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Abstract

UCRL-17795

A brief discussion is given of the long-term stability of particle
motions through periodic focusing structures containing lumped nonlinear
elements. A method is presented whereby one can specify the nonlinear
elements in such a way as to generate a variety of structures in which the
motion has long-term stability.
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1. Introduction

UCRL-17795

The stability of the motion of a particle through a periodically
repeated focusing system (or of a light ray through a repeated sequence
of lenses) poses a difficult and fascinating problem. Let us imagine a
set of planes intersecting the path and spaced with the same periodicity
as the system, and examine the coordinates of the deflection at these
planes. One degree of freedom will be considered, with the coordinate
x and the conjugate momentum y. (The neglect of coupling with other
degrees of freedom is already an oversimplification of the real physical
problem.) As we go from one plane to the next, the new values x', yl
are given as functions of x, y. If the equations of motion are derivable
from a Hamiltonian, the Jacobian of this transformation is unity; this is
assumed. (Effects of scattering and radiation damping are thereby ex­
cluded.) We now look for fixed points of the transformation, that is, for
values of x, y for which x' = x, yl = y. In the immediate vicinity of a
fixed point, the transformation can be linearized to

x' = ax + by,
y' = cx + dy,

(ad - bc = 1). ( 1)

The results of the continued iteration of (1) are well known.
Stability is determined by a + d, the trace of the transformation matrix.
Three cases can occur:

(a) If - 2 < (a + d) < 2, the motion is stable, and points in the phase
plane tend to move around the fixed point. If n is the number of iter­
ations, x and y can be expres sed as linear combinations of cos jJ.n and
sin jJ.n, with 2 cos jJ. = a + d.

(b) If (a + d) > 2, the motion is unstable, and points tend to move away
from or toward the fixed point. In this case, x and y can be expressed
as linear combinations of eA.n and e- A.n, with 2 cosh A = a + d.

(c) If (a + d) < -2, the motion is again unstable, but with a superim­
pose:! 0As,cillation; nX _~iid y. can be expres sed as line.ar c.ombinations of
(-1) e nand (-1) e . , WIth - 2. coshA.= a +d. ThIS WIn be called an
oscillatory instability.

In cases (b) and (c) two lines can be drawn through the fixed
point, which have the property that points on these lines remain on them,
that is, y'/x' = yhi' The slORes of t~ese lines (i. e., y/x) are given by
the two values of Zb (d - a ±;j (a + d) -4); the product of the two values
is - c/b. Looking at the lines as broken into segments by the fixed
points, we have four directions to consider: along one pair of opposite
directions, phase points are moving away from the fixed point, and along
the other pair they are approaching it asymptotically. These lines are
called invariant lines.
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(2)

When we ITlove into the cold nonlinear world beyond the linearized
region, the invariant lines pe rsist. Points along a short linear segITlent
transforITl into points beyond, allowing extension of the line; these go to
still farther points, and so on. (Invariant lines on which the points ITlove
inward can be extended by using the inverse transforITlation.) Because
the transforITlation is single-valued, an invariant line can never cross it­
self. It can proceed to infinity, or it can join SITloothly onto another in­
variant line having the saITle sense of ITlotion of phase points; this other
line can originate frOITl the saITle 'fixed point froITl which the first line
started, or froITl a different one. Or it can cross a different invariant
line; then sOITlething very cOITlplicated happens. The cros sing point is
COITlITlon to both lines; the transforITlation ITlust carry this point to both
lines, so they ITlust cross again, and this ITlust be repeatable indefinitely
on both directions. FurtherITlore, the lines' at corresponding intersections
ITlust cross in the saITle sense; therefore there ITlust be another crossing
point between, which ITlust also be repeated. A dollar sign with a single
bar gives a picture of the behavior for three successive cros sings. The
unity Jacobian requires preservation of areas, therefore all the loops on
the saITle side ITlust have the saITle area. A sYITlITletry which will be dis­
cussed later assures that at one crossing point the adjacent loops are
ITlirror iITlages, therefore all loops have the saITle area. As the infinite
sequence of crossing points ITloves toward a fixed point, the crossing
points get very close together, and the loops get very long and thin.

What is the relation of all this to stability? It can be shown that, if
a stable fixed point is cOITlpletely surrounded by SITloothly joined invariant
lines, all points inside the enclosure will reITlain inside indefinitely, guar­
anteeing stability under an unliITlited nUITlber of iterations of the transfor­
ITlation. On the other hand, if the invariant lines cross, there will be a
breach in the wall. Loops which enter the interior, where they curl up in
a cOITlplicated fashion as they get longer and thinner, will on later iter­
ations find a way through the breach and carry points outside. This pro­
cess ITlay, however, require a very large nUITlber of iterations, and sit­
uations which are in principle unstable ITlay be stable for practical pur­
poses.

Various questions can be asked: What deterITlines the SITlooth
JOlmng of invariant lines? Can one find nonlinear focusing systeITls where
the SITlooth joining is guaranteed? In case a SITlooth join is not achieved,
do the loops always invade the whole interior, or can a finite sanctuary
reITlain? 1£ it is achieved, will all or SOITle of the points in the interior be
confined to ITlotion on SITlooth closed curves?

In the work that I have seen on this subject, the nonlinear trans­
forITlation has been siITlplified to a forITl which represents physically a
IUITlped nonlinear iITlpulse applied at a single plane in each repeat unit of an
otherwise linear focusing system. An exaITlple is the transforITlation in­
troduced by Professor de Vogelaere:

_ 2
Xl - Y + x , 2
YI = _X + X t 2 = _x + (y + x 2) •
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Extensive nUlnerical calculations with this transformation have given
valuable insight into the behavior of the invariant lines when the invari­
ant lines cross at a large angle, making loops of considerable area.
L. Jackson Laslett has investigated another form with a quadratic non­
linear term, which gives very small loops. I wish to thank both these
men for introducing me to this subject, and for many discussions and
arguments about it.

2. The Transformation Used

I started with the form

Xl = y,
yl = _ X + f (y) (3)

mainly on the grounds that it is simple,and that it allows the introduc­
tion of an arbitrary function f(y) without disturbing the unity value of the
Jacobian. (Later I realized that de Vogelaere lsand Laslett l s forms
could be converted to this form by a coordinate transformation.) For
physical justification, one can start with a linear system represented by
(1). Let the spacing between measurement planes be taken as unity.
Into this system the nonlinear impulse is added by introduCing a thin non­
linear lens immediately before each measurement plane. This lens is
specified by the change in slope of path y when a particle pas ses through
at a displacement x:

~ y =- (a + d) x + f (x) . (4)

In each section, the particle pas ses through the lens just before it leaves
the section, so that the first equation of (1) remains unchanged while
~ y from (4) (as a function of Xl) is added to the right side of the second
equation. Now make the coordinate transformation X = x, Y = ax + by.
This leads to

X' = Y,
yt __ X + (a + d) Y - (a + d) Xl + f (XI). (5)

Substituting XI from the first into the second equation, and reverting to
the lower- case notation for the variables, we get Eq. (3). The inverse
transformation can be obtained by replacing Xl with y, y' with x, x
with yl, and y with Xl in (3).

[For further physical insight, note that (3) can represent a linear
thin lens with ~ y :::: - x placed just after the measurement plane, plus a
lens with ~ y = - x + f (x) placed just before it. The combined effect of
these lenses is ~ y = - 2x + f (x). Thus f (x) = 2x corresponds to free
motion of the particle. The resulting transformation looks unfamiliar be­
cause y is measured between two canceling lenses in immediate contact.
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If we introduce Y = slope outside the gap between lenses, then y = Y + x,
and the transform.ation tak.es the fam.iliar form. x'= x + Y, y l = Y.]. .

3. A Useful Property of the Transform.ation

The great virtue of the transform.ation in the form. (3) is the prop­
erty to be described, which allows one to construct lens functions f (x)
leading to prescribed invariant lines x = <\> (y). If a point lying on the
line x = <\> (y) is subjected to the transform.ation, we get

Xl = y,
y' = - <I> (y) + f (y). (6)

Now we require that Xl = <\> (yl), the condition that the transform.ed point
lies on the sam.e line. Write this in the inverted fo rm. yl = <\>-1 (Xl),
and substitute Xl and yl from. (6), giving

--1
f (y) = <\> (y) + <\> (y). (7)

Therefore if we use for the lens function f the sum. of any function and
its inverse, both the function and its inverse are invariant lines of the
resulting transform.ation.

This leads to a sim.ple geom.etrical construction. The inverse of
x = <\> (y) is obtained by interchanging x and y and solving for x. The
interchange corresponds to a reflection about the positive diagonal x = y.
An arbitrary m.onotonic curve eros sing the diagonal in two points can now
be drawn and its reflection constructed. The m.idpoints of horizontal
segm.ents joining the curve and its reflection lie on x = i f (y). Because
of the sym.m.etry, y = i f (x) is given by the line of m.idpoints of vertical
segm.ents. Fixed points are atf (x) = 2x, that is, at the intersections of
i f (x) with the diagonal. The trace of the m.atrixof the linearized trans­
form.ation at an inte rsection is equal to d f (x) / dx. If i f (x) cro sses the
diagonal in the upward direction, the fixed point is unstable, if down­
ward, stable, unless the slope lies below that of the negative diagonal,
when oscillatory instability occurs.

An exam.ple based on the rectangular hyperbolas <\> (x) = 1 -a/(x +1),
<\>-1 (x) = - 1 -a/(x- 1), with f(x) = 2 ax/(1 - x 2 ), is plotted in Fig. 1, for
a = i. The arrows show the results of the transform.ation applied to var­
ious points. A point starting at the intersection of y = f (x) with x = if (y)
returns to the sam.e place after 8 iterations. Sim.ilarly, a point starting
at the intersection of y = f (x) with the diagonal would return after 6
iterations, but this point has m.oved to the origin with the choice of . a = i.
The value of f.l. at the stable fixed point is 'IT /3.
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4. A Proof of Unlim.ited Stability

UCRL-17795

The form. of (3) is such that a point lying on a given horizontal
line transform.s to a point lying on a vertical line intersecting the horizon­
tal line at the diagonal. Displacem.ent of the first point to the right leads
to an equal downward displacem.ent of the second. In Fig. 1, A and B
are two such points on an invariant line. By the sym.m.etry of the figure,
the segm.ents AA' and BB' are of equal length. Therefore any point on
AA' transform.s to a point on BB', and all points lying in the region en­
closed by the two invariant lines rem.ain inside this region.

5. Closed Curves

In Section 3 it was specified that cj> should be a m.onotonic functi~n.

If this is not true, its inverse is m.ultivalued. The condition f = cj> + cj>­
m.ust be satisfied on both branches, which requires the addition of a¥other
branch to cj>. This leads to a second intersection between cj> and cj>- , and
we are drawn inexorably into the com.plication of an infinite series of in­
tersections. This difficulty does not occur if cj> and cj>-1 join sm.oothly at
their intersection on the diagonal. The portion of cj> on one side of the
diagonal can then be com.bined with the portion of cj>-1 on the other into a
single curve which is its own inverse, and the function %f (x) is given by
the line of m.idpoints of segm.ents between the upper and lower branches.
(Curves that are reentrant in such a way that they are m.ore than double­
valued require satisfaction of f = cj> + cj>-1 on all branches. Such curves
can exist without leading to intersections, but they cannot be drawn
arbitrarily.) Cases like those illustrated in Fig. 2 can occur. In case
2b, the closed curve does not pass through a fixed point and is not an in­
variant line in the "classical'! sense. There is no place where the trans­
form.ation leads to an im.m.ediately adjacent point, and therefore no way
to establish an initial direction for com.puting the further progress of the
line. Nevertheless, it is invariant in the sense that points rem.ain on it
indefinitely, and it is equally effective in ensuring that interior points
rem.ain inside, giving indefinite stability.

As an exam.ple, we can use the central conics. Let X, Y be co­
ordinates parallel and perpendicular to the positive diagonal. The conic
y 2 = a + bX2 , expressed in term.s of x and y, is

y = 1 \ [(1+ b) x ± -V 4 bx
2 + 2 a (1 - b)] .

The function y = f (x) is given by the sum. of the two branches,

1il;>
Y = 2 1~:b x.
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.-r-y =kf(x)

y=~ f(x)~~/

(0) ( b)
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Fig. 2
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These curves therefore apply to the case of linear f (x), a result already
well known but interesting to derive in a new way. If b < 0, the "in­
variant lines" are ellipses (or circles at b == -1) and the paraITleter a
can have any positive value. If b > 0 the lines are hyperbolas, and the
paraITleter a is allowed both positive and negative values, giving both
sets of branches of the hyperbolas. Thus a faITlily of "invariant lines"
resulting from a single f (x) is generated by the variation of a single
paraITleter. Whether such faITlilies can exist in ITlore cOITlplicated cases
reITlains an open question.

6. A Generalization

If f (y) == <\> (y) + l\J (y) in (3), and x == <\> (y), the transforITlation leads
to Xl == l\J- 1 (yl). lhis relation is reciprocal; a point on x == l\J (y) goes to
a point on Xl == <\>- (y'). T~e case considered in (~)1correspond~1toputting
l\J == <\>-1. Another case of mterest occurs when <\> == <\> and l\J == l\J .
Geometrically, this ITleans that <\> and l\J are curves with reflection syITl­
ITletry about the positive diagonal, each crossing the diagonal once, as
illustrated in Fig. 3a. The transforITlation ITloves a point froITl <\> to l\J,
the next iteration returns it to <\>, and so on. The two curves are now
second-order invariant lines and their intersections are second-order
fixed points. These lines are again a solid barrier against the escape of
points froITl the interior.

Closed curves can also be ITlade by reqUIrIng that <\> and l\J JOIn
SITloothly at their intersections, as in Fig. 3b. Now <\> and l\J can be
considered together as forITling a single curve, which forITls a first-order
"invariant line" of the type of Fig. 2b. In 3b, it has been given a shape
such that i f (x) at the center is sloping downward faster than the negative
diagonal, giving a fixed point with oscillary instability at the origin. Here
we have a particle confined forever in a region with no stable first-order
fixed point! When the figure is also sYITlITletrical about the negative di­
agonal, second-order fixed points occur at the intersection of i f (x) with
the negative diagonal. In this case, the outer ones are stable (the stable
ITlotion consists of jUITlping back and forth between these points) while the
central one is unstable. FroITl the origin there will proceed four second­
order invariant lines, which ITlust not cross the SITlooth outer boundary.
Whether these will succeed in joining SITloothly, or whether they will fill
the interior with a snaky tangle, reITlains an open question.

7. Construction of Invariant Lines

We have seen that a set of invariant lines has two syITlITletries, ITlir­
ror symITletry about the positive diagonal and vertical sYITlITletry above and
below the curve y == i f(x). (The transforITlation is equivalent to succes­
sive perforITlance of these sYITlITletry operations.) If the invariant lines'
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y=if (x)
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~-I--y=~f(x)
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are given, f (x) is easily constructed. A closed invariant boundary having
the diagonal syrrnnetry can be drawn arbitrarily so long as it is not more
than double-valued; if it is there is a requirement of self-consistency in
that the various branches must lead to the same i f (x), and the curves
cannot be drawn arbitrarily.

The inverse problem of finding the invariant lines from a given
if (x) is not soluble in such a simple way. The only approach seems to be
that used in computing invariant lines, to start at a fixed point and build
from there. The construction described here is closely related to the
computation procedure, but is useful in visualizing the proces s. It is illus­
trated in Fig. 4. One starts with a computed finite segment, marked 1.
(The construction in principle could be started from a very small straight
segment.) Diagonal reflection gives segment 2. Vertical reflection of 2
repeats 1 and adds 3. From here on, alternate performance of the two
kinds of reflections leads to segments 4, 5, 6, .... Segment 6, in the
case drawn, intersects if (x). The next two reflections lead to 7 and 8,
completing the first two loops. The symmetry making their areas equal
is apparent. For further iterations complete loops can be used. Two ad­
ditional loops are shown as dotted lines. Both types of reflection pre­
serve areas, in consistency with the unity Jacobian of the transformation.
If it had happened that segments 7 and 6 had joined smoothly, one would
have had a case like that in Fig. 2a. This occurs if segment 6 has a ver­
tical tangent where it intersects i f (x). The property of joining smoothly
clearly depends on an overall property of i f (x), which could in principle
be described by a single parameter, but it is not clear how this param­
eter can be determined except by "experiment" with a computer.

If there are two unstable fixed points bracketing a stable fixed
point, the construction should be started at both points. The invariant
lines proceeding from the two points can join smoothly, or they can inter­
sect; then systems of loops are started that move toward both fixed points.

8. Discussion

Some of the questions asked in the Introduction have been answered
at least partially. Methods of finding lens functions that lead to wide
clas ses of arbitrarily chosen invariant boundaries have been found. The
inverse problem remains at the mercy of the computer. However, it
seems likely that the adjustment of a single parameter can convert a sys­
tem without indefinite stability into one with indefinite stability, which fact
m.ay have practical importance. It is obvious that regions of indefinite
stability can exist inside regions with only short-term stability, since one
can find a function if (x) to give a prescribed sm.ooth closed boundary,
then extend it beyond, toward fixed points, in such a way that the invariant
lines do not m.eet smoothly. No prescription is given for finding whether,
inside a closed invariant boundary, there exist other closed invariant
boundaries, or whether the motion inside is ergodic.



y =~ f( X)

-11-

Fig. 4

UCRL-17795

XBL679- 5219



This report
sponsored work.
mlSSlon, nor any

was prepared as an account
Neither the United States,
person acting on behalf of

of Government
nor the Com­
the Commission:

A, Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B, Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in
this report,

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor,





•

UCRL-17795 Addendum
UC - 34 Physics

TID~4500 (51st Ed. )

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W -7405-eng-48

SOME THOUGHTS ON STABILITY
IN NONLINEAR PERIODIC FOCUSING SYSTEMS

Edwin M. McMillan

March 29, 1968



Printed in the United States of America
Available from

Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce

Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65

,

i..'

..



1.) Introduction

-1- UCRL-17795 Addendum

(1) .

In UCRL 17795, it was shown that curves in the x,y plane having reflection

symmetry about the positive diagonal are invariant under the transformation:

x' == y

y' == -x+f( y),

where f(y) is the sum of the two values of x corresponding to the given y. It is

required that there be just two values, but the two branches on which they occur

are not required to have a common analytic form. An example given was the pair

of rectangular hyperbolas y == 1 -a/(x+l) and y == -1 +a/(l-x), with f(y) ==

2 ay/(1_y2), mentioned in paragraph 3 and illustrated in Fig. 1. The question

whether there are other invariant curves belonging to the same f(y) was left open.

This question was answered by John M. Greene in a letter to L. Jackson Laslett

(March 8, 1968). He pointed out that all curves of the form (1-x2 )(1-l)+2axy==const.

are such invariants. If the constant has the value 2a-a2 , the equation factors into

two eql1ations representing the rectangular hyperbolas, which are now seen to be

simply the separatrices of a family of invariant curves. In the course of checking

the invariance of "Greene IS function" by the methods of UCRL 17795, I found that

it is a special case of a broader class, which can be called IBouble quadratic"

curves.

2.) "Double quadratic" curves

Any equation which is quadratic in x can be solved explicitly for x. If x

and y occur in it symmetrically, it represents a curve with the required symmetry

about the positive diagonal. The most general equation with these properties is:

(2).

whose solution is:

x ==
1

2(Ay2 + By + C)

+



f(y) ==

-2-

The sum of the two values of x gives f(y):

Bl + Dy + E

Ay2 + By + C

UCRL-17795 Addendum

(4) .

Since f(y) does not depend on F, all members of the family generated by giving

different values to F are invariant under the transformation (1), with f(y) given V
by (4) .

We thus have the remarkable result that an f(y) which is the ratio of any two

quadratic functions of y leads to a family of invariant curves, with the single

restriction that the coefficients of y2 in the numerator and of y in the denominator

must be of equal magnitude and opposite in sign.

The first order fixed points, if they exist, are at f(y)

the solutions of:

2 Ay3 + 3 By2 + (2C+D)y + E == °

2y, and are therefore

The number of parameters in (4) is easily reduced; E can be eliminated by a

coordinate displacement along the positive diagonal, either A or B can be made equal

to D or E by a change of scale, and anyone of the remaining parameters can be set

equal to unity. Thus we have a two-parameter system. Some interesting cases are:

(1) A == 1, B == 0, C == -1, D = 2a, E == 0, F == c.

x2y2

f(y)

2 2
- x -y + 2a x y + c == °
== 2 a-X.

1 - y2

(
lIGreene's function")

The first order fixed points are at y == 0, ~~

The separatrices are displaced rectangular hyperbolas, as pointed out above.

(2) A == 1, B == 0, C == 1, D == -2a, E == 0, F == c.

x2y2 + x2+y2 + 2a x y + c == 0.

f(y) == 2 a y

1 + y2

The first order fixed points are at y == 0, ~ ~

The separatrix is the curve given by setting c==o.

r
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In cases (1) and (2), if a is negative, the curve is rotated by 900, and the first

order fixed points (except the one at x = 0) become second order fixed points. (See

paragraph 6 and Fig. 3b of UCRL 17795)

(3) A = 0, B = 1, C = -1, D = 0, E = 0, F = c.

x2 Y + xl - x2 - I + C = 0.

f(Y) =
1 - Y

2The first order fixed points are at y = 0, 3 .

The separatrices are the curve given by setting c

the ctlrve xy -x-y + 2 = 0.

8
27 ' the line x+y+2 = 0, and

(I thank Dr. Laslett for finding the last two of these.)

(4) A = 1, B = -2, C = 1, D = 0, E = 0, F = c.

x2y2 -2 (x2y+xy2) + x2+y2 + c = 0.

f(y) == 2y2 2
(l-y)

The first order fixed points are at y = 0, ~ (3 + (5) .

•
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