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ABSTRACT

An integral répresentation of the Bergman—Weil type is

| ‘derived for a function definéd.on an algebraic variety. This formu1a
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is useful for constructing Mandelstam-type integral_repreSehtations

- for N-particle functions.
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I. ~ INTRODUCTION

The Mandelstam representation expresses a four-particle
function on its physical sheet in terms of the multiple discontinuities
across.the:cute bounding'thiS'sheet.l The present work is concerned
with the analogous representations'for N-particle functions. Snch-
representations are evidentlytneeded for a complete dispersion-
theoretic dynanics.

The prdblem'of obtaining a Mandelstam-type representation for
an N—particle functienvhas three parts. First one must define the
physical sheet'of this function and identify its bonndary cuts. Some
work™”> has been aone on this, and more is in progress. Having
identified the bdundafy cuts, one must obtain formulas
for the discqntinuities and multiple discontinuities across these cuts.
Coneidefatle'Wofku’5’6‘has been ione on this,:and more ie.in progress. .
Having identified the cuts and obtained formuias for their discontinuities, -
one mustrfinally express the functien en the ph&sical eheet.in terms of
these discontinuities. This last‘problem'is the one discussed here.
That 1is, we aésUme that the cuts bounding the physical sheetiand their
diseontinuities.are_known; énd seek a representétion efﬂthe function.
on this sheet.

7

The Bergman-Weil representatidn “can be'used‘to'fepreeent»a'
function in.terms of its multiple.di5continnities. tIndeed, the
representation given by Mandelstam is eséentially a special case oft

the B-W formula. For the general N-particle function’one‘needs;



UCRL~17861
-D-

however, a generalization of the B-W formula to the case in which the 9
function is defined only on an aigebraic variety;' The reason for this
is discussed next. |

The N-particle function is originally defined only on the mass
sheil 7»7, which is the set‘of"points in momentumfenergy spaee that
safdéfyvthefnass conétraints and momentum-energy conservation laws.
éiﬁcé tnese‘conditione afe expressed by the simultaneous vanishing

ofvseveraifanalytic functions of the momentum-energy vectors, the

set 77, is an ana;ztlc variety. Since theSe fnnctions are in fact

polynomials, ﬁh?_ls moreover an algebralc varlety The B-W formula"

refers to funotlons defined over a full space and hence is not
.immediately éiobelly‘anplicableeto a function defined only on the
algebralc varlety 77'

One can try to avoid thls dlfflculty by invoking Lorentz
n'infariance and reducing the problem to a correspondlng problem in the
.sPeCevof Scalar invariants. This works fine‘for N = b and N = 5.
But for N >5 bit doesnft._ In particular,'fof N>5 there is no
‘ cnoice ofnindependent seelar invariants such that all others can be
expresSed.in £erm$ of them‘es single-valued functions. This means
that the mass shell <x7 maps into a multlsheeted surface over any
space gdp of 1ndependent scalars. v

~-One can apply the B-W formula to the functlon deflned on an . QIl
‘ indiV1dual‘sheet However, such'a sheet corre8ponds to only part'of
.the mass shell 7”7 Accordingly it is bounded in parf by cufs that

-are not the images of cuts that bound the phy31cal sheet in ;b? .
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These extra cﬁts, which arise solely from the multisheeted nature of
the image of ;bi_, are ”kinéﬁatical", in that they have no counterpart
in ?72 itself, and,deﬁend‘oh the particular choice of independent
scalars, Their discontinﬁities are not given by unitarity, and hence,
in distinction to those for the cuts in 77?, _r};ust not be considered
to be:given. |

In simple cases dhe can eliminaté the unknown discontinuites
across fhese kinématichuts by considering all thé sheeté simultaneously.
However, the algebra becomes intractable for all but the simpiest cases,
because one needs‘solutions of fifth-order aléebraicvequations.

In order fo'resolvé this problem one can regard the ﬁass shell
in invariant space not és a multisheeted surface over some spéce 5ﬂf7of
independent scalér inVariants, but‘raﬁher as an algébraic variety
imbedded ih a space ,Jrl: of.a larger set of inyariahts.‘ Asfibekov8
has shown how1thevmass shell in invariant spacé can be regafdedlas‘an

algebraic varieﬁy v vimbeddedin a’ space ‘QJN':Cf (NQV- 3N)/2 scalar

: invariants."Thus for either the invariant-space or moméntum-energy -

space approach one iS'ledlﬁo‘consider the mass"shell as an algébraic

Variety. Our prdblem is thus to adapt the B-W formula to functions

defined onlyvon-algebfaic vafieties. | |
‘By considering thermaSS.shell to bev@n algébraic vériety we

achieve an impbrtant simblifigatidn: The Landau surféces' Li _aﬁe'

given as the.zeroé of polynomials Zi(z) in the cdmpdnénts of

z = (Zl;"f 25), the set ofvcoordinatés of the imbeddiné space) Tt

is natural to define the cut associated with a singularify at Zi(Z) = 0

See Appendix D.
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by a curve ﬁhrough the origin in the Zi-plane; We shall in fact aséume_ “
that‘the cuts bounding the physical sheet are confined'to sets of the
form Tm Z.(z)v= 0, where the Zi(z) are polynomials in ‘the coprdinates
of the imbedding space. More‘general cases can be obtained, for
;example, by approx1mat1ng a curve in Z by a set of-straight-line
‘segments, etec.

As in fhe Mandelstam'representafion~there will be contributions
associafed withbeontonrs at infinity, unleSS‘the function falls off
"sufficiently fast." These ean be taken into account, but in order to
concentrate on the essential problem we 51mply assume that the function
falls off suff1c1ently faet., |

Our procedure is to apply the B-W formula to an appropriate
extension F(z) into the imbedding snace of the function f(z)
defined on the variety V, and then to reduce the formula in a way

'such that:rtflnally refers only to f(z). This results in a formula

Yy Al

2 J (Z ;Z) - dZ’)\i
£(z) = (2x1) T o-m | A)\. (2, )_J—(ZTT— . AN Z}\i(Z) )

(1.1)

N

~ Here A ‘labels the various sets of n-m of thevboundary surfaces, -

and ' Im ZXi =0 is the iﬁh-snrface of the Ath vset.,’The region of

v ©
integration 1is

» n-m o I
. A . : Y] p B . '
= ) =0 - ') =
I 3 fﬁ) _{Im_Zxi _ ) {JK(Z ) 0}
' o wi=1 . : o
whlch is generally multlsheeted. The integer n-m .is the dimension-
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of the variety V. The function AX(Z‘) is the appropriate (n-m)-fold
multiple discontinuity and Jx(Zﬁ is a certain Jacobian polynomial.
The function J, (Z';Z)” is a polynomial with the property
s (Z (z),z) =J (Z (z)). It is essentially a B-W kernel function.
An alternatlve form of (1.1) is given that does not contaln the
function JK(Zf) , and that expresses the integration region as a
veriety imbedded in V.
it shouid be'emphaSized that the variety V 1is not required
to bé én analytic manifold. In particular. V can have points P
such thatvno neighborhood of P 1is topologically equivaiént to a.
neighborhood in a Euclidean>space of any number of-dimenéibns. The
bossibility of‘éuch ”Singular_points" of V must be allnwed because
‘the mass shell has them. It is thérpresence'of.such‘points that
causes'fhé main difficulty of thiéAwork;‘ Our original motivation
was to see whethér these poinfs ééusevany real problem in the
construction of‘géneralized MEndelstam-fype répresentations: ‘Are
there extra contributions associated with snch'points? Our- danswer is
vtnat therebafeinone;'
Our notation is‘standard; E? and gﬁ, denote the spaces of
'n real énd n complex vafiables;respectively. For.a function f
defined on an algebraic variety- V; holomorphy méans Strong holomorphy.
Hepp9 has shown that weak holomorphy on a domain QD in'the mass (5_
shell 7n unplles strong holomorphy on za » and also that strong fé
holomorphy on 25 implies the strong holomorphy of approprlate corxespondln

functions on the image’ 29' of 23 -in the space of invariants,
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By.scalar invariants. |

A sét of m functions differentiable on a neighbbrhood of

‘a_set V are said to bé’funétionally independént over 'V 1if and only
if their matrix of first defiVativés has faﬂk m at almost all'poinfs
of V. In particular, if V‘ is an_algebfaic vaiiety defined by the m
equations Gi(z) =‘O; i=1,++-m, where the Gi are polynomials that are
fUnctionaliyvindependent over V, then the set of points_of V where
the rank of the matrix aGi/azj of first derivatives is less than m
is the set AV of singular points of V, and it is confined to a set
~of dimenéion less than ﬁhat'of V.. The dimension of V .is n-m,
where n is'tﬁe dimension of the imﬁedding space. 'Réferencéé to proofs

of these well-known results are cited in the course of the prbdf,
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II. BERGMAN-WEIL FORMULA ON AN ALGEBRAIC VARIETY

Theorem L ILet 2z = (z

l’Z2"'an} be a set of n complex variables.

Let V Dbe the algebraic variety

V= (z] 6(z) =0, i =1,2,-'m< n},

where the Gi(z) are a set of polynomials that are functionally independent

over V. Let W be the set

N
W= éi_ W,

- with

W.

i :[zl Iani(z) =‘O},.

where the Zi(z)v are polynomials. Suppose f£(z) is defined and holomorphic
on V-W. If f(z) goes to zero sufficiently fast as |z|2'E Z|zi|2 — o

i

on V-W, then for any =z in V-W

. ) . . 1 . V': : v‘ [ ' . :
£(z) = dz' 4 (= )[iLll 5(c; (2 )ﬂJx(z 32) (2.1)
_ - (2nd) _ }f?&_ ' L ~ o S
' / Z,r. oo 'y - Z, . : ‘
S A (1(>\>J)(Z ) 1(>\,J)(Z)) »
The index ) labels‘the various subsets consisting of n-m elements. from
the set of N indices( i, and i(r,j) 1is the jth element of the Ath
set. The region of integration IX is"
n-m v - : o ) .
I = W. . -V S ’ : SO
x ﬂ i) THT , | (2-2)
and AX(Z') is a corresponding multiple discontinuity, which will be

further specified in the course of the proof} The Dirac delta functions
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6(Gi) éffectively restrict the integration regions to Vf\IX. The . v
functions Jx(z';Z)' are Bergman-Weil kernels, which will be specified in
the course of the proof. 4J\f.is the set of singular points of V.j
Proof: A fundamental theorem of complex variable theory (See Appendix A)
ensures the existence of a function F(z) holomorphic in gf’— W‘ and
satisfying F(z) = f(z) for .z in V-W. The B-W formula will be applied
to F(z), or, more precisely, to the restricfioh of F(z). to the region

v W(B,'e,p) '1‘2

This region, which has various disconnected parts, is contained in the

< s ) (2.3)

1

iT}

(2] Im 2 () (% 3 8y, 16, ()P < g, Iz

domain of holomorphy of F(z). Its boundary surfaces are

6} (8, €, 0) = (z €« R(3, ¢, )| |mm z(2)|% = 8,1, 1i-1,--°N, (2.4)
26, 6 0) = (2 e R, € )] [6,(2) P =€), isl,eeem (2.5
and |

a}(8, €,‘p) = (z ¢ R (5, 6,“p)’..l'zil2 = p'_j;], o isl,een. (2.6)

The B-W férm.ula7 gives, formally, for z € V in the interior of -
: (R(s, €, p),

n n -1

N’ | '
§ 1) - U '
(2;11) B Az F(z") ;‘7(2 32) X f’l’l@(%j)(z )
: : 4 Iy(&,e,p) ' o |
' 'N SV ) +N"+N"' | v:'l P
1(7,3)(> ? 7 17,3 )(Z ) ”T 'T ((7,J) 1(7,39' (.2.7)‘ | )

Jj= 1+N' Jj= 1+N +N"

The symbol vy labels'the various subsets consisting of n indices from

among the set of N+mtn indicgs (il,- -iN; il’...lm’ 11, 'in).‘ Ihus

N'7 + N"y + N"; =n for all 7. The polynomial Jy(zf;z) is the deter-

minant of the matrix of leyhomials Pji(z';z) defined in reference 7.
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The region of integration 17(6, €, p) 1is the set

Nv ' ' . N""'N" - - »n
ﬁ 7 7 .
5 =1 1la NG noo ((B,e "o (8,e,p).
I7( 15:0) 01(7,3)( ,e,p) (/Q] 61(7,3)( P) »0) . "01(7,J)( P) ;D)
i=1 ) j=1+N' j=1+N'+N
! =y R A (2.8)

The proof of the theorem consgists of four parts. First it is
shown that the parameters 8, ¢, and p can be constrained in suéh a way
that the right side of (2.7) is well defined, and equals the left side.
The limit € -0 is then studied and it is shown that the factors
-1

G.(z")

i in (2.7) can be replaced by factors 2ni§(éi(z'z), and that only

ﬁhe terms with':N; =m contribute. This restricts the formula to the
vériefy V. ‘Next the limit p =0, 50 is_tékgn. The terms with:
N;'>_O »dro? out by virtue of the gondition ”f(z> - 0, and the various
remaining coﬁtributions ;ombine to give the multiple discontinuities .Ax
appearing in (2.1). The‘index A  labels the sets 7 for which
N; ) n‘_‘m.‘ : o | ; .

Thejfifst problem is to establish conditions under which the
right side of (2.7) is well defihedf If the‘parameters pi, éi’ gnd 5i
are all finite and strictly positive then the functions of the integrand

are all bounded and continuous on I7(p, €, 8). The question is whether

for fixed -p, € and ® the quantity

if}

dz' ¢(z') f dzi/\dz'e/\dzlzlgd(z') o (2.9)

17(0)6;5) . 17(916)8)

is well defined when @f(z') is well defined.
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The integral (2.9) is locally well defined in a neighﬁqrhoéd

N(Z’O)c:'ly(p’ €, 8) of a ﬁbint z' g of Iy(p, €, 8) provided there is
a set of functions xi(t) and yi(t) [i;l,:°-n; t = (tl,f--tn)ggﬁ]' that
afevcontihuously differentiable on-the unit ball B = {t,ztgis\lj, and
that define via zi(t>”=_xi(t) + i&i(t) a one-to-oné mapping éf' B onto
‘N(z'o). In this case one has, by definition,

[dz': ¢u(zv')ﬂ Et J’dtl‘..-.‘dtnlaz/atl ¢<z(t)>, | | (2.10)

ﬁ(z'o) v B

where the sigﬁ is determined by the orientation of N(z'o).
To establish conditions under which the requisite.functions

'Xi(t)‘ and yi(t) exist, consider the real polynomialvmapping

r_:R2 L B® -defined by
Y ‘- ~
r., =25, .y = 'Im"Z.v NGOG 3=1, "N
3 Ti(y,3) i(y,3)7" _ v4
r.o= €., .= la, | .,’(w)."g | j;_zl-l;N',:-;?N"ﬁ\T"
i 1(9,3) i(y,d) | ’ 7
T, = p, o= |z, . (W)Ig. j=i+N'+ "",-.-n (2.11)
J -~ Ti(y,d) i(y,3) : Ty

where w = (wi,j--w2n) = (xl,°"xn;yl,"'yn)lv Let Q7 be theé set of
2n

pointS‘ weR such that the rank of the n by 2n matrix ||or/ow||

is less than n. According to Sard's theorem " the image Q; = Fy(Qy)

in ;{1 of Q% has measure zero. This means 0'7 contains no open set
in 5\“, but it does not preclude the possibility that Q'y is dense in
A

Because the mapping 1"7 is a real polynomial'mapping we can apply

Theorem B of Appendix B. This says that Q'y is confined to a finite
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union of proper algebraic varieties. In particular, we have

1 q
Q < A, (2.12)
2 1U=l 17 | |
where g 1is finite,
= - LI n —_—
A, = (r = (rg,ceer )RR (r) = 0], | (2.13)

and the Pi are polynomials that are not identically zero:

.Pi # 0 : (2.14)

We are interested in letting '6i - Q e'i —Q and p‘i - 00 .

?

.3 p'i) we introduce

In place of the variable r = (ai; €,

r' ="(6i; €53 p;l); Then the 1limit of interest is r' — 0. The

SGt"ij, considered as a set in r' space, is readily seen to satisfy
N | (2.15)
e, < U i - -1
J=1 '

where q' -is finite,

\]

A

n

(r'e R‘?|P.'i(r') - 0}, - (2.16)
and the P ; are polynomia;l.s P»‘i * O,'

Let two real variables € and 8 be introduced and let

-8 g..e ) i (2'17) )

¢ () - z ni,v§i(5) = 5 65 p;;(s) +

i
The (€, &) plane is then a linear subspace. of the space of variables -

!

r e‘BP. For almost all choices of the set of.paramétefé.?[i, Ci’ and gi

the sets:'giy will all intersect  the (5, S) plane in a finite set of one

b‘dimenSional curves. Choose such a set and let Q" be the union of these

curves.
Let Q ©be the open first quadrant in the (E, 6) plane.  Let

Zm(é) be the least value of ¢ such that. (Em(S), 5) lies in Q and
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on Q%. Let 25 be the set_' » » ?
T = (5, 8) eal| e<e(d)). | | (2.18) T

That is, 25 is the part of @ . lying below the lowest curve of Qe N Q.
For some sufficiently Small ball N centered at the.origin the set

'C\{’n N will be a connected open set as shown in Fig. 1. B

Define

(e, 8) = 1,(8(8), e(€), o(8))
and |

(e, 8). = U17(5> §).
For any (&, §) in G ‘the rank of ||5r/é&|| is n at every point
of I(e, §). This is what has ju;t been showﬁ. But if the rank of this
mafrix is n, then the set of n real &ariables ri can be augmented locally'
by a set of 'n ‘real variabies- ti to give éAset of 2n real variables
such that the 2n-by-2n ~ matrix ||dr/ow; dt/dw|| has rank 2n.
.These t, can in fact be ﬁéken ﬁo be linear functions of tﬁe LT
Because the rank of this matrix is maximal the equations ri(w) and
ti(w) have a>uniqué holomorphié inveréell w'; w(t,r ). Fixing the
V(E,'S) _in ?if\N, we obtain for aﬁy z on I(e, B) thevreqﬁisite‘set
of functions wi(t)' = (xi(t);'yi(t)). Thuévthe integrations appearihé |
on the right side of (2.7) are locailvaeil définedvat all points of

I(e, 5), for any (€, 8) ¢ @71N.'

Bécause I(e, 8) vcbhsists of a finite number 6f real aigebréic S -Qv 
manifélds, restrictéd'to'éhbdﬁh@éd region;:ifs measure is finite. Thus
theiright side of (2.7) is wéil’defined for (e, 5) in QNN. If the
right side of »(2.7) is weii.defined in thié sense, then Weil's theorem!
gi#es (2.7)- [Exceptionél.éases yhere se?eral' Iy' COiﬁéidercaﬁibe exéiuded'

by very slight adjustment of the 1, ¢, and £, in (2.17)1.



[3)

 {| Imz

UCRL-17861
-13-
We wish now to take the limit € —» 0O in (257). To evaluate
the reéult, (2.7) is first converted to an alternative form. For a given

term 7y the denominator in (2.7) can be written as

o ) ,
D (z';z) = 7z (z'") -2 .(z 2.1
, 7( 32) ‘42& 7l( ) 71( ) (2.19)
h 7. the polynomial 7. . G.7  vy.Z. .\.. Define
where. v} po-ym P1(y,3) Tily,3)A%1(y,3)
J (z') = det o7 . (z')/az' .|]. : : - (2.20
’7( ) Il 71(Z )/ JII , ( )

At points z' .such that J%(z') + 0 the n functions Zyi can serve

as local coordinates'> for Iy(g, ). Thus, apart from contributions from

the points J7(z') = 0, we can write

A 0o
-l ?‘u—”fT el

F(Z
l (2,5). 7' yi (2.21)
7_ .
Here F(Z' = 7(z(Z' J (2" 32) = J (=2 °%)
Here F(2') () 3(E s2) = 3 (a(Z)sq),
-7(2'7) = Jy 2(Z 7,)), and € is an orientation-dependent sign. -The

integration region I;l(é,g)’ is ‘the image in - ny - of -17(5,5).

It i1s a generally mﬁltisheeted surface lying over the set*

o ' 2 _ ._t"

1(7 iy 17)3)

.

The function z(Z') is defined on this multisheeted surface.

)(5)}
(2.22)

L ( .|2= B, s
i(y,43) i(y,d) i(y,J 1(7 3

: -t
The contributions to (2.21) from the points where J7(Z'x) =.0
are not well defined. However, the contribution from these points can be
calculated befofe going to the form (2.21). AéCording to Theorem C

of Appendix C

¥ Tor each j, 1 < j < n, the appropriate one of these equations holds.
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| Jr'dz'_ (z') =0, | (2.23)

L (e,8) N ((z') = 0) |
for any integrable fuhction“¢(z'), and an& analyticvanction' H(z')ﬂs 0.
Thus the poiﬁﬁs where' Jy(i') = 0 can be excluded from 17'1(2,5) in
(2.21), unlees_ J (2{) is identically zero. This last proViso can be
dropped.— For if J (z')  were identically zero then one of the Zi's
could be. expressed locally as an analytlc functlon of the others 13
.Thls;entalls that . the 1ntegral again vanish. (See the Corollary,to
" Theorem C.)

The eqﬁivaience‘of the contributions to the right sides of (2.21)

and (2 7) from the reglon J (z') > €' for any €' >0, and the absolute |
convergence of the right 31de of (2.7), ensurée that the right side of

(2 21) ex1sts as a Lebesgue 1ntegral

Introduce.the,notatlon

A and G = = (G,

y = Pigy,5) 26,5 1(7,3)}

‘For any fixed (e,8) e WNN the region I7 (e,B) can be considered the

product of_a»fegion
< P 2

I (o) ={Z2" }|Im2Z", oy

, () | { 7’! 1(7,J),

A ;;‘l ',‘]‘ - A», . 3
61(7,3)‘§>’|Z i(?§j)J‘ - pi(y,j)(ﬁ)}
' (2.2k4)

‘times a multisheeted Z'7-dependent region

RS PP - ' | . < 5y,
I 7(6, By Z 7) = [Gv7l for some z in 62(6,6).
L2 o
B =2 ey @l - LRIk ei(y,s>“€?]
= “G7[63(5;55/j {Zsz(Z) = Z ],[IG 1(7 J)l i(y,j)(e)]

(2.25)
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where Gy[A]’ is the image of A under G7(Z) andv GyLA]lB is the.
?estrictidh of GyfA] to B. Performing the ‘G'y integration first,

one obtains from (2.21)

1 v '
) - e Z j Mp s e, (226)
7 . g

17(5)

where Asé is Lebesgue integréble, by virtue of Fubini's theorem.
Let 2’7 = (G'y, Z'y) be a point on the multisheeted surface
—l ] g ' g -1 T X 71
I (e, 85 2'5)@I(5) and let I (€', 8; Z 7) be the part of
i-ly(é", &; Z’y) = A connected in A to. Z'y. For
oge" e '
€ >0 define

Ey(E,S) - Z’y II-l(E, 8; Z2') 1is nonempty and either 3(G"7,Z'7) =

for some G" €1 e, 85 7 or J(G" , z' 0
CeTh (5, 858 ) or 30T, 7) 4

y
for all G”7 €I (e, & 2’7) but

-l,= =. =, : ) ' -
I7(e, 85 2) % [lGi(y,j)’ < €1(7,3)<5)]} (2.27)»
and .

- - - - -1 : -
Ev € 6 = Z' J' G_” . Z' ) O f ll " I 6. Z'
7( »9) '..{ 7,, ( 53 7) ": or a G}, € 7(6, 5 )
7v

Lz 5.5y o 2 . |
and T (e, ?’ 2',) = [,Gi(V:J), N ei(7,j)(€){} .
_ .kd}.{Z'yli-ly(E, 8 Z') is'empti> . o _ (?.28)

o
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The separation of the space of integration in (2.21) into the two séts
I-ly(E,S)IW Ey(E,S) and I—ly(E,S)(W E’y(E,S) (gives for any (€,8) in
ANy

£(z) = f£(z; €,8) + f£'(z; ¢,d). (2.29)
The second part of the fegion_ E'y(é,é) does not contribute to (2.29).
In the first part of E'(e,B) one can use the fundamental theorem of
CauChy—Poincarelh to shrink the éontours in G’y to infinitesimal

contours about G, 0. This yields

1(7:j) =_
_ S 0, , ,
oo , 1 0 J (Z!;z) n-m dZ7i
£' (23 &,8) = ——r e v (2) L5 —"TT =% .
R (2xi) - 2 ‘7 -Jy(Z;) L E R 2t
Y I7 (6’6)

(2.30)
. ) A~ - = .
The region of integration I 17(6,6) consists generally of several
mutually disjoint connected parté. Each connected part consists of a
: = A = o= - =

multisheeted covering of Iy(é)f) E’y(e,%),.where ﬁ;(e,é). is the
projection of E'(€,8) onto Z' space. . The functions

: 4 ' Y
FO(Z’y) = F(%(O; Z'yi}, etc., are evaluated by evaluating the

Zt — (Gr

y 3 Z'y) occurring in 2(2'7) at G'y = 0 on the appropriate

Y

sheet of I-ly(O, 83 Z'y). The condition

171(E, 5; 2') - [,

2 -\ s
1(7,j)' < ei(y,j)(e)] in (2.28) ensures that

the integratioh region in (2.30) is restricted to the image of V. The
" ¢ondition I $ O then ensures that N“y = m.

The problem is now to justify passing to the limit € = 0 in
(2.29), and to show that f(z; 0,5) = O. As.a first step we show that

- ) ‘ A . - (.
‘_17(8){) E7(O,5) is of measure zero, or, more specifically, that
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f (z' ‘)dZ'7 = vO. o | | ' (2.31)
I

for any locally integrable function (I)(z'y,).' Here ﬁy(o,é) = _ﬂ ﬁy(E,S).
. - e>0

Eaéh Z'y.:.in ﬁy(o,é) is the image of a 2z in V>. The points
of V can be separé,ted into f_wo parts; those lying at the "regular”
points RC V, whi.ch‘ are the points of V at which rank ’ [13c¢/dz ]| = m;
and those lying at the "s‘ingular” points S CV, which are the points of
V at which 'x"ahk [10G/dz|| <m. At any point of R one can introdﬁce_
a set of local coordinates (G'75 ’5'7) with G'yv the m functions of
Gi(z). Then the contribution to (2.31) from points.‘ Zv’7 that are the

images of no points z e § can be converted (locally) to

N @ @) loz /& |y | | (2.31")
[,(8)N F (0,8)] - § |
where the tildes indicate the transformation to the new variables,
Sy = VZ7 [s] is tﬁe image of 8, apd the Jacobian ]5__2'7/3@"-7] is
‘analytic. B_eca.use bf the continuity ‘prop'erties of the fuhc_fions defining
Ey(e—,.s), a point 'G”y' e”fy(g) belongs to [‘fy(g)n %;(0,5)]—’57 'énly’
if there is a 'z in R such that ?;’7(z) = 'é"_y ..afnd eithér,-
(a) Jy(z)‘=‘0 or, (b) for all sufficiehtly.srﬁall g >0 the set
I—l(Ef,S; Zl(z)) ' inﬁersects. a part of the boundary of Q (', 8) not
associated with y. Points "é'7 for which (b) holds are [with |

perhaps slight adjustments of thevpa..rameters in (2.17)] confined to sets of
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lower dimension not contributing to (2.31"). . Condition (a) gives

1 L ! ~n 1 art . s .
J G _; G = J(G ;G = 0. But at points of R the vanishing
7(2( 5 7)) 7( y? 7) : P
3" 3 2" )/ s E )18 s B )/dz]  implies
l ( y? ,),)/ ( y? 7)' l ( y? 7)/ l 1Y

’ ~ ] o~
of J (G 3 G

| 7( 7’ 7) | | Ny
the vanishing of laz;/aﬁ'yf, since []6G'7/6G'7|| is a unit matrix, and 0G/dG =
Thus (2.51') is jeve. This means that for any (¢,5).¢ @ VN one can
omit from (2.26) the contributions from [17(5)()E7(O,5j}5 S¥

We must show also that

f CP (z'7) dz’7 = 0, : | (2.31"")
IT(S){)Ey(O,é)(} 5, '
where

s, = zls) L (2.32)

is the image of S under Z7(z). The mapping Zy(;) is a polynomial mapping.
Thus, by'Virtﬁg of ﬁhe‘Chevailey Theorem (see Appendix B) either

(a); 87 is confined tolthévz§ros of a finite‘set of poljnomiaié‘

Pi(z'y) 5%; 0, orv(g);ysy.vincludes all points not lying on the z§fos of

a finite ;ét of polynomiéls Bi(ny) E¥E.Qf In the first case .(2.5lf)

vis assured by Theorem C qf Appendix.C! .In the ‘second céseA'Sy' mu;t conﬁain
 opén,sets. To prove-this is‘impossible,‘note first that-by'virtue of the
Chévalléy Th?oreﬁ_and~ﬁémma'3jof Appépdix_B thgvset of variabigs .27(2) .
must be loca;lyviipgarly indepéndent when »ZJ7 .=. Zy(g)w’ligs in an Qpeh
Cset | -
| s lP (z)#_ s<oo}, - ‘(‘.2'-:33)
where the P’ (Z ) are polynomlals that are not 1dent1cally ZEero. T
vThus at p01nts of‘Swaone can f1nd a set of local coordlnates that 1nclude>

the 27. Since the number of coordlnates,ln the set Zy is at least
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n-m, tﬁe set Sy cannot include an open neighbo?hood of‘any point .of g
unless the dimension of § is at least n-m. However, the dimension of
the‘set of singular points S of V is less than the dimension n-m of
v.Y5 This proves (2.51"), hence also (2.31).

Equation (2.26) is true for any (e,5) in ﬁﬁ)N. By virtue of

(2.31) we can for any such (€,8) restrict the range of integfation to

.17(5) -% (0;8). For any point Z’7 in 17(5) - ﬁy(O;S) there is some

7
€

E(zvy) < € such that 'z'y lies in Iy(S)ﬁﬁ'y(E',S) for all € g Z:(z;).

_ ' . v .- A - _ ' :
- This follows from the definition of E7(0,6) and the fact that for all

e g €", ﬁy(é”,S; z'%)c:ﬁy(é',é;z;).' Thus as we let € — 0, each point
Z'y ig the region of integrétionv.Iy(s) - ﬁy(O;S) is evehtually included
in the set of bbints that contribute to the f'(z;€,8) of (2.30).
This result is not sufficient to give the desired result

£(z) = £'(z; 0, 5). o (2.34)
For it is cohceivable that the fuﬁctiop ASE could depend on €. If:
this were the case then the contribution from IB(S)f][ﬁy(E,S) - ﬁ7(0,5)]
céuld remain significant, even though this region itself shrinks to zero
as € — 0. However, Agz is in fact independent of e, for
(2,5) <TNw. | |

To prove this, let € "

and € be two different values of «.

t

Then (2.26) and (2.31) give

0 =, Z f [Agz, (Z’y;z) - Agg,,(Z'yi z)] az', (2.35)
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for all z not lying on some one of the surfaces |Im>Zi(z)] = 61(5)
or |zi(z)|” = '01(5)' The dependence of the right side on z comes

through the analytic fﬁnctionsg J}(Z; z) .of (2.21), and through the
denominator fﬁnétiéns_thét appeér thefe,";, 'The pole singulafities of
gheée denbminétoré‘éntail that:the numerator at 17(5)A be the multiple
discontinuity of'thevfungtioh on the left. This iszzerof Thus the -
‘iﬁtegrand'dn thé right must be zero. (See Appendix E) |

The validity of (2.5&) now foilows immediately. One first
fixes (E,é)eialﬁ N. The céntributions to (é.26) from points
, iy(é)l] £(0,5) can then be discarded, by using. (2.31). The contribution -
from near-aﬁy point'»Z'7 bfi 17(5)/],§ko,6)> CQn be evaluated by
reducing € to a value E'v< E'(Z'y). This gives (2.54).

The rest is simple. - EQuation‘(2.3h) refers only to functions
defined on V. Now let & —» 0. The terms with N"7 > 0 diop‘out by
virtue of the fall-<off condition. Thé integrétion regions collapse to
the intersections of regions ImZi = ¢+ ei; The orientations of these
regions,reyerse with the reversal of the signs in front of + iei and
one obtains discontinuities. Specifically one obtains*from (2.34) and

(2.30) ‘the result (1.1) with

Pt .
A(Z') = l' NP2 oy +io.e) 2.36).
y (2 ) 1oy )Py, 5y +ioze), (2.36)
j=1. o
_where the sum is bver the 2" combinatiohs of signs of the gj = t 1,

~and € 1is infinitesimal. ﬁ»(Z'y) need not exist as a function. We

consider it to be defined in the mean as limit e —ab of integrals.

¥ For the normal case where no two regions IX coincide. . Abnormal cases

can be regarded as limiting cases.

€
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The function J%(fo; z) appearing in (1.1) is the deferm;nant
of the polynomials iji(z(Z'x); z). These are defined by7
-
) = B =) R ). (2.37)
. : l:l )

In the limit 2z' — 2z we have

iji(z; z)ﬁ = azhj/ozi. . (2.38)
Thus JK(ZX(é); Z), = JX(Z). On the other hand if Zx(z') = ZK(Z)
' : ' ' ’ 1y, t '
but z' #% z then J}\(Z)\(z ); z) = O. The factor J (2 N 2)/7, (2 )

has therefore the effect of separating the contributions from different
points ,é' that correspond to' the same point Z'x: Because of this
factor the multiple discontiﬁuity‘for'a point z' satisfying

ZX(?') € [ix’— EX(O,O)) will be AX(Z,)’ as is requiréd. We thus
understand the role of the factor J}\(Z"x; z)/Jx(Z'X) in (1.1).

The fepresentation (2.1) is.just an alternative form of (1.1).

A delta function occurring under an 1ntegral sign s1gn1fles that we should

integration

introduce a set of/varlables that includes the argument of the delta function, -
' this variable

and then hold_/‘_flxed at zero. Applying this prescription to (2.1),

with (G7; Zy) as the new Variables,‘one gets (1.1). By choosing other

,variables:oné obtains from (2.1) other equlvalent representatlonq

In (2. l) the integration reglon I occurs as an algebralc
variety of real dimension n-m imbedded in a space_of complex dimension n,
whereas in (lﬁl) it isa multisheeted surface lying over a x-dépendent space

of real dimension n-m.
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III. COMMENTS

The denominators appearing in the integral representations are
the direot'generalizations of the s,‘t, and u variablégrof Mandelstam: .
they are polynomials inithe components of the energy—momentum vectors
that are"also Ppolynomials in certain inveriants. These polynomials are
the ones corresponding to the Landau singularities whose cuts bound the
physicalfregion.ﬂ-The inuarisnt denominator functions formed from them
lsre the'same in the momentum}space and invariant-space forms of>the
renresentation. One anticipates that the mOmentum—spacehform will be
more convenient for large values of N, since ‘the mass shell constraints
are muoh simpier. Moreover, one can deal dlrectly w1th the scatterlng
functions themselves, rather than with 1nvar1ant amplitudes. The problem
of construoting élobal invariant amnlitudes:has bBeen explicitly solved
in the general Spln case only for N = k. 16
If one uses the momentum—space form then a problem arlses.
Lorentz orblts are noncompact ThlS means that the scatterlné function
1s essentlally constantvover noncompact reglons. In order to obtain
fall off at large dlstances, and compact reglons of integration, cne
must effectlvely factor out the integrations over Lorentz orbits. One
can simply set certarn components to zero, or alternat1vely5 use
Toller varia.bles.]f7
bThe'question of how fast is ”sufficiently fast" is, of course; ) &
important Ev1dently the general formula will have terms with fewer
.denomlnators than appear in (2.1), Just as in the case of the Mandelstam
representatlon. However, this question is not embarked upon here, where
the eoncern,has been with contributions from the singular_ﬁoints of the

variety, rather than points at infinity.

f

'
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APPENDIX A
_ n
Theorem A: ILet D be a domain of holomorphy in ‘ 9, . Let V be

‘an analytic variety in En Let f ©be a function holomorphic on vl1D

Then there exists a function F. holomorphic on D such that
f(z) = F(z) for all =z in v D.

.. . 1
This theorem isaconsequence of Cartan's Theorem B.
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Theorem B (Wright): Let T :’ﬁp —95? can be any real polynomial mapping.
That is, I' 1is defined by a set of n real polynomials

_ . -
r(w) = (%l(w),---rn(w5> in the components of w = (wl,---w?),kwhere the
wj are real variables. Let & be the sét Qf points w € 5? at which
the rank of ||dr/ow]|| is less than n. Then the image &' = I'(Q) in

A&nv of & 1is contained in the union of a finite set of proper algebraic

varieties. In particular,
. \

gz,',CjU A, S (B.1)

i=1

where q 1is finite,

A, = (reR | P, (r) = 0}, - . (B.2)

and the Pi(r) are polynomials in the components of r that are not

identically zero: Pi(r) % o.

Proof: This theorem is based on the

M mt

Chevalley Theorem:19 Let T :cP 5¢™ be any polynomial mapping of

D n . X . S .. .

C to C°. Then the image of T is a constructible set in (.. More
aon oy ]

generally, T maps constructible sets in AQP to constructible. sets
in Cn.
e

A constructible set of g? (or‘gP) is a set that is a finite -

union of locally closed subsets of ;fl (or g?). A ldcally closed subset

©

is a set that can be expressed as the intersection of an open set with
a closed set. The closed sets referred to here are the closed set of
the Zariski topology. In this topology the closed sets are the algebraic

varieties. That is, the closed sets are sets of the form

(z | Pi(2) = Py(z) = =+ P(z) = O}, - - (B.3)
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whérem s is finite, and the IE(Z) are polynomials in the components
of .z ezgf ‘(of 'S?).  The‘open sets are complementé bf closed sets.
[These oben-and closedbsetsbwill,'outside this paragraph, be called
Z;open and‘Z-éioséd, to distinéuish them from the ordinary open and
¢closed sets induced by the Euclidean metric in Efn (or gfp).]

To apply the Chevalley,theorem to the present problem,‘ﬁhe
mabping % ié taken to be the natural exténsion of ‘-I' to the complex

~

domain: r = r, w > w, . The set

~

8 = (we SP | rank /%l < n) o  (B.Y)

-~ is a Z-closed and hence constructible set in- E?. Thus Chevalley tells

T (2) is constructible in gﬁ. Lemma B below ensures
that 5' is of 2n ILebesgue measure zero. This, together with

constrﬁctibilityﬁumeans ﬁhét'
?ch L | ' - (B.5)
where q 1is finite,

A,
i

T e gf | 3.F) = Q} s | o , | (B.6)

and the %iv are polynomials that are not identically zero:

g

s # 0. : | o . (B.7)
The set & is the restriction of % to RY. And T' is the
. K W

restriction of ‘T to E?.' Thus
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' = () = TMe) CTE) = . (B.8)
/
The set ' is restricted to a? :
Q' = @' | ®R*. - ‘ (B.9)
Voo v :

Thus

q
o' anc'U AR
9=l
= | Ass (B.10)
=1
where
A, = (e R |(B(x) | ,&H}E P(r)=0}. (B.11)

The condition Ei # 0 of (B.7) ensures that P, # 0, since an analytic

function that vanishes over a real environment vanishes identically.

Lemma B: Let T : N C FP - Qn be a holomorphic mapping of N into

i{n Let .z(é.) = "(Zl(z‘)',-‘--zn(z)> be the n functions that define T,
~and let | -
2 = [z €N .l rank || 3z2/3z || <n ) . o ' (B..lE) e
Then the .th
Fo= G | L | (8.13)

has 2n-dimensional Lebesgue measure zero.
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Proof: This lemma is akin to Sard's theorem,lo which is used to prove

it. Let the 2n real variables that comprise Z = (z ;—--Zh) be

1

on cX 05 Y, '.“Yn).:.(X;Y), Let the 2p real

1

variables that comprise z (zl,~-'zp) be’

W = (wi,"'wep) = (xl,~o-xn; yl,"-yn) = (x3vy). Let N, be the image

of ¥ in R°P, and let

T o= (wel, |rank fow/ovll <en) . | C (Bab)

IF we regard sets in c™(cP) as equivalent to their images.in Ren(REP))
then T één be regarded as avmép fron B°? to R°". Then by Sard's
theorem the set ' = T(T) is of 2n dimensional Lebesgue measure zero. -
The lemma then follows if we can prove the eqﬁivalence ; R 5.

The equivalence T X & 1is an immediate consequence of the

identity

det || 'avw/a@ll = |det || dz/z ”‘2 . . : (B.15)

which follows from the Cauchy-Riemann equations. Here 2z 1is any subset

of n of the variables (zl,"'zp) and W is the corresponding subset

of W . To prove (B.15) let the 2nx 2n matrix || BW/BE =M be

considered a set of four nx n matrices:
M = || x/ox; x&/dy; ov/x; d/oy . o (B.16)
Let E be the unit n x n matrix and define the 2nx 2n matrices

L = g iE; E; -iEl S (BaT)
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and
i\r = |g/2; ; E/2; --ibE/2; ig/2|l . ‘; " - (B.18)
ihén ' | |
L - loz/3z5  o; O,; az’_*/a?fll-', | (B.19)

where use has been made of the formulas

D 1.fo 1d | '
- = 5| - l ' (B.20)
,52i : 2 Exi ,Ei ‘ | A :
cand
3 1 fo 4. - v
. 1 - 4 , (B.21)
' 521 2 &Ei 55'1 | , ’

- and the Cauchy-Riemann equations. Since det L * det N = 1, one obtains

from (B.19) the desired (B.15).

&
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APPENDIX C
Theorem C: ‘Let z =_(zl,"*zn) be a set of n complex variables.
Let” W o= (wl,;'~w2n).=v(xl_~o'xn; yl"'yn) be the corresponding set
of 2n real variables. Let M be a compact feal analytic manifold
of real dimension n imbedded in the space of the 2n real variables w.
Let H(z) # 0 be a function holomorphic at all points of M. Let

M' =M} {H(z) = 0}. Let ¢(z) be any integrable function on M'.

.

Then

= c . ‘ee ‘ = O
B(z)az = ¢(z)dzl A dzy--- Adz o - (c.1)
1 ' M! ‘ ’ :
Proof: Let M; be the subset of M' such that BH( )/az # 0. Then
at any point of MQ: a coordinate system (Zl s Z2 o an) can be

constructed with - le = H(z). For some neiéhborhood N < M; of this

point the set of functions- z(Zi) are well defihed and holomorphic and

one can write-

B(z)iz = i[ b(z(z1))

N ,

9z | gl L o, R (c.2)
Zl ) . » , .

The integral (C.2) vanishes due to the constraint 'le =

the definition of M,. Let M, De the subset of M' - (JM; such

0 imposed by

that cH z)/Bz_ Bz. # 0. At any point of Ngj one can construct a

coordinate system (Z s anJ)‘ with 7.9 - aﬁ/azi. In some

1 ,
neighborhood_ N e Mij of this point the set of functions z(ZlJ) are

well defined and holomorphic and one can write
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Na ij dz {. ..ij - -
b(z)az = [ le(z")) | =) &z = o (c.3) :
J
v ' oz
N
The”intégral (c.3) vaﬁisheé due to the constraint leJ = 0 1imposed by
. the definition of Mij.
Proéeeding in the same way one'shows that
B(z)az = O, : o (c.h)

V8

. : of M' » : )
where L contains any point/ﬁherevsome finite-order partial derivative

of H(z) ‘is nonzero. Since Kz) is holomorphic at each point of M/,
aﬁd.is-not idehticélly Zero, We‘hafe W =M'. This proVés thé-theorém.
.Cbrollary: Let ‘z, w and M be as in Theorem C. Suppose M is the
intersecﬁion of the sets ry defined by rectifiable curves C1,5Co, - +-Cy
in the planes Zy,Z,,"** and Z,, respectively, whére Zy 1is én analytic
fﬁnction of z on Ci. Let J(z) = |0Z/dz| be identically zero.

Then for any @(z) integrable on M,

_ ¢(z)dz = ¢(z)d§_/\dz2---dzn =0 (¢c.5)
W " .
Proof: By a rectifiable curve we mean a curve can be considered to be
limit of a _
a/set of straight-line segments. Consider the contribution from a

set of n such segments., By an adjustment of the definition of the

Zi's, these segments can be made to be segments of the real axis.
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Then the constraint equations are Im Zi = 0, i=l,'*'n. Because

the Jacobian J(z) is identically zero one can divide the set

7Z = (Zl,"'Zn) into subsets 2 and 2 such that 2 = 2(¥),
wheré 2 is nonempty and the matrix lléiyazll"haé maximal rank

almost éverywhefé.13, The contributions to (C.5) from points where
the rank is not maximal vanish by virture.of Theorem C. At any |
point where(the rank is maximal one can find a set Z such that
[3(Z,2)/3z] % o. Near this point the coordinates (Z,Z) are
equivaleﬁt to the coordinates z. By virtue of the relation

2 = 2(23 _the constraint equations are of the form Fi(ﬁ3 = 0.
They do not depend on W. _Thus fhe manifold is the product of a
manifold in 7 space times -the whole Z ‘space. The reél dimension
of thé manifoldvin the E; space must thereforé be less than the
complex dimension of‘thisvspace. Thus the integral over

daz = dZ. A d%’ e edZ vanishes.
1 2 jo)
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APPENDIX D° LANDAU SURFACES -

Theorem D: (C. Chandler) Let KN be the space of N momentum-energy
N be the space of the N2 Lorentz

vectors (kl,°'ka). et T
ipva?iantviﬁnef produtﬁs (Ri.kj)' Let ’DN; be a Landau diagram with
N external lings and n > O internal 1ineé. vLet .Jzk(DN) be the
union of fhe'Landau surfaces in KN corresponding. to DN_Vand all

of itsvnoﬁfriyiél (n' >0) contractions. Let aeI(DN) be the image
éf zik(DN)' ihlinvariant spaée; tef 7?%(DN) and “7Qi(DN) be the

mass shell for DN- in KN and I _, respectively. Then

N,
Loy = o0 RKeyn) = o) 1)
and |
xI(DN') = %’f[(DN)_O ﬂl(ki'kj;DN) .=.“o (-2)

s _ ' S - _
where f{K(kjsDN) # 0 is a real polynomial in the kj’ and
?gl(ki'kj;DN)_ $ O is a real polynomial in the (ki-gj).

Proof: The «a-form of the Landau equations isgo

@, 3 D(ai;DN)//gai = 0 i=l,-*°n, ‘ (D.B)‘

where D(Qﬁ
real - : :
are/linear functions of the (ki-kj). The n equations (D.3) have

;DN) is a homogeneous_polynomial in the »ai’ The coefficients
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a nontrivial solution if and only if the resultant ‘ﬂZ(ki-kj;DN) is

zero.2l The resultant of a system of n homogeneous polynomials in

.n  variables is a not-identically-zero integral polynomial in the

coefficients.gl Since the coefficients are real linear combinations of

the (ki-kj), and since integers are real, the resultant is a real

polynomial in the (ki°kj)."Thus (D.2) 1is proved, and (D.l1) follows

from it.
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APPENDIX E THE NONDEPENDENCE OF ASE on €

- Because of the (polynomial) dependence of Jy(Z;,'z) on 1z, the .

proof of the'ndndépendence of ASE on € given in the text is incom-
plete: What proved there is only that the leading term in the poly-

nomial eXpansion

J7<z7(zf), z> - Jy(Z‘y(z'), z> v (2 2), inf(z',’z) ¢ (B1)

gives a contribution to ASE thatis independent of €. This suggests
that the other ferms should aléo have this property. A proof of this
is outlined here.

The first step is fo conﬁert the basic formula‘(Q;Ei) to a more

convenient form. TFirst replace the variables of integration z'yi by

the original variables z', thereby eliminating the 37(2'7) in the

denominator. Now let v be the label of a set of variables 27

that does not include Gl' Let 75 be the labels of the n different sets

corresponding to replacing, in turn, each variable in 27 by Gy. The

region of integration in G for fixed values of the other variagbles

l’
in the set specified by IZ%. will generally be bounded by the curve that

is the image in Gl of Iy' This bound comes from the condition on
02(5,5) imposed by the condiﬁion on that variable of: the set?27 that is

~is a continuation of

replaced in Zyi' by Gl' The image of Iy in G

1

the original contour in G The contribution from I& can be eliminated

1
from (2.21) if one adds, instead, the contribution from this extra piece
of* contour in Gl, to the term corresponding to each .of the :7i: This

follows from the defining property of the Pji(z'; z),
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| Z P}u(z, Z)_ e, - Zi,) o1, (E.2)

For (E.2) implies the vanishing of the determinant of the v(n + 1) by

(n +1) mafri# construéfed by adding a column of ones to the matrii
Pji(z';z)/zj(z’) -:Zj(z)?,ﬁﬁere j rangés:over the index set correéponding
_Expansion of this

to the n variables of 27,',"together with G, .

determinanf on the column of ones gives the required identity.

By means of the abdve-tfahsformation; apbliedvto every set Z7
not coﬁ#aining le, one eliminaﬁéé from (2.21) all cqntributioﬁé corfespohding
té,;;z L not containing .Gl.’ Simultaneogsly the. contour in Gl becomes
a cycle (has'no bouﬁdafies) fdf each valué'of the other variables.
-Applying the same trénsférmafion for each of the m vériables‘ Gi bne
obtains a modified form of (2.21) in which vy is‘restrictéd to sets
having all m bf fhe yariabies Gi’ and the contours in fhé_ Gi aré
cycles for ali Valués sf the cher variables. Note that the aétual
fegions of integration are not altered by this transformation: One
simply considers the contributions from certain regions - I7 to be
expressed as sumsvof contributions from the same regioné 17 inserted
into various other terms ofv(2.21). |

In the modified form of (2.21), the gontour iﬁ the G, part of

- . E SPace is @'cycle. Thus by the theqrem'éf Ca,uchy—Poinca.r:e’el)'L the:integral
is independent of E; so long as (5?5) is in'_aﬂﬂjme modified.form
of (2.21).qan evidentiy alsovbe used to give a Variation of the proof

of the theorem of the text.
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Fig. 1. The region 6 /7 N is a cqnhected opén'set containing all points

in Q where .E,i e, (8). The set of points € = 0, © <f< 5M >0

is contained in the boUndary.
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