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ABSTRACT 

We review and discuss various methods for obtaining low energy 

theor~ms for photon processes; (1) Low's methQd (2) the tensor methQd a~d 

(3) the S-matrix approach. The purely kinematical nature of these theorems 

is emphasized for they are found to follm'1 primarily from the identification 

of the correct kinematical singularity and zerQ free amplitudes. Gauge 

invariance serves to inform us of the presence of additional kinematical zeros 

in certain physical amplitudes so that the urunlown continuum contributiQn is 

surpressed relative to the lcnown singular Born terms arising from single 

particle exchange at the physical threshold. Besides the well knovln lm1 

energy the~)]:'ems specifying Compton amplitudes to first order in the photon 
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frequency one can show that some pieces of the amplitude satisfy higher order 

theorems; in fact all 2J+l multipoles of a spin J target have an associated 

low energy theorem. We explicitly establish a l~l energy theorem for the 

quadrupole moment of a J=l target to supplement the Imm-m theorems for the 

total change and magnetj.c moment. An additional theorem for photopion pro-

duction is obtained along ~"ith the well knovm Kroll-Ruderman theorem and 

serves to specify the E
2
-multipole at threshold. 

I. INTRODUCTION 

Low energy theorems specifying the exact behavior of scattering 

amplitudes in the low energy region have been of interest since the original 

"Tork of Thirring,l Gell-Mann, Goldberger and Lov.,2 on the Compton scattering 

of lou frequency photons from spin 0 and spin ~ systems. This early worlt, 

proceeding from the standpoint of field theory, demonstrated that the Compton 

amplitudes to first order in the frequency of the inc ident photon vTas completely 

specified in terms of the renormalized change and possible magnetic moment of 

the target particle. The immediate application of this exact low energy 

information is that it specifies the threshold behavior of the electric and 

magnetic multipole excitations of the target uhich admit of direct experimental 

comparison. Secondly if one assumes the scattering amplitude has sufficiently 

mild behavior at high enerG'Y the threshold theorem can be converted into a 

sum rule establishing a constraint on the inelastic spectrum. Subsequently 

ImT energy theorems have been obtained for a variety of processes involving 

photons3 and general methods of obtaining them discussed4• 

The purpose of this present investigation is to reexamine and review 

the derivation of lew energy theorems for photon processes and the specific 

-' 
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assumptions which enter their proof. In the next section we discuss three 

methods generally used to establish the 101'T energy behavior of amplitudes: 

1) Lm.,' s method 2) the tensor method 3) S-matr:i..:: method. We emphasize the 

almost purely kinematical nature of these theorems, not to suppose they are 

devoid of dynamical content but rather to indicate the crucial importance of 

establishing the kinematical singularity free amplitudes, the,kinematical 

constraints imposed by gauge invariance and analJ~icity properties in establisn-

ing these theorems. It is our conviction that once the purely kinematical 

factors have been separated from the amplitude by including the content of 

gauge invariance then simple spectral assumptions such as pole dominance 

suffice to establish the low energy theorems. The primary task is to separate 

out the kinematical factors from the amplitudes correctly by knm'ling "Thich 

,amplitudes are kinematical sin~~larity free (IillF) and kinematical zero free 

(I<ZF ). 

l'le apply the tensor method to Compton scattering and photopion pro-

duct ion. What emerges from this investigation is the recognition that for 

Compton scattering processes, besides the usual low energy theorems valid to 

first order in the photon frequency, there are additional threshold theorems 

imposed by the general requirements of analyticity and gauge invariance. 

Examples of such theorems are provided by the spin non flip piece of the 

Compton amplitude Fl(s,t) (to be defined in Section III) which satisfies 

(1.1) 

i-There sand t are the usual Mandelstam variables and e is the total change of 

the target. At t=O (forllard direction) this is just the Thomson limit; hOi-level} 

letting s ~ m2 ,.,ith 
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and "lith fixed cose yields additional information. Quite generally, there are 

threshold conditions on the invariant amplitudes of the same form as Eq. (1.1) 

and hence impose an infinite set of constraints on the physical multipoles. 

This conclusion has been anticipated and explicitly demonstrated by V. Singh5 

whose worle has motivated the present investigation. 

Although it is well known6 that to second order in the photon 

frequency the unltnown pola~izability of the target particle influences the 

scattering, it can be sho'lln that to this order and higher orders certain specific 

pieces of the amplitude do not depend on the polarizability and do admit of 

lml energy theorems. Furthermore one may conclude that in Compton scattering 

from a spin = J system all 2J+l static multipoles of the target enter a low 

energy theorem, a conclusion independently established by A. Pais. 7 For 

example for a spin = 1 system characterized by charge e, magnetic moment ~ in 

units e/2m and quadrupole mom.ent Q in units e/2m2 
"Ie find the follrn'1ing 

threshold theorem 

+ O(v
2

) X (tensorsnot included in above) • (1. 2) 

Here v = frequency of photon in bar;ycentric system and (~,~,k) and (~f ,~f ,R') 

are unit vectors denoting the initial and final polarization of the photon 

\" . , 
i 
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and target and direction of photon. 

We have examined photopion production from nucleons in the same i·ray 

and found in addition to the Kroll-Ruderman theorem3 a nei'T theorem. In the 

notation of CGrn
8 i'le urite the production amplitude as 

iO"kqO€ 
- """ "" J + + 

qk 3 

where €,k and q are the polarization, momentum of the photon and the momentum 
. 'V "'W """ 

of the pion. As (q) -+ ° ,'re find neglecting term of Oem) 

,,:' .•. ' !., 

4rJ~- ) 
'2 

q 

4Ji-) = eg/2M 

4,J(+'O) = ° 
1 

2 2 
= - --1L (e + ...!!.. e - !!!... (IJ. r -IJ. t» 

2Mm2 8M2 2M P n 

",herem = pion mass,. M= ,nucleon mass., g,=pion-nucleon coupling constant 

(g2/41f. ~ 14) and I-l f are the anomalous .. llucleon momentso The first tlV'O condi-. p,n . . . ;'. 

tions are the old result of Ier'oll ~nd' R~d~rman3 and the second tlV'O are neiV'. 

Taken together these re~~l~s stipulate the threshold behavior of the Eo+ and 

E2_ multip~les. We will discuss the ,ftinematical features of photopion pro

duction which give rise to these 'r.esults. ' 

In the next section we will discuss the various methods for establish-

ing 1m, energy theorems followed by a section applying these techniques. 



-6- UCRL-17857 

II. METHODS 

Here we will describe three methods for establishing the l~l energy 

behavior of photon processes. The first, Lm~'s method, has been the traditio~ 

method of proving threshold theorems and contains all of the requisite physical 

assumptions. This method is not manifestly Lorentz invariant and this feature 

can make it difficult to abstract the full content of Lorentz plus gauge 

invariance. The subsequently developed tensor method, much utilized in current 

algebra calculations, has the advantage of manifest covariance without loss of 

generality. Moreover it is easy to see hO\~ the additional low energy theorems 

arise. Different in spirit if not detail from both Low's method and the tensor 

method is the S-matrix approach to proving threshold theorems. In this 

approach first applied to nucleon Compton scattering by Goldberger and 

Abarbane19 one utilizes the helicity decomposition of the physical amplitude 

from the start. By using the standard criterion for removing kinematic zeros 

from the helicity amplitudes and the crossing properties of the amplitudes it 

is possible to establish the KSF and I<ZF amplitudes and then the la", energy 

theorem follows directly from the dispersion integral representation of the 

amplitude. 

A. LOW's Method 

To be explicit vIC will consider the processes of Compton scattering 

from a target of mass M to illustrate the method (see Fig. 1) although it can 
~. 

be general'ly applied to any photon process. We introduce the usual Ivlandelstam 

variables s = (P+k)2 = (p' +k' )2, u = (p_k,)2 = (p' _1~)2, t = (k' _k)2 satisfying 

s+u+t = 2MF. We denote the scattering amplitude by 

F = € € 'T 
!-L v !-LV 

, (2.1) 
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,V'here the Lorentz tensor 'r admits of a general decomposition in terms of 
IJ.V 

I<SF invariant amplitudes consistent with the requirements of Lorentz invariance, 

parity and time reversal invariance. Differential current conservation and the 

observation that the change densities co~~ute at eqlml times then imposes the 

additional requirement of gauge invariance k,vT 
IJ.V 

= 0 or 

(2.2) 

To proceed further it is essential to make assumptions regarding the spectrum 

of intermediate states. If it is assumed that there iscne state degenerate 

in mass "'ith the target lO and all excited states have higher mass that the 

target then one can make the explicit separation 

T = B + E , 
IJ.V Ilv Ilv 

where B is the singular Born term which can be precisely computed in 
IlV 

(2.3) 

Schrodinger perturbation theory and depends on the change and current distri-

but ions in the target and E represents the contribution of the excited 
. IJ.V 

states. The assumed analyticity requirements of the full amplitude plus the 

spectral assumption then permit the expansion 

of the frequency of the photon. Evidently to 

of E about threshold in pO'lV'ers 
IJ.V 

compute T .. from Eq. (2.2) to 
lJ 

same order vn of the frequency of the photon ,·,hat is required is kilO'l'1ledge of 
. n 

TOO or equivalently EOO to o(v). Once this is established one may use Eq. 

(2.2) to identify the contributions to the various invariant amplitudes in 

Tij invok~ng theknmm crossing properties of the amplitudes and thus construct

ing the low energy theorem. 

It has long been Imown that EOO vanishes to first order in the 

frequency of the photon and hence there is a low energy theorem for the full 

amplitude to this order. I'10st of the "classical" low energy theorems are of 
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this type. Moreover it has also been knmm that to second order the unknown 

polarizability structure of the target must enter the expansion of the ampli

·65 tude in frequency. Recently it has been pointed out by Singh that this 

polarizability contribution to the total amplitude can be isolated and 

second and higher order theorems be established for just those pieces of the 

amplitude to which it does not contribute. Singh's formal observation is that 

the excited state contribution has a definite structure imposed by Lorentz 

invariance and current conservation in the zero frequency limit e.g. 

= k.k. '[a.6.j+r3(sis.+s.s.)] + O(ko
3) 

J.J J. J JJ. 
(2.4) 

1-There 0: and r3 are un.lmown constants characterizing the 10,\,1· energy polariza

bility of the target and s~ab) is the spin vector of the particle. That the 
J. 

requirement Eq. (2.!~) lends to "higher" order 10''1 energy theorems has been 

demonstrated.5,7 

B. Tensor Method 

The evident content of Low! s method even ,,,hen supplemented ''lith 

Singh's lemma on the spin structure of the excited state contribution is 

abstracted from the general requirements on the scattering amplitude of 

(1) Lorentz invariance and discrete conservation 1m-Is (2) analyticity, cross-

ing and spectral assumptions (3) gauge invariance. With the development of 

current algebra the tensor method has emerged as a manifestly covariant formu-

lation of Lml's method which implements the above assumptions and is perfectly 

general. 

To begin one utilizes Lorentz invariance and the assumed discrete 

symmetries of the system to decompose the amplitude into its general form in 
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terms of a tensor basis and invariant amplitudes. The tensor method essentially 

requires the construction Qf a ImF and KZF gauge invariant tensor basis. Since 

there appears to be no general sQlution tothis problem in the literature in 

the case of mass zero particlesll we indicate a general method in ",hat follm7s 

and apply it in the next section to special cases. 

12 ' The fundamental lemma, suggested by perturbation theory, says that 

if one takes all possible tensors constructed of external momenta and spin 

matrices allowed by relativistic invariance and other discrete conservation 

laws, their scalar coefficients can be chosen to be KSF. In establishing a 

ImF basis it is important to construct the tensQrs for the amplitudes "lith the 

external wave functions removed -- that is one considers the general tensor 

form before sandwiching behTeen Dirac spinors or polarization vectors. Since 

a basis so chosen is not in general linearly independent, one has to reduce 

it to a linearly independent basis,taking care that no kinematical singu

larities are introduced in this processes. A rule of thumb is to ali-lays reduce 

tensors that contain higher p011ers of momenta in terms of the-'ones that contain 

10';1er powers of momenta, since this appears not to introduce kinematical singu-

larities '),hile the inversion does. 

There is one simplification worth noting. The only singularities 

relevant to the 10';-, energy theorems are the ones that occur at k -+ 0) k t_> 0 

2 (or s -+ M , t -+ 0). Singularities that occur elsei'lhere are harmless. There-

fore, one _ should reduce terms containing higher pO';'lers of the four vectors Ie 

and k r into terms containing 10';'ler powers of k and k'. 

Nml expand the amplitude for the scattering of photon from an 

arbitrary target into a ImF and linearly independent tensor basis as follmls: 
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+ (terms of higher power 
in k and kt) (2.5 ) 

The indices Il and v go vlith photons of momenta k and k' respectively, 

and a(3r ••• etc. are the indices of the initial and final targets. A,B,C etc. 

are linearly independent Lorentz tensors which do not depend on k or k'; they 

are constructed from momenta independent of k and let. In accordance with the 

previous discussion, we assume that such a representation is always possible. 

Using gauge invariance in Eq. (2.5) gives 

... = ° (2.6) 

Differentiating this equation with respect to k (or k') and setting 11:=0, vre 

get the result that A must vanish. This is the tensor analogue of Lml's 

classical result. In general, hrniever, there are Born terms Singular in the 

limit k ~ 0, k'~ 0, '''hich invalidate the representation given by (2.5). In 

this case, we can vrrlte, 

TIl V = ~~.y ••• (Born) + AIlV + k,BIlV,i a(3y... '-'I-' Ct/3y... ~ 0.'f3Y •••. 

+ ••• (2.7) 

The previous conclusion is nm., changed to 

A!lV = AIlV (Born) 
clt3r. • • Ct/3r. • • (2.8) 

vlhere 

A!lV (Born) 
. Qf3r ••• 

d . !ltv . 
= - lim ':\1 {ll: IT p. (Born») 

k ~ 0 u.tJ.l !l 0'1-' r •. • 
kt~ ° 
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There are, hrn~ever, higher order low energy theorems contained in 

(2.7). For exa.mple, differentiating twice with respect to lea and ~, "Ie obtain 

Bav,b +Bbv,a = Born term. (2.9) 
at'y. • • ($1'. • • 

and this process can be continued to higher pmlers of k and k'. Equations of 

the form of (2.9) clearly impose restrictions on the threshold behavior of 

multipolesof arbitrarily high order. 

One disadvantage of the above procedure is that it is fairly laborialS 

to relate the tensors defined by Eq. (2.6) to the physical scattering para-

meters. Some of them may not even contribute to observable amplitudes. In 

practice, a convenient procedure is to express these tensors in terms of the 

scalars sand t and the natural tensors constructed from the momenta. Using 

the gauge conditions, one then goes to a gauge invariant tensor basis, ,~ithbut 

introducing any Idnematical singularities or ::eros at k=O, k' =0 in the scalar 

coefficients. The amplitude, '~ritten in this fashion, satisfies the con-

straints given by (2.6) automatically. It is then fairly easy to relate this 

new tensor expansion to physical amplitudes like helicity amplitudes. 

A fe,'l comments about the calculation of the singular Born ampli-

tudes are in order. A typical term in the expansion of the Compton ampli

tude ~~1' ••• appears as follows: 

T~v = f(s,t)a~v + ••• 
a(3y. • • ($1' • •• 

(2.10) 

'·'herea~v is a guage invariant tensor constructed out of various momenta. 
0(31' ••• 

The singular part of f is given by 

f B '" -L_ ± ...:L-2 
± 2 

s-ivI- u-r-1. 
(2.11) 

'The plus sign goes vlith a tensor a~v even under the photon crossing, and the 
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minus sign with an odd tensor. For fixed cose = 1+2st/(2-rvr2}2, f B becomes 

2 singular as s ~rvr. This singularity cannot, of cOUl"se, appear in the physical 

amplitude. The tensor E~v, dotted into the photon polarization vectors, must 

develop a compensating zero at the same point. This kinematical zero suppresres 

the non-singular continuum contribution at the threshold, and hence the ampli-

tude is exactly given by the uniquely determined residue of the Born pole. 

The kinematical zero that destroys the pole singularity corresponds to the 

well-known absence of 0 ~ 0 transitions. 

The even Born term f+B is not singular at the threshold, if (cose) 

is kept fixed. Hence, the Born term in general ca"nnot dominate the continuum 

contribution. HO,"Tever, for the amplitudes for which 1m·, energy theorems are 

valid, gauge invariance implies that f+ must contain a kinematical factor t. 

We can, therefore, write 

f+ = tf+, where f+ is ImF 

and 

The continuum is now suppressed by the factor of t, which vanishes at the phys~ 

cal threshold, and a low energy theorem holds. vle stress again that the 

result depends on the unambiguous residue of the Born pole, and not on the 

ambiguous finite part. For example, explicit inclusion of the non-singular 

graphs like the sea gull graph is not really necessary, since gauge invariance 

takes care of this problem automatically. In pion photoproduction and charged 

photon Compton scattering,13 there are usually Singular t-channel Born terms. 

Again, these terms can be obtained by gauge invariance requirements. 
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C. S-Matrix Method 

From the recognition of'the central role played by kinematics in 

the derivation of lm-, energy theorems, the possibility of a pure S-matrix 

approach suggests itself. As is well known14 the requirement of gauge invar-

iance is implemented in S-matrix theory by the requirement of strictly zero 

mass and two helicity states for the photon. 'l'hese conditions if demanded in 

every Lorentz frame are equivalent to gauge invariance. 

Goldberger and Abarbane19 have alJplied this method. to Compton 

scattering. One assumes that the helicity amplitudes in the sand t channel 

are KSF and factors the kinematical zeros from the spin flip amplitudes 

corresponding to their vanishing in the foruard and backvlard direction. One 

then assumes that the resulting sand t channel exaplitudes are KSF and l~F in 

t and s respectively. Finally using the crossing properties ~elating sand t 

crannel amplitudes one can construct the KSF and I~F amplitudes in both sand 

t. We will exhibit this procedure in the simple case of Compton scattering 

from a spin 0 target where it gives the same results as the tensor method. 

In the S-matrix method the amplitude is constructed via a dispersion 

integral and the unitarity conditions for the absorptive part. Hence in this 

approach it appears necessary to assume a high energy behavior sufficiently 

damped to allml the dispersion integral to converge and also such that no 

unknown polynomial pieces are added to the amplitude. Such asymptotic 

assumption~ are completely foreign to the methods previously· considered and 

it is not clear why they play an important role in proving lml energy theorem 

in S-matrix theory. 

One may calculate the correct sinp.;ulal~ pole terms from unitarity 

irrespective of the number of subtractions required in the dispersion integral 



-14- UCRL-17857 

providing the subtraction terms do not introduce additional unwarranted 

kinematical zeros or singularities. Then the lou energy theorem can be 

established and is independent of any unknmm subtraction: terms depending as 

it does only on the kno,'ln residue of the pole term piece. This is certainly 

true of spin zero Compton scattering and it is a matter of conjecture for more 

complex systems. 

III. APPLICATIONS 

A. Compton Scattering 

We now apply the tensor method described above to the process of 

physical Compton scattering. The case of a spinless target is considered 

first since it simply e~cemplifies all of the essential features of the methods. 

Later on we also consider the case of a spin 1 target and also characterize 

some of the features of scattering for arbitrary spin targets. 

and 

Let the J=O Compton amplitude be (see Figo 1) 

F = € € tT (p k kf) 
I.l. v I.l.V '} 

2 2 P = (pt+p), S = (p+k) , t = (k-k') 

(3.1) 

s+t+u=2m2. If we set 0..l =k. CL::;;k', Q_=P the tensors g .. Q. Q. form a linearly ,-'2 -j. I.l. v 11.l. J v 

independent basis. How'ever ,'1e can introduce further 

€1.l.€I3'k kt:t Ip and obtain a redundant system. Observe 
€.I-' , 

tensors like Q4!l, = 

that Q41.l.Q4v can be expressed 

in terlns of ,QtQj
V "lith i,j = J.:2,3 without introdiJ.cing any denominators involv-

ing the scalars sand t. nlerefore Q41.l.Q4v can be eliminated in favor of the 
) 

other tensors vrithout introducing possible singularities and the resulting 

linear independent basis of tensors is KSFo He therefore set 
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T = rlP P +f2k k + f k fIt f 
~v ~ v ~ v 3 ~ v 

. + f! k P + f5 k P + f6!c 'p + f7k 'P 
!·~V v~ I.LV V~ 

+ f8Ic~kv' + f9k~ tkv + flOgnv 

and find the f.(s,t,u) are KSF. 
~ 

Next ",e make the separation 

f.(s,t,u) = b.(s,t,u)+c.(s,t,u) 
1 ~ 1 

",here b. contains the single particle piece and c., the continuum contribution 
~ 1 

is assumed nonsingular near the elastic threshold s=m2• The singuhr contri-

bution to the b. is calculated to be 
J. 

The gauge conditions k T = k IT = 0 imply 
~ ~v v ~v 

(s-u)fl = tf6 

(s-U)f
7 

= tf3 

(S-U)f
5 

+ 2flO = tf9 

(s-U)fl = tf5 

(s-u)f4 = tf2 (3.5 ) 

and we see, that fl contains a kinematical zero proportional to t so that 

A(s,t,u) == fl(S,t,u)/t is KSF. We also remark that the b
i 

given by (3.4) will 

satisfy (3.5) automatically providing we define b
lO 

= 2e2 corresponding to a 

contact interaction (seagull).. Eliminating all scalar functions in favor of fl 

and f9 and dropping terms proportional to k~ or l:
v 

I we obtain 
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T = Aa + Bb 
~v ~v ~v 

a = tP p + tk fk + (s-u)(p k f + P k ) 
~v ~ v ~ v v ~ ~ v 

2 2 
+ 2(s-m )(u-m )g 

~v 

b = tg + 21~ t l~ 
~v ~v ~ v 

A = flIt 

1. 
B = '2 (f

9
-fl ) 

UCRL-17857 

(3.7) 

are IillF amplitudes. The singular part of these amplitudes is unambiguous and 

given by· 

and defining 

B 2/.2 2 A = e (s-m )(u-m ) 

Fl(s,t) = (s_m2 )(u_m2 )A 

F
2
(s,t) = (s-m2 )(u_m2)B 

the low energy theorem is expressed as 

2 2 
F 1 (m ,t) = e 

( 
2 

F2 m ,t) = 0 (3.9 ) 

This first expression if differentiated "ith respect to t and then setting t=O 

is just the result given by Singh.5 The 10\'1 energy theorem isnOi'l merely the 

statement that the KSF amplitudes are dominated by the SinGular Born terms near 

2 the physical threohbld s ->m , 
2 2 

t = - (s-m) (l-cose). 
2s s 
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At this point it is instructive to make contact "lith the S-matrix 

approach. 9 Here we introduce the sand t channel helicity amplitudes "rhich 

enjoy the simple crossing relation 

s t 
F = - F +,+ +,- (3.10) 

The first step in the procedure is to remove the lmovrn kinematical zeros in the 

amplitudes corresponding to angular momentum conservation in the forward and 

bacln~ard directio~ by dividing by half angle factors15 

pi; 
+- = (sin e~ cos e~ )-~~_ 

-s ( es )-2-s 
F+ = sin --2 ~+ ,- ,- (3.11) 

Then pS and pt are assumed to be KSF and KZF in t and s respectively. Using 

(3.10) and the expressions for the half angle factors one has 

so it follows that 

2 2 
-Fs = _( s-m) -Ft 
'+ + 2 + , t(t-4m) ,-

-s 
F = -+,-

b = -

st -t 
2 2 F+ 

(s-m) + 
(3.12 ) 

(3. 13) 

are the amplitudes that are IffiF and I\zF in both sand t. From the pole term 

contribute to a and b the lovr energy theorem follm1s immediately. The connec-

tion of these amplitudes to those of Eq. (3.6) 
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. introduces no kinematical factors so the results of the S-matrix meth~d and 

tensor method agree as to the correct ImF amplitudes. 

As a final comment, one can prove the absence of a kinematical lit 

singularity in A using the Hall-Wightman theorem. 16 If T is assumed to be 
IlV 

an analytic function in the Cartesian components of the vectors k,k',P then 

T Il must be an analytic function of the scalars in a corresponding domain. 
Il 

From the identity 

Il 212 Til = (t(4m - 2t )-(s-u) }A+3tB 

i.,e have since B is ImF that a lit factor in A vTould clearly introduce the same 

factor in T Il contradicting the Hall-Vlightman the0rem. Il . 

One can carry out a similar procedure for Compton scattering from 

. higher spin targets and we here consider explicitly the case J=l. Denoting 

€,A and €' ,At as the initial and final polarizations of the photon and target 

and the kinematics as shOlm in Fig. 1 the relativistic amplitude A.a:T013IlVA(3 I 

can be expressed in terms of a gauge invariant tensor bas~ according to 

+ f (A·k)(A'ok')+f4 (A.k')(A. r .k)}+b {f (A.°AI) 
3 IlV 5 

+ f (A· fA (ko p)2_(ko A. f )P A. (koP)-(k'oA)pA '(koP)+(k°A.')(k'oA.)P P } 
12 Il v Il v v Il Il v 

(3015 ) 

.,.~ 
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lThere a and b are defined by Eq. (3.6). Our observation is that fl ana. 
!-LV Ilv 

f2 are KSF so that near threshold they approach their Born terms; in parti-

2 2 
cular we have the 1m', energy theorems on Hl ,2(s,t) = (s-m )(u-m )fl ,2(s,t) 

1vhich are 

2 2 
Hl(m ,t) = -e 

H
2

(m2,t) = -e2Q/21l 

where Q is the quadrupole moment in units of 1/2;. " The theorem on Hl is just 

the Thomson limit and the result on H2 involving the quadrupole moment is an 

additional "higher" order Jcheorem also independently obtained by A. Pais. 7 

There are also theorems involving the magnetic moment ",hich are well knmm for 

targets of arbitrary spin3 and including these we obtain vlith (3.16) the result 

Eg. "(1.1) quoted in the introduction. 

Let us sketch the proof that f l ,2(s,t) are I<SF. We will consider 

only those pieces of the general decomposition of the amplitude Ta~!-LV (before 

the application of gauge invariance) needed for the discussion. In the case 

of fl and f2 it is clear that v,e need only ShOll that the scalars multiplying 

the tensors P P gtvt:tJ P P Ie kt:t J P P It tk(.). I are all proportional to kole' = -t/2. 
!-LV""I-' !-LVC~I-' Ilva: I-' 

If we set 

+ a P P k 'll: ' + b2P"kvle kt:t + ." •• 2 !-L V O! ~ l"" cr-I-' 

crossing implies a l =a2 and k'VTIlV0'f3 = 0 implies koPal+lI:·k'bl = 0 hence r.tl~ t 

so that f2 == alit is I<SF. A similar argument Horks for fl (but not for f
3
,L:). 

The 10H energy theorem then "follot"s by calculating the singuJar part of the 

Born term. 17 
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The low enerVJ theorem on the quadrupole mament is of interent since 

it implies that the quadrupole moment, like the change and magnetic mament, 

is uniquely defined in terms of the threshold behavior of the Compton ampli-

tude. If H2(s,t) ~ 0 as s ~ro then one can write a sum rule for the quadrupole

moment in terms of total photoabsorption amplitudes, 

He emphasize that-unlike the change and magnetic moment the quadrupole moment 

does not admit of a lmT energy theorem for strictly forward scattering Ot' =k) 

since in this limit the tensors corresponding to f2 3 1 are Dentical and there , ,~ 
are no lmlenergy theorems for f

3
,4 (they are related to the po1arizability 

of the particle). Nonetheless, we may still extrapolate f 2(s,t) defined for 

tf:.o to t=O "lith a unique result. It is of practical interest to apply this 

sum rule Eq. (3.11) to nuclear systems with J=l, in particular the Deuteron. 

These theorems can be generalized to higher spin targets in an 

obvious way_ ConSider an integer spin target represented by an J index 

tensor ~ so the relativistic Compton amplitude is a1a2···aJ 

Then the J+1 scalar amplitudes multiplying the tensors a 5 ~ 5a A ••• 5 A' 
fJ.V all-'l 21-'2 aJI-'J 

a 5aA5aA ••• kaA , •• "a k Ak A uok A wherek'A=kkA+l\.'kA'are 
fJ.V 11-'1 21-'2 JI-'J fJ.V all-'l a21-'2 aJI-'J 0:1-' a I-' a I-' 

all KSF ~nd the Born terms receive contributions from the J+l even multipoles 

so there are lm~ energy theorems for these multipoles. The J odd multipoles 

can also be shown to have associated low energy theorems so that all 2J+l 

multipoles are defined in terms of the Compton amplitude. These theorems have 

been extensively studied by Pais. 1 



-21, .. UCRL-17857 

B. Photopion Production 

As a final illustration we derive a n~~ law energy theorem for photo-

pion production. In the barycentric system this process is described .in terms 

of the four CGLN
8 amplitude 

It is well kn~m3 that as q = pion momentum ~ 0 the production amplHude is 

specified by the Kroll-Ruderman theorem 

1:-1( J (-) = eg/~I 
1 

41( J 1 ( + , 0 ) = 0 (3.19 ) 

neglecting terms of the order m. To the same order in m one has at threshold18 

11~ ~ (-) 
,-,. ." l~ 

-2 
q 

4 "1 (+,0) 
• 1( .) l~ -1L ( me (f ) ) 
-~'-:2=--- = e - 2'1 - m IJ. +IJ. 

q 4M2m l' p n 
(3·20) 

"There IJ. f ,IJ. are the anomalous moments of the nucleons in units of e/'21YI. :p n 

These results can be used to derive conditions on the standard multipole 

moments. 8 Using the definition of the multipole coefficients in terms of the 

.1
_- (19) 
i it,is straightfonTard to shaw that Eq. (3.i9) implies as q -) 0 

l~1(E(-) = eg/211J. 
0+ 

!~1(E(+'O) = 0 
0+ 

corresponding to the observed isotropic production of charged pions at tbre....~old. 
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Using Eg. (3.20) one also obtains the result valid to Oem) as q ~O 

E(-) 2 }' 
120 2- eg { (7) M + 31-1 1 
1l~=M3 '2"2 2m-I6' 

g m 

E(+'O) 
4 2-

21l 2 (3.22) 
q 

At present there is insufficient experimental information on the E2-multipole 

at threshold to test this prediction. 

To prove the statements Eqs. (3.19)-(3.22) we eA~and the covariant 

amplitude into the folloHing tensor basis without taking into account gauge 

invariance (we omit isotopic indices) 

T~ = u(pt)iY5{BIY~k'Y+B2P~+2B3~ 

+ B42k~ +B5 Y
ll 

+ ~B6Pllh:'Y+B7\1~.Y-B8~.I.k' y}u(p) 

where p,p',k,q are the initial and final nucleon momenta, photon and pion 

1 momenta respectively and P = '2(pf+p ). In this form the Bi (s,t) are lm01'm to 

be KSF as shown by Ball. 19 The gauge condition kilT = 0 imposes the follOl'ling 
Il 

conditions 

In this case it. is convenient to separate out the singular Born terms 

explicitly by writing 

B -
Bi = B. + B. 1 ]. 

(3.25 ) 
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where B. has no one particle singularity in s,t or u. If one calculates the 
1 

BiB by including only the sand u channel nucleon poles then the gauge condi-

tions Eq. (3.24) force the presence of the t channel pion pole in some of the 

B~ -)B amplitudes. He will include this pole in the B. B so that the Born terms 
1 1 

are assumed to be calculated in a gauge invariant way. We stress) hOI-lever) 

that the low energy theorems are independent of the details of the separati~n 

made in Eqo (3.25) and they only depend on the unambiguous singular part of 

the Born terms. 

The gauge conditions given by (3.24) must be satisfied by B. since 
1 

the Born terms already satisfy them. We can eliminate B5 from the second 

equation and B3 from the first. Hmlever since both B3 and B2 are pole free 

in s,t.and u B2 must contain the factor t_m2 so that B2(S,t) = B2(s,t)(t~m2) 
,.,here 132 ( s , t) is KSF and KZF. 

Once the conditions (3.24) have been imposed the Bi are related to 

the physical CGLN amplitudes A. (8) according to 
1 

and the A. are then directly related to the J. appearing in Eq. (3.18) •. If "e 
1 1 

B - B - B' 
make the separation A. = A. + A. where A. are obtained from B. using (3.26) 

1 1 1 1 1 

then our observation is that all the Ai in particular A2 :::: 2B2 are KSF. The 

contribution of the continuum pieces Ai to 3
1 

and }l.j. (and to EO-I- and E2J are 

easily calculated to be higher order in the pion mass at the physical threshold 

than the singular Born terms and this establishes the low energy theorems 

Eqs. (3.19) - (3. 21) • 
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From the connection bet,\,leen the A. and J. (8,19) one sees tha.t the 
J. J. 

Kroll-Ruderman theorem Eq. (3.19) follovTS from the fact that Al ·3 1. are KSF 
, , r 

and from the known residue of the dynamical poles. ~he edditional theorem on 

34 Eg. (3.20) incorporates in an essential ,'laY the fact that A2 is KEF. The 

fact that the pion mass appears in the denominator of J4 arises from the 

1/(t-m2 ) pole in A2B and the divergence inJ1/q2 as m -~ 0 is characteristic 

of the long range nature of the force associated with the exchange of a mass = 

o particle. 

Recently Jones and Frautchi20 have given a complete helicity and 

Regge analysis of the photopion processe The low energy theorem in their 

notation" is essentially the fact that the folloi'ling combination of t channel. 

helicity amplitudes has the indicated kinematical factor 

2 .1. 2 
~ tx 1 1 N (t-4M ):Ct-m ) 
fOl,~~ - 01,-2-2 t 2 

",here the fl s are related to the helicity amplitudes by half angle factors 

ft = (sin ~) IA.-fll (cos e t) !A.+tJ.I:rt • 
cd,ab 2 2 cd,ab 

The extra factor of t_M2 inEg. (3.27), compared to ",rhat Jones and Frautchi 

have, only correct for the continuum part of the combination rXOl ~-fto' _.1._.1.' 
,22 -,·2 2 

The t channel Born term clearly does not have this kinematical zero because 
. 2 

of the Feynwan propagatorl/(t-m ). However since the singular part of this 

graph is '\'Tell known its contribution can be explicitly calculated. The con

tinuum piece does have the factor (t,,:,m2 ), I'Thich near the physical threshold, 

suppresses the continuum contribution by a factor proportional to the pion 

mass. Hence the lou energy theorem can be eas:i.1y e~cpressed as 

(~ -t 
fOl .il. - fOl .1. 1.) - (Born term) ~ Oem) 

,22 ,,-2-2 

near the physical threshold. 
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