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ABSTRACT

H. Peshbach has shbwn‘how the introduction of the projection operator
onto the bound states of a Syétem of nucleons can. facilitate the caléulatibn
of the transition amplitude for a nuclear scattering reaction. Feshbach's
‘method is based oﬁ the relationship of the transition amplitude to the T-
matrix. Iﬁ this paper we show how the projegtion operator'methéd can be
applied to the generalized R-matrix expression_for-the transition amplitude.

In order to test the validity of the approximations customarily.
empléyed in gpplications of the projectidn opefator formalism, we have
-applied the'method to a simple soluble model. We find that the method works
quité weil provided that all second order terms are retainéd. The general-
ized R-matrix is found to work better than,the T—matrix method, but the R-

matrix method depends,éensitively on the choice of the value of the boundary

radius.

¥
This work wad done under the auspices of the U.S. Atomic Energy Commission.
Present address: Physics Department, Case Western Reserve University,

Cleveland, Ohio L4106
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I. INTRODUCTION

H.'Feshbachiﬂhas-shown,hOW»the introduction of a projection -operator
onto the bound states of a system of nucleons.can facilitate the calculation
of,fhe transitioﬁ'émplitude for a nuclear reaction.. This.method-has received
several elaborations2 and-applications.5 The Feshbach method utiliées the

:relationship between the T-matrix and the scattering amplitude. In this
paper we éhow how‘the pfojéction.operator‘method can be used_to.evaluate the
. generalized»R—matrix.&i When approximations are madé to cafry out calculations
. using the projection operator formalism, the consequences of these apprbxi—
'_mations can be expected to be someﬁhat differeﬁt for the R-matrix than for
the T-matrix. |

.Inrordef to tést_the &alidity'of thé appréximations customarily
* employed inrapplications of the projéétion.operator formalism, we have
applied thevmethod to'a simple soluble.modela ’Both the T-maﬁrix and R-matrix
apprqaches‘are tested. Thé model consists of two s-wave channels coupled by
a Zero range separable potential. In_addifion, fhefe is an elastic zero
range intéraction in each channel. We find that the projection. operator
method wofké pretty well provided that all second order termg are retained.
The R—ﬁétrix calculation gives a better result ﬁhan.the T-matrix calculation,
but'fhe elastic R-matrix results are quite sensitive to the choice of the
boundary radius.

in Section II the scattering problem is formulated and the projection
operator formalism for the T-matrix is.preseﬁted. The prdjection operator
formalism for the R-matrix is outlined in Section III.» In Section Ivvwe
introduce.the usual second order approximation for the reduced dperators.

We describe the coupled s-wave chéﬁnel scattering model we wish to ﬁse to

test our methods in Section V. In Sections VI and VII we apply our approximate
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projédted T-matrix and R-matrix methods to the scattering model. 'In:Seétion
VIIT we describe the results of numerical evaluation of the éxpressions

-derived in Sections V, VI, and VII.
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II. .THE PROJECTION OPERATOR METHOD APPLIED TO THE T-MATRIX -
For the sake of simplicity we will restrict ourselves to the problem
of the elastic'and’inelastic;scattering of a particle by a target capable‘of
'ekisﬁing.in'a finite number of discrete states. The Hamiltonian will be

taken to be

[+
1

Hy(¢) f.YHP(_g,_E)»Jr’V(};,E)' - o | | (1)

I

Hy(r,6) + V(z,e)

where HrII is the Hamiltonian for the internal structure of the target, V
- is the interaction between the target and the incident particle, and‘.HP is
the”felative motion Hamiltonian. -HP will consist of a kinetic energy T

and an elastic scattering interaction . U .
Hy(z,8) = T(z) +U(z,E) | | . (2)

Let %é‘) be the wave function describing the scattering process of

interest. Then

¥ O(é +..-)

(E - H) = 0. , . S (3)

where E .is the total energy. .The subscript identifiés-the initial state
' : ()
of excitation of the target. Now let <Dé ) be the eigenstate of HO -at

the energy E,

L . (1)
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) . , “." = . . S . _ . : " - . + ‘
which has the same_incidenﬁ asymptotic- Behavior as’ %§+) . - Then 'Yé+) and Qg ) are

related: by ‘the Liﬁpmanaschwinger“equatioh5d

B ”<>” Y

N + ' L
| [1# (E-H4+ié)™t ( ) ' | - (5B)
Let A 7be_the'eigenstaté'of HT+ﬁT cdrreépondingrto channel B .
—‘V >-'T . .= E :
(B - By )AB 0 R | - (6)

" The trans1t10n amplltude for scatterlng from channel a to channel B may

2 wh
now - be wrltten. asv 255%31 ere

Fear = <‘Aslﬁ - By - 7| ¥(+)v'>.(2ﬁ)'1 - - _‘ (78)
- (<aglul af> <“®f(3_)v|V| iféz+)3 >) (em)™ (7B
- 2% s

20 . 1 . : e (70)

:Tpe.Various wave functions that appear aﬁove are normalized to unit ineident
méﬁrrent.‘"Thevfirst‘term on . the righﬁrof Eq. (7B).is the sééttering amplitude
due to interaction :U . The interaptiqn U is choéen_to be a-simple potential
well‘that'cén‘prbfideuaﬁ appfoXimaﬁe ﬁéécribtion of ‘the average elastic
sCattering.’Eu”*is'tﬁéfdpﬁiéai'potéﬁfial. ‘This there is no difficulty in

(0)

calculatlng T
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Doy (# o
The remainder, TBa =< ®é )|V| Té )> , Wwill be the main object of
6ﬁr attention. This remainder We‘cali the T-matrix. By making ﬁse of the
formal solution of the Lippman-Schwinger equation, Eq. (4B), we have

Top = <'(_Df(3_)l'V + V(B ' H + ie)%l vl ®éf)> /et - (8)

We define the transitiohhopératbr,_ T, tobe
T = V+V(E-H+ie) "V - (9

" Now we are prepared to iﬁtroducé thevprojection.operator onto the
bound states of the system Q . Let P-=1 - Q be the projection operatér
onto the unbound states of'the.system.  The reduced‘transition opérator %
is defined by,thexLippmangSchwinger‘equation

"N

T=V+V(E-Ho+ie)'lpr . (10)
T is what T would be if the bound states.were eliminated as intermediate
states from the perturbation expansion.

We solve Eq. (10) for V.

-1

vV o= "‘13[1 +(E-H + 1e) ™t Fh) (1)

)]

and substitute the result into Eq. (9) for T +to find after a few algebraic

manipulations that
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A

T o= T+ T(E -H - Qr+ ‘ie).-lezQT . o (2)

The transformatlon of Eq (9) 1nto Eq..(lE) 1s the essence of the progectlon
ioperator method. The advantage galned 1s that the 1nvers1on of E - H need
only be performed in. that part of Hllbert space spanned by the bound states

“1ncluded 1n- Q". ;The prlee-pald:for-thls‘advantage is the replaeenent-of'the
simple intefacfion"v. by theimore complicated-reduced;tfansition eperafor‘ % .

‘Due to the nature of P .it.is believed that T can be well approximated by

a few terms of a perturbation. expansion.



~7- ' UCRL-17784

III. THE PROJECTION OPERATOR METHOD APPLIED TO THE GENERALIZED R-MATRIX

We will refer to thé region of cpnfiguration,space exterior to the
range of V as the asymptotic region of space. 1In the ésymptotic region of

space the wave function describing. the scattering prbcess will have the form

AU NOO RO S ><r> A, é”( )1 - )
where X

8 is the product of an eigenstate of HT with the Spherical harmon-
-iecs forhthe'angular dependence of relative motion.of the two nuclides of
channel B ,--Uég) “is the unit current radial incoming wave function for

channel B while Uél) - is the corresponding outgoing radial wave function.

-The scattering matrix ,X is related to the transition amplitude' 2n
€ BoL . B

“g&x = By -2y, - . - (b

,where’ 85& is the Kronecker delta function.

The relationship between the scattéring matrix kf -and the general-

o
ized R-matrix ’?ﬁa defined by

, L .
_ N H — , S(I‘-RZ -1 1 ! —_H(r'_R
’QBOL(RJR) = 5 v RR< XB(E’Q) r2 I(E-H) l ._Xa(g ,80 ) _ rrg >
can be shown to:be
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.whérev'v

7 (1) = ( )(R) ( )(R) D #® (R, R) +?2 (R R) ( )(R) (16]3)

ocB RO‘B ,
N 1/2 |
g = R1/2 %Rl/g R o - (16D)

"Eq. (16);is detived in reference (4)“for the case ‘R = R . The generalized -

R-matrix is seen to be made up. of matrix elements of the Green's furiction

wifh'respect‘to the channel wave functions. Of course, there is a freedom of
éhdice asbto hbﬁiweidefiné:the sinéularity in ,G‘_b&t'this gmbiguity#doéS'not
afféct’thé'Wronskian of A that océurs,in.Eq. (16B).

-In the above expresSion.fOrjfhe'R-matrix the values of R and R
vmﬁstlbe»such'that‘tﬁe'matChihg radiug’ R "is smaller than or equal to the
boundary radius R . (¢€,9,R) and (&,0,R) are configuratien space points
located in the asymptotic region.

Wefusé-ﬁhe e#préssion;"éehef;iiéed:R-métrix"'£o differéntiapé 72
from the R-matrix of E;qugnerl6 ‘The Wigner R-matrix is given by Eq. (15).
with R =R and a pérticular-fepreseﬁtafion used for (E -.-H)-v"l . We use’
thé;ﬁbrﬁj"générélized“ to[emphasizé.the fact that other representations for
‘(E:;-H)’l ganibe’used*as well. Having made -this point, we will henceforth

refer to A as simply the R-matrix,l
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In the T-matrix treatment We‘were_éble to use the optical potential
U to reproduce the averaée elastic»scattering and- confine our attention to
the remainder'of the transition’ampiitudew The same can be done in the-
vR—matrix treatmenﬁ. To do this we introduce the Green's function Go
" associated with the Hamiltonian Ho =H, +T+U .

6 - (B-H +ie)7 | T e

Here it is convenient to explicitly choose the scattering type of singﬁlarity

by including the imaginary infinitesimal' ie ..-Now since

G—l
o)

- + i
(E H ie)

(E - H + ie) +V

= G +V | - o j (29)

we have the following experssion for G o

@
!

G+ GVG S . ‘ - (204)
° 5 o

G;<1 -'VGo)fl - | R o (208)

Using the right side of Eq. (20A) in the definition of'the’R-matrix shown in
Eq. (15), we can afrive_at an expression.for the R-matrix which consists of

an optical model term plus-a remainder.
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Next we consider. how the projection operator -onto- the bound states,

Q=1 7P, " can be:usedvto-facilitate-fhe.operator=inversion:required to

evaluate G . We start by defining a reduced .Green's function G. .
‘Sqlving-this equaﬁion for qo

G, = 8(1 + VPE)'l . - (22)
and using the result to eliminate Gon.from‘Eq. (QQB) gives - .

G + GVQG - o o (238)

(o]
Il

I}

8(1 - VQa) B C (23B)

For our purposes it is most convenient to rewrite Eq. (23) to read

~ ~

¢ = 6+ave(l -av)ta S T T )

Eqs. (1), (15), (16), (18), (21), and (2L) coristitute the application
of fhe projection operator method to the R-matrix,iormalism. “Egs. (14) and
(16) show how to calculate thé transition amplitude:from,fhe R-ﬁatrix.

Eq. (15).exp;esses the R-matrix in terms of the Green's function. Eq. (24)
A8§Ve§'the Gréeh's function;in ﬁef@s of-ﬁhe‘reaucéa Green's fuﬁétiqn énq the
projectionlopefator. Finéll&, Eé. (21) defines.thé reauced.dreen'é function
.in terms of the conjugate-projection_opératbf‘aﬁd the optical mﬁdéilGréen'é

function defined by Eq. (18).
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Thus we haﬁe sﬁééeeded in insectiﬁé thehtwo esééntial ingredients of
thé projection operator treatment of the Tfmatrix into a-prOjection'éperator
treatment of the R-matrix. In‘Eq. (24) we seé that the operatoriinversion:'
is limited by the projection operator Q to the_portion of-Hilbgrﬁ space .
spénned by a discrete set of'eigehveétofs.' Fromqus.v(Eh)_énd (21) we see
that thé reduced Green's functidn'éan be expressed as an optical model Green's

_function plus a remainder.
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'IV. APPROXIMATING THE REDUCED OPERATORS

The two- formalisms for calculating the transition amplitude for

- scattering derived-above are exact. - In:principle, the optical potential U
-and ‘the projection operator Q - can be chosen in a -completely arbitrary way.
- In applications it is necessary to use.an approximate:representation for the
: ‘reduq'éd-'opera‘bors". The usual choice:is the first iteration of the integral:
equation.

In the T-matrix fermalism we iterate Eq. (lO),once and let
T ® V'+'VGOPV - (25)
‘This is then substituted into Eq. (12).

T & T

A
T, = V + VG PV + V(1+¢ PV) [E-H -Qv(1+c PV) + ie]'l'Qxl +yg P) V
A : o o - o o : h o
(26)
In practice, the higher order terms in V are often neglected also.
T = »TC
Tg = V *+ vIE -H - Qu(l + GOPV) +1e17t Qv (27)
We will also consider an.intermediate approximation, namely
T =~ T]3
Ty = V *+ VG PV +‘V[E'--HO - Qv(1 + GOPV)Y+ ie]'l'qv . (28)
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1

- o ‘ ' : S 13-

In the R-matrik formalism we iieraﬁé‘Eq. (21) once and let

N

G Gy * CVRE, | e (29)

This is then substituted into Eq. (2k)

G ® G
. S 2
= ¢ +C + 1+V - = + + 1 (1+VPG:
G, = G, *GVEG +G (1+VPG ) VQ[E - H -~ (1+VPG ) VQ + ie] (1 VG ).
(30).
Eere also -we can simplify by dropping the higher order terms,
G ® G
Z
= + - - + , + 1
G, | G, ..GOVQ[E H (1 - VPGO) VQ + ie] _ (31)
or make the intermediate approximation,
G * G
y
]
= + + - - + + ] . :
Gy G, *+ GVEG GOVQ[E H (1 | VPGO) VQ + el (32)
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V.. THE ZERO RANGE COUPLED CHANNEL MODEL

. To compare the projected T-matrix and R-matrix.scattering formalisms
deséribed above, we will apply them to a éimple scatteriﬁg modei.wﬁich is
exactiYgsoluble. We.%ill.consider the scattering of s-wave particles,in two

'channels. ~The scaétering will result from a zero range elastic interaction
‘U .and a separable zero range interéction V .that couples the’tﬁowéhannels.

The Hamiltonian for this model is. just

- - B +V | | O (33)

B o ot E N €
2 ., i2 : : : S

() = g 2 e . . | (33¢)

dr

To‘define"U and V we make use of the>tWo~eigenstates.of the internal

motion Hamiltonian HT,.

(€, - H(8)1 X (8) = 0 =1, | o (34)
2 2 . ' .

s - B EIge)E s o) (1,06 e
2 2 )y yave 8@y ¢

V(réﬁ) = 5 dél Bill—;r-'gd(é).> V< B ~X5(E)l (36)

Whenever V -and U multiply each other, it will be understood that the Dirac

‘delta functions appearing in .U are to be evaluated first. Channel 1 will

be regarded.as the elastic chaﬁnei.
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- The wave function for the systém, the exact wave function, will be

an eigenfunction of H
N .
(E - H) ‘Yq(( Ye,e) = 0 . - (37)
We will ecall the eigénfunction of HO s ' i
| + o o .
(E - go) @§ )(r,g) =.0 , o » DR (38)

the approximate wave function. Iet us write

'\yf/*)(r,g) - Z(6) w.g;)('r)/rv R - (5%),
$e) = x(6) o)  m)

"Then the Schrédingér equations become

fa2 o 1 | (F)y (+) |

dr_2 kot (; + boc)’ S(r); wyx (r) = §(r) v, g z//YB (0) | (koa)
r | T

3;5 + gs %_(% + qu)f§(r) q&*)(r) = 0 (LoB)
G- B8 e

'The regular solution of Eq. (LOB) can be easily shown to be

o) = 2B g (krvg) 0 K>0 (k)
_ 04
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: : — -b.r’ 2 :2. ol _
o Aol .y
(I)a(r) = '\/:Eba 2 = = & -E>0 | (41B)
. where |
% = - tan”l(ka/ba) . (¥1¢)

We see that there will be:one bound state. vproirided.that ba is positive.

‘The reason for our choice of normalization. in Eq. ( 41A) becomes clear when we

réirite it in the form

¢(+) o 1/2 -ik r ’ ieg, ikr
3 (I') - - m : é _ & e ()_'.2)
r ' - \Bk Coir ir ,T
123
_ g2 o (1)
= U, (x) - ¢ Uy, ' (x)
where 'Uo(tl) _is the unit current outgoing radial wave function fér' our
.problem. The "approximate" Green's function Go- is just
! = - 3 »t . .
Gp(ror’) = <rX (B - 5 +ie) | r',x> (13)

o sinligr + 5 ¢t %)

-5
op hzka_ TIS

1

'SdB,hE . ga(r,r )/rr

The exact scattering wive function can-be ~found’ by .solving the

L-S equation for .¥ which reads

e . '§W.¢§*>(r> + gy(2,0) v, 3 5 (0) o
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Setting r =0 and sﬁmm_ing’ over Q gives

ail Vg (0) = 2 (oa/[l -V 3 51(0,0)] : (43)
“ym 1/2 38 ¥ IS ¢ sin
= <ﬁT{—> e fol]i’l .67/ 1+ Vo‘in ———k—a—— 6(1

i |

Thig can now be substituted back into Eq. (4k) to give

N \1/2 o ig ik
(+) > - m : P e . O .
w X (I‘) ._ 2 -——a | 6. ‘slvn (kar + 8(1) e -T e . ()-I-6A)
18 8, '

v sin® & VYsin & é
Q- 'Y 0/

T =

"y 51 2 2 g ] (46B)
k X 1z S-S g
o l O K P

Finally, we note that the ungcattered wave function Aa --is ‘given by .

L, = % (&) xa(r)/r' : - (L7a)
XOL‘ = 2(%1{—@) sin .kar : (478B)

Now we are prepared to evaluate the various quanhtities of interest to us.
The two contributions to the exact transition amplitude are- calculated
from the definitions given in Eq. (7)

13

Tég) - . 6@ ¢ “sing, = Bag T | ‘ (484)
. v ! T T .
Yo pa .
T _ =T (L8B)
N Rt L T -
- iy o > Ty

v



=18~ UCRL-17784
where by ‘Eg. (42B)

id
: 9 ’Y . : . "l
T = =€ -9 = + :
y = -¢ Ysing }c,y(py ik,) o (49)
Eas. (7), (48), and:(49);providefus with the expfessibns for the exact trans-

ition amplitudes for our‘system. -
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VI. APPLICATION OF THE T-MATRIX METHOD TO THE MODEL
‘Our next task will be to calculate the matrix elements
. - . - +. : | . ) . .
= < d_)é )-ITQI @é,;)-> , @=A,BC (50)

of the approximate transition bperators T vderivedffromrthe.T—matrix_

Q

method in.Section III. -These are to be'cbmpared to the exact T-matrix. As

~N

a first step we use the definition of V ,given‘in Eq. (36) to simplify the .

approximate expression for T .

all

V(1 + GPV) = Vx o | - - (514)

o '

Hv 2 2 ' .

x = 1+ -2m° s 3 <3z) xala PIMX6> .~ (51B)
: a=1 p=1 T e r

Combining Egs. (26) and (51) and again making use of Eq. (36) we find

T, = ®+ xVIE - B - »va rie) I (52)’
= Vx(1 + xy)
where
voT ﬁ:zo Ogl fél ) %EL.)- XO‘,I‘(,E _HO- w +5e)7 al 5§r) Xg >
| o (53)

Similarly, Egs. (27) and (28) can be written

=
1

V(x +y) o _ -~ (54)

H
1

Ty = V(1 +y) o 3 | (55)
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The numerical'coﬁstaﬁts ?xv and. y fdefehd on the definition‘of the projection
operators P and Q . |

The_most desifable‘choice~for'the projection operator Q would
appear to be a progector onto the bound states of H .- These are het readily

available, so we will take Q@ to be the: prOJector onto the bound states

of Ho‘-
o é-b h . é—bar ‘ -
Q = 3 |=—=%,;> () < =— X ) (56)
=1 } : .
= 1~-P
" Combining Eas- (56)-snd,(5l) ve find
- . : L *,‘.—l . . 1
xe= Ol ev, X5 T kT =l e v, S e (57)
‘ 0 a’ aa | : ° 4 ha—l%a -
,Combining Egs. (53) and (56) we find -
. ‘ l-> -l i )
y = z(1 - xz) v (584)
2 by,
z = v X - - (58B)

vThe last ingredient to go into our evaluation of the approximate

T-matrices will be the matrix elements of V .

Vea

<ag vl a{")> jen | - (59)

(k ) 1/2

Vo éqx
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Our final result is thus

(Tp)gq = Vpg(L + =) | | (604)
(Tg)gg = VBOC(X. +75) ' (60B)
(Te)py = Vol L +¥) | (60c)

This is to be compared with the exact result given in Eq. (48B).

(61)
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VII. APPLIQATIONvOF.THE R-MATRIX METHOD TO THE MODEL
Using‘thevresults derived in Section VI we may:immediately»simplify

v somewhat‘Eqs. (30), (31), and (32) for the approximate Green's functions.

, ..Gi_f G+ CY%OVPGO;,.(.l..r!-.xy:)». + XGOVQ[E - H_ - xVQ + ie] (62)‘

Gy =Gy + GVEG, + G yalE - H, XVQ,+ Le] (63)
A A T s v - y L. .-l

G, =G, * G VRIE - H ;:XVQ +4i¢] _ (64)

These expressions are: substituted for (E-H) =~ in Eq. (15) and the results are
used to evaluate the expressions in Egs. (16), (14), and (7). The calcula-
tion is‘étraightfdrward butvsbmewhat.lengthy. We will merely display the |

results ‘in terms of the resulting T-matrices.

(2 )g0 = VpolL = (1 - 131 - x2 - (1 - x)k)* ()
(T ) gy = VaolL - %2 + x2I)(1 - xz fng)'l (658)
(T, )pq = VoIl - =2 + XK)il_ .. | ()
where , .
: 1 -b.
Ja = EbOk& e  sin kQB | (66)
5 b (ik_-b )R ,
K =2v.3  —o—s e O | - (67)

S L2
=l by + K

We see that therdependence on the boundary radius R ié contained in Ja and

K. For thié simple model all dependence on the matching radius R cancels out.
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VIII. NUMERICAL CAICULATIONS AND COMPARISONS

* The cross section -o for elastic scattering and the cross section

11

o forGinelastic scattering were calculated from the definition

12

e () y 12 ' '
s~ = |TO£B + (TQ)OéBI | . | | . (684)
 Q = E;.A: B,C, X, Y, %2,V o (68B)

The subscript E identifies the exact result as shown in Eq. (48B) or Eq. (61).
The approximate T-matrix theory results corresponding to subscripts A,B,C
are shw.on‘ir:l.Eqs. (60A),(6oi3), and (60C). The subscripts X,Y,7Z identify
the R-matrix theory results corrésponding to Eas. (65A),(65B), and (65C).
The subscript V serves to identify the simplé.distorted wave Born approxi-

mation prediction.

(e = Voo (69)
"It is clear that in the 1limit as V Dbecomes very small all the
approximaﬁe results, with one exception, become exact. In this 1limit
Vréyd,; x -1, y'—’O,;.ZK-a 0, z-0 . ‘ (70)
Then to first order in V
(TQ)aB - van Q = A,B,C,E X, Y,V | | (714)
(Ty)og = Vged | | (71B)

app
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Asidévfrém ﬁhis; compariééh to fhe vérious expfessions is not very
illumihating. We ﬁéte that'thé R—matrix approkimate results for an;are_not
symmeﬁric. From the'eXplicit_formS’it is hard to see just how well the .
apprdximate'expfeésioné ?eproduée the exact‘results. Thus it is neéessary
to'comparé the reéuits of numerical evaluation. |

. The numerical calculétions_ﬁere performed using the following

. parameters

m- . 1.0 AMU
& = 0.0 Mev
.gg = 4,0 .Mev
B = h'bl/gm = 3.0 MeV
B, = b/ = 2.0 My

The inﬁeraction stréngth v and the bo@ndary radius. R Jweré ééch aésignedﬂ'
'a:range of values. With this choice of pafametérs‘we can expect é resonance '
to occur in‘the elastic_cross secfibn at about 2 MeV. The width of the
resonance and the magnitudefof'the inelastic cross section increase with
incfeééingfinteraétion strength Avo . | |
in Figsf (la); (1b),-(lc),'and (1a) we see a comparison of how well
the vafious;épproximaée treatments rébfoduéé the élasfic cross section in the
neighﬁqfhobd.bf tﬁé résonance as a function of the interaction-stréngth &o
By chooSing_ﬁhé'Valueé O.lkF_l, 0.0gF—l; O.O5F_1, and O.OEF-:L for VO s
we find the resulting resonance widths to be about 1 MeV, 0.5 MeV, 0.25 MEV,

‘and0.05 MeV. T T
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- The projected T-matrix results are seen to improve as the width is

- is a definite improvement over Ty and TZ'_

reduced. The approximation"TX

wherein certain second order terms are neglected. ' The projected R-métrix'
resultb TA ig seen to do very well in the large width case but surprisingly
the fit to the exact result deteriorates as the resonance width is reduced;
It is also surprising that the projected R-matrix-approximations-£§ the
T—matrix _TB and TC giVe uniformly‘poor results.

The’fact that the fit TA pyOvides to the exact elastic croés
section déteriorates with decreasingvresonance width is due to the faét that
the optimum choice of the boundary radius R seems to vary ‘with the width.
In Figs. (22) and (2b) we see the v =:05 case performed for ‘R'= 2.0 F and
3.8 F . The Fig. (1) calculation used R = 2.6F . The R =. 3.8 F résult

for T

" is an excellent fit to the elastic cross section.in the vicinity of

the resonance.

We conclude that the second order ﬁrojécted T-matrix formalism can

give a good fit to the resonant“glaétic cross section=if.the“WidfhtifEQEQS-_f
than  0.25 MeV. Refention of éii the second'order terms gives a noticéaﬁle‘
improvement. The second order projeétgd R-matrix formalismﬁéan yieid a.néarvv
-perfect fit to the resonant elastic cross section provided the boundafy radiuéﬁi
R is tuned to the appropriate Qalue, For this calculation the reteﬁtion of
all secoﬁd Qfder £erms éppears vital. _ |

In Figs. (3a) and (3b) we ha§e plotted the elastic cross sections in
the energy range O-QOvMeV for vo=0.1ﬁ P and v _=0.09 F1 . For smaller
values Of vO the curves are very nearly coincident. The fits for TA and
T aré again seen to be pretty good . 1For some reason, at high energy T

X
seems to be the best.

B
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_ Thejinelaétic‘crOSS sections: are plotted in Figs. (ha),(hb),(ﬁé), and
.(Ad). As:thé‘interaction stréngth v ‘is'decreased, the various approximate
Cross secfions, except for tﬁat resulting from -TY » approach the eiagt,result.
" The prOJectedvR-métrix-result,vcaléulated from TX" does better than
the projected_Tématrix"resuit, calculated from T, - It is surprising}that;

T which is an approximation to T, , leads to a better result for thé

Y’ X
inélastic chss sectionf 'Similarly, Ty > an approximation to T, , does
better than 'TAf. This is Just the reverse of what we found for thé elastic
transition probabilities. |
A;Itfis,interesting that the frdjected_T-matrixland R—matrixjmethods

give bettérvineiéSticfcross sections than does the distorted wave Born
,gpprokimation givenvby_-TV .v |

In Figs. (52) and (5b) are shown inelastic cross sections'for-intef-
action étfeﬁgth VO=O.05 . In Fig. (%a) the projected R-matrix results were
-calculafed With_a_boundary radius of R=3.8 F , while for the projeqted
'R—matfix fésults shown.in Fig. (5b) R=2.0 F was used. The inelastic

transition probabilities appear to be relatively insensitive to the value

of the boundary radius,
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IX. DISCUSSTION

Our study has revealed several interesting facts. We find that a
consistent tpeatment of* second order.terms is important in a projected T-matrix
formalismvand is vital in a projected R-métfix formalism. Whenwall the second
order terms are included,;thén the R-matrix formalism is capable of yielding
a result superior to the T-maﬁrix formalisﬁ result. Proponents.of the
T-matrix meﬁhod have emphasized that their calculations contain no adjustable
parametefs. |

Our results suggest that the presence of the adjustable bQuﬁdary‘radius
R .in the R-matrix meﬁhod may-in fact be adyantageous.

In all applications of R-matrix theory one must face the problem of
truncating‘the eigenfunction expansion used to represent the R-matrix. -ﬁow
. 1is one to recover the coherent contribution of the infinite number of.distant
levels discarded by truncation? Presumably, the introduction of the optical
potential through.the replacement of G by GO + GVGO shoqld go a long way
toward ameliorating the injury resulting from truncating an eigenfunction
expansion:of G . However, thevprojectioﬁ operator formalism carries us
further still. Herein the truncatioﬁ.is done exaetly and the resuit_is the

replacement of the interaction V by the effective interaction
T = (1 -VPGO)’lv ¥ V+VRGV .

We have seen that if we do truncate drastically but retain the second. order

contribution to T we can db very well. We conclude that unless very many
terms are included in. the eigenfunction expansion of the R-matrix, it is
advisable to replace the interaction V Dy.the (complex) effective interaction

~

T .
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FIGURE CAPTTIONS

Fig. (1) Elastic scattering cross section caleculated from the T-matrix
shown in A: Eq. (60A), B: Eq. (60B), C: Eq. (60C), E: Eq. (61), V: Eq. (69),
X: Bq. (654), Yt Eq. (65B), and Z: Eq. (65C).. The boundary radius used for |

curves X,Y, and- Z was R = 2.6 F . The interaction strength was

ar v = 0.14 , b v, = 0.09 F—l‘, c: v = 0.05 F-; , and
a: v =0.02F % '
o 77
Fig. (2)  Elastic scattering cross section calculated as in Fig. (1). The

interaction strength was vd = 0.05 F“l 5 and the boundary radius was

ai R=2/0F, b: R=38F ..

Fig. (3) :Elastic scattering cross section calculated as in Fig. (1). The

boundary radius used for curves X,Y and Z was R = 2.6 F . The interaction
1

strength vas a: v_ = 0.14 F'' and b: v_ = 0.09 F

Fig. (L) : Ineléstic scattéfing éross_section calculated frém ihe T-matrix
shown in A: Eq. (60A), B: Eq. (60B), C: Bq. (60C), E: Eq. (61), V: Eq. (69),
X: Fq. (65A), f: Eq. (65B), Z: Eq. (65C).: The boundafy radius used for
curves X,Y,waﬁd 2 was R = 2.6 F . The interaction s£r¢ngth was

0.09 F™", e v =0.05F", and

-

a: v = 0.1k FL s bt v
o - o

d: v =002 F-l .
v o

Fig. (5) Inelastic scattering cross section calculated as in Fig. (4).
The interaction strength was VO.= 0.05 , and the boundary radius was

a: R=3.8F and b: R=2.0F
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any informatign, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. ’

As used in the above, "person acting on behalf of the
Commission"” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee.
of such contractor prepares, disseminétes, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






