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ABSTRACT 

UCRL- 17742 REV 

This article describes the application of cubic spline fitting to 

a set of points: 

with I 2: 3 

to obtain: 

(1) a computational definition of a smooth curve, x(t); 

(2) an estimate of the first derivative, x1, at each ti; 

(3) . an estimate of the second derivative, x", at-each t i ; 

(4) an interpolated value for x at any t, tl :::: t :::: t I ; 

(5) an estimate of the integral, 

tI 
f x(t) dt . 

tl 

The ti must be distinct and increasing with i, but need not be uniformly 

spaced. 

INTRODUCTION 

] 
A t- dependent quantity, x(t), frequently is known (from observation, 

from a table, etc) only in the discrete form.as a set of points: 

with the ti distinct and increasing with 1. The cubic spline function s(t) 
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which fits the table,~(ti' xi) has the following properties: , .... 

(1), over any subinterval [ ti_ uti] ;+,..,2, I the function s(t) 

( 2) 

is a cubic in:, t. 

s ( t l·) = x·;i = 1, I , 1 (exact fit) 

(3) over the whole interval [ tt t I] s has continuous first 

and second derivative's, s1(t) and s"(t) 

tI , 2 
(4) J [s"(t)] dt in minimized. 

tl 
By (1) , we mean that for any i; i = 2, I - 1 with s = s on [t. l' t.] 

1- 1 

and s = s+ on [ h, ti+ 1] that sand s+ are cubics (not generally 

By, (4)" 

C',' we mean that for any function g(t) satisfying (2) and (3), 

',:, 

" • ~ I 

, ~.. .~ , 

."; . 
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, xI 2 
f [s " (t) l' d t S 

xl 

xI ,2 
f' [g"(t)] dt ~ 

xl ' 

,'J; It is cOITlputationally c·?nvenient to assume that 

,', x(t)'~ s(t) on 

sinc€! s(t) IS completely determined thereon by the known 

-', " 

and by the 'readily, computable, 

.~-, ,.': , ' s:= ' s!'( t 1· ); i = 1 , 'I.' ., ", 

1 - , 

',. "\,, 

• ,,~~~. -'~~4. .. ' ~f .i' 

Recalling that si = xi and that s is a cubic on each subinterval", simple 

J '<',;';;,;::,,' ,computational processes on the values 
" . - .,,"." ~'. ',: , r 

'-:.-, '::. ~ .. ,;' .. '-~ ~ . 

~'~~; i:\ :':'" provide for interpolation,' second order differentiation, and integration'~ 

, , 
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CUBIC SPLINE FIT, FIRST DERIVATIVE 

-" The problem of defining s is logically equivalent to finding 

" . s;; 1 = 1, I since for any i; i = 2, I, the cubic segment of s on the sub-
1 

interval [t. l' t.] is well defined by (t. l' s. l' ·sl~_l) and (t
1
·, S" S'l')' 

1- 1 1- 1-:" 1 

We now describ~ the computation for the sr~ 

;, ~ ~ ", '" ;# 

If Xl' and xi are known, we set s1 = xi and sI = XI then solution 

of the linear system: 

( i ) 

... " " (ti+~ ~ ti) si_l + 2 (ti+l - ti-l) si+ (ti - ti_l) si_l = 

3{(ti+1 - ti)(xi - xi .. l)/(ti - ti_l) + (ti -t~;"l)(xi+l ,-:xi)/ (2) 

(ti + 1 - ti) i = 2, I - 1 

(3 ) 

" provides the values .si; i = 1,1. 

" In the (more common) case that the terminal derivatives Xl 

and xI are not known, replacements must be found for Equations (1) and 

(3) . 

Reference i imposes the condition that s have no curvature at 

tl and tI; 1. e._" s"(t1) = 0 and s"(tI) = O· which gives 

2 s1 + s2 = 3 (x2 - xl)/(t2 - tl) 

and s;_l + 2 sr"= 3 (XI - xI_ 1) / (tI - tI_ 1) . 

: Solution q{ the'l;nea.:r syst~m consisting of Equation (1"), Equations (2) 

and Equation (3") gives the s~ subject to this condition. 
1 

Reference 2 imposes the condition of constant curvature very near 

tl and tI by requiring that s i be the slope of a circle pas sing through 
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( tl"" ~1) and (t2 , xz) having the slope s2 a~; t z and that. s; be the .slope 

. :' . 
of a circle pas sing thro.ugh (tr_l' . xr\'" l) and, (tr , 'xr) 'having the slope 

" sr_l at tr_l which gives: 

s1 = {Z (xZ- xl)/(tZ - tl)+ s2 [(xZ Xl)Z/(tZ ;' tl)2 - 1] }/ 

" 2 
, " ,(1+s2) 

, ' 

s~ =' {Z(x
r 

- x~;l)/(tr f t r_1 ) + s;_l [(xr - xI_l)Z/(tr - t r _l)2 
.... ,,' : 

" 2 
(1 + sr_l) 

\- ~ . , ". 

Unfortunately, Equations (4) and (5) are not linear. in s2 and sr~l' 
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(5) " "'>' 
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respectively; hence, the system (4), (2), (5) canno~ be soived as a linear: ; ,".' 

system. The reference proposes ari iterative process whereby first 
, " 

" -::.: .' 
~," ~."' ( ..., \ ., .. 

i,' ';',:. estimates is made for s2 arid sI_l~Equations (4) and (5) are solved for,. _. ..1' • 

. ,:' 
, , 

" , .':'.< :8 i and ~i· 
. _ '", •• ,.', J .,' ~ ", " 

Equations (2) can then be solved as a linear system for si;' , :. . 1,: 

,'. ".:,.:-., t ,'. i 

'f =, z, r - 1 . Then, the new v~lues of s2, and s1_l can be used in Equations '(4) : . ',' " 

,'- . 
• 'J., ~ .:" ,'~. 

and (5) and iteration continue'd until s2' and s1_1 no longer change appreciably •. " 
'" 

" 
',;~' The authors assure us that the process is rapidly convergent. 

, We propo se the condition that s is a cubic at tl and tr who se slope 

-
s i is dependent on (t l .. 'xl)' (t2 , xz), and (t3' x3) and ·v.hose slope s1 is 

.... i 

'f ,. 

·;.··de~endent on (tr~ xI)' (tr_l' xr_l) and (tr_z' x r _2)·which gives: 
~ ,<: • '.;. k. 

i 1 

.t .. '.', _."", .••..• , , " 

.. .">.; 
"/ . . : '" ", r"i. 

'. ",.':", 

. ,', \~./ i ," 
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i ~': where' 
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".: . "~ " 

,',d l '- (t2'~ ti)Z/{(t3 -tl)3'~' 2 (tz -tl)(t3 ""~'t)Z'+ (t2-~1)2(t3- I)} 

, " 
":: ~ .. ~ .. j. ~ 

',' 
.Y '" 

.;, -. .~~ '"." , ~', 

cl~d{2 (t3 - t l )3 '-' 3 (t z - tl)(~.3 t l )2}/(tz itl )3 

.. , 
' .. 

. '~:." .:'\r-<.,:~ .- ').,' 

.-~ ""I"~', .. ';. 1,:., ~~~.. ~' 
,.' ~':;' ..-

.' -..• :' . '," ", . '{: '.<.,. 
,. '!. " ~.'. 

"/ 
, t". 

, and 
"I 

, ' .' 
"",.-, 
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(3") 

Equations (1") and (3") are linear; hence, Equation (I"), 

Equation (2), and Equation (3") consitute a linear system which can be 

" so1vedfors.ji= 1, I. 
I, 

SEC OND DERIVATIVE 

The values of the second derivative 

cap. be readily computed from the set: 

( ")' 1 t i , . s i' s i ; I = , I 

by 

where tk is adjacent toti' The formula is exact for a cubic between tk 

and ti' For i = 2, I - l, the k may be either i - 1 or i-i + 1. The result 

will be the same for either choice since the cubic on [ t i _ 1 , ti ] has the 
'" 

INTERPOLATION 

Inte rpolation for x(t>:<) with 

is accomplished by computing s(t>!<) by Hermite interpolation.' For some 

i; I = 1, I - 1 we have 

Let 

h = t* - ti 
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then let " 
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b = 1 - a 

c = (h 3 _ h 2H)/H2 

.d= h_h2 /H+ c 

and finally, , 

,',:s(t)!<) = a si+ 1 + b si ~ c s~+ l' +d 
.... 

, . 

'rhis for~ula is exact for cubics; hence, the valu~ s(t*), is exact 

for·s and is an estimate for x(t~~) . 

.. ~ 
...... 

The integral 

~, '. 

"-',io 
. ~ . 

tI 

J 
,t ". 

1 

INTEGRATION 

1- 1 ti+ 1 
'sdt= L:.J 

i= l' ti 
s dt. 

:", ," 

On each of the sU:bintervals' [ti~ t i + 1] i = 1, I,., I, the function s is a 

cubic and 
, ti+ 1 

J 
t· ' 

1 

s dt = (t. l' , 1+ 

is exact for cubics. The sum of al1 such subintegrals gives 
tr 

'. I, s dt 

\' 
, ' 

which can be used as an estimate for 

tr " . 

... ~.~ •. "." . I, l , ... .- J x(t)dt.' 
~'. ; .", 

. ",':. ~ ;,',.: .,.~, .' \ .. . . , , 
~. "'. '" - , .'~ ~ ',. ,~.' .' .: 

..; ~. tl ~ .~ '-', ~:, . .... 

", 

~ :l" '~~>': ~ ~ .. 
I. 1. '.:;-'" 

-. - ~'. ~ ~~ t .:' .. .it .' 
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table 

'" <, 

, . 
CONCLUSION 

'The cubic spline s(t) is a computational1y convenient fit for a 

, ., 

(\ 

> (6) 

f\ 
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It lends itself conveniently to numerical differentiation, interpolation and 

numerical integration. 

The cubic spline fit havi'ng a continuous second derivative and 

piecewise constant third derivative is much smoother than polygonal 

(broken line) fitting which is continuous and has a piecewise constant first 

derivative and smoother than local cubic fitting which has a continuous 

first derivative and piecewise constant second derivatives. 

Exact polynomial fitting of (ti, xi) may introduce many inflection 

points and extreme curvature over a short arc. The minimization property 

(4) of spline:'Jitting tends to prevent such occurrences. 

Cubic spline fitting is exact on (ti' X:i) in contrast to least square 

fitting which admitsre sidual errors. These re sidual errors, particularly 

if they alternate in sign from point-to-point, may introduce unreasonable 

variation in derivative values. 
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