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ABSTRACT 

An integral representation of the Bergman-Weil type is 

UCRL-17861 

derived for a function defined on an algebraic variety. This formula 

is useful for constructing Mandelstam-type integral representations 

for N-particle functions. 
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I. . INTRODUCTION 

The Mandelstam representation expresses a four-particle 

function on its physical sheet in terms of the multiple discontinuities 

. 1 
across the.cuts bounding this sheet. The present work is concerned 

with the analogous representations ·for N-particle functions. Such 

representations are evidently-needed for a complete dispersion-

theoretic dynamics. 

The problem of obtaining a Mandelstam-type representation for 

an N-particle function has three parts. First one must define the 

physical sheet· of this function and identify its boundary cuts. Some 
,2,3 .. 

work has been done on this, and more is in progress. Having 

identified the boundary cuts, one must obtain formulas 

for the discontinuities and multiple discontinuities across these cuts. 
. ,4 6 

Considerable work' 5, has been done on this, and more is in progress. 

Having identified the cuts and obtained formulas for their discontinuities. 

one must finally express the function on the physical sheet in terms of 

these discontinuities. This last problem is the one discussed here~ 

That is, we assume that the cuts bounding the physical sheet and their 

discontinuities are known, and seek a representation of the function 

on this sheet. 

The Bergman-Weil representation 7 can be used to represent a 
() 

function in terms of its multiple discontinuities. Indeed~ the 

representation given by Mandelstam is essentially a special case of 

theB-W formula. For the general N-particle function· one needs, 
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however, a generalization of the B-W formula to the case in which the 

function is defined only on an algebraic variety. The reason for this 

is discussed next. 

The N-particle function is originally defined only on the mass 

shell 7Yt, Which is the set of points in momentum-energy space that 

satisfy the mass constraints and momentum-energy conservation laws. 

Since these conditions are expressed by the simultaneous vanishing 

of severalan?-lytic functions of the momentum-energy vectors, the 

set·'77/ is an analytic variety. Since these functions are in fact 

polynomials, "'lis moreover an algebraic variety. The B-W formula 

refers to functions defined over a full space and hence is not 

immediately globally. applicable to a function defined only on the 

algebraic variety· 1Yf . 
One can try to avoid this difficulty by invoking Lorentz 

invariance and reducing the problem to a corresponding problem in the 

space of scalar invariants~ This works fine for N == 4 and N == 5. 

But for N> 5 it doesn't. In particul~r, for N > 5 there is no 

choice of independent scalar invariants such that all others can be 

expressed in terms of them as single-valued functions. 'l'h:i.,s means 

that the mass shell 1rt maps into a multisheeted surface over any 

space·· J of independent scalars. 

One can apply the B':'W formula to the. function defined on an 

individual sheet. However, such a sheet corresponds to only part of 

the mass sh~ll ~ • Accordingly it is bounded in part by cuts that 

.are not the images of cuts that bound the physical sheet in 7l; . 

Ii 
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These extra cuts, which arise solely from the multisheeted nature of 

the image of itt, are "kin~maticaltl, in that they have no counterpart 

in i17 itpelf, and depend on the particular choice of independent 

scalars. Their discontinuities are not given by unita:i-ity, and hence, 

in distinction to those for the cuts in i?7' must not be considered 

to be given. 

In simple cases one can eliminate the unknown discontinuites 

across these kinern8. tic, cuts by considering all the sheets simultaneously. 

However, the algebra becomes intractable for all but the simplest cases, 

because one needs solutions of fifth-order algebraic equations. 

In order to resolve this problem one can regard the mass shell 

in invariant space not as a multisheeted surface over some space ~Of 
independent scalar invariants, but rather as an algebraic variety 

pI- 8 
imbedded in a space ~ of a larger set of invariants. Asribekov 

has shown how the ~ss shell in invariant space can be regarded as an 

algebraic variety V imbedded in a space J of (~- 3N )/2 scalar 

invariants. Thus 'for either the invariant-space ormomentum-energy-

space approach one is led to consider the mass shell as an algebraic 

variety. Our problem is thus to adapt the B-W formula to functions 

defined only on algebraic varieties. 

By considering the mass shell to be an algebraic variety we 

achieve an important simplification: The Landau surfaces Li are 

given as the zeros of polynomials Zi(z) in the components of 

Z = (Zl-"" Zn)' the set of coordinates of the imbedding space.* It 

is natural to define the cut associated with a singularity at Zi(Z) = 0 

See Appendix D . 
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by a curve through the origin in th~ z. -plane. 
~ 
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We shall in fact assume 

that the cuts bounding the physical sheet are confined to sets of the 

form Im Zi(z) = 0, where the Z.(z) are polynomials in the coordinates 
~ 

of the imbedding space. More general cases can be obtained, for 

example, by approximating a curve in 

segments, etc. 

Z. by a set of straight -line 
~ 

As in the Mandelstam representation there will be contributions 

associated with>contours at infinity, unless the function falls off 

"sufficiently fast." These can be taken into account, but in order to 

concentrate on the essential problem we simply assume that the function 

falls off If sufficiently fast. If 

Our procedure is to apply the B-W formula to an appropriate 

extension F(z) into the imbedding space of the function fez) 

defined on the variety V, and then to reduce the formula in a way 

such that it finally refers only to f(Z). This results in a formula 

I 
f(z) 

(1.1) 

Here ~ labels the various sets of n-m of the boundary surfaces, 

and Im ~i = ° is the ithsurface of the ~th set. The region of 

integration is 

which isgenerally multisheeted. The integer n-m is the dimension 
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of the variety V. The function ~ (Z') is the appropriate (n-m)-fold 

multiple discontinuity and j').. (Z') is a certain Jacobian polynomial. 

The function J')..(Zl jZ ) is a polynomial with the property 

. J')..(Z: (z)jz) = J')..(Z'(z)). It is essentially a B-W kernel function. 

An alternative form of (1.1) is given that does not contain the 

function J').. (Z' fl, and that expresses the integration region as a 

variety imbedded in V. 

It should be emphasized that the variety V is not required 

to be an analytic manifold. In particular V can have points P 

such that no neighborhood of P is topologically equivalent to a. 

neighborhood in a Euclidean space of any number of dimensions. The 

possibility of such tlsingularpoints" of V must be allowed because 

the mass shell has them. It is the presence of such points that 

causes the main difficulty of this work. Our original motivation 

was to see whether these points cause any real problem in the 

construction of generalized Mandelstam-type representations: Are 

there extra contributions associated with such points? Our answer is 

tha t there are none. 

Our notation is standard: i and S. denote the spaces of 

n real and n complex variables~respectively. For a function f 

defined on an algebraic variety V, holomorphy means strong holomorphy. 

Hepp9 has shown that weak holomorphy on a domain tf) in the mass c) 

shell /Jt implies strong holomorphy on ,8 , and also that strong .... 

holomorphy on e implies the strong holomorphy of appropriate corresponding 

functions on the image f), of f) in the space of invariants, 
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. provided '9" is a domain of hoiomorphy bOlllded by cuts described 

by scalar invariants. 

A set of m functions differentiable on a neighborhood of 

a set V are said to be functionally independent over V if and only 

if their matrix of first derivatives has rank m at almost all points 

of V. In particular, if V is an algebraic variety defined by the m 

equations G. (z) = 0, 
1. 

i=l,"'m, where the Gi are polynomials that are 

functionally independent over V, then the set of points of V where 

the rank of the matrix OGi/oz
j 

of first derivatives is less than m 

is the set .... .6 V of singular points of V, and it is confined to a set 

of dimension less than that of V. The dimension of V .is n-m, 

where n is the dimensionbf the imbedding space. References to proofs 

of these well-known results are cited in the course of the proof. 

.. 

, 
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II. BERGMAN-WElL FORMULA ON AN ALGEBRAIC VARIETY 

Theorem 1 Let z = (z z ,,·z} be a set of n complex variables. l' 2' . n 

Let V be the algebraic variety 

V = (zl G.(z) = 0, i 
1 

1,2,"'m < n}, 

where the G.(z) are a set of polynomials that are functionally independent 
1 

over V. Let W be the set 

with 

N 

W" V Wi' 
hl, 

W. 
1 

(zl 1m Z. (z) = OJ, 
1 

where the Z.(z) are polynomials. Suppose f(?-:) is defined and holomorphic 
1 . 

on V-W. If f(z) goes to zero sufficiently fast as Izl2 == z::lz. 12 ~oo 
1 

on V-W, then for any z in V-W 

f(z) (2.1) 

The index A labels the various subsets consisting of n-m elements from 

the set ofN indices( i, and i(A,j) is the ,J.thelement of the Ath 

set .. The region of integration If... is 

W. (, .) 
1. ''-, J 

- Jv 

and ~(Z!) is a corresponding multiple discontinuity, which will be 

further specified in the course of the proof. The Dirac delta functions 

(2.2) 
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a(Gi ) effectively restrict the integration regions to V()I
A
.' The 

functions JA(z' ;z) are Bergman-Weil kernels, which will be specified in 

the course of the proof. .J V is the set of singular points of V. 

Proof: A fundamental theorem of complex variable theory (See Appendix A) 

ensures the existence of a function F~(z) 
n 

holomorphic in ~ -Wand 

satisfying F(z) = fez) for z in V-W. The B..:.W formula will be applied 

to F(z), or, more precisely, to the restriction of F(z) to the region 

If ( a , E , P ) == (z / / 1m Z. (z) /2 > a., / G. (z) /2 ~ E., / z ./2 ~ p. }. ( 2 • 3 ) 
1 ' 1 1. 111 

This region, which has various disconnected parts, is contained in the 

domain of holomorphy of F(z). Its boundary surfaces are 

0-: (a, 
1 

cr'.' (a, 
1 

and 

E, p) _ (z E ~ (a, 

E, p) _ (z E rx (a, 

E, p) I /lm Z. (z) /2 = a. }, 
1 1 

i=l,·· ·N, 

E , p) / / G. (z) /2 = Eo.}, 
1 1 

i=l, •. ·m 

i=l,·· ·n. 

(2.4) 

(2.6) 

The B-W formula'7 gives, formally, for z E V in the interior of 

iR(a, E, p), 

fez) F(z' ) J (z' ;zh [~t{ ( .)(z') 7 . ~ 7,J 
j=:l 

N' +N1t +N'" 7 7(' 'T .~. hi(7,j) 
j =1 +N' +N" \..: 

7 7 

The symbol 7 labels the various subsets consisting of n indices from 

among the set of N+m+n indices ( i ···i· i ···i· i ···i) l' N' l' m' l' n· Thus 

N' + N" + N'" = n for all 7. The polynomial J (z' ;z) is the deter-
r r r r 

minant of the matrix of polynomials Pji(z';z) defined in reference '7. 
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I (0, E, p) 
'Y 

is the set 

n 

I (O,E,p) =A 0': ( .) (O,E,p) 
'Y I I 1 'Y,J 

j=l 
n O'~'( .). (O,E,p). 

. 1 'Y,J 

j=l+N~+Nj (2.8) 

The proof of the theorem consists of four parts. First it is 

shown that the parameters 0, E, and p can be constrained in such a way 

that the right side of (2.7) is well defined, and equals the left side. 

The limit E ~O is then studied and it is shown that the factors 

G.(z,)-l 
1 

in (2.7) can be replaced by factors 2rtiO~i(z'I), and that 

the terms with'N" = m contribute. This restricts the formula to the 
'Y 

variety V. Next the limit p ~(X), ° ~ 0 is taken. The terms with 

Nil. > 0 drop out by virtue of the condition f(z) ~ 0, and the various 
'Y 

only 

remaining contributions combine to give the multiple discontinuities ~ 

appearing in (2.1). The index A labels the sets 'Y for which 

N' = n - m. 
'Y 

The first problem is to establish conditions under which the 

right side of (2.7) is well defined. If the parameters Pi' Ei , and 0i 

are all finite and strictly positive then the functions of the integrand 

are all bounded and continuous on I (p, E, 0). The question is whether 
'Y 

for fixed p, E and 0 the quantity 

I dz' ~(z,) 
I (p,E,O) 

'Y 

f dz' !\dz"" Adz'n(z') 1 2 nY' 

I (p,E,O) 
'Y 

is vlell defined when ~(z,) is well defined. 

(2.9) 
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The integral (2.9) is'locally well defined in a neighoc;>rhood 

N(z' o)C I/p, E, 5) of a point z' 
0 

of I/p, E, 5) provided there is 

a set of functions x. (t) and y. (t) [i==l, •• 'n; t ~ (t ..• t )ERnJ 
l' n AI'\ 

that 
1 1 

are continuously differentiable on ,the unit ball B ~ (t/Lt
2

. ~ l} , and 
1 

that define via z. (t)= x. (t) + iy. (t) a one-to-one mapping of B onto 
1 ' 1 1 

In this case one has, by definition, 

¢(z') - ± Idt1 ·· .dtn /ozjot I ¢~(t~, 
B 

(2.10) 

where the sign is determined by the orientation of N(Z'O)' 

To establish conditions undE;'r which the requisite functions 

xi(t). and Yi(t) exist, consider the real polynomial mapping 

r : R2n 
-7 Rn ,de fined by 

'Y~ .-.'\ 

, '2 
r. == 5. ( .) - 11m Zi ('Y, j) (w) I j=l, .• 'N' 

J 1 'Y,J 'Y 

r. == Ei('Y,j) IG.( .)(w)1
2 j==l+N" ~ 'N"+N' 

J 1 'Y,J 'Y' 'Y''Y 

r. Pi('Y,j) Iz.( .)(w)1
2 . 1 N' Nil (2.11) = = J= + + , .. ·n 

J 1 'Y,J 'Y 'Y 

where w = (wp ,"w2n ) = (xl,"'xn;Yl,"'Yn)' Let Q 
" 'Y 

be the set of 

points w E R2n such that the rank of the n by 2n 
"" 

matrix II or jow II 

is less than n. According to Sard's theoremlO the image Q' == r (Q ) 
'Y - 'Y 'Y 

in Rn of Q has measure zero. This means Q' contains no open set 
J'W'\ 'Y 'Y 

n but it does not preclude the possibility that Q' in R , is dense 
'" 'Y 

in 

Because the mapping r'Y is a real polynomial mapping we can apply 

Theorem B of Appendix B. This says that Q' is confined to a finite 
'Y 

.. 
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union of proper algebraic varieties. In particular, we have 

q 

Q C U Al··, 

1 i=l' 

where q is finite, 

and the P. are polynomials that are not identically zero: 
l 

We are interested in letting 5i ~ q E. i ~C~ and P i ~ cQ , 

In place of the variable r = (5i ; E. i; P i) we introduce 

. .-1 
r (5.; E .; p. ). Then the limit of interest is r' ~ O. The 

l l l 

(2.12) 

(2.14) 

~et '. Q' , donsidered as a ~et itt 
1 

,. 
r space, lS readily seen to satisfy 

where 
, 

q 

and the p' . 
l 

q' 

k{ 
is finite, 

A
, 

i 

, 
are polynomials P' i '* O. 

Let two real variables € and 5 

-1 (-) 
5 ~i' Pi 5 E i(E) = E 11" 5.(5 ) 

l l. 

o} , 

be introduced and let 

= 

The (€, 5) plane is then a linea:rsubspace of the space of variables 

(2.16) 

, n 
rEA' For almo st all choice s of the -set of parameters "'1 l' S i' and S i 

the sets Q' will all inte~sect the (€, 3) plane in a finite set of one 
/ 

dimensional curves. Choose such a set and let ri" be the union of these 

curves. 

Let Q be the open first quadrant in the (E:, 5) plane. Let 

Em(5) be the least value of E such that (Em(a), 5) lies in Q and 
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on QI,. 
,..., 

Let Q be the set 

"" Q = (€, 6) E Q I € < E (§)}. m 
(2.18) 

IV 

Q is the part of Q lying below the lowest curve of That is, Q () h.". 

For some sufficiently small ball N centered at the origin the set 

Q() N will be a connected open setjas shown in Fig. 1. 

Define 

and 

I (E, 6) 
r 

I(€, §) = 

= I (5(5), E(E), p(~» 
r 

U I (E, r 
5). 

For any (E, 5) in QnN the rank of II dr/dwll is n at every point 

of I( E, 5) . This is what has just been shown. But if the rank of this 

matrix is n, then the set of n real variables r. can be augmented locally' 
1 

by a set of n real variables ti to give a set of 2n real variables 

such that the 2n-by-2n inatrixlldr/dw; dt/dWII has rank 2n. 

.These t. 
1 

Because 

can in fact be taken to be linear functions of the w .. 

the rank of this matrix is maximal the equations r . (v,) 
1 

:) 

and 

t. (w) have a unique holomorphic inversell w = w(t,r). Fixing the 
1 

,(E, 5) ,- in Qf)N, we obtain for any z on :tee, 5) the requisite set 

of functions w.(t) :=: (x.(t), y.(t». Thus the integrations appearing 
1 1 1 

on the right side of (2.7) are locally well defined at all points of 

,I(E, 6), for any (E, 5) E Q-()N.-

Because I(E, 5) consists of a finite number cif re,9,l algebraic 

manifolds; restricted to a boUnded region, its measure is finite. Thus 

the right side of (2.7) is well defined for (e, 5) in -QnN. If the 

right side of (2.7) is ",ell defined in this sense, then Weil's theorem? 

gives (2.7). [Exceptional cases i-lhere several I 
r 

coincide can be excluded 

by very slight adjustment of the TJ., s. and ~. in ( 2 .1 ? )J . 
1 11 

, 
r· 
~~. , , 

~ .. 
i 
~ 
" 
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We wish now to take the limit E ~O in (2.7). To evaluate 

the result, (2.7) is first converted to an alternative form. 
.1 

For a g~ven 

term , the denominator in (2.7) can be written as 

D (z' ;z) , ~- , -
"Z .(z) -Z .(z), 
i=l ,~ ,~ 

(2.19) 

or 
where Z . 

1& 
the polynomial Zi("j)' Gi("j)'~Zi("j)·· Define 

J (z') , - det \I dZ . (z' ) / dZ' . II . 
,~ J 

(2.20) 

At poirits z' such that J(z') 4= 0 the n functions Z. can serve , ,~ 

as localcoordinate:s
12 

for I (E, 5). Thus, apart from contributions from , 
the points J (z') : 0, we can write , 

J (i' ;z) 

(2!i)II L f fez) E F(Z' ) Z L , J (i' ) , 
I-l (E,6). "' , , 

n 

1T -, 
Z i=l ,i 

Here F(i' ) =F(Z(Z' )\ . , . ,V J (Z' ; z ) ~ J (z (Z ' ); z) , 
" r.' 

-, 
dZ 

Zi 

Z . (z) 
y~ 

J (i' ) ~ J (z (z ' ), and 

" " 
E is an orientation-dependent sign. The 

integration region I-
l (E,5) , is the image ,in i 

r 
of I (E,5). , 

It is a generally multi sheeted surface lying over the set* 

(2.21) 

( I ImZ' . ( . ) 12 = 5. ( . )( 6 ), I G.' ( . )12= E. (" . ) ( E) ,I 'z ~ ( . ) F = p. ( . ) (5) }. 
~ r,J ~ r,J ~ r,J ~ r,J ~ "J ~ r,J 

" (2.2~) 

. 
The function z(Z') is defined on this multisheeted surface. 

The contributions to (2.21) from the points where 
- _t 
J (Z ) =0 , I-

are not well defined. However, the contribution from these points can be 

calculated before going to the form (2.21). According to Theorem C 

of Appendix C 

* For each j, 1 ~ j ~n, the appropriate one of these equations holds. 
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I (;,5) t1 (H (z') = o} 
Y 
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for any integrable function' ¢(z'), and any analytic function H(Z')¥ 0. 

- . -1 - -
Thus the points where J (Z') = ° can be excluded from I (E,O) in. 

Y . Y 
(2.21), unless J (z') 

Y 
is identically zero. This last proviso can be 

dropped. For if J (z') were identically zero then one of the Z.' s 
. Y 1 . 1, 

could be.express~d locally as an analytic function of the others. 

This entails that.the integral again vanish. (Se~ the Corollary to 

Theorem C.) 

The equivalence of the contributions to the right sides of (2.21) 

and (2.7) from the region J (z') ~ E' for any E' > 0, and the absolute , 
convergence of the right side of (2.7), ensure that the right side of 

(2.21) exists as a Lebesgue integral. 

Introduce the .notation 

and G ;: [G. ( .) }. 
Y 1 "J 

For any fixed (E:,5) E Q nN the region I-l (E:,5) , can be considered the 

product ofa region 

I (5) == [Z'IIIm Z'. ( .)'1 2 
, , 1 Y,J 0i("j)(5), Iz' i(,;j)I.

2 
- Pi("j)(6)} 

(2.24) 

times a multisheeted Z' -dependent region Y . 

1-1 (- 5· Z') [a' 1 for some z in ,o(E,5): y_( E, , Y _ Y ~ 

Z (z) , = Z' Y' 

2 
IG.( .)(z)1 

1 "J E.( .)(E)} 
1 "J 

Z' }]I[IG'.( ·.)1 
, 1 "J 
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where G [A] is the image of A under G (z) and G LA] IB is the 
y y y 

restriction of G [A] to B. Performing the G' integration first, . y y 

one obtains from (2.21) 

fez) = 1 J 
I (5) 

y 

A-- (z' . z)dZ' 
OE y' y' (2.26) 

where A-­OE is Lebesgue integrable, by virtue of Fubini's theorem. 

Let Z' = (G' , Z' ) be a point on the multisheeted surface 
y y y 

-1(-IE' , and let -1 - - -I (E', 0; Z' ) be the part of 

[ U 1-1 (E" 
" ,y , 

o ~ E" -< E' 

y . 

= A connected in A to Z' . 
y 

For 

E > 0 define 

Ey(E,6) =. { z' y II-l(E, 6; Z') is nonempty and either J(G"y'Z') 0 

and 

E' (E,5) 
y 

for some G" E 1-1 (E 5· Z' ) orJ(Gu Z') .L. 0 
y y" y y' Y "t 

-1 - - -for all G" E I (E o· Z' ) but 
Y y" y 

I-l(E, 5; Z') trIG. ( .) 12 ~ E. ( .)(E)]} (2.27) 
l y,J ~ l y,J 

= {Z' IJ(G" . - Y y' 

-1(-and I E, 

Z' ) 
y 

.1- 0 for all G" E 1-1 (E 5· Z' ) 
"t Y y" Y 

[IG. ( .) 12 ~ E. ( .)(E)]\ 
l y,J l y,J J 

is empty) .' (2.28) 
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The separation of the space of integration in (2.21) into the two sets 

1-1 (E,5)11 E (E,5) , ' , 
'Qf)N 

and 1-1 (E,5)(l E' (E,iS) gives for any (E,5) , , in 

fez) == fez; E,5) + f' (z; E,5). (2.29) 

The second part of the region E' (~,5) , does not contribute to (2.29). 

In the first part of E' (€,5) one can use the fundamental theorem of 

. . 14 
Cauchy-Poincare to shrink the contours in 

contours about G.( .)=0. 
1 "J This yields 

f '(z·, -E s;:) ,u 

G' , to infinitesimal 

_JO~(~Z~'_;_z_) ~l~ ~ __ dZ~'~.~~ , Y = ,l 
J O(z,) Z'. - Z .(z). 

,l . )'l 

" i==l 

The region of integration 1\-1 (- -) 1 E,O , consists generally of several. 

mutually disjoint connected parts. Each connected part consists of a 

mul tisheeted covering of 1/5) n 2" (E, 5) ,. where 2;( E, 5) is the 

projection of· E' (E,5) onto Z' space. The functions y , 

FO(Z'y) _ FG(O; Z'y))' etc., are evaluated by evaluating the 

Z', (G' y; Z'y) occurring in z(Z' ,) at G', == ° on the appropriate 

sheet of 1 -1 ( ° 5; z' ). " , The condition 

1 - 1 (- (;' Z-, ) E, 0; 
y. 

[/G. ( .) /2 ~ E. ( .)(E)] in ·(2.28) ensures that 
1 "J . 1 "J 

the integration region in (2.30) is restricted to the image of V. The 

condition J + ° then ensures that N" = m. y , 

-The problem is now to justify passing to the limit E = ° in 

(2.29), and to show that fez; 0,5) = 0. As a first step we show that 

I (o)() B (0,0) is of measure zero, or, more specifically, that , y 



UCRL-17861 

for any locally integrable function Here E (0,6) = n E (E,B). 
Y E>O y 

Each Z' in E (0,5) is the image of a Z in V. The points 
y. y 

of V can be separated into two parts; those lying at the "regular" 

points R C V, which are the points of V at which rank II OG/dZ II = m; 

and those lying at the "singular" points S CV, which are the points of 

V at which rank II dG/OZ II < m. At any point of R one can introduce 

a set of local coordinates (G' . 'G' ) with G' the m functions of 
y' y y 

G. (z). Then the contribution to (2.31) from points Z' that are the 
1 Y 

images of no points Z E S can be converted (locally) to 

,v. 

i . P (G' 7) lilz' /ilG\I dG';­
[1/ 6) n E

y
(O,6) ] - By 

where the tildes indicate the transformation to the new variables, 

S = Z [S J is the image of S, and the Jacobian I dZ' JOG' I is y . Y .' Y Y 

(2.31' ) 

analytic. Because of the continuity properties of the functions defining 

E (E,5), a point G' EI (5) belongs to [I (5)() E (0,6)] - 'Sonly 
y y y y y y 

if there is a Z in R such that G (z) 
. y -G' y and either; 

(a) Jy(Z) = ° or, (b) for all sufficiently small €' > ° the set 

I-l(E' ,0; Z, (z») . intersects a part of the boundary of Q. (E', 6) not 

associated with y. Points 
,..; 

G' 
y for which (b) holds are [with 

perhaps slight adjustments of the parameters in (2.17)J confined to sets of 
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INler dimension not contributing to (2.31'). - condition (a) gives 

J (z(G' ; 'G' )) 
"I "I "I 

of J (G' ;G' ) 
"I "I r 

- Jr(G' "I; 'G'r) == 0. But at points of R the vanishing 

_ /d(G' ; z' )/d(G' ; (1' ) /'/d(G' ; '6 1 

)/dZ / implies 
r "I "I "I r "I 

the vanishing of 
N 

/dZ'/dG' /, since //dG' /dG' II is a unit matrix, and 2JG/OG::: 0.: 
r "I _ r r ~r 

Thus (2.31') is .Y"'(c. This means that for any (E,5) E Q ()!II one can 

omit from (2.26) the contributions from [I (5)0 E (0,5)}- $i~ 
"Ir 

where 

We must show also that 

I cp (Z')') dZ' "I == 0, 

I (5)()E (0,5){)S 
r - r r 

S == Z [sJ 
r r 

is the image of Sunder Z (z). The mapping Z (z) is a polynomial mapping. 
r r 

Thus, by virtue of the Chevalley Theorem (see Appendix B) either 

(cd; S"I is confined to the zeros of a finite set of polynomials 

Pi(Z'r) $. 0, or (6); Sy includes all points not lying on the zeros of 

a finite set of polynomials P. (z' ) $ 0. In the first case (2.31") 
- ~ "I 

is assured by Theorem C of Appendix C. In the second case S must contain 
r 

open sets. To prove this is impossible, note first that by virtue of the 

Chevalley Theorem and Lemma B of Appendix B the set of variables Z (z) . 
y 

must be locally linearly independent when Z' == Z (z) lies in an open 
Y "1-

SE;!t 

where the p' . (Z' ) - ~- - r are polynomials that are not identically zero. 

,-
Thus at points of $ nS}\one can find a set _ of local coordinates that include::. 

the Z. Since the nlliuber of coordinates in the set Z is at least r y 
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n-m, the set S 
r 

cannot include an open neighborhood of any point ·of S' 

unless the dimension of S is at least n-m. However, the dimension of 

the set of singular points S of V is less than the dimension n-m of 

v. 15 This proves (2.31"), hence also (2.31). 

Equation (2.26) is true for any (€,5) in 'Q,nN. By virtue of 

(2.31) we can for any such (E,5) restrict the range of integration to 

. I (5) -'E (0;5). For any point Z' in I (5) - 2 r(0;5) there is some 
r r r r 

E (Z' )<E such that Z' lies in I (5)() 2, (E' ,5) for all Et ~ E (Z' ) • 
r r r r " r 

1\ -This follows from the definition of E (0,0) and the fact that for all 
r 

E' ~ E" ~ (E" 5· z,' )c~ (E' 5·Z'). Thus as we let E ~o., each noint 
~, r" r r "r. J:' 

Z' in the region of integration I (5) - E (0;5) is eventually included 
r r r 

in the set of points that contribute to the f' (Z;E,O) of (2.30). 

This result is not sufficient to give the desired result 

f(z) f' (z; 0, 5). 

For it is conceivable that the function A-­OE 
-could depend on E. If 

this were the case then the contribution from I o(5)n[E
r

(E,5) - E/O,5)] 
could remain significant, even though this region itself shrinks to zero 

as E -70. However, is in fact independent of E,' for 

To prove this, let and €" be two different values of -E. 

Then (2.26) and (2.31) give 
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for all 
-

z not lying on some one of the surfaces lIm z.(z)1 
1 = 5. (5) 

1 

or I z. (z) I 
1 

p.(5). The dependence of the right side on z comes 
1 

through the analytic functions! J(Z; z) of (2.21), and through the 
y 

denominator f\mctions that appear there. The pole singularities of 

these denominators entail that the numerator at I (5) be the multiple 
y 

discontinuity of the function on the left. This is zero. Thus the 

integrand on the right must be zero. (See Appendix E) 

The validity of (2.34) now follo"l<TS immediately. One first 
_ _ ,v 

fixes (E,5)E Q n N. The contributions to (2.26) from points 

I (5)n E(O,5) can then be discarded, by using. (2.31). The contribution 
Y , 

from near any point z' 

-reducing E to a value 

cf 

E:' < E:'(Z' ). 
. Y 

can be evaluated by 

This gives 

The rest is ·simple.' Equation· (2.34) refers only to functions 

" The terms with N > 0 drop out by 
Y 

defined on V.· Now let 5 ~ o. 

virtue of thefall...;off condition. The integration regions collapse to 

the intersections of regions IrnZt ± E •• The orientations of these 
1 

regions reverse with the reversal of the signs in front of + iE. 
- 1 

and 

cne obtains discontinuities. Specifically one obtains*from (2.34) and 

(2.30 ) the result (1.1) with 

6 (Z' ) 
Y Y 

+ i.( cr • E)\' J'l 

where the sum is over the 2n -m combinations of signs of the 

and E is infini tesima1.6 (Z' ) need "not exist ·as a function. We y y . . 

consider it to be defined in the mean as limit E ~O of integrals. 

± 1, 

* For the normal case where no two regions If... coincide. Abnormal cases 

can be regarded as limiting cases. 



," 

UCRL-17861 

-21-

The function JA(Z'A; z) appearing in (1.1) is the determinant 

of the polynomials PAji(z(Z'A); z). These are defined by7 

n 

=L P .. (z'; z) (z'. - z.). 
AJ1 1 1 

i:=l 

In the limit z' -? Z we have 

P~ji(Z; z) 

Thus J A (ZA (z); z) 
but z' t z then 

dZ ./2,'1- .. 
AJ 1 

JA(z). On the other hand if ZA(Z') 

J
A 

(ZA (z' ); z) 0. The factor J A (Z'A; 

ZA (z) 

Z)/JA (Z' ,,) 

has therefore the effect of separating the contributions from different 

poin~z' that correspond to the same point Z'A: Because of this 

factor the multiple discontinuity fora point 
, 

Z satisfying 

ZA(Z') E (IA - EA(O,O)] will be 6
A
(Z'), as is required. We thus 

understand therble of the factor J
A 
(z' A; z)/J

A 
(Z' A) in (1.1). 

The representation (2.1) is just an alternative form of (1.1). 

A delta function occurring under an integral sign signifies that we should 
integration 

introduce a set of/variables that includes the argument otthe delta function, 
. thi s variable 

and then hold I. . fixed at zero. Applying this prescription to (2.1), 

with (G; Z) as the new variables, 'one gets (1.1). By choosing other 
"( "( 

variables one obtains from (2.1) other equivalent representations. 

In (2.1) the integration region IA occurs as an algebraic 

variety of real dimension n-m imbedded in a space of complex dimension n, 

whereas in (1;1) it isamultisheeted surface lying over a A-dependent space 

of real dimension n-m. 
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III. COMMENTS 

The denominators appearing in the integral representations are 

the direct generalizations of the s, t, and u variable~ of Mandelstam:,,·, 

they are polynomials in the components of the energy-momentum vectors 

that are also polynomials in certain invariants. These polynomials are 

the ones corresponding to the Landau singularities whose cuts bound the 

physical region. The invariant denominator functions formed from them 

are the same in the momentum-space and invariant-space forms of the 

representation. One anticipates that the momentum-space form will be 

more convenient for large values of N, since the mass shell constraints 

are much simpler. Moreover,' one can deal directly with the scattering 

functions themselves, rather than with invariant amplitudes. The problem 

of constructing global invariant amplitudes has been explicitly solved 

in the general spin case only for N = 4.16 

If one uses the momentum-space form then a problem arises: 

Lorentz orbits are noncompact. This means that the scattering function 

is essentially constant over noncompact regions. In order to obtain 

fall-off at large distances, and compact regions of integration, one 

must effectively factor out the integrations over Lorentz orbits. One 

can simply set certain components to zero, or alternatively, use 

Toller variables. l ? 

The question of how fast is "sufficiently fast" is, of course; 

important. Evidently the general formula will have terms with fewer 

denominators than appear in (2.1), just as in the case of the Mandelstam 

representation. However, this question is not embarked upon here, where 

the concern has been with contributions from the singular points of the 

variety, rather than points at infinity. 
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APPENDIX A 

Theorem A: Let D be a domain of holomorphy in 
n 

C. 
"l-\." 

Let 

UCRL-l 786l 

v be 

lyt · . t . C'l'l an ana lC varle y ln '. Let f be a function holomorphic on V n D 

Then there exists a function F holomorphic on D such that 

f(z) == F(z) for all z in Vn J). 
18 

This theorem is a,consequence of Cartan t s Theorem B. 
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Theorem B (Wright): Let r: RP ~Rn can be any real polynomial mapping. 
MIl w 

That is, r is defined by a set of n real polynomials 

r(w) = ~l(w), ..• rn(w~ in the components of w = (wl""w
P

), wh~re the 

w. are real variables. Let Q be the set of points w E ~ at which 
J 

the rank of I lor/owl I is less than n. Then the image Q' = r(Q) in 

Rn of Q is contained in the union of a·finite set of proper algebraic 
...." 

varieties. In particular, 

q 

Q'C U (B.l) 
i=l 

where q is finite, 

A. 
J. 

{r·E Rn I P. (r) = OJ, 
,.,.; l 

(B.2) 

and the P. (r) are polynomials in the components of r that are not 
J. 

identically zero: Pi (r) $0. 
Proof: This theorem is based on the 

19 ~ P n Chevalley Theorem: Let r: £,. ~.51 be any polynomial mapping of 

to Then the image' of 'r is a constructible set in More 

generally, 

in Cn . 

r maps constructible sets in cP 

"""" 
to constructibl~ sets 

"""" 
A constructible set of Cn (or CP) is a set that is a finite 

~ 11M 

union of locally closed subsets of ~n (or ~). A locally closed subset 

is a set that can be expressed as the intersection of an open set with 

a closed set. The closed sets referred to here are the closed set of 

the Zariski topology. In this topology the closed sets are the algebraic 

varieties. That is, the closed sets are sets of the form 

(z I Pl(z) P (z) s O} , 
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of 

s 

, n 
z E C 

~ 

is finite, and the 
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P. (z) are polynomials in the components 
J 

(or The open sets are complements of closed sets. 

[These open and closed sets will, outside this paragraph, be called 

Z-open and Z-closed, to distinguish them from the ordinary open and 

closed sets induced by the Euclidean metric in ~n (or ~p).] 

To apply the Cheval ley theorem to the present problem, the 

"-

mapping r is taken to be the natural extension of r to the complex 

domain: r -+ r, w -+ w. The set 

(; E cP I· rank /Idr'/iWii < n} 
II'" 

(B.4) 

is a Z-closed and hence constructible set in· CPo Thus Cheval ley tells 
~ 

us that n' = r (Q) is constructible in Lemma B below ensures 
"-

that Q' is of 2n Lebesgue measure zero. This, together with 

constructibility, means that 

where q is finite, 

[~ E Cn 
, P. (r) = O} , 

v.I l 

"-

and the p. are polynomials that are not identically zero: 
l 

(B.5 ) 

(B.6) 
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The set Q' is restricted to Rn 
\'IV 

U' u' I Rn . 
"....., 

Thus q 
'" R

n 
U '" En Q' C Q' C A. -- l. w--. 

j=l 

q 

- \J Ai' 
j=l 

where 

A.. - (r € Rn I(P i (r) I R
n

)== P. (r) 
l. .1."; ....... l. 
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(B.8) 

(B.IO) 

= oJ. (B. II ) 

The condition P. ~ 0 of (B.7) ensures that P. ~ 0, since an analytic 
l. ]. 

function that vanishes over a real environment vanishes identically. 

Lemma B: 

C
n . Let 

-Let r 

z(z) == 

N C ~: ... S be a holomorphic mapping of N into 

01(Z),.· .. zn(z~ be the n functions that define r, 
and let 

Q -(z € N I rank II "OZ/"Oz II < n } . (B.12 ) 

Then the set 

has 2n-dimensional Lebesgue measure zero. 



10' 

UCRL-17861 

-27-

Proof: This lemma is akin to Sard's theorem,lO which is used to prove 

it. Let the 2n real variables that comprise z == (z , ... Z) be 
1 n 

W == (WI"" W2n ) == (Xl'" 'Xn; Yl ," 'Yn ) ==(XjY). Let the 2p real 

variables that comprise z == (zl' ",zp) be 

w == (wI'" 'w2p ) == (xl" .. xn; yl ," 'Yn ) == (x;y). 

of N in R
2p

, and let 

'r == (w E N I rank II2Jw/awll < 2n} • r 

Let N be the image 
r 

If we regard sets in as equivalent to their images in 

-. 2p 2n· then r can be regarded as a map from R to R Then by Sard's 

(B.14) 

theorem the set T';;:; reT) is of 2n dimensional Lebesgue measure zero. 

-The lemma then follows if we can prove the equivalence 'r ~ Q. 

The equivalence T ~ Q is an immediate consequence of the 

identity 

2 
det "2Jw/2JW1I == 'det II dZ/2Jz II \ ' (B.15 ) 

which follows from the Cauchy-Riemann equations. Here z is any subset 

of n of the variables (zl;' ·.'zp) and w is the corresponding subset 

of w. To prove (B .15) let the 2n)( 2n matrix II 2JW/CJ'W II == M be 

considered a set of four n x n matrices: 

M - II dX/2Jx; 2JX/?iYj dy/?iXj 2JY/?iY" (B.16) 

Let E be the unit n)( n matrix and define the 2n J( 2n matrices 

L - liE; iE; Ej -iEIl (B.17) 

I 
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and 

N =:i /lE/2; E/2; -iE/2; iE/211. (B.18) 

Then 

LMN = IldZ/dZ; 0; 0; dZ* /dZ'*1I , (B.19) 

where use has been made of the formulas 

id ) - dY: 
~ 

(B.20) 

and 

1 ~d . id ) = - ~ +.-:s::- ~ 2 ax, Uy .. 
~ ~ 

(B .21) 

and the Cauchy-Riemann equations. Since det L • det N = 1 , one obtains 

from (B.19) the desired (B.15). 

,-; 



~. 

UCRL-17861 

-29-

APPENDIX C 

Theorem C: Let Z = (zl" "zn) be a set of n complex variables. 

Let w = (wI'" .w
2n

) = (xl" ·xn; Yl " 'Yn ) be the corresponding set 

of 2n real variables. Let M be a compact real analytic manifold 

of real dimension n imbedded in the space of the 2n real variables w. 

Let H(Z) ~ 0 be a function holomorphic at all points of M. Let 

Mt = M () {H(z) = oJ. Let ¢(z) be any integrable function on MI. 

Then 

Proof: Let M~ be the subset of M' such that dH(z)/dZ. f O. Then 
~ ~ 

at any pO.int .of M~ a coorq.inate system (z i Z i •.• Z i) can be 
... l' 2 n 

constructed with Zl i = H(z). For some neighborhood N C M~ of this 

(C.l) 

point the set of functions z(zi) are well defined and holomorphic and 

one can write· 

1 ¢(z)dz 
r 

¢(z (zi)) d Z dZi - f 
dZi = 0 . 

N {I 

The integral (C.2 ) vanishes 
I 

the definition of M .• Let 
~ 

that cH(z)/dZ i dZ
j 

f O. 

coordinate system (zli j
, 

, 

due to the constraint 
, 

M .. be the subset of 
~J 

I 

Zl i = '0" imposed by 

M' - UM: such - ~ 

At any point of ~j one can construct a 

(C.2 ) 

neighborhood N C. M .. 
~J 

of this point the set of functions are 

well defined and holomorphic and one can write 
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1 ¢(z)dz [ ¢(z(zij
)) l ~ldZij 

oziJ . == o. (C.3 ) 

The integral (C.3) vanishes due to the constraint Z ij 
1 == 0 imposed by 

the definition of 

Proceeding 

1 ¢(z )dz 

U 

, 
M •. ' lJ 

in the same way one shows that 

0, (c.4) 

of M' 
where Ll" contains any pOint/where some finite-order partial derivative 

of H(z) is nonzero. Since l{z) is holomorphic at each point of M', 

and is not identically zero, we have UL = M'. This proves the theorem. 

Corollary: Let z, wand M be as in Theorem C. Suppose M is the 

intersection of the sets r i defined by rectifiable curves Cv C2, ... en 

in the planes Zl,Z2"" and Zn, respectively, where Zi is an analytic 

function of z on Ci' Let J(z) 

Then for any ¢(z) integrable on M, 

/ozjoz/ be identically zero. 

J 
M 

¢(z)dz "f ¢(z)d~ /\dz2 " ,dzD 

M 

o 

Proof: By a rectifiable curve we mean a curve can be considered to be 
limit of a 

a/set of straight-line" segments. Consider the contribution from a 

set of n such segments. By an adjustment of the definition of the 

Zi's, these segments can be made to be se@nents of the real axis. 

,~~, 

,.,' 
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Then the constraint equations are 1m Z. 
]. 

0, i=l,···n. Because 

the Jacobian J(z) is identically zero one can divide the set 

Z (Zl'·· ·Zn) into subsets Z and Z such that Z' = Z(Z), 

where Z is non empty and the matrix II2lz/2lz II has maximal rank 
.' 13 

almost everywhere. . The contributions to (C.5) from points where 

the rank is 

point where 

j2l(z,z)/2lz j 

equivalent 

'" Z 

not maximal vanish by virture of Theorem C. At 

the rank is maximal one can find a set Z such 

+ 0. Near this point the coordinates (2,Z) 

to the coordinates z. By virtue of the relation 

the constraint equations are of the form F.(It) 
]. , 

any 

that 

are 

== o. 

They do not depend on W. Thils the manifold is the product of a 

manifold in 
,..; 

Z space times the whole Zspace. The real dimension 

"'" of the manifold in the Z space must therefore be less than the 

complex dimension of this space. Thus the integral over 
N _ ~ "'-' 

dZ ~ dZl A dZ,2 ... dZp vanishes. 
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APPENDIX D LANDAU SURFACES 

Theorem D: (C. Chandler ) Let KN be the space of N momentum-energy 
I 2 

vectors (kl , ... ~). Let IN be the space of the N Lorentz 

invariant inner products (k. ·k.). 
1. J 

Let DN be a Landau diagram with 

N external lines and n > 0 internal lines. Let 4(DN) be the 

union of the Landau surfaces in ~ corresponding to DN and all 

of its nontrivial (n' > 0) contractions. Let oc;(DN) be the image 

of i..K(DN)· in invariant space ~ and .1-;" •. (D) be the -(..I N 

mass shell for DN in ~ and IN' respectively. Then 

and 

is a real polynomial in the k., and 
J 

(k. ·k.). 
1. J 

Proof: The a-form of the Landau equations is20 

a. d D(a.;DN»)aa. = 0 1. 1. . 1. 
i=l,· . 'n, 

(D.I) 

(D.2) 

(D.}) 

where D(ai;DN) is a homogeneous polynomial in the a .. The coefficients 
real 

. 1. 

are/linear functions of the (k .. k.). 
1. J 

The n equations 

.-1 
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a nontrivial solution if and only if the resultant 12(ki
O k

j
;DN) is 

21 zero. The resultant of a system of n homogeneous polynomials in 

n variables is a not-identically-zero integral polynomial in the 

ff O.. t· 21 coe ].c].en s. Since the coefficients are real linear combinations of 

the (k. ok.), and since integers are real, the resultant is a real 
]. J 

polynomial in the 

from it. 

(ko °ko) 0 

]. J 
Thus (Do2) is proved, and (D.l) follows 
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APPEl'IDIX E THE NONDEPENDENCE OF A5E on E 

, Because of the (polynomial) dependence of J (Z', 'z) 
/ / 

on z, the 

proof of the nondependence of ABE on € given in the text is incom­

plete: What proved tliere is' only that the leading term in the poly-

nomial expansion 

J/~/(z')' z) = J/~r(z')' z) + ( z' - z). J i( z', z) + .•• (E.l) 
1 / 

gives a contrlbution to A-­OE thatis independent of -E. This suggests 

that the other terms should also have this property. A proof of this 

is outlined here. 

The first step is to convert the basic formula (2.21) to a more 

convenient form. First replace the variables of integration 2' . by 
/1 

the original variables 

denominator. Now let 

that does not include 

z', thereby eliminating the J (2' ) 
/ / 

/ be the label of a set of variables 

in the 

Z 
/ 

Let be the labels of the n different sets 

corresponding to replacing, in turn, each variable in 2y by Gl . The 

region of integration in Gl , for fixed values of the other variables 

in the set specified by Ii' will generally be bounded by the curve that 

is the image in of I . 
/ 

This bound comes from the condition on 

rR (€,5) imposed by the condition on that variable of the set "Z that is 
/ 

replaced in 2 . 
/1 

by The image of I 
/ 

in is a continuation of 

the original contour in The contribution from can be eliminated 

from (2.21) if one adds, instead, the contribution from this extra piece 

of contour in Gl , to the tertii' corresponding 'to each .. of the ./. ~ This 
1 

follows from the defining property of the P .. (z'; z), 
J1 

,f' 
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P .. (z'; z) 
.. Jl .. , , . 1 • (E.2) 

For (E.2) implies the vanishing of the determinant. of the (n + 1) by 

(n + 1) matrix constructed by adding a column of ones to the matrix 
. . 

Pji(zf ;z)/z/z') - Zj{z)",Where j ranges over the index set corresponding 

to the n variables of Zj' together with Gl . Expansion of this 

det~rminant on the column of ones gives the required identity. 

By means of the above transformation, applied to every set Z 
y 

not containing Gl , one eliminates from (2.21) allcontributioris corresponding 

to .Zy., not containing Gl • Simultaneously the .contour in Gl becomes 

a cycle (has no boundaries) for each value of the other variables. 

Applying the same transformation for each of the m variables Gi one 

obtains a modified form of (2.21) in which y is restricted to sets 

having all m of the variables Gi , and the contours in the Gi are 

cycles for all values of the other variables. Note that the actual 

regions of integration a~e not altered by this transformation: One 

simply considers the contributions from certain regions I 

expressed as sums of contributions from the same regions 

into various other terms of (2.21). 

y 

I y 

to be 

inserted 

In the modified form of (2.21), the contour in theGi part of 

space is ,a cycle. Thus by the theorem of CaUChy-poincar~14 the integral 

is independent of E, so long as (f,b) is in Qllrl.The modified form 

of (2.21) can evidentiy also be used to give a variation of the proof 

of the theorem of the text. 

) 
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Fig. 1. The :r:egion Q () N is a connected open set containing all points 

in Q where €<e(§). 
m 

The set of points E = 0,0 < 5< 15M > ° 
is contained in the boundary. 
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