for continuation past an arbitrary Landau singularity surface 

of a general n-particle scattering function. 

In Section IV a stronger condition, called Strong 

Asymptotic Causality (SAC), is formulated. It embodies the 

idea that energy-momentum is carried over macroscopic 

distances only by physical particles. More precisely, the 

probabilities of interactions having energy-momentum transfers 

that cannot be attributed to physical particles are required 

to falloff faster than any inverse power of the Euclidian 

distance, as the distances involved become infinite. The 

SAC condition is shown to imply that the scattering functions 

are infinitely differentiable at all physical points not 

lying on a positive-a Landau surface. 

Points that do lie on some positive-a surface are 

classified as type I points or type II points. Points which 

lie on only- one positive-a Landau surface are included among 

the type I points. The only known examples of type II points 

are points at which two initial or two final particle energy-

momentum vectors are collinear. The SAC condition is shown 

to imply that in a neighborhood of a type I point K a 

scattering function can be represented as a sum of a finite 

number of terms of which the first is infinitely differentiable, 

while the others are boundary values of holomorphic functions. 
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Furthermore, these boundary values are themselves infinitely 

differentiable except on the relevant Landau surfaces. If 

R belongs to.only one positive-a Landau surface, then there 

is only one of these boundary value terms, and the iE

prescription that defines the boundary value agrees with 

that of perturbation theory. Similar results are derived for 

type I points at which several positive-a surfaces intersect. 

No results are obtained for type II pOints. 

The results described above are useful in the following 

way. In analytic S-matrix theory it is assumed that the only 

singularities of the scattering functions are those that 

arise from the unitarity equations. But even granting that 

the positions of the singularities are known, there is the 

question of how to continue around them. There is even the 

prior question of whether the physical scattering functions 

on the two sides of a singularity passing through the physical 

region are analytically connected at all. That these two 

functions can differ is a real possibility. For example, 

the K-matrix, which also has singularities on the Landau 

surfaces, is not represented in sectors separated by these 

surfaces by the same analytic function. This property is a 

special feature of the scattering matrix. It has usually 

been assumed that one ,could accept the results of perturbation 

theory on this point, and take the scattering function in the 

various seGtors to be parts of a single analytic function, 
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with the rule for continuation around singularities the same 

as in perturbation theory. The present work provides a 

physical basis for these assumptions. Infinitely differen-

tiable singularities are not encompassed. Since, however, 

the singularities generated by the unitarity equatibns are 

apparently never infinitelY differentiable, this omission is 

of no practical significance in this context. 

As a by-product we obtain a number of useful results concerning 

the nature of the set i.. + of physical points lying on positive-a Landau 

surfaces. Let")?1. be the mass shell. This consists of points in energy-

momentwn space that satisfy the mass constraints and the conservation laws. 

Let "'b be the subset ofm where two (or more) initial or two (or more) 

final energy-momentum vector s are collinear. Let 1:+ r Q) J be the Landau 

surface in/Yl. associated with the Landau diagram (D, and let ~ ;[6)] be 

the subset of of +[<0 J that excludes points lying on the Ll- r6) , J of any 

contraction (j) I of Q). Then £,.+ is the union of points lying on the 

various t ;rd>J . Each point K l-)1to of t ;EDl is shown to correspond 

to a unique (-apart from scaling) point in the space of Feynman ex's. Each 

surface 1. +reD J is shown to be an analytic submanifold of 111 -m of co-, 0 ,. 0 

dimension 1. It is shown that the iE prescriptions associated with a 

set of intersecting Landau surfaces ;f ;[6) i J assocJO.ted with a set of Q) i 

that are all contractions of some single d) are necessarily compatible. 
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II. BASIC FORMALISM 

A. Transition Amplitudes 

The basic observables in scattering experiments can be 

considered to be the probability amplitudes for transitions 

from initial systems of freely moving particles to final 

systems of freely moving particles. The general mathematical 

form of these transition amplitudes is dictated in the 

following way by physical requirements. 

Consider an arbitrary reaction involving a total of n 

initial and final particles. Let the particles be labelled 

by an index i, l(i(n. Each particle is represented by a 

complex-valued momentum-space wave function ~i which, 

because the particles are freely mov~ng, is a mapping 

~i: f.ni+Q from the real manifold 

111. 
l 

= {k. I k. 2 _ 
- -l l 

k.
2 

"'l 
( 2 . 1 ) 

into the space Q of complex numbers. The vector ki is 

the mathematical energy-momentum of the ~th particle and is 

defined by where is the physical energy-

momentum of the particle, and 

0

i 
={+l for 

-1 for 

final particles, 

initial particles. 
(2.2) 

I~ 
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The mass jJi of each particle is assumed to be nonzero. 

Other quantum numbers such as spin, isospin, charge, etc., 

are unimportant in this discussion and are not indicated 

explicitly. The functions ~i can, for the present purposes, 

be assumed to belong to the spaces 8(m.) of functions that 
l 

have compact support supp ~icmi and continuous partial 

derivatives of all orders in 1n .. 
l 

The transition from the initial system of particles to 

the final system is represented by a functional S[~l""'~n] 

which, when all of the wave functions ~i have unit norm 

is a probability amplitude. The functional S is assumed to 

be linear in the wave functions of the initial particles and 

antilinear in the wave functions of the final particles. This 

linearity, together with the probability interpretation of 

S, implies the inequality 

This inequality in turn implies th~ continuity of 

variable ~i in the topology induced by the norm 

(2.4) 

S in each 

6 
(2.3), 

and hence also in the topology of ~(~).7 The functional 

S can, 8 therefore, by virtue of the nuclear theorem, be 

written S(~l""'~r? =S[~], where ~ is the product wave 
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function 

(2.5) 

and S[~] is a continuous linear functional (Schwartz distri

bution) on the space t)(Xm
i

) of functions with compact support 

and continuous partial derivatives of all orders in the 

product'space xm
i 

= 11S. xm
2 

X ... Xmn · 

Conservation of energy and momentum requires S to be 

concentrated on the set 

(2.6) 

The restricted real mass-shell ~ is the subset of all 

points K of m at which at least two of the vectors k i 

are linearly independent. The restriction of S to the set 

(2.7) 

then has the representation9 

S(~J = IdK~(K) S(K) " (2.8) 

where S(K) is a Schwartz distribution and 

" ,. 

,i 
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( 2 .9) 

is the (Lorentz invariant) volume element of Y. 

It is convenient to use, instead of S(K), the distri-

but ion 

T(K) = S(K) - SOCK), (2.10) 

where SOCK) is the no-scattering part of the S matrix. Our 

causality conditions will be formulated in terms of the 

corresponding functionals T[W]. 

B. Infinite Differentiability 

In the following sections the distribution T is some-

times said to be infinitely differentiable, and sometimes 

holomorphic, at a point K of ~. These statements are 

given precise meaning in the following way. 

The restricted real mass-shell ~ is a subset of.the 

restricted complex mass-shell ~. The definition of ~c 

is analogous to that of ~; ~ is the set defined by 

where the components of the vectors k. 
l 

(2.11) 

are now allowed to 

assume complex values, and 11-
c is the set of all pOints 
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of m " at which two or more of the vectors 
c 

are linearly independent. This set v /V'c is a'(3n-4)-

dimensional submanifold of C4n ~ which means that at every -
point Ri~ there is a (nonuni~ue) local coordinate system.

lO 
c 

"This local coordinate system is d~fined as a triple (6c(R)~ 

IT ; DOO) consisting of a neighborhood 
R " C 

6 (K)CC
4n of K~ 

c -
a polydisc 

(2.12) 

and a nonsingular holomorphic mapping IT : D (K)-+6 (K)" which K c c 
= IT (D (K». "At 

K c 
points K of ~ this mapping can~ and will~ be chosen so 

that 6 (K)I\* = IT (D (R)I1R3n- 4 ). 
c K c -

It is sometimes convenient to choose a local coordinate 

syste"m in which the local coordinates ZA are defined by 

the equ~tions ZA = U~'K~ where the UA = (uAl~" .~uAn) 

are appropriately chosen n-tuples of four-vectors and 

U ·K A 

[The metric is 

n 3 
L: L: 

i=l"v=O 

vv 
g u, . 

I\lV 
k. 

lV 

11 
= -g = _g22 = _g33 = 1.J 

(2.13) 

Such a 

coordinate syst~m will be calied' ~ simple coordinate system. 

Infinite differentiability on ~ can now be defined as 

follows. 
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Definition 1. Let F(K) be a function defined on some 

open set nc "JI... The runction F(K) is said to be 

infinitely differentiable at K£H if and only if for 

every choice (6c(K),fi~,Dc(K» of local coordinates 

at K, the function F 0 fiR has continuous partial 

derivatives of all order in some neighborhood 

DCTIR-l(1l1l6c(K» of Z ::;:IlK.,-lOO. If, in addition, the 

function F 0 IlR can be represented by a convergent 

power series in a neigh~orhood of 

is said to be holomorphlc at R. 

-z, the function F 

Definition 2. Let T(K) Qe a Schwartz distribution 

defined on some opetl ~et nc'Jt.. The distribution T(K) 

is said to be infinitely differentiable (holomorphic) 

at KEn if on some neighborhood rtell of R there is 

defined an infinitely differentiable (holomorphic) 

function F(K) +h~t. satisfies the equation 

;rdK ~(K) (T(K) ~ F(K)] = 0 (2.14) 

for all wave functions ~ in 

(2.15) 

Because the different possible local qoordinate systems are 

holomorphically equivalent,ll the conditions of the definitions 



-12":" 

are satisfied for all choice's of local' coordinate systems if 

they are satisfied for any particular c'hoice. 

A pl"eljmi\'\a.d'~ problem of this pap.er is to deyelop some 

kind of space-time picture of a scattering process. Tb this 

end we introduce space-time wave functions 

N 

-ia.k·x e l 1.J;.(k). 
l 

(2.16) 

These functions 1.J; . (x) 
l 

12 have the important property that, 

for ~very positive integer N, the equation 

N ''''. " lim T 1.J;i(xT) = 0 (2.17) 
T-+OO 

A 

is satisfied Uniformly in x on compact subsets of the 

complement of 

A 

V(1.J;i) = {iii = kt, kE supp 1.J;i' t real}. (2.18) 

This property entails that for any fixed positive numbers 

E, N, and 0 there exists a TO such that for all T>TO 
A 

one hasl~i (~T) I < (I ~"l\) -N 0 

of the set 

for all X in the complement 

~ 

V E ( 1.J; i) - {x I~ = k t ~I k - k 'k E, k 'E sup p 1.J; i' t rea I} U {~ I I x I ~ E }. 

(2.19) 

r. r 

"t.! . 
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(The norm Ixl of any four-vector x is the Euclidian norm 

2 I I x I = (L x - )i J 
\) 

The rapiq uniform collapse of ~i(~T) into 
/\ 

VE(~i) as T+OO suggests that the ith particle may in some 

limiting sense be regarded as confined to 

v (~., T) 
e:: 1 

= {xix 
/I. = XT, 

,. /\ 

XEV (~.)} 
E 1 

-(2.20) 

This suggestion is supported by the following consideration. 
N 

Let the various wave functions ~i be displaced by the 

respective amounts U.T .. The displaced momentum-space wave 
1 

functions a~e ~i(k) exp(i 0ikouiT), and the corresponding 

transition amplitude isqen9ted by T(~;UTJ. Thus, for 

product wave functions ~. in B(??), the amplitude Tr~;UT] 

has the representation 

(2.21) 

If T(K) is essentially constant in the (perhaps very small) 

support of ~, the approximation 

T[~;U~)~A/d4x 
,., 

N * 
IT tPi(x-uiT) IT ~. (X-U.T) (2.22a) 

initial final 
. 1 1 

>..j'ct4(XT) ,., '" "" * '" = IT ~i«x",ui)T) IT ~i «x-uih) (2.22b) 
initial final 

can be made. If an E>O can be found such that no point 
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lies simultaneously in all of the displaced cones 

(2.23) 

then equations (2.17) and (2.22) imply that 

lim TN T[~;UTJ = 0 (2.24) 
T-+OO 

for all positive integers N. [~enceforth, th~ notation 

f( T) =9 o will indicate the rapid decrease (2.24) of any 

function f(~).J That is, if the inter~ection of ~ll the 
A 

sets V (~.;u~) i~ empty, then~the probability that a 
Ell 

reaction of the corresponding p~rticlestakes place decreases 

rapidly aST becomes infinite. 

This result provides a justification for considering 

the particles to ~e ~ainly confined to the space-time regions 
,... 

where the corresponding wave functionS ~i are not small. 

It also suggests that the image under 
.... .. ,.. 
X-+X'= XT of the 

region of intersection of the displaced cones should 

be. interpretable as the location of the "collision" of the 

corresponding particles, in the limit T-+OO. ~his idea has 

been discussed in detail in Ref. 5, and shown to be com-
." 

pletely in accord with the nature of the one-particle exchange 

contribution to a scattering process. 

This inter~~etatiori of overlap regions as the locations 

of the corresponding collisions is the basis of the present 
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work. These collisions constitute the "event,s" of S-matrix 

theory~ and causality conditions place restrictions on their 

space-time ordering. 



,III. WEAK ASYMPTOTIC-CAUSALITY (WAC) 

A. Formulation of WAC 

If the particle trajectories (i.e. the displaced velocity 

cones) are such that all possible collisions involving two 

or more initial particles occur later than all possible 

collisibns from which two or more final particle can emerge, 

the reaction is considered to be acausal and the corresponding 

transition amplitude is required to be small. This require-

mentis made precise in the following way. Let ~ be a 

product wave function, and let T[~J be the corresponding 

transition amplitude. Let the particles represented by ~ 

be displaced by amounts U.1. 
l 

The displaced particles are 

represented by the wave functions ~i(k) exp(ioik,uix), and 

the transition amplitude corresponding to them is denoted by 

T[~;U1J . For any' fixed time "" t and positive number E 

define the two sets 

(3.1) 

Finally, let a(t,E,~) be the set of all n-particle 

displacements U = (u l ,u2 , ... ,un ) such that (a) the Euclidean 
A A_ "'" 

distance between points of VE(~i;ui)nD(t,E) and points of 
"""" ,,_ A 

V (~J'; U. )1\ D (t,E:) has a lower bound d- .. >0 for all pairs 
E J lJ 

(i~j) of ~nitial particles, and (b) the distance between 
,.. ,,+ A ' 

points of VE(~i;Ui)nD (t,E)· and points of 
I + 

has a lower bound d ij>O for all pairs 

,.. "'+ A 

V (~.;u.)IlD (t,E:) 
E J J 
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(i ~ j) of final particles. A set a(t,E,~) is called a 

set of acausal displacements. The weak causality condition 

is as follows: 

Weak Asymptotic Causality (WAC). For any fixed product 

wave function in 8("-), fixed time 
A 

t, and fixed 

positive number E, the condition T(~;U~ ~ 0 is 

satisfied uniformly in U on every compact subset of 

the set a(t,E,~) of acausal displacements. 

This causality condition is justified in Appendix A 

by proving that it holds in nonrelativistic quantum mechanics 

and in all classical models with finite range interactions. 

The WAC condition is also plausible within the frame-

work of relativistic theories. If the set of particle 
A i'he:>1. 

displacement s U be longs to a (t , E, ~)I ,\ the displaced ve loci ty 

cones 

v (~. ;u . .,'L) == {x = ~T IXEV (~. ;u.)} 
. Ell Ell 

(3.2) 

of the initial particles become increasingly far apart, as 
.... 

T becomes infinite, for all times Xo < tT + ET, and the 

displaced velocity cones of the final particles become 

" increasingly far apart for all times Xo > tT - ET. But if 

the initial particles become increasingly far apart in 
A ~~ A 

Xo < tT + ET, /I. the state generated near Xo = tT by the 

initial particles should be represented with increasing 

precision, as T+oo, by the displaced initial free-particle 
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state. Similarly, the state near 
A 

X = tT o that develops 

int6 the firial free-particle state should be represented 

with increasing precision by the displaced final free-

particle state. (See Figure 1.) Therefore, both these 

states near " x = tT o are represented with increasing pre-

cision by the corresponding free-particle states, and the 

transition amplitude T(1tJ;UTJ should approach its no-

scattering val~e. This value is zero since the no-scattering 

part has b~en subtracted from T. 

According to this argument, the amplitude T[1jJ;UT] 

would be expected to vanish as T becomes infinite. But 

should it decrease faster than every inverse power of T? 

This property means that for any fixed N, no matter how 

large, the amplitude decreases faster than -N 
T Now, the 

overlap integrals 

+ 
0- ij (U,T) 

where 

( 3 . 4 ) 

should provide a measure of the probability that interactions 

+ " ,.. take place in D-(t,£,T). If U belongs to a(t,£,1tJ), then 

(a) 

and 

0- .. (U,T) t 0 tor all pairs (i ~ j) of initial particles, lJ 

(b) 0+ .. (U~T). 0 for all pairs (i ~ j) of final 
lJ 
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The overlap integrals therefore decrease faster 
_NN 

T If the propagation of dynamical effects is 

itself causal, at least up to terms that falloff faster than 

any inverse power of (Euclidian) distance, the fact that the 

initial and final overlaps falloff at a very large rate 
N 

(T - N ) should insure that the transition amplitude falls off 

( T -N) . at least at a relatively slow rate 

The discussion of the previous two paragraphs is based 

on the idea of a development of a system in time. It does 

not, however, require a fundamental quantity that represents 

the "state" of a system at an instant of time. As T becomes 

infinite, the duration of the strip €T ~ (x O - tT)~ - €T 

over which the initial and final particle states are compared 

becomes infinite. Therefore, the notion of a "state" of a 

system needs to become precise only when the time interval 

to which it refers becomes infinite. This is in accord with 

the general S-matrix philosophy. 

B. Consequences of WAC 

The weak asymptotic causality condition does not permit 

a complete specification of the singularity structure of 

T(K), but it does have some useful consequences. Suppose that 

11 is a connected open set in ~ and that the set at+ of 

points lying on positive-a Landau surfaces passes through n. 
Suppose also that T(K) is holomorphic on n-~. It is then 

of interest to know whether the functions that represent T(K) 
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in the various regions of n -£ are holomorphic continuations 

of each other, and if so, to know the path that connects them. 

In Section V it is shown that if n is suffic:Lently 

;t 
small and if each point K of the set nncL is generated 

11 14 by exactly one positive-a Landau diagram ~ , apart from 

diagrams that differ from A by overall translations and 

scalings, then 

11 n L + == {K I K EJ2, A (K) == O} ( 3 . 5 ) 

where A(K) is a real analytic function defined in a full 

4n-dimensional neighborhood of J2. 'The gradient \lACK) == 

where v u. = dA/dk. , 
lV l 

is well defined and is 

nonzero in n This result motivates the following theorem. 

Theorem 1. Suppose the following four conditions are 

satisfied. 

(a) A real analytic function A(K) is defined in a 

full'neighborhood of a neighborhood 7J.c i- of KEI!. 
, " 

(b) There is a local coordinate system (~c(K),nK,Dc(K» 
, 

with such that the distribution T = Ton·· 
K 
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is a distribution in that is infinitely smooth in 

the variables (z2' ... ,z3n-4). That is, for any test 

function l./J(z) with support in 
, -

D (K) c the amplitude 

T[l./JJ· has the representation 

f dm 
T(l./J] = dz F(z)--m [J(z)l./J(z)], 

dZ
l 

( 3.6) 

where m is an integer, J(z) is the Jacobian 
, 

appropriate to the transformation IT K' and F(z) is 

continuous in zl and has continuous derivatives of 

all orders in ez2, ... ,z3n_4). 

( c ) For some fixed time " t, sOIlfe fixed 

some fixed product wave function ~ in 

the set aC~,€,0) contains -VA(R). 

Cd) The WAC condition is valid. 

€>o, and 
. ....,ith. 

8 C*) ,0' K) ~ 0, 
A 

Let C6 c (R),ITK,Dc CR)) be any simple coordinate system 

at R. Then for any a, O<a<l, there exists a real 
, 

neighb-orhood 11. c Cllfl6 c (R) n supp !Zl/) of R such that the 
, 

restriction of the functional T to len) can be 

written in the form 

C 3.7) 

where 
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( 3 . 8 ) 

and 

3n-4 
E R , ... (o,y» 161 hi cd. (3.9) 

11£tl11e'l"'CI ttM~'~ 
The vector y in (3.9) iS A g"i ven by 

(3.10) 

where rrR(~) = R. The function TO(K) is infinitely 

differentiable on 11 " and the function rr I
CK) is 

holomorphic (has a power series expansion in local 

coordinates lO ) on 

This theorem is proved in Appendix C. 

The specific form of the domain £ 
ex 

of Theorem 1 

(3.11) 

depends on the particular choice of simple coordinate system 

A variation of Theorem 1 that does not refer to a particular 

s~mple coordinate system is the following Theorem lA, which 

is also proved in Appendix C. 

Theorem lAo Suppose the assumptions of Theorem 1 are 

satisfied. For any E>O define 
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u. being real. 
lV 

C3.12) 

(3.13) 

Then for any e>O 

there exists a complex neighborhood n ecltc of K 

such that the restriction of T to 8(J~~~) has the 

form 

rr [1j;) = lim 
s-+O 

(3.14) 

where KICK,s) is any function uniformly continuous in 

Ken fllfr and s,O<s<l, such that: KI(K,s) is e 

infini tely differentiable on n n I~ and all deri vati ves 
e 

are continuous in both K and s; KI(K,O) = K for 

all Kernen~] and KICK,s)e[ne n C;(K)} for all 

s>O. The function TOCK) is infinitely differentiable 

on n e n If, and TICK) is holomorphic on llencE + un. 

The content of Theorem lA is this: at points K 

sufficiently near K, the functional T[1j;) is represented 

by a function that is, apart from infinitely differentiable 

singularities, holomorphicin a domain that is essentially 

the upper half-plane of the variable aCK;R) = VA(R)·K. 
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This theorem is applicable, for example, to the case 

of two part idle scattering [1 + 2 ~ 3 + 4]. The only 

(positive-a) Landau surfaces in the physical region are those 

2 corresponding to normal thresholds in s = (k3 + k 4 ) . These 

surfaces are given by functions A of the form ACt) = 
22-(k

3 
+ k 4 ) - M ~ Thus the displacement VA(K) has the form 

VA(K) = (O,O,u,u), (3.15) 

where u = 2!~3 + ~4).This displacement vector simply 

~hifts the two final particles, 3 and 4, by twice the total 

energ~-momentum vector of the reaction, as is illustrated in 

Figure 2. If ~l and ~2 are not collinear, and if ~3 

and ~4 are not collinear, then it is clear from the figure 

that for any product wave function ¢ with sufficiently 
A 

small compact support centered at there exists a t and 

an E for which -VA(K) belongs to tl(t,E,¢). Indeed, 

because u is positive timelik~ (k
3 

and k4 are positive 

timelike), the displacement -VA(K) moves the regions of 

interSection of the final particle velocity cones to a position 

earlier than that of the initial particles cones. Thus condi-

tion (c) can bi satisfied for any value of 
A 
t lying between 

these two regions, for some sufficiently smallt. If ~(z) 

is analytic in the variables other than z = A(K), 1 . and if 

WAC is valid, then all the conditions of the theorem are met. 

The function TICK) is:then holomo~phic in what is essentially 
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the upper half-plane of the variable O(K;K). This upper 

half plane is to lowest order in (K - K) the upper half 

plane of the variable s, so is holomorphic in the 

intersection of a neighborhood of K with what is essentially 

the upper half plane of the variable s. 
+0 

Another application of Theorem 1 is~the pole contribution 

to the three particle scattering amplitude. If in the vicinity 

of the pole at A(K) = ° the amplitude is assumed to have the 

form T(K) = R(K)D[J'.(K)] + H(K), where R(K) and H(K) are 

holomorphic and D[Al is a distribution that is holomorphic 

for A#O, then the conditions of the theorem on the structure 

of T(K) are satisfied. The function A(K) is given by 

A(K) = (k
3 

+ k4 + k6)2 - M2, and the displacement VA(K) 

is, therefore, 

VA(R) = (O,O,u,O,u,u), (3.16) 

where u = 2(k
3 

+ k4 + k6 ). The result of this displacement 

is shown in Figure 3. Suppose now that none of the initial 

particle momenta are collinear and none of the final particle 

momenta are collinear. Then inspection of Figure 3 shows 

that for wave functions ~ with sufficiently small compact 

support centered at K, 
A 

there exists a t and an E for 

which -VA(K) belongs to ~(t,E,¢). Theorem 1 again 

prescribes a path of continuation of Tl which involves 

infinitesimal detours 
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into the upper half plane of a(K;R). 

The WAC condition does not give the iE prescriptions 

for normal thresholds of all types of reactions. For example, 

if the case just considered were modified by adding one 

external line at each vertex in such a way that each subreac

tion involved two initial and two final particles, then the 

conditions of the theorem could not be satisfied. Indeed 

the conditions of the theorem provide, in Such a case, no 

distinction between the two collisions that allows one to 

identify one collision as the cause and the other as t,he 

effect; the two vertices are completely equivalent so far as 

weak causality is concerned. 

The two vertices are, of course, not completely equivalent. 

Positive energy is generally carried into'one and out of the 

other by the external particles. This provides the necessary 

distinction between cause and effect, because energy-momentum 

is always transferred over macroscopic distances in a way 

such that positive energy flows forward in time. To proceed 

further, this energy balance consideration must be incorporated 

into the causality condition. 

The WAC condition can be augmented by an energy balance 

condition so as to give the iE prescriptions for all normal 

thresholds. Rather than dwelling on this point, we 

shall pass directly to the logical extension of this idea. 

Transmission of energy and momentum over macroscopic distances 

is, as far as we know, associated not only with the forward 
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transmission of positive energy, but with transmission of 

just those amounts of energy and momentum that can be 

carried by physical particles. A formulation of this idea 

is given in the next section. 
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IV. STRONG ASYMPTOTIC CAUSALITY (SAC) 

A. Formulation of SAC 

The condition of strong asymptotic causality (SAC) is 

a formulation of the notion that momentum-en~rgy is trans

mitted over macroscopic distances only by stable physical 

particles: if a reaction requires a transfer of energy

momentum that cannot be carried by stable physical particles, 

then SAC requires the probability of that reaction to fall 

off faster than any inverse power of the lower bound on the 

Euclidian distances over which such transfers must carry. 

The central idea in the for~ulati~n of this requirement 

is that particle collisions are located in the intersections 

of the trajectory regions (i.e., displaced velocity cones) 

of the corresponding wave functions. From a collision involv

ing two or more initial particles certain other stable 

physical.pa~ticles may emerge. The momenta of these new 

particles must be consistent with conservation laws, and their 

trajectory regions must originate in the collision region 

where they are produced. These new trajectory regions may 

intersect other trajectory regions, defining new collision 

regions from which additional particles may emerge. In this 

fashion a causal network of collision regions connected by 

physical particle trajectories can be built up. (See Figure 

4) . 
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In order to formulate this idea more precisely the 

following definitions are introd~ced. 

Definition 3. A causal sp~ce-tirne diagram ~ is a 

triple J = (V,L,E) consisting of a set V = (vI'" .,vm) 

of space-time points (vertices), a set L = (L l ,· .. ,Ls) 

of directed line segments of space~time points, ~nd a 

matrix E of struqture constants. The following 

pr0perties hold: 

(a) Each line segment L. 
J 

has the representation 

O~t~l.}, ( 4 . 1 ) 

where the endpoints 1.° are spacetime points. 
J 

(b) The set V is the intersection of the end points; 

V = {xix 

e \tec:h"e\~ 

for some 
, 

0,0 

Lines intersectAonly at end points. 

( c ) The structure constants 

defined by 

+1 if 1 . 
+ v = r J 

Ejr = -1 if vr = 9,j 

0 otherwise. 

and i t j}. (4.2) 

are 

Cd) Each line segment L. 
J 

is associated with a freely 
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moving physicalpa~ticle or norizero ~as~ and 

momentum-energy , Pj . The real momentum-energy vector 

p; 
J 

0' 
satisfies' p. >0 

.J 

2 and' p. and is related 

to L. by 
J 

where 

J 

f::.. - .Q..+ 
J J 

is some positive real number. 

(e) Momentum is conserved at each vertex: 

E. = 0, (all r). 
Jr 

(Any other additively conserved quantum number must 

obey a similar conservation law.) 

( 4 . 4 ) 

(4.5) 

(f) Each v 
r 

satisfies (4.2) with a = a' = +1 and 

also with a = a' = -1. (This condition can be 

imposed by virtue of the stability condition on the 

masse~-6f physical particles). 

The line segments of -A are divided into two classes: 

internal and external. A line segment is internal if the 

set V contains both of its endpoints. Otherwise it is 

external. The vertices are similarly classified: a vertex 

is external if it is the~nd point of at least one external 

line. Otherwise it is internal. A , with no internal 

lines is called trivial. 

Definition'4.' Let ~ = rr~i be a product wave function. 
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An n-particle displacement U = (ul ' ... ,un ) belongs to 

the set ~(~), and is called causal with respect to ~ , 

if and only if for ea.ch. £>0 there exists a causal 

space-time diagram ~6 such that: (a) the diagram ~6 

has n external lines that are associated (in the sense 

of Definition 3) in a one-to-one fashion with the n 

initial and final particles represented by ~. In 

particular, the physical momentum-energy vectors asso-

ciated with the external lines are p. = o.k., 
l l l 

K = (k l , ... ,kn ) belongs to the support of ~; 

where 

(b) the vertex of i)6 that contains the endpoint of 

the ith external line, is contained in v (~.;u.). 
€ l l 

The sets of displacements that are not causal with 

respect to ~ are acausal with respect to ~: 

a(~) = {UIU i l:(~)} . ( 4 .6) 

The strong ~~ymptotic causality condition analogous to WAC 

would be the requirement that for any fixed product wave 

function ~£8(",") the relation T[~;UT] *0 be satisfied 

uniformly on compact subsets of a(~). 

part 

We shall, however, deal directly with the connected 

T [~] c of ·T(~]. Only the connected causal space-time 

diagrams J) should be relevant to Tc[ ~J. [A connected 

diagram is one for which the point set U L. is conne cted. ] 
J 

Let tc(~) be the subset of C(~) which is formed by 
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requiring also that the space-time diagram ~ of Definition 

3 be .connected. The corresponding acausal set is 

(4.7) 

The SAC condition is then defined as follows: 

Strong Asymptotic Causality. For any fixed product 

wave function 1j;E8(/t-) the condition Tc [1j;;UT] ~ a 

is satisfied uniformly on compact subsets of ac (1j;). 

B. Consequences of SAC 

Consider displacements of the form 

( 4.8) 

where K = (k l , ... ,kn ) is any point of supp 1j;, a is any 

real four-vector, and the t . 
l 

are real scalars. If the 

momenta of the external lines of a diagram ~ are given by 

K, and the positions of these lines are specified by a set 
of th e \ o'ov, 

of displacements from a common originA~ . UO(K), then the 

external lines of cJ) all pass through a common point. The 

set '0(1j;) of all displacements of the form(4.~) is then 

immediately seen to be a subset of C (1jJ). c . . 

The sets -C (K) and C (K) are defined to be the sets -c c 

obtained by replacing supp 1jJ by K in the foregoing 

definitions. 
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Let L + be the set of all point s KE: m. for which the 

set ~c(K)- to(K) is nonempty. + The set ct is characterized 

by the following theorem. 

Theorem 2. The set .,t+ is the union of all posit i ve-a 

Landau surfaces that are associated with connected Landau 

diagrams. 

Proof. The positive-a Landau loop equations associated with 

a diagram ~ are precisely the statement that the set of 

vectors ~. - a.p. fit together to form a nontrivial causal 
<) J J 

diagram ~. The conservation law constraints and mass-shell 

conditions are demanded both by the Landau equations and by 

the existence of ~. Thus, the statement that there exists 

a nontrivial connected causal diagram ~ satisfying K~) = 

K, where K(~) is the set of energy-momentum vectors 

associated with external lines of ~} is equivalent to the 

statement that the Landau equations associated with diagram 

~ have a positive-a solution at K.16 At a point KEC~- ~), 

where 7YlOis the subset of the mass-shell m in which two 

or more initial particle energy-momenta are collinear or two 

or more final particle energy-momenta are collinear, the 

existence of a nontrivial connected causal diagram ~ , 

satisfying Kcf» = K is equivalent to the fact that It (K)--c 

toCK) is nonempty. This is because the trivial connected 

causal diagrams j) satisfying KC.o) = R come only from 

~o(R) and each nontrivial one is given by some U in 

CcCR) that is not in ~OCK). At points R in 7nO the set 
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tC(K) -t'O(K) is nonempty. r See Section V, paragraph 2. ] 

But all points K€~ clearly lie on some positive-a Landau 

surface. This completes the proof. 

'This geometric interpretation of the Landau equations 

16 has been emphasized by Coleman and Norton~ W~ use it 

continually. In particular, the set of points lying on 

positive-a Landau surfaces is regarded as precisely the set 

of point sKat which K = K[)) (K)] 

trivial l) = j) (K). 

for some causal non-

We consider only connected diagrams, and by a Landau 

surface always mean a Landau surface associated wit6 a 

nontrivial connected causal diagram. 

A first consequence of SAC is Theorem 3. 

Theorem 3. SAC implies that the scattering function 

Tc(K) is infinitely differentiable at all points of 

J/,.-,l+. 

The proof is given in Appendix D. Theorems 2 and 3 combine 

to say tha~the singularities of T (K) 
c (or more precisely, 

the points at which Tc(K) is not infinitely differentiable) 

are confined to the positive-a Landau surfaces. 

We next turn to points that lie on j+. Let K be 

a point of l,+. Let 11 = {Ul ' ... 'u
3n

_ 4 } be any set of 

(3n-4) n-particle displacements that define a simple local 

coordinate system at through the equations z = A 

Define the set 
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( 4 . 9 ) 

[The norm It I is the Euclidean norm of t = (t l ,· .,t 3n- 4).] 

A product neighborhood n is a neighborhood such that for 

some product wave function X, supp X =n. For any product 

neighborhood n define the set 

(4.10) 

where supp X = n and the bar over the right-hand side 

indicates closure. 

De fini t ion 5. A point K of £. + is of type I if and 

only if for every set U that can be used to define a 

exists a product neighborhood n of K, (nn?l-)c(Jffl8 (0), c 

such that: (a) the set fc(u;n) is contained in a 

finite humber of closed disjoint subsets fcj(u;n); and 

(b) each of these sets r j (u·n) 
c ' can be contained in a 

corresponding set of the form 

+ r (U; e j) = 

where e . is some vector in 
J 

1, (t,e.»O}, 
J 

3n-4 R . A point 

of type II if it is not of type I. 

( 4 .11) 

is 
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0+ YYl. 

The set lrtocL of points K = (k l , ... ,kn ) f. at which 
. It~ 

two initial or two final particle ~omentaAare collinear 

consists entirely of type II points. No other type II points 

are known. 
- ;t ,./ 

The problem of showing that vari6us points KE~-"o 

are of type I is considered in the next section. 

The structure of T (K) 
c near type I points is intimately 

related to the geometric structure ofthe·set f c (U;7l). Let 

~ be the unit sphere 

~ = {tit E R3n- 4 , It I = l} , - (4.12) 

and let 

Because the various closed sets j 
fc 

(4.13) 

are mutually disjoint, 

the corresponding compact sets n j 
c also have this property. 

It is therefore possible to construct open neighborhoods 

of the set s . n j 
c that have disjoint closures w •• 

J 

Moreover, because of condition (b) of Definitiori 5, the 

neighborhoods w. 
J 

can be constructed so that the polar cones 

+ -C (w.) = 
J 

{ala E 
3n-4 

B ' (4.14 ) 

are nonempty. Finally, let 
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L
j 

t cn) =. {K 1 K s n, r c j (U;ll) f1 "c (K) is nonempty}. C 4 • 15) 

The structure of T C K) c at type I points is then given by 

the following theorem, which is proved in Appendix D. 

Theorem 4. Let KsLt be a type I point. Let 

(6 (R),rriK-,D CK» be any simple coordinate system with c c 

local coordinates ZA = UA·K. Let U = {Ul ,·· .,U3n- 4}, 

and let n be some product neighborhood of R that 

satisfies the conditions of Definition 5. Let w. be 
J 

the neighborhoods of the ~ j (u 'r/) 
c ' defined in the 

preceding paragraph. Finally, let the SAC condition be 

valid. Then there exists a neighborhood 11.1 of 

1l1cCn(lJ(".) , such that the restriction of Tc[\jJ] 

8Cnl ) has the representation 

K, 

to 

T [\jJ] = jdK\jJCK) T °CK) + L: 
c c j 

lim 
101+0 

+ -osC Cw.) 

J dK\jJ(K) Tc j CK/C !(1~»)' 
(4.16) 

J 

The summation runs over the indices that label the 

r j(u'n) c ' , 
• and the quantity K( 1<, b) l.s defined by 

(4.17) 

The function T o(K) is infinitely differentiable on c 
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and the functions T j (K) 
c 

sets 

Moreover, each limit function 

lim 
161~o 

+(-6E:C w.) 
J 

are holomorphic on the 

T j (K'( K,S») 
c 

(4.18) 

(4.19) 

. exists and is infini tely . differentiable on n 1 . - L
j 

+ (Ill) . 

Thus, aside from an infinitely differentiable back-

ground term, the amplitude Tc(K) can be represented at 

type I points as the sum of a finite number of terms, each 

. th . t . . t· 17 Wl 1 sown lE: prescrlp lon. 
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V. CAUSAL DISPLACEMENTS AS 

GRADIENTS TO LANDAU SURFACES 

In order to apply Theorem 4 at a point KEf!,· one must 

establish that K is of type I. This is done by exploiting 

the very close connection between the causal displacement 

vectors U at K and the normal vectors to the various 

Landau surfaces that pass through K. For example, when K 

belongs to only one posi ti ve-CI. Landau surface L + [~1, there 

is essentially only one causal displacement U at K, and 

this displacement can be identified with the normal to L+[~]. 

The continuity of the normal then implies that K is of type 

I. This result, and a number of related ones, are contained 

in the theorems that follow. 

First we note that all points of 1r1 ° are type II points. 

[Recall that rn o is the set of all points K = (kl, ... ,kn ) 

of m at which two initial or two final particle momenta ki. 

are collinear.] This result is seen as follows. Let KEmo' 

and let kl and k2 be collinear initial particle momenta. 

[Similar arguments hold for collinear final particle momenta.] 

Then, for every product wave function ~ that does not 
a"~ ii.">0, 

vanish at K, 1\ and every U of the form U = (u,O, ... ,0), 

the various displaced velocity cones V(~.,ui) always inter
E 1 

sect in a way that allows the conditions of Definition 4 to 

be satisfied with a diagram J) of the type illustrated in 
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Figure 5. Thus, for any 1L = {U l , •.. 'U3n- 4} +ha.+ defines 

a simple coordinate system at R, and for any product 

neighborhood n of K, it is always possible to find a 

connected path in rcC~n) that connects U = C~,O, ... ,0)EfcCU;~) 

with -UEfcCU;n). For this reason condition Cb) of Definition 

5 cannot be satisfied. 

To classify points 
_e W 
K that do not lie in -m 0' some 

additional notation is introduced. The symbol ~ represents 

a fixed cauSal space-time diagram. The symbol VcJ) = 

CVlC~), ... ,vmC~» represents the. set of space-time vectors 

that give the positions of the vertices of .ff. The symbol 

K(j) = (kl(E), ... ,kn(~» represents the set of mathematical 

momenta associated with the external lines of g . 
Defini tion 6. A diagram J) is similar to a diagram 

~ if and only if its lines and vertices can be lab~led 

so that 1) and J) have the same matrix E of structure 

constants and the same types of particles asso-

ciated"with corresponding lines. The set of causal 

diagrams similar to ;;[) is denoted by [:D 1 

This definition of j)E[~] does not require V(~)· to 

coinc-ide with V (lJ) , nor K (J) to coincide with K(i) . 

does require each line of ~ to have a positive time like 

image in any diagram II E [.Dl Mor"eover, any line 11 of 

and its image L. 
l 

in 1) E r..g] must be associated with the 

same type of particle. 

It 

.i) 
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Definition 7. A contract ion I)' of .§ is a nontri vial 

diagram lying on the boundary of [J] that is formed by 

shrinking to points some, but not all, of the internal 

lines of ~. The notation j)' C jj means that /) I is a 

contraction of ;g. 
Definition 8. The positive-a Landau surface d'+[j] is 

the set of points K such that K = Keg) for some 

(5.1) 

The restricted positive-a Landau surface Jo+[.~] is 
-~~ 

the set of points K of L+[]] that do not lie on 

F[.})'] for any contraction /)' of :g 

10+(1)1 =J+[~] - U J'+[j}'J (5.2) 

JJ'c.§ 

It is clear from Definition 8 that the set cL + is the 

union of the restricted positive-a surfaces Lo+' 

The restricted surfaces Lo+ are of interest because 

of their relatively simple topology: 

Theorem 5. If ~ is any fixed nontrivial connected 
_ + _The-.• 

causal diagram, and if Ks (La (.£>] -lno) , A there exists 

a ne ighborhood n c ('}t- "(10) of R in whi ell cl 0+[..Q ] is an 

analytic submanifold of codimension 1,10 

This theorem, which is proved in Appendix E, means in 
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particular that nonmanifold points such as acnodes and 

18 t 1· cusps canno le on J+ '\It The set al. - ")..0 ~_ s the 

union of manifolds of codimens ion 1 in )f. 

By virtue of theorem 5 the normal vector to a surface 

"0+[15] is well defined (to within a scale factor) at each 
¢ YYl" 

point K A of that surface. The content of part (b) of the 

next theorem is that this normal vector (appropriately 

scaled) is the n particle displacement U = (u], ... , u ) _ n 

that generates (by displacing lines originally passing 

through some common origin) the positions or the exterhal 

lines of any diagram .[) that satisfies K(.6) = K. [Hence

forth, the phrase "U generates J)" will mean that U = 

generates, by displacements of 

lines originally passing through the origin, the positions 
• 

of the external lines of I). ] 

Theorem 6. Let ~ be any fixed nontrivial connected 

causal space-time diagram, and let RE ¥ be a point of 

Lo + [A1-. Then there is a full 4n-dimensional neighborhood 

17.( R) of R and a real analytic function A(K), holomorphic in 

Kover "'Yl. (K) , such that 

a) The gradient VA(K) is nonzero at each point of -Y1(K) and 

(5.3) 

iJ 
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eb) If Kef)) £: La +[.DJIl n. (in for some .to d,O] , and if 

U = e u l' ... , un ) is a set of n displacements that 

generates the diagram )), then U must have the form 

(S.4a) 

where ;\,>0 and Uo(KeJ)) is of the form (4.8). In 

other words, 

where 

u. v = 
l 

"\ a'V 
f\. , 

aft 
~ 

l'V 

+ a 'V t k 'V + i . , l . 
(S.4b) 

and ti are real constants that depend 

only on the indicated indices, and ;\, is strictly 

positive. 

If two surfaces cia +[.£llJ and io + [J2J coincide in some 

neighborhood of R£:(~-~), the two surfaces cannot be 

oriented in opposite ways. This follows from Theorem 7. 

Theorem 7. Let ~ 1 and ~ 2be two fixed nontrivial 

- + ) connected causal space-t ime diagrams, and letK£: (.;I, -h/o 

sponding real analytic functions from Theorem ~~ be 
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Al (K)and A2(K). : If' -1~ +r.oiJ . and' '0 +[..02 ] coincide 

in some neighborhood n c?/.. of R, ... then· 

'VAl (RY =A·'VA2 (R)+U6(R),. where 1.>0 and· Uo(R) is 

of the form (4.8). 

,A· proof of Theorem T is given in Appendix F. 
_ (;. vi' . 

At points K not in '))1.0' displacements UOCR) of the 

form C 4.8 )'produce no essentialcha.nges· in a diagram J) . 

Their only effects are a common translation'of all external 

lines of A and displace~ents of these lines along them-

selves. The·parameter A fixes the scale of the diagram. 

Thus, part Cb) of Theorem 6 says that if K = K(~), where 

~E[li] and· KEJ'O +[~], then the ,positions of the external 
(~55eV\tl, .. Il~ WY\\"'b'<E!Ii:).) 

lines of 1J are leoBefl:ti~ll;Y') obtainedl\byregarding the 

various components of 'VACK) as the displacements of the 

corresponding externai lines of J. Theorem 7 says that 

the sense of the causal directi6ri along 'VACK) is an 

intrinsic Teature bf the su~face 'o+[j); this sense does 

not depend'on the particular class of similar diagrams [~] 

that might be used to define the given surface 01
0
+ U5] . 

To classify ap6int it is necessary to 

determine the complete set of diSplacements U that generate 

diagrams IJ that satisfy K (J) = R. The following two 

theorems give the structure of these sets. The first theorem 

is special; the second is general. 

Theorem 8. Let j)be.a fixed nontrivial connected 

causal space-time diagram, and let K(Ol=j( be a point of 

' .. 



• 
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W If K =\ Kci}) , where 1) belongs either to [~or 

to LS ,] for some contraction IJr of ,§, then any 

displacement U that generates ~ is of the form 

where Ag~O for all g j and Uo is of the form C4.8). 

The (finite) sum in (5.5) runs over the indices g that 

labe 1 diagrams J) gC 1) or 1) g = IJ for which KEi 0 +[..9 g] . 

This result is proved in Appendix E. 

Theorem 9. Let Kbelong to ci'+ -mO' Let I be a 

minimal set of indices g such that any restricted 

surface Lo+[~] that contains ,K coincides near K 
for so,,", e :}, c:- r 

with one of the surfaces LO+[~g]A [The set I is 

known to be finite .19} If K = KC's) for some connected 

causal space-time diagram ~, then any displacement 

U that generates [) is of the form 

C 5 .6) 

where Ag~O for all g and UOCK) is of the form C4.8) 

Theorem 9 is a trivial consequence of Theorems 7 and 8. The 

characterization C5.6) of the displacements that generate 

diagrams .& for which K = KCJ) will be used to show that 

almost all points of ~+-1noare of type I. 

To show that a point K of.t + -"b is of type lit is 



-46-

not necessary to consider the sets r c CU;1?) for all sets 

U that defi'ne simple local coordinate systems at K 0 ("" 

~O~ product neighbbrhoods n' of' K. It is sufficient to 

consider instead the sets 

rc(U;K) = {UIUEt' OO"f(U)} . c 

for anyone (fixed ) set -U 

Theorem 10. L~'tU= {VI'." 'U3n- 4 } define a simple 

coordinate system at KE (£+ - 7120 ) . Then the point K is 

of type I if'and Only if T" (U;K) c can be covered by a 

finite number of 'disj olnt closed subsets r j (11' K)" of 
c ' 

r(il), each of whlch can be contairied ln a corresponding 

set of the form (4.11). Theorem 4 ~emains true if the 

wjare taken to be open nelghborhoods (with dlsjolnt 

closures) of the corresponding sets 

This theorem is proved in AppendixF. 

Theorem 10 shows that the structure of 'c(R) determlnes 

whether a point RE/ - 7r!.0 is of type I. Todetermlne the 

structure of t (R) at these points we use the fOllowing c 

theorem~whi~h is prove~ in Appendix F. 
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Theorem 11. If R 
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l 

,-:..,~ .'" ~ 

~ + .f~""'" 
belongs to c:I.. -nt, 1\ the set 

consists of all displacements U that generate connected 

causal diagrams .& that satisfy R = K(.6l). 

Combining Theorems 9, 10 and llJwe obtain the following 

theorem. 

Theorem 12. Let R be a point of L +--1Yb. Let I be a 

minimal set of indices g such that any restricted 

surface ot. 0+[.61] that contains R coincides near R 
f .' . ",I. 

with one of the restricted surfaces 
+ or ,0 ...... " ';} 

.1.0 [.Bg )" If the 

vectors VA (R) and the (4n-dimensional) vectors 
g 

F (1~p~n+4) defined by 
p 

(F ) ]J = 0 k]J 
p r pr r ' 

and 

(F ) ]J = 0 ]J+n+l. 
pr p 

(l~p~n) , 

(n+l~p~n+4) 

(5 .~ a) 

(5.~b) 

are linearly independent, then l the point R is of type 

I. Furthermore, the representation of Tc(K) in 

Theorem 1~ has only one boundary value term at R. 

The proof is trivial. 

If the vectors 

The vectors F form a basis for 
p 

F 
p 

are linearly 

independent, there exists a set U = {Ul , ... ,U
3n

_
4

} i"htLt .. 

contains all the VA (R),gEI, and defines a simple coordi
(Ap?"",j,~ Ts-) g 

nate system at R.~ The set is then trivially 

.", 
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contained in a single set r+ C'u., e) of the form (4.11). 

This implies that K is of type I and that only one boundary 

value term is required in the representation (4.16) of 

T (K).20 
c 

Theorem 12 is applicable, in particular, to the case 

where K belongs to only one 
..I + -

surface "£'0 [.&1: 

Corollary. If only one surface '/0+[,0] pas se s 

through KE: a+ -~) , the point K is of type I. More

over, only one boundary v~lue term is needed in the 

representation (4.16) of Tc(K). 

In the situation described in the corollary only one 

boundary value term T l(K) is needed in Theorem 4. By c 

taking the neighborhood n of Theorem 4 small enough, the 

region of holomorphy of can be expanded to include 

any given point in 6c(K)n~c in the upper half-plane of 

a(K;K) = VA(R~K. The argument is similar to that in 

Theorem lA and will not be repeated. 

The corollary includes, of course, the special case in 

which £+ consists near K of a single restricted surface 

.0

0
+[ Ii]. 21 ~ ~ It also includes more complicated cases. For 

example, a point KE: (L+ -l'Ylo) that lies on the edge of the 

surface LO+[~T] - of the triangle diagram jT does not lie 

on .:to +l,sT]' It lies on the surface Lo + [J)] of a contraction ./) 

of /) . If these two surfaces are the only parts of at + 
T 

that penetrate some neighborhood of K, .then the corollary 

applies. 
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The hypothesis of the corollary is satisfied at almost 

all points 
+ .... 

of L -lrlO. This is a consequence of the fact 

that only a finite number of distinct surfaces .,to + [ A] 

intersect any bounded neighborhood J'lc J/. of - 19 K. The 

union of their intersections is therefore of zero measure 

in nnt+, and the complement of that union contains almost 

all point s of n fI J. + . That is, in any bounded open set J1. 

of /I. the set of point s Rs (.1+ -11b) which lie on only 

one surface .t 0+ 
rt 

contains almost all points of n(l (.L -~) . 

A second consequence of Theorems 9, 10 and 11 is that 

if all the surfaces L 0+[1)] that pass through R come from 

diagrams ~ that are contractions of the same fixed diagram 

1,' then K 
22 . 

is of type I: 

Theorem 13. A point R e(cI.+ -'l1tJ). is of type I if there 

is a nontrivial connected causal space-time diagram ~ 

such that the diagrams j) of Theorem 9 are all 
- . 'g 

contractions of g. In such a circumstance only one 

boundary value term is needed in the representation of 

Theorem 4 of T (K) at R. c 

The proof is given in Appendix E. 

It is not known if all points of ott -""b are of type I. 

Any counterexample would have to lie on at least four 

different 
' + . lJ g surfaces L 0 f~g]' Two of these would have .. 

.. 

i l to be contractions of some diagram and two would have to 
, 

be contractions of some other diagram j) 2' But all four j}g 

could not be contractions of any single diagram. We have not 

;;, 
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succeeded in finding such a case. In any event such points 

would be rare, and in a sense accidental, because their 

existence requires the, intersection of surfaces ..fo +[j)g] 

corresponding to contractions of one diagram »1 to inter

sect the intersection of surfaces Lo+[Jg ] corresponding 

to contractions of another "unrelated" diagram /} 2' Two 

unrelated diagrams are diagrams that are not both contractions 

of any single diagram. It seems probable that singularities 

associated with unrelated diagrams will be additive and 

hence independent. A proof should emerge from the study of 

discontinuity formulas. That, however, is a subject in 

itself. 
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VI • AN EXAMPL~ .. 

As a cbncrete example of·the analysis of S~ction V, 

we consider the Landau.surface ot'+[~] . for the butterfly 

diagram of Figure 6 , Since at any point KE/[.bJ' it is 

possible to contract either oheof the triangles to a point, 

the surface Jf [J)]is riothing:but the intersection of the 

Landau surfaces .t +[~l]andJ+ ['»;1 for the two triangle 

diagrams J4 1 andiJ2 that make up,l), (See' Figure 7,) 

If .1+ [ob] is the only part of.l+ to penetrate a neighbor;" 

hood of KECJ+-"b) J this example forms a nontrivial example 

of the situation described by Theorems 12 and 13, 

Consider first the 9urface cI+[j)11 corresponding to 

the triangle diagram J) l' The important variables are the 

2 2 two subenergies, °1 = (k l +k 2 ) and °3 
= (k

3
+k 4 ) , and 

the transfer 2 In of momentum °2 = (k
5

+k 6+k
7

+k S) , terms 

the variables 

(6,1) 

where the are the masses of the internal particles, and 

(ijk) is a permutation of (123), the Landau surface L r~l] 

is given by zeros of the real analytic function 24 

(6,2) 
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The physical region for the reaction corresponding to 

~l is contained in a volume defined by xl~l, x 2::::;-1 , and 

The two surfaces x = 1 1 and x3 == 1 are the Landau 

surfaces associated with diagrams that are contractions of 

If is held fixed at some value the surface 

~ . [~l] becomes the familiar curve in the x l x
3 

plane shown 

in Figure S. The gradient VAl is 

(6.3a) 

where 

-1 + x 2x
3

) (k l +- k 2 ) (6.3b) u == -2(].12]J3) (xl , 

v = ( -1 -2 ].11].12) (x 3 
+ x l x 2 )(k

3 
+ k 4 ) , (6.3c) 

w = -2(].11].13)-lC x 2 + x l x
3

) (k
5 

+ k6 + k7 + kS) (6.3d) 

Inspection of (6.3) shows that VAleK) and the vectors 

F., 1::::;i{n+4, defined in (5. ~,) are linearly independent at 
1 

points K which do not lie in 1nO' The surface £ [.1\) is 

therefore a sl)bmanifold of Jt. of codimension 1 at R ~ \4(- )1/0 

According to Theorem 6, the vector VAleK) generates 

the diagram ~l at K. For this to be true it is first 

necessary that the four-vectors 6
3 

== w-u and 6 1 == v-w 
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be positive timelike. (The other vector A2 = v-u is then 

automatically positive timelike.] For this to be true the 

quantities must all 

be positive. Some algebra yields the following equations: 

(6.4a) 

(6.4b) 

(6.4c) 

where 

2 liz. -1 -1 
± (x 2 -1) (]J2 +x

3
]Jl ). 

(6.4e) 

The upper (+) sign refers to the (+) branch of the curve 

of Figure 8, and the (-) sign refers to the (-) branch 

of the curve. It is clear from (6.4a) and (6.4b) that both 

61 and 63 are timelikeunless F± vanishes. For both to 

be positive timelike the expressions in (6.4c) and (6.4d) must 

be positive. A necessary condition for them even to have the 

same sign is that This 

can only happen on the segmentAB of the curve of Figure 8. 

'1'1 



.. 
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It is then a simple matter to show that F+ is positive on 

AB. F need not be considered since 

part of the curve. Thus, 6
3 

and 61 

like on AB. 25 It can also be shown that 

of the internal lines of .Jl l are related 

the equations 6. = a.p., 
l l l 

where a. = 
l 

AB is on the (+) 

are positive time-

the momenta Pi 

to the 6. through 
l 

The 

lengthy algebra needed to show this is straightforward, but 

not instructive, and is omitted. Thus, the displacement 

generates a diagram ~ , 
1 which is similar to 

The displacement . V/l.l generates the trivial diagram 

when F vanishes. There is at most one such point for 

fixed x 9 , and it correSponds to the second type Landau 
L 

singularity26 given by al~ = a3~± a2~ Because they do 

not lie on cf+, the function T (K) c 

differentiable at such points. 

is infinitely 

Inspection of (6.3) also shows that as K approaches 

endpoints of the segment AB, the displacement V/l.l(K) 

changes continuously into the gradient of the Landau surface 

of the appropriate contracted diagram. This continuous 

behavior is implicit in Theorem 10. It means that the 

iE-prescriptions for the leading surface LO+[j}l] and the 

surfaces J a +U\' ], /)1' C iJl , are compatible (the corollary 

of Theorem 12) . 

. A similar analysis can be applied to the diagram ~ 2 

(Figure 7). The function /1. 2 is given by 
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(6.5a) 

where 

(k
5

+ 2 2 2 
k6) - 115 - 116 

(6.5b) Y1 = 

2115 11 6 

(k5+ k6+ 
2 2 2 

k7+ kg) - 114 -1l6 
(6. 5c) Y2 = 

2114116 

(k
7

+ 2 2 2 kg) - }.I 4 - 115 (6.5d) 
Y3 = 

2114 11 5 

The gradient VA2 (R) is given by 

C6.6a) 

where 

w1 
CY1+Y2Y3) 

(k 5+ k6) 
(Y 2+ Y1Y3 ) 

(k
5
+ k6+ k7+ kg)' - - -

115 11 6 114116 
<4 

(6.6b) 

w2 
(Y 3+ Y1Y2 ) 'Ck7+ kg) 

(Y2+ Y1Y3 ) 
(k

5
+ k6+ k7+ kg) . - - -

114115 114116 

C6.6c) 
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Note that if VAl and VA 2 generate)/l 

displacements of the form AIVA l + A2VA 2 , with 

;\2 positive, generate diagrams in [~}, where 

and 

Al 

j) 

J) 2 ' +~ e,l<"\, 

and 

is the 

butterfly diagram with contractions »1 and ~2. This is 

the result given in Theorem 8. 

A t any point KE: (./'0 +[.c9 1] f") j 0+ [..9 2J ) , the vectors 

VAleK) and VA 2 (K) and the vectors Fi' 1~i~n+4, defined 

in (5. 8) are linearly independent. . The surface .t + [.I)] = 

is therefore a submanifold of J/. -).to of 

codimension 2. The hypotheses of Theorems 12 and 13 are 

satisfied, so the point K is of type I. 
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VII. SUMMARY 

In this work the relationship between continuity 

properties of scattering functions in the physical region 

and macroscopic space-time phenomena has been examined. It 

was shown how singularities on Landau surfaces can be 

regarded as caused by processes in which the transfer of 

energy-momentum is carried by physical particles. 

The algebraic equivalence of the Landau equations and 

corresponding space-time diagrams was emphasized earlier 

16 by Norton and Coleman. The present work extends the 

algebraic result of Norton and Coleman by showing (in the 

course of proving Theorem 1) that if the scattering functions 

are infinitely differentiable except on the Landau surfaces, 

then either the space-time collision regions must be ordered 

so that the momentum-energy can be carried from the initial 

particles to the final particles by means of physical particles, 

or the transition amplitude drops off faster than any inverse 

power of a scale parameter. We also obtain the more difficult 

converse: if transition amplitudes falloff faster than any 

inverse power of the scaling parameter when the space-time 

collision regions are not causally connected via physical 

particles, then the scattering functions must be infinitely 

differentiable except on the Landau surfaces. Moreover, 

apart from infinitely differentiable singularities, the 
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iE-prescriptions associated with the Landau surfaces coincide with 

those of perturbation theory. 
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APPENDIX A 

The proof that the weak asymptotic causality condition 

is valid in nonrelativistic quantum mechanics is based on 

an inequality of Brenig and Haag. 27 Let 0t
O be the state 

at time t that would develop from an asymptotic initial 

particle state 0 if there were no interactions between 

the particles, and let 0 t be the corresponding state if 

there are interactions. Similarly, let ~tO be the state 

at time t that would develop into the asymptotic final 

particle state W if there were no interactions, and let 

Wt be the corresponding state if there are interactions. 

Then the transition amplitude <~ITI0> can be written 

(A.l ) 

where t is any arbitrary time. From (A.l) follows the 

inequality 

The norm II'" in (A. 2) is defined for all functions 

~, 



It 
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and it is assumed that o 0 
t and ljJ 0 

t have unit norms. The 

quantities II l/I t - l/I t 0 II and 110t - 0 t 0 II are bounded by the 

inequalities 27 

t 

II 0 t - 0 tOil ~ J dt' Ilv 0t , 0 II (A.4a) 

_00 

and 

00 

II l/I t - l/I tOil ~ J dt' /I V l/It' 0 II (A.4b) 

t 

where V is the interaction Hamiltonian. 

Let the asymptotic initial and final particles now be 

displaced by amounts UjT, and let the displaced initial 

and final particles be represented by 0UT and l/IUT. For 

these displaced particles the inequality (A.2) leads to the 

following inequality: 

IT [0l/1;UT] I ~ F[0;U,T] G[l/I;U,Tj +F[0;U,T] + G[l/I;U,T], (A.5) 

where 

(t+£)1-

F [.0; U" 1 = f dt' II V .0 t ' U, ,01/ , (A.6a) 

-00 
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and 

Gtlv;U,T 1 = jQCl (A.6b) 

Ct-c:h 

'" Here t is any arbitrary time, the number c: is positive, 

and the scale parameter T is greater than 1. 

If the potential V has a finite range R, the integrals 

which define /Iv 0 t
UT ,01l and Ilv 1);t UT ,oll are restricted to 

the domain 

A(R) - { (xl' ... ,x ) II x. - x. I $ R ,.. -m· -l -J for all i and j}. ( A • 7 ) 

[Here it is assumed that there are m particles in all stages 

of the reactioh; no creation or annihilation of particles is 

allowed.] Thus the ~uantity Hv 0t
UT ,01l has the form 

dX
l 
... dx .. ....m I " " V(xIT, ... ,x T) ..... -m 

(A. 8) 

Now the wave functions 
- /'0 
1);. (Lx ~ '.1.1 T), considered as function 

l J. 

of 
/\ 
x, collapse uniformly into the cones 

1\ 

V c:( ~I i ; u i ) as T 

.'\ 
becomes infinite. Consequently, if U belongs to a(t,c:,01);) 

A 

so that the initial-particle cones Vc:(1);i;U i ) CA."f'e w~11 ·sepJ'Vt-O\.+e.J 

before (t + E:) ) then for some sufficient ly large 
A 
T the 

.... -. 
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""J ) product wave funct ion in (A. 8) is of rapid decrease in T ('VIAl. I f_ I 

uniformly in 
A" )\ A 

( ~ 1 ' . . . , ~m ' t ' ) for (Xl,···,X) 
hi -m 

A (At ) and t' ~ + E • Thus if V is bounded (or even merely 

integrable), the function F[0;U,T] [and by similar arguments 

G(1)!;U,T1] is of rapid decrease when U belongs to a(t,E,01.J;). 

Then the inequality (A.5) implies that the weak asymptotic 

causality condition is satisfied for any given U in 

a(t,E,01)!). 

To extend the analysis to compact sets r of a(t,E,01.J;) 

it is only necessary to observe that the velocity cones 

'" V (1.J;.,u
l
.) never come closer in the appropriate regions 

E l 

than some distance oCr). 

The number ~ is chosen so that R« o(r)i, and the 

analysis proceeds as before. This insures that the WAC 

condition is satisfied uniformly on compact subsets of 

Q(t,E,01)!). These arguments can be extended also to the 

case of potentials that have decreasing exponential bounds 

at large r. 

The same ideas can be formulated in a classical theory 

by considering a statistical ensemble of classical experi-

ments in which the momentum-space probability functions 

P. (k)' of the initial and final particles have small compact 
l #v 

support, and in which the spatial distributions P.(x,t) 
l -

at 

time t = 0 falloff faster than any power of I~I -1. 

Let Vi(x) be the velocity cone that corresponds to 

and that has its tip at x = (x x): 0'-
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-a:mi kE SUpp Pl'}' 
- J "" 

Here wi (~) . is (~2 + mi 
2 )'1z. . Furthermore, let 

Vi (x;r) = U 
I~' - ~I ~ r 

V.(xO,x'). 
1 -

(A.9) 

(A.10) 

Now, if the trajectory of the ith freely moving particle 

passes through a poirit x, = (x O'!') f6r which I~' - !I < r 

then the trajectory must lie entirely in Vi(x;r).This 

means that the fraction of the trajectories in the statis-

tical ensembiefor ~hich particle i remains always inside 

V. (x;r) is just 
1 

i\ (x;r) = J 
I~' - ~ I ~ r 

The rapid falloff of P. (x,ti) for large 
1 -

(A.ll) 

I~I implies that 

(A.12) 

goes rapidly to zero as T becomes infinite: Di(rT) * O. 

The stipulation in the weak asymptotic causality 

condit~bn is (es~entiilly) triab thedispiaced velocity cones 
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of the initial particles do not intersect for t, £1 and 

that the displaced velocity cones of the final particles do 

not intersect for t ~ - £T. The condition that the dis-

placed cones do not intersect in these regions means that 

when 1 = 1 the minimum (Euclidian) distance between the 

A 

cones in the regions and t ~ -£ is nonzero. If 

DO is this minimum distance, the minimum distance when 1 

is arbitrary is DOl, which becomes infinite as 1 becomes 

infinite. 

Since the displaced cones Vi(uiT) have a minimum 

spatial separation DOT in the appropriate regions 

± t '£1, they can be replaced by slightly larger regions 

Vi (ui T;rl) that have a minimum spatial separation dOT> O. 

Let the initial and final particles of the classical 

treatment be subjected to the displacements U.l. The 
l 

corresponding displaced spatial distributions P. U1 (x,t) 
l -

are 

given by 

UT P. (x,t) = P.(x - U.T, t - U
l
' Ol). 

l - l - -l 
(A.13) 

Thus, the probability that the freely moving particle i 

J dx' P.UT(X',U'OT) = ~l.(O;rT). (A~14) 
l - l 
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The probability that every particle i remains inside its 

displaced region Vi(uT,rT) is 

rapidly approaches unity as T 

~ 1\ (0 ;rT) . This number 
l 

becomes infinite. 

Let us suppose that the inieraction between the particles 

has a finite range R, in the sense 1hat a set of particles 

do not interact unless the distance between some pair of them 

becomes less than R. But fo~ sufficiently large T the 

distance dOT of c16~~st approach of the regions Vi(uiT;rT) 

is greater than R. Thus for this value of T there will 

be no interaction between initial particles in the region 

t 'ET for thoSe members of the ensemble for which each 

initial ~article is in its fegion Vi(uiT,rT). The fraction 

6f the members for whichth~se conditions are realiz~d 

(simultaneously for all particles) rapidly approaches unity. 

Consequently, the probability that the initial ~articles 

interact in t ~ ET rapidly approaches zero as T becomes 

infinite. Similarly, the probability that the final particles 

interact in t ~ -ET ·rapidly approaches zero as T becomes 

infinite. 

The fact that the fraction of members of the ensemble 

that have reaction~ in t < 0 decreases rapidly as 

becomes infinite means that the difference between the 

classical joint probability function 

UT 
P. (X,V,t) In 'V .... 

UT . . . 
= P· n (xl,··.,x ;vl, ... ,v it) 

l - ~m ~ ~m 
(A.15) 

., 

r", 
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and its unperturbed value 

P. UT,Oex V t) = 
In ",'-' n 

initial 
(A.16) 

must, when integrated, become small as T becomes large: 

!d! dY Ip. UTex,V,o) - P. UT,O(X,V,O) I * 0. 
In ~ - In ~ '" 

(A.17a) 

Similarly, we must have 

(A.17b) 

The classical expression for the overlap probability is 

T = !d2\; dY Min {Po UTex,V,O), P tUTex,V,O)}. 
-- In - ~ ou ~ -

(A. IS) 

This gives the fraction of the members of the "in" ensemble 

that can oc'cur as members of the "out" ensemble, or conversely. 

(If in a certain "bin" the in e.nsemble has n l members and 

the out ensemble has n members, the minimum of 
2 

and 

n 2 is the maximum number of members common to both ensembles.) 

It follows from (A.17) that T differs from its unperturbed 

value 

TO = JdX dY Min {Pi UT,O(X,V,O), P tUT,o(X,V,O)}, (A.19) 
~ ~ n - '" ou - ~ 
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by a term that goes rapidly to zero as T becomes infinite. 

Thus, for a fixed U in a(O,E,~), the weak asymptotic 

causality condition is valid in a classical model with finite 

range interactions. The analysis is extended to compact sets 

r of a(O,E,~) "in the same way as in the quantum mechanical 

case. 
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APPENDIX B 

By way of establishing notation, we give a constructive 

proof of the following well-known proposition: the restricted 

complex mass-shell J(,c is a C3n-4)-dimensional analytic 

submanifold of C4n . ..... 

Proof. Let the n-tuples K = (kl , ... ,kn ) of complex 

momentum vectors be associated with points Z = (zl'" "z4n) 

of through the equations 

Then the set ~ can be written as c 

where the functions f.(z) are defined by 
1 

f. (z) 
1 

and by 

3 
= ..1.. l: 

2 
"fl=O 

f. (Z) 
1 

i-n-l i-n-l = g , 
n 
l: z4·+· 4' (n+l~i~n+4). 

j =1 J l-n-

(B.l ) 

(B.2 ) 

(B.3a) 

(B.3b) 
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(The metric is 11 22 = -g =-g 

Consider the Jacobian matrix 

af i =-",-(z). 
OZj 

1.) 

(B.4) 

Explicit computation shows that the set of points of n1c 

where rank J is less than n+4 is exactly 1f/. -Jr... Therec c 

fore, at every point K (or z) of 'ic a (nonsingular) set 

of coordinates for C4n can be defined by -

and 

F.(z) = f.(z), 
1 1 

F. (z) = 
1 

4n 
2: 

j=l 
E .. z. , 

1J J 

The (3n-4) fixed real vectors 

(n+5~i~4n) . 

E. = (E.
l

, .... ,E. 4 ) 
,1 1 1 n 

appearing in (B.5b) are any vectors which, together with 

the n+4 vectors 

, (af. ·af. 
( -) 1 (-) 1 E. z = -~-- z, ... ,-~---

1 oZi aZ4n 
(1~i~n+4), 

(B.5.a) 

(B.5b) 

(B. 6) 

(B. 7) 

" 
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f9rm a set of linearly independent vectors. The functions 

F. define a coordinate system in a sufficiently small neigh-
l 

borhood 6 one c4n of K K(z) . It follows 28 from (B. 2) = c .... 

that the set 6 c (K)()'YCc is a (3n-4)-dimensional analytic 

submanifold of C4n . Since this construction can be made ... 
for any point KEic' the proposition is proved. 

Remark. The mapping F: g4n + ~4n defined by (B.5), and 

hence also its inverse, is real analytic. It follows that 

the mapping ITR introduced in Section lIB is also real 

analytic. 

Remark. The vectors Ek for n+5~k~4n can be associated 

with n-particle displacement vectors UA = (u Al '·· .,uAn ), 

1~A~3n-4, in the following way; 

The local coordinates 

U ·K = 
A 

(B.5b) of J/,. c 

(B. 8) 

then become 

(1~A~3n-4), (B. 9) 

where the bar indicates the relabeling of indices. Thus, 

the local .coordinate system constructed in the proof of the 

proposition is a "simple" coordinate system. [See Equation 

(2.13) . ] 

Remark. For any point RE~ the set of 3n-4 linearly 

independent vectors UA defined above provides a unique 
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decomposition of any displacement vector D into the sum 

where 

lJ -
D OJ (K) 

--t--lJ lJ j k j + a , 

is a causal displacement for any 0 such that supp 0 

contains R. The displacement DoCR) displaces each 

(B.IOa) 

(B.IOb) 

parti6le of the set specified by R along its own trajectory, 

and gives a single overall displacement to all particles. 

Thus Do(R) is a member of the causal set 'oCR) defined 

below Equation (4.8) . 

The z. defined above are simply components of the 
J 

vectors k i . In the rest of the paper the z's denote the 

(3n-4) variables of a real local coordinate system. 

Notice-that DO(R) belongs to the null space of the 

matrix aK/az. That 'is, 

CI~A~3n-4). (B.II) 

This follows from the restrictions on K imposed by (B.2). 

Moreover, at any point of A(, all vectors in the null space 

of aKCz)/az are of the form DO[K(z)], since this null 

space has dimension n+4. 
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APPENDIX C 

A. Proof of Theorem 1. 

Let a(t,E,¢) be the set described in assumption (c). 

This set contains -VA(K), and is thus nonempty. It is in 

fact open in the topology induced by the Euclidean norm 

IIU - u' II (C .1) 

To see this, define for any neighborhood N of any displace

ment D in a(t,E,¢) the set 

"- J\ 

V(¢.,N)= 
E 1. 

V (¢.~u.). 
Ell 

(C. 2) 

Every two initial-particle cones 
A 

V C¢.;u.) 
Ell 

and v (¢.;U.) 
E J J 

are separated by some finite (Euclidian) distance dO in 
A_ A. 

D (t,E). " Therefore the sets VE(¢i,N) 
.... 

and V (¢., N) 
E ,j 

are 

" separated in D-(t,E) by a distance d'o~(dO-26), where 

6 is the diameter of N. If 6 is chosen small enough, +he~ 
A 

the distance d O-2L'l is positive, and the sets V (¢.,N) E l 
"\ B-(t,E). and V (¢.,N) are disjoint in Similar arguments 

E J 

hold for each pair of initial particles and each pair of 

final particles. Thus every U in some neighborhood of D 
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belongs to aCt,£,0). Since U is an arbitra~y point of 

aCt,£,0), this set is open. 

According to hypothesis, the displacement V = -VA(K) 

belongs to a (t, £ ,0) . Since aCt, £ ,0) is open there exists 

a neighborhood N of V with compact closure N contained 

in aCt,£,0). The WAC condition then requires that 

T[0;UTl ~ 0 uniformly on N. The symbols Nand N here

after designate these two sets. 

If the relation 

supp 1)! C Sl:l-PP 0 c C . 3 ) 

is true, the relation 

a(t,£,0) c a(t,£,1)!) ( C . 4 ) 

is also true. Thus it follows from WAC that the rapid 

decrease T[~;UT] ~ 0 is obtained uniformly on N for any 

fixed product wave function 1)! in B(~ with support 

satisfying (C.3). 

Let U = {Ul , ... , U3n- 4 } be any set of n-particle dis

placements that define a simple coordinate system 

(~C(R),rrK,Dc(R)) with local coordinates FA = UA·K, and let 

( C . 5 ) 
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where is the unit sphere in 3n-4 R . - Then-, the set r (U) 

is contained in the union of the finite number of open sets 

+ r -(U) constructed as follows. It is shown in Appendix B 
p 

that the displacement VA(K) can be written as 

CC.6) 

where UOCK) is a causal displacement belonging to CoCK), 

and 

(C.7) 

The vector y = CY1" "'Y3n-4) must be nonzero, since 

otherwise -\lA(K) would not belong to a(t,s,0). Let the 

normalization of A(K) be such that is a vector 

of rl, and let e 2 ,···,e,) 4 .)n- be any 3n-4 other vectors in 

rl which, together with e l , form an orthonormal basis for 

3n-4 R . For any a, O<a<l, a finite open covering of rl is 

given by the sets 

CC.Sa) 

and 

± -~ 
rl = {tit s rl, + Ct,e ) > S(r-l) }, (2~p~3n-4 = r), (C.Sb) p p 
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where a>S>O, and (t,t') is the usual inner product 

(t,t') L:t.\t'" of 3n-4 The set f (U) is thus covered = R • -
by the open sets 

(C.9) 

The crucial step is to show that for any 0<0.<1 there 

is some (real) neighborhood n c ( n. fl f::,' (i0 1'1 f::, (K) 1'\ s upp 0) 
o· c c 

of K, such that for any fixed product wave function ~ in 

R(no ) the transition amplitude T[~;UT] is of rapid decrease 

(T[~;U~ * 0) uniformly on 

(C.IO) 

Since 

(C.ll) 

it is sufficient to prove the uniform rapid decrease on the 

closed sets rl-(U) and 

For any fixed product 

- + 
fp-(U), (p~2). 

~ E 8(')(,) satisfying (C.3) the 

uniform rapid decrease of T[~;UT] on fi-(U) is a consequence 

of the WAC condition, provided a is small enough so that 

f 1- (U) C(N n r (U)l. [If the original a is not small enough 

then a smaller one can be used.] To use this fact let 

8c supp 0 be an open set with the property 

.. ..;1 

'. 



• 

-77-

t9Mc(nn/'l I (K) r1 /'l (ie», and let () 'CS be an open neighbor-c . c 

hood of K with the property f) 'CSUpp .1); 'et), where 1); I is 

a product wave function. Let n. 1 be the intersection 

11 = f) 'n 7i of I) I and /I.. Finally, let X E/f(V/) be a 
1 

product wave function that is unity in supp 1jJ' and zero 

outside supp 0 .. Then for any product 1jJ in g (12
1

) , the 

-
wave function 1);::: 1);x satisfies T( ~I-~; Ur] :: O. Since 1); 

is a product wave function in DeW) that satisfies (C.3), 

'r [-;P; U T] is of rapid decrease uniformly on f 1- (U) . Thus 

T[1jJ;UT] also has this property. 
- + 

The uniform rapid decrease on the other sets fp-'p ~ 2 

is a consequence of the smoothness requirement on T(K). Let 

z = (zl, ... ,z3n-4) be the local coordinates for which T(z) 

is smooth in the variables (z2, ... ,z3n-4)' Let U be some 
+ 

displacement in fo - and let ho(U) be the coordinate 

transformation defined by 

(C.12a) 

eC.12b) 

Sp = LeA UA·K(z), (2~p~3n-4)p~o), 
I. p. 

(C.12c) 

where the vectors e p = (e pi '" .,e p'3n-4) are the orthonormal 

basis vectors used in (C.8), and the UA are as in (C.5). 

Define 
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= Vp' K(z), .(1~p.(3n-4) , 

and let Q (z) be t.he determinant of the square matrix 

(C.13) 

QpA = a.0 p/az A. Finally, for any K in 111 (with n l taken 

suffic~ently small) write 

where UO(K) belongs to c. (K). 
o The functions g (K) 

p 

(C.14) 

are 

continuous, and gp(R) = 0pl.Using the readily verified 

relation Uo·aK/az = 0, one finds by explicit calculation 

that the Jacobian 

where U = E X V . 
P P 

H CZ,U) o of the transformation 

Thus if U belongs to 

h CU) o is 

(C.15) 

Jacobian does not vanish on the set 

(C.16) 

l The open sets D (R) 
o 

-always contain z and hence are 

nonempty, for all o~2.J Therefore if z belongs to Do 

and U belongs to 
+ r - then the holomorphic transformation o 

" 
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haeU) can be inverted, giving the z~ = z~C~,X) as holomorphic 

functions of sand X. Then because zICs,X) is simply sl' 

the smoothness of T(z) in the variables (z2'" .,z3n-4) 

implies the smoothness of T'(s,X) = T(z(s,X)) in the variables 

+ 
to r -

The proof of this is deferred to the end (Lemma I) . a . 
rz = IT~(Do)' Then in fa 

± 
and l/J in 8(72

a
) Let for U a 

the amplitude T [l/J ; UT] can be written 

(C.17) 

where 

(c.l8) 

J'(l;;,X) ~'(l;;,X) T'(l;;,X) 

is a distribution in l;;a that depends on X. The function J 

is the holomorphic Jacobian associated with the local coordinate 

system (6'c(K),IT'K ,D'c(K)). The holomorphy of H'a(s,X) = 

Ha(z(s,X)) . and J'(l;;,X) = J(z(l;;,X)), and the smoothness of 

T and ~ = l/J 0 
I 

lIK' imply the infinite differentiability of 

f in (,a and in X for all ud~ ± 
(See a Lemma I) . The 

function f must also have compact support since the function 

~'(s,X) = ~(z(s,X)) does. It follows therefore, for all U 

- + 
in r -

a ' that all derivatives are absolutely 

summable and hence that the integrals 
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I (X) = J' dr,; n . (J 
(C.19) 

- + are bounded for U in r -. 
(J 

Equation (C.17) ~hen implies 29 

- + that uniformly on r -
(J • Since the index (J 

was arbitrary, the amplitude T[t/J;UT] ~. 0, uniformly on the 

set r 0 (U) defined in (C .10) for all product wave functions 

where n :: n n is open in X. and contains o (J 

To complete the proof let n' c x'rn~ be a neighborhood 

of R, and let n 'n;l,. be a sU,bset of no' Let X be a 

product wave function in 11(1l
0 

) with uni tv:.alue on n'. 
Then, for any t/J in B (n In -;(. ) , one has 

T[t/J] = T[t/JX]. (C.20) 

If the notation T(t) :: T[X;EtAUAJ is introduced, the ampli

tude T[tjJl can be written in the form of the convolution30 

(C.21) 

where 

~(t) = (2n)-C3n-4) J dz e-i(z,t) (t/Jo IT ) (z). 
. K (C.22) 
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The z" in (C.22) are the local coordinates U,,' K. Define 

={: 
tltl- l A - + if t = 0 or - t E Ql ' + 8 (Ql ; t ) (C.23) 

otherwise. 

Equation (C.21) can then be rewritten 

(c.24) 

where 

(C.25) 

and 

(c.26) 

The results of the preceding paragraph show that 

TO(t) ~ 0 uniformly in tltl- l as Itl~oo. Therefore, the 

function TO(t) has an infinitely differentiable Fourier 

transform 7°(z), and 31 

(C.27) 

Let J(z) be the Jacobian appropriate to the local coordi-

nates Define o -1 0 
T (z) == J (z) T (z), 

,J 
and 
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let Then (C. 27) becomes 

(C.28) 

where '1,0 (K) is infinitely differentiable on 11.' () ,.(,. .. 

The function Tl(t) is not necessarily of rapid decrease 

when Itl+oo, but it has at most polynomial growth. 32 Hence, 

the function exp[-(6,t)]~1(t) is of rapid decrease when 6 

belongs to 

+ I" " - +} C = {6 (6,t) > 0 for all t E ~l ' (C.29) 

and it has a Fourier transform T1(z) that is holomorphic 

for 1m z in C+. 33 If TJ1(z) :: J-l(z) T1(z) is introduced 

for z in 

(C.30) 

the second term in (C.24) becomes,31 after simple manipulation, 

lim J dz(1jJ 0 IlK) (z) J(z) T
J

O

l (zti6). 
161+~ 
6E C 

From this it follows that 

(C.31) 

(C.32) 
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where and 

K'(K,o) = IT_(ITR-I(K) + io). 
K 

This completes the proof. 

Lemma 1. Suppose T(~] has the representation 

T[~) = J 
S 

d
m 

] dZ[--m J~(z) F(z) 
dZ

l 

(C.33) 

(C.34) 

where S is some domain, and F(z) is a function that is 

continuous in and has continuous partial derivatives 

of all orders in the variables (z2'" .,zn)' Let h:S~S' be 

some nonsingular holomorphic mapping from SCBn onto 

S'C Rn 
such that zl' ~ hl(Z) = zl' Then there is a 

function G(z'), z, = h(z), which is continuous in zl' and 

has continu~us partial derivatives of all orders in 

T[~] = J 
S' 

Proof. Under the mapping h, the operator dm/dZ
l

m 

transforms into a differential operator 

D = L: 
p' 

m 
L: 

p=l 

(C.35) 

(C.36) 



where the h pp' are holomorphic functions and the p' 
D 

p 

are derivative monomials in the variables (z2', ... ,z3n_4'). 

The quantity T[l/I) then has the form 

T[l/I) = J dz' H'CZ')[DJl/I(h-lCz'))] F(h-l(z')). (C.37) 

S ' 

The function F'(z') = F(h-lCzI)) also has the property 

that it is continuous in the first variable z ' 1 
co 

and C 

in the other variables (z2', ... ,z3n_4'). The function 

H'(z') is the holomorphic Jacobian for the transformation 

p' h .. For each p and p' the derivatives D can be 
p 

transferred (through partial integrations) to the functions 

H'h F' 
PD' 

This transforms (C.37) into the form 

T[l/I] = f dz' 

S' 

m 
l: 

p=l 
G (z') d P Jl/I (h -1 ( z ' ) ) . 

P dz ,P 
1 

(C.38) 

The functions G (z') also have the property that they are p 

continuous in the first variable z ' 1 
co 

and C in the others. 

Through further partial integrations the derivatives 

can all be transformed into derivatives dm/dZl,m, yielding 

T[l/I1 = J (C.39) 

S' 
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is the function required by the 

Lemma 2. Equation (C.21) is valid: 

T[1jJ) = Tfx 1jJ) = J dt~(-t) T(t). 

Proof. Since X belongs to ~, the functional 

(C.40) 

T[x 1jJ) = F[1jJ] is a continuous linear functional on the space 

f of functions 1jJ that possess continuous partial deriva-

tives of all orders. (Note that the support of 1jJ is not 

restricted here.) This is becatise X 1jJ belongs to ~ for 

every 1jJ in E. The functional F then belongs to e', 
and the result 34 of Bremmermann is directly applicable, 

yielding (C.40) for all 1jJ E» that satisfy (C.20). 

B. Proof of Theorem lAo 

The proof consists of two parts. The first is a 

demonstration that the number a, the simple coordinate 

system of Theorem 1, the number E, and the set n can 
E 

be chosen so that (n fl C + (io]et'. The second cons is t s of the 
E E a 

necessary generalization of the way the limit (3.7) is taken. 

Choose a simple coordinate system (6 c (K),rrK,D
c

(K» in 

which zl = a(K;K) = VA(K)·K. Such a choice is, of course, 
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possible only if vA(iO does not belong to to(K). [see 

(B.ll).] But if VAeK) belonged to C on o . the various 
A 

displaced velocity cones Ve0 i ,- 8i A(R» would have a 

common point and assumption (c) of Theorem 1 could not be 

satisfied. Thus, coordinates with zl = 0 can be chosen. 

Let nile [6 c (R)f)ic 1 be a complex neighborhood of R 

such that its closure ii" is also contained in 6 (R)f)n. 

and the set 

one has 

Since 

c c 

II--len") 
K is convex. Then for KEf n" n C + (K)] 

E 

1mzl(K) ~ sup 1m(U·K)= Ell1m KII· 
UER 

E 

is convex, there is some A>O 

111m KII ~ 11mzI A 

(C.41) 

such that 

(C.42) 

where -1 z = IIR (K). For since the mapping IIR is holomorphic, 

the functions f. (x,y) = Imk. (x+iy) have derivatives of 
lV lV 

all orders for (x+iy) in n" and can therefore be expanded 

about y = 0 by using the Taylor formula (with remainder)35: 

(C.43) 

where t, O~t~l, is some number that depends in general on 
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y. Since kiv(z) is real when z is real, fiv(x,O) = O. 

We can therefore write 

IIImKII= IYI IJ.(x,y), 

where 

IE y, ~ f i (x, t y) J2} ~ . 
) 

fI. oy, 
, fI. 

Consider now 

A = inf -1 _ IJ.(x,y). 
(x+iY)EITR (ll") 
Y1'O 

If A = 0, there must be a sequence of points 

with y l' OJ such that 
n 

1 im IJ. (x , y ) = O. 
n n n-+oo 

(x ,y ), 
n n 

Moreover, because nil is closed, the sequence (xn'Yn) 

approaches a limit (x,y) with (x+iY)E ITK -lUllI). If 

(C.44) 

(c.45) 

(c.46) 

y1'O, then 111m K(x+iy) II = O. But for a simple coordinate 

system the vanishing of the imaginary part of K(x+iy) 

implies y=O. This precludes the case Y1'O. To discuss the 

case where y=O, we first define wn = YnIYn J -
l . The 

sequence wn ) suitably restricted to a subsequence)is conver-

-gent to some w with unit norm. The 
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continuity of the derivatives afiv/8YA further implies that 

If A = 0, the equations 

af. 
E w, lV (x,O) = 0 
A 1\ ~ 

must be satisfied for all i and v. Because the real 

analyticity of the k. (z) 
lV 

implies 

(X,O) , 

(C.49) 

(C.50) 

the equations (c.49) state that the vectors VA = (viA"'" 

v
nA

), with v = iA,v ak. /az" lV 1\ 
are linearly dependent. 

These vectors VA form the rows of the Jacobian matrix of 

the mappin~ ITR(z). Since this Jacobian has maximal rank 

in Dc(R), the rows cannot be linearly dependent. This 

contradiction implies that A cannot be zero. Consequently 

A is greater than zero. 

For any E>O one can find an O<a<l such that a<EA. 

Then (C.41) and (C.42) imply 

1m zl > 11m zla. (C.51) 
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This implies that z is in Thus, 

and the first part of the theorem is proved. 

It is clear that n" can be chosen so that [n lin i]c nl 

where 11 I is the neighborhood of Theorem 1. Theorem 1 

therefore implies Theorem lA, provided the manner of taking 

the limit (3.7) can be converted to that of (3.14). Let 

ZA (x,s), 1~A~3n-4, be any uniformly continuous functions 

of xED(R) = D (R)nR 3n- 4 and s, O~s~l, which have the 
c -

following three properties: (a) partial derivatives (with 

respect to x) of all orders exist and are continuous in 

both x and s; (b) z(x,O) = x for all x; (c) z(x,s) 

belongs to ITR-l(f
a

) for all x and s>O. We want to 

show that 

'r [1jJ] = lim 
s-+O 

(C.52) 

where TO(K) and Tl(K) are the functions of Theorem 1 and 

(C.53) 

Since [n"nCE+(R)]C£a' all paths KICK,s) of the type 

allowed by the theorem are of the type (C.53). Thus a proof 

of (C.52) proves also Theorem lAo 

The relevant term in (C.52) is the one involving 
1 I 

T (K U<, s.» . 

In terms of local coordinates it can be written 
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(C.54) 

I The function TJ (z) was defined in the proof of Theorem 1 

as J-I(z)Tl(z), where TI(z) is defined for 1m zEC+(a) 

and z EDC 00 as 

(C.55) 

For s>O and xED(R) the quantity Im(z(x,s),t) is bounded 

from below by n(s) Itl>o, for all (real) t lOin the 

support of ~l(t). This lower bound is a consequence of the 

-1 f.. continuity of z(x,s) and the assumption that Z(X,S)EITR (a) 

for s>O. The integral (C.55) therefore converges 

uniformly in z and the integrations in (C.54) can be inter
?> {, 

changed: 

l(s) = f dtTl(t) <l>(-t,s), (C.56) 

where 

<l>(t,s) = (2rr)-(3n -4) jdXJeX)J-leZeX,S»1JJex)e-ieZeX,S),t). eC.57a) 

The next step is to show that the integral eC.56) 

converges uniformly in s in some strip O:<ss~s , o 
where 

O<s ~l. The function Tlet) is continuous and of at most o 
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polynomial growth, so there is some integer N such that 

Tl(t)(l+lt 12N)-1 is absolutely summable. On the other hand, 

the function (1+ltI2N)~(_t,s) is bounded in both t and 

s for t in the support of ~l(t) and s in some strip 

o~s~so. To see this, consider the functions ZA(X,S) as 

a mapping s from D(R) into D (R) c for each s. Let 

W(x,s) be the Jacobi.an of So Assumption (a) about z(x,s) 

implies that W(x,s) is continuous in both x and s, and 

ass urn p t ion (b) im pI i est hat \\T( x , 0) = 1 for a 11 x . It 

follows that there exists o <s ~l, o such that W(x,s) 

does not vanish on any product set of the form P xl, where 

I = {slo<s,s} and P is any compact subset of D(R). For o 

any sEI, therefore, the mapping s can be inverted on P. 

Since supp ~ is a compact subset of D(R), this result 

can be applied to (C.57), yielding 

~(t,s) = (27T)-(3n-4) I dZJ(x(z»)J-l(z)W-l(z)~(x(z»e-i(z,t). 
res) 

(C.57b) 

The contours res) in (C.57b) are the images under s of 

D(R)n supp ~ for various values of s. The sets res) are 

compact for all SEI. Consider now the function (1+ltI 2N ) 

~(-t,s): 

(l + It 12N) ¢ ( -t ,s ) = (27T)-(3 n -4) J dzJ(x(z»J-l(z)W-l(z)~(x(z» 
res) 

[l+(_l)N(L ~)NJei(Z,t). 
f. dZ

A
-

(C.58) 
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Partial integrations of '(C. 58) yield 

2N (l+ltl )¢(-t,s) 

where 

= (21T)-(3n- 4) J dZ\,-l(z)FN(z)ei(z,t), 

f(s) 

Equation (C.59) can be rewritten: 

I 1
2N ) - 3n- 4 f i (z t) (1+ t )¢(-t,s) = (21T ,dxFN(z(x,s))e'. 

(C.59) 

(C.61) 

The continuity of the mapping s in both x and s, and 

the continuity of the functions J, W, and ~ ensure the 

boundedness of FN(z(x,s)) on D(E) x I. The boundedness of 

ei(z,t) for all t in the support of Tl(t) is ensured by 

-1 c the fact that z is either real (s= 0) or in ilR (La)' 

Thus, the function (1+ltI2~¢ (-t,s) is bounded in both t 

and s, with t in the support of Tl(t) and 
37 

and the integral (C.56) converges uniformly. 

O~s~s , o 

The order of the limit s+O and the integration over 

t can therefore be interchanged: 

lim I ( s) 
s+O 

= JdtTl(t) ¢(-t,O). (C.62) 
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...., 
Because ~(-t,O) is just ~(-t), equation (C.6?)is 

lim 1(8) 
s-+O 

Since it was shown in the proof of Theorem 1 that 

lim J dK~(K) Tl[f.(I(K~S)]= Jdt Tl(t) {j7(-t) , 
/0/-+0 

OEC+(a) 

~he proof is complete. 

(c.63) 

(C.64) 



APPENDIX D 

A. Proof of Theorem 3. 

Consider an arbitrary point K of \l - .J... +, and let 

U = {U
l
,"', U

3n
- 4 } be a set ,of linearly independent displacements 

that define a simple coordinate system (C~/K),rrx, Dc(K)) at K. 

Because W - .i + is open,19 there exists a (product) neighborhood 

I'l i C Xl1l
i

, (Yii n 'm )C (6,c (K)n [ W'- ;:L. +]), of K such that n i is 

the support of some product wave function X'. Because U defines a set 

of local coordinates at K, the set ~Li can be chosen small enough so 

that the set r( U) defined in (L~. 9) has an empty intersection with 

G O( X'). [See (B.10). ] 

Consider next a product X satisfying supp O
c. 

X = 'YJ c: ( c:: -v1' - '(1 '\1' 

where cYis open. Then 

(D.l) . 

To prove (D.l) assume the converse: suppose there is a U in & (X) that 
c 

is not in bo(X!). Because the points of 'J1'/] 111 lie in h/" - ;C+ and 

hence in 1>1 - 1>1 0 ) we can assume that no two initial R. are co~inear in 
l 

and no two final R. -are collinear in)1'. Then, because U is not 
l 

/'--

one can find some E > 0 such that the sets V (X., u.) of 
Ell 

Defini tion J+ have no common point. But then the diagram 6) required 
E 

by Definition 4, and the fact that U is in e (X), must be a nontrivial 
c 

diagram. This diagram (1) 
E 

belongs to e c (K) - b 0 (K) for some K 

in 11' () Y>'7 . But then this K lies on dl+, contrary to the definition 

of Yt'. This contradiction proves (D.l). 
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Because r("LO does not intersect r; 0 (X), it does not inter-

i/ 

sect G (X) and is therefore a (compact) subset of O. (X), 
C .I C 

Since f'CLt) is a compact subset of a c(X)' the SAC 

condition implies that 'T" (t) = T [X; It u ] =) 0 
C c A A uniformly in 

as It I .~ 00, 

Let the product wave function X have unit value on 
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the closure n ~ of some neighborhood n 2 C;{,. of R, where 

il2 is a subset of n l f'l JI,. •. If 1jJ belongs to t8 (71.2 ), then 

Tc[1jJ] = Tc[1jJ X]· This relation can be rewritten30 

where 

~(t) = (2lT)-(3n -4) f dz e- i (z,t)(1jJ 0 lTR) (z), 

is defined just as in Appendix C. Since 

rapid decrease uniformly in t Itl- l when 

T (t) 
c 

I t I 

is of 

becomes 

infinite, it has an infinitely differentiable Fourier 

transform T (z).38 
c Moreover the convolution theorem31 

can be used to convert (D.2) to 

(D. 4) 

Let J(z) be the weight function (Jacobian) appropriate to 

the mapping IIR, and let TcJ(z) = J-l(z) Tc(z). Finally, 

T (K) -1 This let = TcJ(IIR (K)). function is infinitely c 

differentiable on rt.. 2 ' and 

(D. 5) 
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for every wave funct ion in g (722 ) . The distribution T (K) c 

is therefore infinitely differentiable on n
2 

and hence at 

R. 

B. Proof of Theorem 4. 

Let n.C[J?() 6 c (R») be a neighborhood which satisfies the 

conditions of Definition 5. Then, any neighborhood n 1 of 

R fulfills the conditions of the theorem if its closure 

-j1 is contained in n. III 

To prove this let X be a product wave function in 

.g(Jl,) with unit value on 721' and let Tc[X;U(t)] == Tc(t) 

for any displacement U of the form U(t) = L tAU\. Being 

the Fourier transform of a distribution with compact support, 

¥c(t) is infinitely differentiable. 32 If ~ is any wave 

function in 8( lZl)' the transition amplitude 'l"c[~] can 

be written30 

(D.6) 

where ~ is defined in (D.3). The domain of integration 

is broken up in the following way. Let 

and for all i~O let 
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Define the step functions 

8
i 
(t) = { 10 

and adjust the (finite) values on the boundaries of the 

C (w.) so that 
l 

L: 
i~O 

8. (t) .= 1 
l 

for all t. Equation (D.6) then becomes 

where subscripts c are now dropped and 

8. (t) T(t). 
l 

Consider first the term TO(t). Because the set 

(D. 8) 

(D. 9) 

CD .10) 

(D.ll) 

(D.12) 

corresponds to a closed subset of r(U) - fc(U;n), the SAC 

condition implies that, as It I increases, the function 

~o(t) is of rapid decrease, ~o(t) ~O, uniformly in tltl- l 

for t in. C(w
O

)' Since TO(t) vanishes for t i C(w
O

)' 



,. 
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the restriction that t belong to ~(wO) can be removed: 

TO(t) ~ 0 as Itl~oo. This means that TO(t) has an 

infinitely differentiable Fourier transform TO(z), and 

the first term in (D.ll) can be written31 

(D.13) 

Let J(z) be the weight function appropriate to the mapping 

-l( ° =J z)T(z). The definition 

allows (D.13) to be written in the 

desired form 

(D.14) 

where TO (K) is infini tely differentiable on n l . 

The functions 
,....i 
T (t), i ~l, which vanish for 

are of at most polynomial growth as It I becomes infinite. 

Any exponential damps this polynomial growth, and hence the 

functions exp{-(o,t)}Ti(t) 

Itl~oo uniformly in t~tl-l 
~i 

exp{-(o,t)}T (t) 

are of exponential decrease as 

The 

has a Fourier transform function 

T i (x+15) that is holomorphic for 

that 

(D.15) 
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The- convolution theorerri 31 can be used to write (D .15) as 

(D.16) 

+ -E. = {z I ZED (K), 1m Z E C (w.)}, 
1 . c 1 

(D.17) 

and define i -1 = T J (11K ( K ) ) • Then, (D.16) takes the 

form 

where 

lim jdK1)J(K) Ti(K/(K',S) .• 
lol~o 

OEC+(W.) . 
l' 

, (-1. K (K , 0) = 11 K 11K ( K) + 1 0 ) • 

The function Ti(K) is holomorphic on £.. = 11
K
-C E .). 

1 1 

Equations (D.14) andW.l?) combine to yi~ld the desired 

representation (4.16). 

(D.18) 

(D.19) 

It remains to show that if K is any point in rll-i'i+' ·j-he Y\ 

the limit function (~.19) exists and is infinitely 

differentiable at K. By virtue ·of (D~18) the function 

,. 
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Ti(K) exists as a distribution. It is only necessary, to 

show that it is infini tely differentiable. Let n 2 be a 

neighborhood of K with closure contained in n
l

- { + ~ and 

let lJ; be a product wave function in 8 (722 ), ,Then it 

follows from the results just derived that T[lJ;;U] has the 

formal represehtation. 

T[lJ;;U(t)] == T(lJ;~t) = JdZJ(Z)lJ;(z)e-i(Z~t) 0: T4(z)}~ 
j 

= jdt ';Ji'(t-t')L: 

(D. 2 Oa) 

CD.20b) 

are distributions. Because n 2 

i 

contains no points of ot.+ 
l 

the displacements in r c (U; rtl ) The 

-image of in w •• 
l 

Since the sets w.(j>O) 
J 

-are disjoint~ there is a neighborhood w.' of w with 
li 

closure w. ' 
l 

does not intersect any of -the sets W ... ,th . -
J 

j 'I 0 ~ i.. The set w{ is there fore the image in r2 of a set 

The SAC 

condition then requires that ~(lJ;~~~) be of rapid decrease~ 

, A , ,-1 A "t' ,-"1>0.>/ uniformly in t=t t for t in 

-I 

VJ~ This requirement is also satisfied by the first 

Cj=O) contribution to (D.20), since TO(z) is infinitely 

differentiable. (See D.13.), For jlO~i the set w. ' 
l 

a subset of r2 - w .. According to the lemma (Lemma 3) 
J 

proved below, the contributions j'lO~i to (D.20) must, 

therefore~ also be of rapid'decrease uniformly on w. '. 
l 

is 
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Therefore, the ~th term of CD.20) is also of rapid decrease 

uniformly on But by virtue of Lemma 3 the ~th 

term must be of rapid decrease uniformly also on the comple-

Thus for all t we have 

lim ItlN fdZJ(Z)~)(Z) T;"Cz) e-i(z,t) = 0 
It 1-+00 

(D.21) 

for all integers N. This tmplies that is infinitely 
30;' 

differentiable in the interior of the suoport of , . , ~). Since 

-can be chosen to be nonzero at z, the function 

must be infinitely differentiable at ~. Thus Ti(K) is, 

by definition, infinitely differentiable at 

This completes the proof. 

Lemma-1.. Let w be an open subset of Q, and let w' be 

-a closed subset of n - w. Define 

G(t) -' J dt'~(t-t') T(X,t'), 

(SCw) 

(D.22) 

where ~(X,t) and ~Ct) are defined in the proof of Theorem 

4. Then, for every integer N, the limit 

N ,. 
l:!.m T GCtT) = 0 CD.23) 
T-+OO 

A 

tltl-1 is obtained uniform]y in t =: on w! . 



« 
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'" Proof. The function T(X;t) is of at most polynomial growth 

as Itl~oo.32 There is, therefore, an integer p for which 

(l+ltIP)-l T(X;t) is bounded. Let A be that bound. Then 

IG(tT)1 ~ A J dt'(l+lt'I P )I1)j'(tT-t')I· 

C(w) 

J 
C(w) 

(D.24) 

(D.25) 

The T dependence of the right-hand side of (D.25) can be 

explicitly exhibited: 

(D.26) 

where 

Ar(t) = J dt' It' I
r 

It-t'l-
q

, (r = O,p). (D.27) 

C(w) 

Since w'eD-w, the magnitude It-t' I is bounded from below 
A 

by a positive number when t is restricted to w'. It 

follows that the integrals Ar(t) are bounded on w' if 

q is chosen large enough. In fact, if N is any positive 

integer, the number q can be chosen large enough that 

TN+l times the right-hand side of (D.26) is (uniformly) 
A 

bounded on W'. It follows that G(tT) satisfies (D.23) 
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APPENDIX E 

A. Proof of Theorem 5. 

Let j be a fixed nontrivial connected causal space-

time diagram, and let R belong to (.1
0 
+[~J -moO) . According 

to Theorem 6, the set ol'o+[~] is locally the set of zeros 

(on Jt. ) of a real analytic function J\(K) that has nonzero 

gradient near R. This would immediately imply that 01
0
+ [j)] 

is an analytic submanifold of AC of codimension 1 at R 

were it not for the possibility that the gradient of J\ with 

respect to local coordinates might vanish, even though VJ\(R) 

does not. To rule out this possibility, let A(z) = J\(K(z», 

where z is a set of local coordinates at R for 'vJ. Then, 

aJ\ = aK (E. 1 ) 

Now, any vector VJ\ = aJ\/aK that causes (E.l) to vanish for 

a 11 A i s 0 f t he form U a ( K). {s e e ( B . 11) .1 But if VJ\ 

were of this form, the displacements U which generate 

diagrams jj E: [151, K = K(1), would also be of this form. Hence, 

because K is not in )71.0' the diagrams j) E: f ~], K = K(f) , 

would be trivial. This is contrary to hypothesis. Thus, 

aA/az A is nonzero and the surface 010+ [~J is an analytic 

submanifolq of J/. of Qoqimension 1 at K. 
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B. Proof of Theorem 6. 

Let ~ be a fixed nontrivial connected causal space-

time diagram with n external lines and m vertices, and 

let j) E [j] . Let 

lE.I k. (,S) 
Jr J 

(E.2 ) 

be the sum of the mathematical energy-momentum vectors k
j 

of the external lines attached to vertex r of j) E ['»J. 

Energy-momentum conservation at vertex r then gives 

(E. 3) 

where 

= 2:'. ~. E. II !::. . (V) II -1 !::. . (V) . 
J J Jr J J 

(E. 4 ) 

The primed sum extends only over internal lines. The vectors 

!::.j(V) are defined by 

!::..(V) = 2: E V 
J r jr r' (E. 5) 

and the quantity 

II f,. . (V) II = [!::.. (V) . !::. . (V)] ~ 
J J J 

(E. 6) 
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II /':,.' [V(~)] 112 
. J . 

are all strictly 

and E. 
Jr 

positive for l;E[~l, by definition.]· The llj 

are the masses and structure constants of § . Equation (E.3) 

is obtained by first expressing Qr[K(D)] in terms of the 

momentum-energies associated with the internal lines incident 

upon vertex r, and then using the identity II /':,. II ::: II a . p . II = 
J J J 

to eliminate a .. 
J 

In terms of the quantities just defined the positive-a 

Landau surface .,t+[j)] is the intersection of the mass shell 

7rl with the set 

where the argument ~ in F LV;S]= F (V) r r 

dependence of the E. and llJ' Jr 
in F (V) 

r 

emphasizes the 

upon lJ, and 

n+ - {VI/':,.(V) are positive timelike}. 
J 

(E. 8) 

then 
satisfy Qr(R) = Fr(V), /I the set 

(E. 9) 

consists precisely of those points V which satisfy 

/':,.(V) = A. /':,.(V) , (All internal lines j), 
J J J 

(E.IO) 
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where the A. are strictly positive scalars. For if 
J 

satisfies (E.IO), it clearly belongs to r/ on. [See 

Conversely, if V belongs to s-l (iO, the vectors 

must vanish. This gives 

L: v r • Dr ( V ) = L:')l. n t. . (V) II - II t. . (V) II -1 t.. (V) • t. . (V) } = O. 
r j J J J J J 

'Fae:h term. in the braces .~Js._ nonpositive) 

vanish. This implies (E.IO). 

ea.c.k 
henceAmust 

V 

(E.4)·1 

(E.ll) 

(E.12) 

Condition (E.IO) is essentially the condition that V 

belong to the null space of the Jacobian matrix R(V) defined 

by 

aF 
R (V) r)l (V)-
r)l,sv = a v 

.vs 
(E. 13 a) 

(E.13b) 

The null space of R(V) consists of all m-tuples W = 

(wl' ... ,wm) of four-vectors for which the equations 

(E.14) 

;.. 
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are satisfied for all sand v. It is evident from (E.13b) 

that all vectors that satisfy (E.IO) belong to this null 

space. Hence, the s~t n+(R) is contained in the null space 

of H(V). Conversely, any vector V in the null space of 

H(V) must satisfy (E.IO), without the restriction to positive 

~j' For if (E.14) is true, the equation 

L: 
r)l,sv 

w )l w v H (V)= 0 
r s r)l, SV· 

(E.15) 

is also true. Since eltd,t term in the braces IS nonposi ti ve, 

each must vanish. This implies (E.IO), without the restriction 

to positive ~ .. 
J 

Explicit computation shows that any linear combination 

of the vectors V and where E 
p 

is a 4m-

dimensional vector with components 

belongs 

all p 

linearly 

of H(V) 

On 

to the 

and j , 

(E ) )l = <5 )l 
p r p , 

null space of 

the vectors 

H(V) . 

VEn+(K) 

independent. The dimension 

must therefore be at least 

the other hand, N(V) cannot 

Since 6. (E ) = 0 
,1 P 

and E must be p 

N(V) of the null 

five: N(V) ~ 5. 

be greater than 5 . 

(E.16) 

for 

space 

For 

suppose it were. Then there would exist some W~ linearly 
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independent of the vectors V and E, such that· ~, V 
p 

and the E, and hence also anylin~ar combination of them, 
p 

belong to the null space of H(V). Consider the identity 

6.(~ + aV) - A.(a) 6.(V) = (X. + 'V) 6.(V), 
J J J J J 

where the X. are defined by 
J 

6 . (W) = X. 6 . (V) • 
J J J 

The number a can obviously be chosen 

for all j and A . (a) = 0 for -some 
J 

so that 

j . Let 

sequence aA-*a, with aA>a, and introduce 

A. (a) 
J 

{a
A

} 

~ 0 

be a 

(E.17) 

(E.1S) 

(E.19) 

The vectors WA belong to n+(K) and they converge to a 

limit, W' =-~ + aV, which is not zero since ~ is linearly 

independent of V. The set of four-vector~ W' defines a 

diagram J)' which is a contraction of ~. The diagram ~ , 

cannot be a trivial diagram because the trivial diagrams are 

generated only by linear combinations of the Ep ' and W' 

cannot be one of these because of the linear independe~eof 

the ~,V and Ep' The function F's(V) corresponding'to 

the vertex s of lJ' is simply the sum of the functions 

F (V) corresponding to those vertices r of A7 that unite r 

. .-
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to form vertex s in the contraction of ~ that gives J '. 
The function Q's(K) corresponding to the vertex s of j' 

is formed in the same way from the Q (K) of .ff . Thus we 

obtain 

Q'sOO = F' (W ) s ,\ 

r 

(E.20) 

for each value of Since the F' s do not depend on those 

internal lines of jJ that are contracted in forming j) , , 

the limit can be taken: Q's(R) = F's(W'). But then R 

+ belongs to ot [..:9']. This contradi.cts the assumption of the 

theorem, Thus the quantity N(V)' cannot be greater than 5. Bcd· then 

N(V) is exactly 5, and the matrix H(V) has rank 

R(V) - 4m - N(V) = 4m - 5 - R. 

The knowledge that N(V) = 5 is itself useful. It 

says that all vectors W in the null space of H(V) are 

of the form 

W = ,\V + L a P E . 
P P 

Thus all vsn+(K) are of this form. Variations of the 

scalars a simply translate the entire diagram, and 
P 

(E.21) 

(E.22) 

variations of ,\ merely change the sca.li.ng of the diagram. 

Thus (E.22) tells us that there is essentially only one 
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diagram JJ from the set f.DJ that satisfies K(L9) = K. 

The vectors Qr satisfy the four conditions ~ Q ~ = 0, 
r r 

0'~'3. Thus we may consider the reduced space in which one 

of the four-vectors Q is eliminated. 
r 

Similarly one of 

v the four-vectors vr is eliminated by requiring E v = 0. 
r r 

Since the eliminated rows and columns are linear combinations 

of the remaining ones the reduced 4(m-l)-dimensional matrix 

H still has rank R = 4m-5. 

Following the procedure of Goursat 39 one can now 

construct a function ¢(Q) of the remaining (m-l) Q's that 

is real analytic at Q = Q ~ Q(K), has a nonvanishing 

gradient V¢(Q) at Q = Q, and which vanishes on the set 

(E.23) 

for some neighborhood Q'cQ+ of V. The construction of 

¢(Q) goes as follows. Since the rank of the reduced H, 
,." 

which we will- call H, is just one les s than the maximum 

possible rank 4(m-l), one may, by virtue of the implicit 

function theorem, arrange the 

the first R = 4m-5 of the 

Q ~ and the 
r 

vr~ (called 

v ~ 
r 

so that 

x. 's) can be 
l 

expressed as real analytic functions xi (Xl' ... ,XR, t) = 

the final 

of the first 

v ~ 
r 

(called 

R of the Qr's (called Xj'S) and 

t). These expressions x.(X,t) 
;:L 

for the v ~'s are then inserted into the expression for the r 

final Q ~ (called T). This gives 
r 



" 
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T = T ( xl (X, t ) , . . . ,X
R 

( X, t ) , t) = T [X, t1 

Differentiation of (E.:24) gives 

R 
aT,\""""" a T 
IT = L aX

i 
i=l 

Similarly, one has 

which upon differentiation gives 

R - -

L
ax. ax. ax. 

= 0 = _....;L __ l + _J_ 
a- at at 

i=l xi 

X. , 
J 

(E.24) 

(E.25) 

(E.26) 

(E.27) 

Equations (E.25) and (E.27) can be combined and simplified 

by writing T = Xo -and t = Xo and by recognizing that the 

matrix aX./ax. 
J l 

is just H .. : 
Jl 

ax. R ax. 
L J H .. 

l 
(O~j ~R) • (E.28) at = at' Jl 

i=O 

~ 

Multiplication by the matrix C of cofactors of H yields 

ax. 
E c-. J = 
. LJ at 

J 
(E.29) 
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This equation, when combined with (E.27) and the fact that 
,., 

det H = 0, yields 

(E.30) 

But Coo is the cofactor (minor) of Hthat was chosen to 

be nonzero. There is, therefore, a full neighborhood of the 

image (X,t) of V in which 

aT 
IT = o. (E.31) 

This implies that T is indeperident of t: 

T = T(X]. (E.32) 

Since the X. 
J 

and T are just the equation (E.32) 

can be rewritten 

T - T[Xl= ¢(Q) = o. (E·33) 

This defines the real analytic function ¢(Q). It is evident 

from (E.33) that ~¢(Q) is nonzero at Q. The neighborhood 

of V is chosen small enough that C is nonzero and 
00 

TrX] is single-valued and holomorphic on the image £(n t ) of 

nt. 

We now show that there exists a 4m-dimensional neighborhood 

hood n(Q) of Q such that 
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(E.34) 

where 

(E.35) 

The fact that ~(~+) is confined to £ follows immediately 

from (E.3) and (E.4) by explicit computation. The nontrivial 

content of (E.34) is that, subject to this restriction, the 

zeros of ~ exactly coincide with ~(~+) in some neighborhood 

of Q. 

The construction of the function ~ ensures that it 

vanishes on ~(~'): 

rR(~')C {QI ~(Q) = O}('l e. . (E.36) 

To show (E.34) we first show that a neighborhood 1l'(Q) of 

Q can be chosen so that 

(E.37) 

Suppose this were not true. Then one could find a sequence 

of points Q(A)~Q such that, for each value of A, Q(A) is 

lo n /,) ( n +) bu t not l' n /J ( n , ). E h f thO Q ( 1 ) ~ H ~ u~ "ac 0 ese pOlnts A is 
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generated by a corresponding point + V(A)£~ , which can be 

and ~ , II Ll . (V ( A ) II = 1. [The 
J 

required to satisfy ~ Vr(A) = 0 

value of the mapping F of (E.4) is insensitive to such 

restrictions.l The points V(A) are then confined to a 

bounded region of V space. For if this were not true, the 

Euclidean norms of the difference vectors Ll.(V(A)) 
J 

would 

have to be unbounded for some j. This cannot be reconciled 

with the required boundedness of both their Lorentz norms and 

the energy components of all the Q(A). 

Since the V(A) are confined to a bounded region the 

infinite sequence of V(A) must have a subsequence that has 

a limiting point V(oo). If this limit point were in ~+ 

then the continuity of F(V) would ensure that the image 

(under F) of V(oo) would be Q. This would require that 

V(oo) have the form (E.22). The normali2ation and translation 

conditions would then ensure that V(oo) = V. This is not 

possible since the V(A) must all lie outside the neighborhood 

~, of V .. Thus V(oo) cannot be an element of ~+. 

The only other possibility is that some of the II Ll j (V( 00) ) II 
are zero. The corresponding vectors Llj(V(oo)) must then 

also be zero. For if /Ill. (V ( A ) ) 11-)-0 
J 

but Ll j (V ( A ) ) fO , theft +hc.. 

energy parts of some of the Qr are forced to become infinite, 

which contradicts the requirement Thus certain of 

the vectors Llj(V(oo)) must be zero. Not all can be zero 

because of the condition ~'IILl.(V(A)) II = 1. Thus, after appropriate J . 

scaling, overall· ·translation ,and·,spec:i,fica·tion'of the individual external 

momenta incident on each vertex, the diagram 
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corresponding to V( 00) is a contraction » ' of n Equation !I::I .. 
~ 

(E.20) again yields a violation of our original hypothesis 

that - +-
KEcLO [ ~J .T h",s none of the 6.(V(oo» 

J 
can vanish. 

All alternatives having been ruled out, equation (E.37) 

is established. It follows from (E.36) that there exists 

a 4m-dimensional neighborhood n'(Q) of Q such that 

(E.38) 

This result is half of (E.34). 

To complete the proof of (E.34) we construct a 4m-dimen

sional neighborhood nU(Q) of Q such that 

Then (E. 34) is satisfied with n(Q) = n' (Q)nnll(Q). 

To prove (E.39) consider the equations 

where the functions on the right are those appearing in 

(E.24). Combining (E.40) with the condition 

obtains a system of equations 

v 11 = v l1CX t) 
r r' 

'Lv = 0 
r ' 

(E·39) 

(E.40) 

one 

(E.41) 
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v ~ as functions of the X. (l,j'R~ 
r J , 

is just one of the v ~ S. Let X be 
r 

the projection of ~ onto X-space, and let ~ be the 

value of t such that V - V(i,~) is the point of QI that 

satisfies ~ = F(V) and L ' 6. . (V) = 1. 
J 

Because of the non-

singular nature of the mapping (E.41) there are neighborhoods 

nX and nt of X and ~ such that the image [under (E.41)] 

of 'l2rnt is contained in Q'. Moreover, (E. 26) and (E. 33) 

imply that if the projection X(Q) of Q onto X-space 

belongs to nx , if 

F[V(X(Q) ,t)] for any 

QE£, and if ¢(Q) = 0, then Q = 

tEnt' Thus, every point of {¢(Q) = O} 
and t that satisfies X(Q)Enx is generated by some point 

V in Q'. Taking n l!(Q) to be the set {Q/X(Q)EIlx}, we 

have (E.39). Thus (E.34) is proved. 

The proof of Theorem 6 is completed by transforming the 

preceding results from Q-space into K-space. Thus one defines 

A(K) = ¢(Q(K» (E.42) 

and lets nCR) be any K-space neighborhood of R with image 

[under (E. 2)] in Q-space contained in n (~) . Since i'L,O] 

is the K-space image of dC(Q+), (E.34) becomes (5.3). [All 

points of .L~1l belong to Nl, and hence also to Jt if n (R) =ll 

is a small enough neighborhood of RE~.] 

If K is a point of at. +lJJ1nll(R) then the point Q(K) 

lies in R(Q+)t\nn~i). Hence, by virtue of (E.37), Q(K) lies 
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in I? ( 0, , ) • Th us the rei s a V ( K ) in 0, , s u c h t hat 

F(V(K)] = Q(K). For all points in Q' we have c ~ O. 
00 

Thus the rank, R[V(K)] of H(V(K» is 4m-5. The arguments 

that gave (E.22) show also that any vector in the null space 

of H(V(K» is of the form 

W = AV(K) + E a P E . 
P 

(E.43) 
P 

However, the gradient V¢(Q) at Q = Q(K) belongs to the 

null space of H(V(K», as is seen from 

a<I>[F(V)] a<I>(F ) aF (V) 
= E . r)l r)l 

J 

avs 
v aF av v r)l r)l s 

(E.44a) 

a<I>(Q ) 
=: E r)l 

Hr)l,sv(V) 
r)l aQr)l 

(E.44b) 

= E (V <I» )l H 
r)l,sv(V) - O. r r)l 

(E.44c) 

Since II <I> is nonzero we may rewrite (E.43) (using new A 

and a P) Vr]J(K) AII<I>CQ(K)J ]J aP(E ) ]J as = + E or, more r P r P 
briefly, as 

V(K) (E.45) 

where the sign of <I> is chosen so that A is posi ti ve. 

The positions of the vertices vr(K) determine the 
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positions of the lines of the corresponding diagram. In 

particular the position of the external line Li is generated 

by the displacement 

u. = A(V CP) (.) + L aP(E) C.) 
l r l P r l 

(E.46) 

where rCi) labels the vertex to which Li is connected. 

The general displacement that generates this position of L. 
l 

is obtained by adding an arbitrary translation of this line 

along itself: 

(E.47) 

The is independent of r [See (E.'16).] and can be 

considered a set of vectors over i, rather than r. Since 

Q is a sum of terms containing k
l
. we can write rei) 

(E.48) 

Substitution of (E.48) into (E.47) then gives 

= A aHQ(K)] + L a P 0 jJ + t k jJ 
u i ak. p ii' 

ljJ 

(E.49) 

which is just (5.4). 
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C. Proof of Theorem 8. 

Let V = V(l;). It was shown below (E.14) that the null 

space of H(V) contains f2+(;:<) , the closure of the set 

~+ on. The set f2+(K) contains the vectors V = V(~) for 

all diagrams lJ that satisfy K = K(,l») and belong either to 

[,,9] or to [.E'J for some j)'cjJ. Hence, the null space of 

H(V) contains all pOints V that correspond to the diagrams 

lJ of the theorem. 

Let the vectors E 
P 

defined by (E.16) together with 

the vectors of the set {Vl, ... ,Vp }' where p = N(V)-4, be 

a basis for the null space of H(V). Thus, any vector W 

of this null space has a unique representation 

p 3 

W = 2: A. V. + 2: a.PE • (E.50) 
l l P 

i=l p=O 

Because of (E.IO), the vector W must satisfy the equations 

= a.(W) 6. (V) = 
J J 

where the X.. are defined by 
lJ 

(2: A.X .. )6.(V), 
i l lJ J 

6.(V.) = X .. 6.(V) 
J l lJ J 

-
Because ~ is connectedJthe condition 6. (VJ) = 0 

J 

(E.51) 

(E. 52) 

for all 

j implies A. = 0 for all i. 
l 

This in turn implies the 

linear independence of the vectors Bi = (X
il

,X
i2

, ... ). 
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These vectors Ri form a basis for the space of vectors 

appearing in (E.5l). Through (E.5l) the 

vector a(W) specifies W up to an overall translation .... 

l:aPE . 
P 

In terms of a vectors the set ~+(R) has the follow-,..., 

ing description. For any W in ~+(iO the vector E(W) is 

a linear combination, 2(W) = l:A.(W)R., l .... l of the RoO -l The 

vector W is in ~+(iO if and only if the vectors ~(W) = 

(Al(W), ... ,Ap(W» and C. = (X'j""'X .) satisfy A(W)·C,~O 
-J 1 PJ ".. -J 

for all j . [The index j labels the internal lines of .& .] 
i')+ (K-) From this description it is clear that ~G is convex and 

Consider a nonzero vector £(W) corresponding to a point 

W of ~+(K). If all other points W' of ~+(R) give an 

S!:(W' ) proportional to ~(.W) then p = 1 and the dimension 

of the null space of R(V) is five. In this case no contrac-

tion iJ 'e lJ can give point KC8' ) = K and Theorem 6 gives 

the desired-~esult. Alternatively, if there is a SeW') 

not proportional to g(W» then let P be the plane through 

the origin that contains both Q(W) and a(W' ). The inter-
'" 

. + n+(K-) sectlon of P with the image A in g-space of ~G is 

two dimensional, convex, and starlike. The boundaries of 

p" A + are therefore two half-lines originating at the origin 

which~ because A+ contains no vector Q with any negative 

components, must intersect in an angle less than n. Let 

£(Wl ) and ~(W2) be vectors in A+ that define these two 
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boundary rays. In termS of-these vectors, the original 

vector Q(W) has the representation 

(E. 53 ) 

where are strictly positive. 

Because and ~(W2) lie in the boundary of 

+ P f"IA, the corresponding vectors 1(W1 ) and ~(W2) must 

be orthogonal to some of the vectors 

is orthogonal to Qi , i€1 1 , and the vector ~(W2) is orthog

onal to Qi , i€1 2 . 

There are two alternatives for the vector ~(Wl)' The 

first is that g(Wl ) and its positive multiples are the 

only vectors in A+ for which the corresponding vectors 1 

are orthogonal to the vectors Qi , i€11 . The second is that 

there is some second linearly independent vector g(Wl ') in 

A+ with ~(Wl') orthogonal to the vectors Qi , i€11 . 

In the first case the vector Wl satisfies Wl = V(~l)' 

where R = K(~l) and the diagram »1 cannot be further 

contracted at R. Thus, the point R belongs to LO+[~ll 

and Wl must have the form (E.45). Equation (E.53) allows 

one to write 

(E.54) 

where Al is p6sitive. 
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In the second case the analysis just peformed on a(W) 
"'"' 

is applied to g(Wl ). The plane PI corresponding to P 

contains g(Wl ') and The intersection has 

boundary rays defined by ~(Wll) 

correspbnding vectors ~(Wll) and 

and ~(W12) such that the 

~(W12) are both orthog-

onal not only to the vectors C., isI l , but to some additional 
-l 

.9 i as well. In terms of these new vectors Q-(Wll ) and 

g(W12 ) the vector ~(Wl) can be written 

where and are strictly positive. 

The entire analysis is then repeated with ~(Wll)' 

and At each stage at least one new 

(E.55). 

C. -wl 

is added to the previous set of C. 's. 
-l 

Since the number of 

gi's is finite, the procedure must terminate. At that stage 

all the vectors into which W is decomposed are associated 

with diagrams that have no further contractions. Thus we 

obtain 

(E.56) 

where Ag ? 0 and the sum runs over those diagrams 

or ~ =.§ that satisfy g but which have 

no contractions that do. 

The arguments following (E.42) complete tIle· proof. 

.~' 
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D. Proof of Theorem 13. 

Because of theorems 10 and 11 it is sufficient to show that 

the set (5.5) is convex, apart from vectors of the form DoCK). In 

particular, we wish to show that the simultaneous equations 

IT = 

and 

(11.' :;'0) 
g 

imply that U = DO(K)= -DoCK). Adding (E.57a) to (E.57b) we obtain 

\-1 = I: (II. + 11.') v A (K) 
g g g g 

where W = -DO (K) - DO 0<) . Define l s <! C (c. '+ 2..>J 

v 

(E.58) 

Th\,s V gives the positions of all the vertices of a diagram with external 

lines specified by W. Because all the L9
g 

are contractions of L), we 

have 

6. (V) I: (II. + 11.') 6.(vf) 
J g g g J g 

(E. 60) 
:::: I: (II. + A,') X . 6 j (VG9")) 

g g g gJ 

Because the 11., 11.', X . and 6.(V~)) are all nonnegative, so are the 
g g gJ J. 

6. (V) . But the positions of the external lines of V are given by 
J 



-125-

W = -UO(K) - UO(K). Therefore V must be a trivial diagram, since for 

K i1.n no nontrivial connected causal diagram can have its external , 0 

lines coincident with those of a trivial diagram. But if V is trivial 

then (E.60) implies that 

AI vanish separately and 
g 

A + A' is zero, for all 
g g 

U =UO (K) = -Ub (K). 

g. Thus A 
g 

and 

To complete the proof the 11.= (Ul , .. 'U
3n

- 4) of Theorem 10 

is chosen to contain a subset S of the set of vectors VA (K) such g 

that S together with the n+4 vectors of UO(K) are a set of 

linearly independent vectors that span a space that contains all of 

the vectors V A (K). 
g 

The set of vectors of the form 

with and LA- I 0, where L' is over S, g- is a convex set 

by the argument given above. Then Theorem 11 insures that r (U;K) 
c is 

contained in a single set of the form (1+.11), and Theorem 10 completes 

the proof. 
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APPENDIX P 

A. Proof of Theorem 7. 

The first step of the proof is to show that VA1(R) = 

is real and U (R) o is of the 

form (4.8). The more difficult second step is to show that 

the number A must be positive. 

Since La +t.8 2 1 is a submanifold of codimension 1 in 

?? at R, there exists a local coordinate system 
[~~ e Cr-,I)J 

(6c(R)~TIR,Dc(R» at R such that zl = A2 (K)'A The fact 

that La +[.fJ
1 

] and j a +[ .1)2] co inc ide in some neighborhood 

n of R means that in some neighborhood NeTIR -l cnn 6 c (R» 

of z = TIR -l(R), the function K1 (z) = Al(K(z» vanishes 

whenever zl = a. That is, in some neighborhood N'cN of 

z the real analytic function Kl(z) has a power series 

expansion 

00 

L: am ( Z 2 ' ••• , z 3n _ 4 ) z 1 m , 
m=l 

where the am are real analytic functions. Explicit 

computation then shows that 

oK
1 (z) az-.-
J 

(z) , 

(F. 1) 

(F.2) 
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where A is some real nu:nber. Since 1\.1 (K) and 1\.2 (K) are 

real analytic functions of K, we have 

[See (E.l).J Equations (F.2) and (F.3) combine to yield 

(F. 4) 

for all j. Since the only vectors that are annihilated by 

the matrix ClK/ClZ have the form (4.8) [see (B.ll)1, equation 

(F.4) implies that V1\.l(R) = AVA2 (R) + Uo(R), where A is 

~eal and U (R) has the form (4.8). o 

We first examine the case where A is strictly positive; 

the other case (A<O) will then be easy to rule out. 

where 

For each value of g [g=1,21 equation (E.42) gives 

Clk. l].l 

~ 

is the vertex momentum Q 
r that depends on 

(F.5a) 

(F.5b) 

k .. 
l 

According to (B.ll) the left side of this equation determines 

Clc;Pg/ClQi].l' apart from vectors of the form Uo[K(Z)]. Then, 
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in view of (E.4S)i 'VA determines the posit10ns of the. g 

external vertices of the diagrams j), apart from scalings, g 

overall translat10ns, and translationS of the position of the 

vertex v. that is connected to 
'l 

L. 
l 

along L .. 
l 

The L. 
l 

are here considered to be complete lines, not just line 

segments. 

It is useful to introduce diagrams. ~l (z) 

that d1ffer from the original .diagrams ~ 1. and 

scaling and choice of origin. The fact that ~l 

and 

))2 

lS 

-»2(Z) 

by 

a non-

trivial connected causal diagram ensures that there is a 

pair of vertices, vI and vF ' such that v_ is connected 
.L 

to two initial lines, vF ls connected to two final lines} 

and is in the positive light cone of Let the 

pos1t10n and scale of ))1 (z) be fixed by placing vI at the 

origin and requiring that !VI-VF ! = 1. According to the 

result~ established above, the external lines whose inter

section defines vI in ~l must also cross in ~2' and 

similarly fO:2 v
F

. Thus the position and scale of lJ 2 (z) 

can also be fixed by placing vI at the origin and normal-

! I 
,- I IT t A I ~ 'h ", ... " ., I . '3 e, I + ,) L<.,.,';, .} 

izing so that vI-vF, = 1. L v. e'e c
' j- ""J 

Diagrams constructed according to the rule just described 

will be called adjusted diagrams. The result (E.45) is also 

applicable to them. In particular, equation (E.45) implies 

that for a sufficiently small neighborhood n(z) -of z 

that does not intersect the Landau surfaces for any contrac-

tions of ~g' each point z of n(z)c{K (z) = O} corresponds g 
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toa unique adjusted diagram .c9g (z)£[J)g(z)1. This is because 

all ambiguities of translation and scaling have been removed. 

The vertex of ;b (z) 
g that is connected to the external 

line Li is called vgi(z), and the line parallel to k i 

passing thr6ugh vg. l'(z) is called L .(z). gl .. 
.~c-r ea. ,:i'l. l., 

The arguments give" above show that /I Lli (z) coincides 

with L2i (z), but they do not show that vli(z) coincides 

with v 2i (z); these two points could be different points of 

L.(z). The main part of the proof consists in showing th~t 
. l· 

the vertibes vli(Z) and· V2i (z)do in faet coincide if 

either is conhected to two different initial lines (including 

Li ) or two different final lines (including Li ). 

Let L. be an initial particle line. 
l 

If both 

v2i are connected to the same additional initial external 

line Lj(i~j), then v1i(z) and v2i (z) must coincide. 

and 

For since K does not lie on ~O' the two different initial 

lines intersect in at most one point. More generally, suppose 

that vIi l~ connected to the two initial lines Li and 

Lj(i~j), and that v 2i is connected to the two initial 

lines Li and Lk(i~k, j~k)~ Then again ~li(z) and v 2i (z) 

must coincide. For a small rotation of the two intersecting 

lines and L. 
J 

about the axis k. (z) + k. (z) 
l J 

through· 

gives a nearby point z, of {AI (z)= O}. This is 

because the sum k i + k j is not changed. The new point z, 

must belong also to . {A 2 (z) = OJ. Thus there must be a point 

v2i (z') = ~2k(z'). But then Li(z') must intersect the line 
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Lk(Z') Lk (z) . This be true for several z, near -= can z 

only if Lk(z) passes through the point v li (z). This-

implies that the point v 2i (z) must coincide 'with vli(z). 

We now show that this result (vli(z) = v 2i (z» also 

holds provided only that the vertex is contained in 

two initial lines L. and L.(i~j). For every z in some 
l J 

- . 

neighborhood of z the line L. ( z) 
l 

contains both vli(z) 

and v 2i (z). The point vli(z) mayor may not be a vertex 

of ~2(Z)' In either case one can construct a causal diagram 

~3(z) containing vli(z) as an external vertex and with 

external lines coinciding with those of j) 2 (z) . One simply 

regards the part of Li(z) lyirig between vli(z) and 

v 2i (z) as an internal line of ~3(z), and similarly for all 

lines Lk that in diagram j) I are connected to vIi' All 

the conditions for a causal diagram are satisfied by these 

Since the external lines L. (z) 
], 

of j) 3 (z) are the same as those of j) 2 (z) , we see that in 

some neighborhood N of z the surface cf+ [.1)3 (z)] contains 

the surface {zjK 2 (z) = oJ. 

We will now show that R be longs to .10 + f..D3 (z)1 . 

Suppose that this is not true, and that R belongs to 

wherej)' 3(z)c.iJ
3

(z).- According to the arguments 

of Appendix E [see (E~lOD the internal lines of ~'3(z) 

must be parallel to the corresponding internal lines of 

1)3(z). But then there,would be a diagram .6),
2

(Z) contained 

in lJ 1 3(Z) that would have the same external lines as 1)2(Z)' 
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This diagram i9' 2(Z ) would be either an eleme~t of ["&2 (z)] 

that has the same external lines as IJ 2 (z) , or a contraction 

of such a diagram. The conditions of the theorem ensure 

that no contraction of /)2(z) has the same external lines as 

.D 2 (z). And (E.45) shows that the only element of [.c:9 2 (z)J 

that has the same external lines as ~2(z) is .8 2 (z) itself. 

This would make 1)' 2(z) identical to A
2
(z). But then the 

contraction 8 i 3(z) of b
3

(z) would be identical to .b
3
(z), 

which is not possible. It follows that K belongB to 

£0 + rE3 (z )]. 

The surface.to +[J)3(z)] is a submanifold of Jt of 

codimensionl in a neighborhood of K. In the space of 

local coordinates z let.,lo + f.t9
3 

(z)] be represented by 

·0\3(Z) = OJ. sinceclo+[J
3

(z)j contains oI
0
+[.b

2
(z)] in 

some neighborhood of K, and since both are submanifolds of 

JI,. of codimension 1, it follows from the arguments leading 

to (F.l) that the two surfaces are identical in some neighbor-

hood of K.-

A rotation of the . lines .. L1 (z) ,and·.· Lj (z) which inter

sect at v'li(z) about the axis ki(z) + kj(Z) takes one to 

a nearby point on {K1(z) = O}, and hence on {!3(z) = O}. 

The vertices of the unique corresponding diagram ~3(z) must 

be the same as those of /)3(z), since ~he positions of the 
-~ vn.+~ e. o~ (c. ","s) 

vertices depend only on the Q[K(z)] 'A)and these remain 

unaltered. However, the vertex-of .6):3(z) at v
2i 

(z) will 

not coincide with the vertex of ,j) 3( z) at·v 2i (z) for 

.-
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arbitrary rotations unless v2i(~) =vli(~)' This is the 

desired result. 

Since /:J 1 and J) 2 are interchangeable, the above result 

shows that vli(~) and v2i(~) must coincide if either is 

connected to two different initial lines. 

Similar arguments hold for vertices connected to final 

lines. 

The preceding result is useful in the following way. 

Por any vI'(~) that is connected to two initial lines 

there is a connected to two final lines that lies in 

the positive light cone of vI' or coincides with vI'· 

Thus the original vI and vp 'can be chosen to satisfy the 

additional conditions that there is no vp 
, positive time-

like relative to v P ' and there 
-;'I.,~", 

is no vI 
, negative time-

like relative to v I' ,\ The total external momentum Qp at 

vp must be positive timelike, and at must be 

negative timelike. 'rhis is because the internal lines connected 

to Vp must all terminate at v F ' and the internal lines 

connected to vI must all originate atv r , 

The above discussion refers to the case in which the 

-signs of VAl and VA 2 are the same. If these signs were 

opposite, the external lines and vertices of ~2(~) would 

be obtained from those of jl(~) by reflection through the 

origin. But this clearly cannot give a causal diagram, for 

the vertex v F (:: - v F) . 0 fj} 2 ( z ) would h a v.e no vertices 

-0 1 ' (= -VI') of ~2(~) lying negative ttmelike to it. No 
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tnternal lines could terminate on it and QF could not be 

positive timelike, contrary to fact. Thus the gradients 

VAl and VA 2 must have the same sign. 

B. Proof of Theorem lO. 

The first step is to show that if the conditions of Defi

nitton 5 are met for any particular set 'U.= H\, ... ,U
3n

_ 4} 

that defines a simple coordinate system at K, they are met 

for all such sets. To see this consider an n-particle 

displacement U. According to (B.IO) it has the unique 

representation 

3n-4 

U = ~ tAu" + UO(iO 
1..=1 

(F b) 

where UO(K) is linearly lndependent of the vectors in the 

set U. Provided t = (t l , ... , t 3n- 4 ) is not zero, the pro-
'" ., 

jection of rr- onto rCa) is V = ~tAu", where t" = rt"ltl- l . 

Since (F.6) is valid for any displacement U, it is valid in 

particular for the members of any setU = {Ul "'" U
3n

- 4} 

that define a simple coordinate system at K. For these 

Ur the equation (F.6) becomes 

Finally, since any displacement Uhas a unique representa

tion of the type (F.6) with the u~ replaced by the U
t

' 

•. 
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we have 

L: (L: S·~\t,~) U, + Uo (IO. 
A. J- " ,,-, A 

(F. 8) 

That is, 

(F. 9) 

Because both U and U define' simple coordinate systems at 

K, the matrix M of coefficients tcf' A is nonsingular. 

Therefore, the vector t which defines the projection of 
J 

U 

onto r (12) ) also uniquely defines the proj ection of U onto 

r (u) . Thus, the sets r j (u'n) 
c ' 

of Definition 5 are isomorphic 

to the corresponding sets r j(u;n) 
c for any other choice of 

the set U. Moreover, if e is some vector in n3n- 4, the 

equation (F.9) yields (t,e) = (S,Me). Hence, if the pro

jection of U onto r(~) is in r+(U,e), the projection of 

U onto feU) is in + r (U,lI1e). This proves the statement 

that if the conditions of Definition 5 are met for any 

particular set U= {U l ' ... 'U
3n

_ 4} that defines a simple 

coordinate system ~t K, they are met for all such sets. 

Ne,ct lA.)e p","vv'e the. ~vlloL"""'~ Le·v.-,1-t-tL\. . .1 ~ 

,J"""d" 

Por any cS >0 one can find a product neighborhoodn of II K ~ Yrt - lY10 

such that 

r c (u; n) ere (U; K, 0 ) , (F.10) 
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where 

To prove this we first express rc(U;n) in a different 

way .. Let 
A 

V· (k.'·· il:) be the set obtained from 
£ ·1 ',.l 

by replacing supp 1jJ. 
1 

Let C(K) be the set of 

connected causal diagrams.t9 that satisfy K == K(f)) , 

L:v (.6») = 0, r and E' 'I 6 . (V (.B ) )" = 1. J 
Define 

r c' (U; K ,K', £) = { u' I U ' = Ei,'u" If (.)(tI))sV (k.';u.'+ a), 
A A, r 1 £ 1 1 

(F.12) 

iJeC(K)}, 

where v r( i) (,()) is the vertex of f) that is connected to 

the external line Li' and a is.~ .,.~~I:)')"'m.be.ywj''''\'''''j 4 .... ,-,,,c,,<,l/ 

translatiOn.. Define 

r c (Ui K, K ' , s) = {UIU£f(U), BU = U'£f '(UiK,K' ,d,S> O}. (F.13) c . 

Finally, define 

= . {u I U £ r ('U; K , K' ,s), K and K I i n7Z } . c 

P \-i.,ct1oC ct-
Then 1-ov:" '~.i.\ \{; C.Hl\ +!~ ~~'QII t\ 11. 0+ K € 11'l.- 'YY\. 0 

(F.14) 
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n r (ll.;Yl.,E). 
c 

E>O 

To prove (F.15), assume it is false. Then for some E > 0 there is some 

U in r (U ; Yl.) that is not in r (U ; n ;t') . Since this U is in 
c c 

r (U ; il.) one can, for each E > 0, find a cD that satisfies the 
c E 

conditions of Definition 4, with this U and with supp \jJ = n. Thus 

a sequence of (j) can be constructed for any sequence E --> O. The 
E i 

norms N(OJ
E
.) L;' 116j (V(·1)E.» II ei ther approach zero or they do /lot. 
1 1 

If they do not, then the normalized 

less than E. 

assumption. 

But then r (U ;)'[ ,"E) 
c 

Thus the norms N( (1) ) 
E. 

1 

E. ~ E. /N(iD E.) must reach values 
111 

would contain U) contrary to 

must approach zero. This means 

the diagrams (D 
E. 

1 

approach trivial diagrams. But for sufficiently small 

YI. ~ supp 'IJi about K E)J{ - h20 the u ( reu.) cannot satisfy the 

conditions of Definition 4 vlith any trivial (or nearly trivial) (D 
E 

for E smaller than some El > 0, because the various v (~r.;U.) 
Ell 

can 

have no common point, (or nearly common point), in these circumstances. 

This rules out the possibility that the norms N(D ) 
E. 

1 

approach zero, and 

hence proves (F.l5). 

Because of (F.15) it is sufficient for the proof of LemW~ 1 

to prove Lemma 1': For any 5 > 0 one can find a product neighborhood 

)1 of any K E }t1 - Yn 0 such that 

lJ r (1 . .(; Yl , E ) C I'. (U; K, 5) 
c c (F .10' ) 

E>O 

To prove Lemma 1', assume it is false. Then there must be some 5 > 0 

such for any product neighborhoodY/. of K there is some' u(J2) that 

belongs to r (U ;Yl,E) 
C 

for all E > 0, but does not belong to 
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r (V. ;K,5). Thus for any sequence {E, Yl }, s = 1,2,' .. J with 
c s s 

E --+ 0 and )7. -> K there is a sequence of U such that 
s s s 

U E r Ci.{;n , E ) 
S C S S 

(F.16a) 

and 

U fo r (H.;K,o). 
s c 

(F.16b) 

Each U satisfying (F.16a) corresponds to a U' s s 
U/e that generates 

a diagram 6) 
s 

satisfying 

v (.)((iJ) EV (k'. ;u. +a) r 1 s E 1S 1S S 
S 

and 

(~) 
,j E C (K ) J 

S S 
(F .17b) 

where K -~ K and K '--> K. 
s s 

.' 19 
It has been shown elsewhere that the number of different 

positive-a Landau surfaces that pass through any bounded region is finite. 

The lnfinite sequence (D must therefore be divided between a finite 
s 

number of classes [0) J, at least one of which must have an infinite 

nw1iber of the diagrams (~ Let this class be denoted by [ "))lJ, .)." s 

let the 6J not in [iD I J be disregarded. The sets v( 0.') ) are 
s s 

confined to a bounded region and must have at least one accumulation 

point V = V(S)). The argument for this was given in Appendix E below 

and 

(E.37). The arguments of Appendix E [see(E.20)] also show that K = KeD). 

If we can show that the sequence {U} has an accumulation point 
s 

we shall have established a contradiction with 

(F.16b), and shall therefore have proved Lemma l' . 
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corresponds to a unique displacement U' 
s 

in r '( U;K ,K ',E ). The points U' 
s 

have a unique limit point U' 
C S S S 

defined by the condition 

U' E (U' Iu' (F.18) 

The fact that the U' defined by (F.18) is unique follows from (B.10), 

since the various U' that satisfy the second condition in (F.18) differ 

by vectors of the form UO(K). The U' 
s 

of (F.16a)satisf'y, according 

to (F .11+) and (F .12), the condition 

U ' E (D' 
s lu' .- v (.)((j) ) E V (k;;u. + a) 

r l s Ell 

k' E 'j? } s (F.19) 

The continuity properties of the set on the right of (F.19) ensure that 

the U I approach the U' of (F.18). 
s 

If the U' is nonzero then the U = U '/B must approach the 
s s s 

where 
-2 ? -
B = I; t-(U') 

A. 
is nonzero. This U \vould lie 

in t (K)(i r(u), thus contradicting (F .16b) . Thus the proof will be com
c 

pleted by showing that U' is nonzero. 

To see that the vector U' is different from zero notice first 

that, because ~) is nontrivial, the earliest vertex VI must be definitely 

earlier than the latest vertex By virtue of the stability requirement, 

the initial vertex must be connected to at least two initial lines and 

the final vertex must be connected to two final lines. Because K 

does not belong tolno the initial lines connected to VI meet only 

at and the final lines connected to v meet onlv at F ,; Such 

a configuration 
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does not allow the U' of (F.18) to be zero, since U' = 0 means that 

all the external lines pass through a common point [See(B.IO)J. This 

completes the proof of Lemma l' and by virtue of (F.15), the proof of 

Lemma 1. 

Given Lemma 1 and the result proved just before it, the proof of 

Theorem 10 is trivial. 

C. Proof of Theorem 11. 

Let (f,' c (K) be the set of U that generate 0) that satisfy 

K( 6)) = K. What must be shown is that for each K Em - fi1 0 

e (iC) =?f (iC) (F. 20) c c 

It is obvious that (;' c (iC) c e c (iC) and that GO (iC)c: 6' c (iC). What must 

be shown is that for each K E m -}r/ o 

e (K:) - t (K:).:: if (iC) 
c 0 c 

To prove this,first define 

&'(iC,E) = fu' Iv (,)(rD)E V (R'.;LI.! + a), J.) E C(K)) c r 1 Ell 

where C(K) ;1$ defined above (F.12). And define 

Then for iC E m - "»10 we have 

The proof of (F.23) is the same as the proof of (F.15), except for the 

obvious substitutions. It remains only to show that 

(F.21) 

(F.22) 
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() bc(K,E) C Ct c(K). 

E>O 

The proof of this is similar to the proof of Lemma l!. If (F. 24 ) were 

not true then there would be some U f ~fc(K) that belongs to each 

r: (K, E) on the left. Thus for each E > 0 there would be a (i) E C (K) 
c E 

such that the conditions of Definition ~. can be satisfied with this U) 

and with supp ~ replaced by K. A sequence E ~ 0 gives then a 
s 

corresponding sequence 0 s c C(K). As in Lemma 1 the V(J)s ) must 

accumulate at a V that corresponds to a !D that satisfies K( is) = K. 

But then U would belong to (;,) (K). This contradiction proves (F. 21+), and 
.-c. 

hence also the theorem. 
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