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ABSTRACT 

We define phase contours as curves along which the phase of an 

invariant scattering ainplitlide is a constant. These curves are sections 

of a complex surface, which we take either in the real (s,t) plane· or in 

the complex plane of one of the variables. The relation between phase 

contours, zeros of the amplitude and high energy behavior is discussed. 

Characteristic features of phase contours are investigated in a variety of 

special models, and it is seen that basic assUinptions about high energy 

behavior can readily be expressed in terms of the topology of the phase 

contours. Specific illustrations of phase contours are given for pion 

nucleon scattering based on phase shift-solutions at low and medium 

energies and on an extrapolation from Regge solutions at high energies. 
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1. INTRODUCTION 

Our aim in this and subsequent papers is to explore the proper~ 

ties of scattering amplitudes, and other two body .coll~sion amplitudes, 

by means of a general study of their phases. Our first objective is to 

obtain the characteristic features of phase contours by studying special 

models. A phase contour is defined as the curve, or more generally the 

complex surface, on which the phase of an invariant amplitude takes a 

given constant (real) value. Their particular importance lies partly 

in the fact that phase contours contain enough information to specify an 

amplitude to within a real constant factor. However, our mainmotiva

tion in developing their properties is that phase contours are rather 

simply related to high energy behavior, and they have striking features 

that are related to resonances and zeros of scattering amplitudes. 

We wish to emphasize that this investigation, in the first inst

ance, is exploratory and heuristic, rather than rigorous or deductive. 

In order to develop an intuition based on phase contours, it is first 

necessary to obtain their characteristics in many simple but important 

si tuations. In practice we will find it useful to study phase contours 

that are ,sections of a complex surface of constant phase taken (a) in 

the real s, real t plane, and (b) for complex s, and real t. In 

this paper we will be concerned mainly with phases of two body scattering 

amplitudes. 

The experimental and theoretical importance of the phase of a 

scattering amplitude is well known for a variety of special values of 

" 
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the invariant enerGY and momentum transfer variables. For example, 

in the physical "rec;ion the phases of invariant amplitudes are closely 

related to polarization experiments and to other interference phenomena. 

The phase is also of great importance in near-forward scattering, since 

it is (almost) directly measurable experimentally and it is closely 

related to dispersion relations and the asymptotic behavior of scattering 

amplitudes. At. medium and low energies the phase of an invariant 

amplitude will be influenced, sometimes strongly, by the rapid phase 

change of a partial wave amplitude near a resonance. 

General methods for relating the asymptotic behavior of the 

phase of an amplitude to the asymptotic modulus of the amplitude have 

been summarized in a book by one of us. l The papers. giving these 

relations are primarily concerned with rigorous rather than heuristic 

developments. However, they provide our initial motivation and will 

be ec;sential in any rigorous study of phaSes; so some of ther results 

are briefly quoted in Section 2 of this paper. 

The main reaSon that we put forward for the general study of 

phases is that it provides a new way of looking at the properties of 

scattering amplitudes. Phase contpurs, in particular, provide a 

graphic description of these properties that is remarkably simple in 

some circumstances. The problems to which we believe phase contours 

can be applied include: 

(1) The development and comparison of phase shift solutions for 

scattering amplitudes. A phase contour diagram provides a convenient 
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picture of the complete solution for an invariant amplitude in the 

physical region, and permits the identification of such features as 

zeros of the amplitude at real values of energy and momentum transfer. 

It also indicates the regions where the solution for the amplitude is 

so complicated that fUrther experiments would seem to be desirable. 

(2) The comparison of scattering amplitudes that are obtained from 

specific asymptotic assumptions, for example within the framework of 

Regge theory. These assumptions could be generalized by replacing them 

with statements about the asymptotic characteristics of phase contours. 

(3) The study of consistency conditions on scattering amplitudes 

related to high energy behavior, poles, and zeros, using crossing 

symmetry. 

(4) The development of phenomenological solutions that relate both 

to high energy data, and to medium energy data in the resonance regions. 

The above topics are preliminary problems related to much deeper 

questions to which one might hope also to apply the methods of phase 

contours. These include such questions as the possible connection 

between the low energy and high energy behavior in one channel, that 

is indicated by work on finite energy sum rules by Dolen, Horn, and 

S h 'd 2 c ml . It may also help towards understanding how to combine Regge 

behavior vii th resonance behavior in a consistent manner, although it 

In Section 2 we summarize theorems that relate to the phase 

of an amplitude, and indicate intuitive features of these theorems 
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which are later found useful in studying phase contours. In Section 3 

we study phase contours for a pure Regg~ background, assuming that any 

resonances are too weak to affect the basic topology for real values of 

s and t. The relations between these phase contours and the Herglotz 

conditions are considered in Section 6, where we indicate the effects 

of zeros of amplitudes as well as the effects of phase oscillations. 

In Section 5 we consider interference effects that arise fro~ resbnances 

and backGround contributions, and again we consider the relation of 

consequent zero's and oscillations to asymptotic behavior. Similar 

questions are discussed for Reggeised·resonance terms in Section 6. 
Some results of experimental studies.of the phases of invariant amp11tudes 

for pion nucleon scattering are given in Section 7. We obtain phase 

contours for these amplitudes from the phase shift sollitions of 

scattering eJ\.'periments up to about 1.5 GeV pion energy. They provide 

a convenient method for comparing different phase shift solutions, and 

for indicating where the amplitude ~s so complicated as to require more 

detailed experiments to confirm the validity'of the solutions. In 

. Section 8 we derive phase contours for pion nucleon invariant amplitudes 

that are based onanextrapolatlon from the Regge solutions to high 

energy scattering. Finally in Section 9 we note the problems for which ,. 

the methods developed in this paper are most likely to be useful. 

These include the use of crossing symmetry to obtain relations between 

phase coptours and zeros of scattering amplitudes, and the study of 

relations.between asymPtotic behavior at fixed momentum transfer and 

at fixed angle. These topics will be developed in more detail in later 

papers. 

Q 
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2. GENERAL THEOREMS AND SPECIAL ASSUMPTIONS 

Our study of phase contours of scattering amplitudes is partly 

motivated by certain general theorems that relate to high energy 

behavior. We wish to find how these theorems work out in practice for 

scattering amplitudes derived from experiment and from simplified 

models. We also seek an heuristic extension of these theorems to 

regions where the scattering amplitude is insufficiently understood to 

permit a rigorous treatment. The theorems that are briefly described 

here relate to (a) Herglotz functions, (b) power behavior at infinity 

and asymptotic phases, (c) the phase representation and (d) the reduction 

of an amplitude to a Herglotz function. A more detailed account of 

theorems on high energy behavior and references to further papers is 

given in a book by one of us. l The intuitive interpretation of the 

methods described in this section is postponed to Section 4, after we 

have discussed a model for a scattering amplitude in Section 3, which 

is designed to indicate the direction in which \',e are aiming to use 

phase contours. 

(a) Herglotz Conditions 

One of the primary applications of phase contours comes from 

the fact that they describe an important part of the problem of expressing 

a scattering amplitude in terms of Herglotz functions. The importance 

of these functions comes from their bounded asymptotic rate of change. 

A ·function H(z), is Herglotz if it is regular in Im(z) > 0, 

and is ,such .that, ImH(z) > 0 whenever Imz > 0, and ImH(x) > ° 
where x is real. 
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The property of Herglotz functions that plays a central role 

in our discussion is that for z complex, /z/ > 1 and 

E <arg z < (n - E),' there exists a positive constant C suchthat 

I~/ < IH(Z)/ < clzl· (2.1) 

For z real an analagous result has been obtained by Jin and Martin,4 

.vhich gives 

limit 
1 

xlH(x) 1 (log X)2 +00 ' (2.2) 
" X-+CD 

We will discus8 the reduction of a scattering amplitude to a 

Herglotz furwtion under simplifYing assumptions in part (d) of this 

section, and with special models in Section 4. In the first instance 

our models will be based on aSyinptotic power behavior but we will 

later generalize this to include certain types of entire functions. 

If a function has asymptotic power,behavior, the Herglotz results 

(2.1) follows trivialiy from 

ex ex" 1m z :::: 1 z I ,sin (ex 8) > 0 

for 0 < 8 < n. 

The problem of reducing a general function toa Herglotz 

function is implicitly, solved in the, phase representation of Sugawara 

'., 
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and Tubis5 which we consider Qelow. It has also been considered by 

Kinoshita6 with certain restrictions on the oscillations of 1m F(z). 

Difficulties associated with the general problem of oscillations have 

been studied by Eden and Lukaszuk. 7 Although our models will permit 

certain types of oscillation to continue to -infinity we will not 

consider the associated general problem. 

(b) Po'wer Behavior at Infinity 

The asymptotic phase of a scattering amplitude can be determined 

if it is dominated at infinity by a term that is even or odd under 

crossing and has asymptotic power behavior. This consequence of the 

Phragm~n-Lindeloff theorem was first noted by Meimann,8 and was further 

developed by Logunov et a19 and by Van Bove. lO 

We consider an amplitude that is symmetric (even under crossing, 

even signature in Regge theory). Then 

~-

= FS (w + io, t), 

where w denotes the symmetric energy variable, 

w. !(.s'. - ~ 
2~'Y 

1 1 \- 2 s + "2t - "2 L_m . 

If the energy behavior of /FS/' for fixed t, is given by 

as /w / -) 00, 

(2.4) 

(2.5 ) 

(2.6) 



UCRL-17899 

-8-

where C is areal constant, thehthe phase can be found from (2.4). 

This gives 

F (st) S " 
0: [. (11 1 ~ l 

C w. exp ,lJr \:: ..... 2" :;JJ ' 

c s"exp [in 0 ¥)J, as s ~ 00. 

Similarly for an antisymmetric amplitude (()dd signature), 

* FA (w + io, t), 

and 

as .s ,"""'7' co. 

These relations have been generalized for symmetric forward 

(2.8) 

scattering amplitudes to include a wider class of functions that may 

have quite complicated oscillations. There are two main methods for 

achieving this generalization; both of which make use of the fact'that 

ImF is non-riegative for a forward scattering amplitude. The first 

of these methods, due to Khuri and Kinoshita,ll is based oil the theory 

of univalent functions. They derive a wide class of inequalitities 

between the rate of growth and the phase of a univalent function that 

is constructed from the symmet:dc forward amplitude. These inequalities 

will be of value in later refinements of our discussion in this paper, 

but they are of a more general nature than we require in our present 

.... ' 

'.1' .., 
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simplified stuctr, which is concerned with gross structure, rather than 

fine structure, of phase and modulus relations. 

Rigorous relations involving symmetric scattering amplitudes 

have also been studied by Jin and MacDowell. 12 Their method is based 

on the phase representation of a scattering amplitude, that was first 

introduced by Sugawara arid Tubis. 5 We will outline the derivation of 

the phase representation since the method is closely related to our 

later procedure. 

(c) The Phase Representation 

Let F(z) be a s.cattering amplitude for equal mass particles, 

that is symmetric under s ~ u, where 

Z 

2 (s - u) 
- 4 16m 

1 
+ - t -2 

4 4m 

2m 2)2 
(2.10) 

Then for 
2 ? -4m <"t < 4m-. " , F(z) will have the following properties: 

(i) it is analytic in the z plane, cut from Zo to infinity, 

where 

, (2.11) 

(for the present we assume-that there are no poles), 

(ii) /F(z)/ < /z/ as /z/ ~ 00, 

(iii) F{z*) [F( z) J *. 
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In addition it is assumed that 

(iv) for x' real greater than zo' ImF(x) is contin.uous and has 

only a finite number of zeros. 

It has been shown by Jin and Martin13 that such a function has 

on.ly a finite number of zeros in the cutz plane, at z ,z •.. z 1 2' n" 

say. Hence log G(z) is analytic in this plane, where 

n' 

F(z) n 
1 

(z - z ) G( z) • 
q 

The phase 5(x) of F(x) satisfies 

5(x) ~i GOgG(X + io) - log G(x - iO)J '. 

(2.12) 

(2.13) 

From assumption (iv), 5(x) is bounded, and since F(ZO) is real we 

,must have 5(zo) = nn where n denotes zero or an integer (positive 

or ,negative). We will find later that it is not always convenient to 

follow the usual practice of choosing 5(zo) to be zero, since this 

may conflict with our choice of asymptotic phase as in Eq. (2.7), for 

example. 

From properties (i) to (iv) the phase representation o'f 

Sugawam and Tubis can be established. 5 ,12 This is, 

F(z) 

n' 

A exp(inn) T1 (z 

1 

5(x)dx ] 
x(x - z), 

(2.14) 
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When there is a pole at xO' this expression gets multiplied by 

-1 
(z - xo) . 

In order to illustrate the use bf the phase representation we 

specialize to the forward amplitude (t 0); then the phase must 

satisfy 0 ..:s o(x) ~ r(. It has been noted by Jin and MacDowell12 

that the stronger condition 

combined with the phase representation, leads to the following bound 

as z· ~ 00 in any complex direction (8 +0) in the physical 

sheet, 

where 

C2Iz(0-02 ~in ~ ~ (°2-°1 ) < IF(z)1 <c l
lz(0-51 ~in ~ ~1-02, 

(2.16) 

denotes the number of zeros minus the number of poles of 

F(z). Along.the real axis, the corresponding results are 

is integrable when p > (1 - °1 ), 

~+no 
FTX) is integrable whenp < (-1- °

2
), (2.18) 

If we now make the special assumption of asymptotic behavior like a 

power as I z I ~ co, we have °1 = °2 , and as x ~ co, 
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n -0· .. . 
F(x) ---- C x 0 1 exp(iOn-) exp(inn) , (2.l9) 

where C is real and positive. Assuming an asymptotically constant 

total cross section, w.e obtain 

1 
2 .. (2.20) 

Thus if 1, we have 1 
2 

and it is consistent to choose 

n = 0 in (2.19). HoweVer, if nO 0, we obtain 0
1 

consistency we must choose n to be odd, n 1 say. 

(d) Oscillations of . ImF(x) . 

1 
2 

·and for 

We consider next how the phase representation can be used to 

remove oscillations of ImF(x). The aim is to remove polynomial factors 

(both pOSitive and negative powers) until we obtain a function whose 

phase satisfies a condition like (2.15). 

We assume that the phase o(x), of the amplitude F(x), is a 

continuous function of x. We need to distinguish points, x = a , at n 

which o(x) increases through an integer multiple of :n:.Similarly, 

let x bm denote points at which5(x) decreases through an· integer. 

multiple of n. 

Define r,(x) from .o(x), by adding or subtracting multiples 

of :n:, so that 

o ( 7)(x) <;: n. (2.21) 
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To avoid an undue number of alternatives we will suppose that 

B( zO) := O,"in the phase representation (2.14). Suppose also that 

B(x) increases as x increases from zo' and it passes through rr 

at x al , but does not reach 2rr. Then 

7](x) B(x) - rr 8(x - al ), (2.22) 

where 8(x) 0, x < 0 and 8(x) := 1, x > O. From Eq. (2.14) 

(assuming no zeros or poles) we obtain 

F(z) 
r 00 

exp I' ~ J 
. Zo 

More generally, we take 

7](x) 5(x) - rr L 
n 

This gives 

fz 
00 

F(z) J exp 
1;-
L . Zo 

I 

B(x)dx ] 
x(x - z) 

8(x - a ) + J( n 

...., 

5(x)dx 
x(x - z) , 

J 

I 
m 

17(\ ~1J ~b~ ~ 

8(x - b ). m 

G(z) , 

foo Tl(X)dxJ-
. x(x..., z) . 

z o 
(2.23) 

(2.24) 

(2.25) 
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where 

r 
ill lI(X)dx] 

G(z) == exp J x(x-:- z) . 
Zo 

(2.26) 

We will as sume 'power behavior at infinity, then as I z I -7 00, 

If there are zeros or poles of F(z), these should first be factored out 

as··notea in Eq. (2;14) and in the paragraph following it. 

denoted the number of zeros minus the number of poles; let 

denote the number of points an' [bn Latwhich 5(x) increases, 

[decreases J, through an .integer multiple of .:n:. Then as I z I -7 CD 

(2.28) 

where 

p (2.29) 

We will later be considering analagous procedures when the scattering 

amplitude has a branch cut along the entires axis. In such a case it 

is necessary to work only in the upper half plane (or lower half). Then 

it is essential to remove the zeros in Ims, >0 before removing 

oscillations. This is because the removal of a zero in Ims > 0 

~" 

~' 
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(without removal of the associated zero in Ims < 0) introduce an 

addi tional oscillation .. of ImF on the real axis. In the present 

section each zero of F 'in the z plane corresponds to a pair of zeros 

in the s plane so the problem of coupling between zeros and oscillations 

does not arise. 



UCRL-17899 

-16-

3 . A PURE REGGE BACKGROUNJj 

We begin our discussion of phase contours with a special model 

based on Regge theory. We will confine our discussion to a single 

channel (the s-channel) in which the phase contours are dominated by 

Regge poles in the other channels even at low energies. We are aware 

that this model will not represent a situation in which low energy 

resonances are important and that we may be coriTInitting the additional 

crime of double counting. Resonance interference wiLl be considered in 

Section 5. However, subject to the validity of our high energy 

assumptions within Regge theory, we will give reasons for supposing 

that certain important aspects of the topology of phase contours are 

given by the Regge background, especially outside the resonance region. 

For this reason we will consider the topology that arises from several 

different assumptions about the high energy behavior. 

(a) Symmetric Single Pole Exchange 

Let F(s,t) be a symmetric scattering amplitude that describes 

the scattering of equal mass bosons. We consider first the approxima-

tion of representing F, in the s- channel, by the superposition of a 

single Pomeron Regge pole exchange in the t~channel and also one in the 

.u-channel, 

F(s,t) b(t)s,,(t) eXp [iIT{ 1 - ~ Ct(t)} ] 

+ b(u)sCt(u) eXp tIT {I - ~ Ct(u1j. 
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In Regge theory it is a usual assumption that such an approximation is 

valid for fixed t as s ~ 00 and for fixed u as s ~ 00. We 

will, however, extrapolate this solution to low energies and will call 

our extrapolation the Regge background. 

It is necessary to specify the dependence of the residue bet) 

and the trajectory aCt) on the momentum transfer t. We will consider 

a variety of possible assumptions beginning withi (i) bet) is. real and 

slowly varying and non-zero in the range that is considered, (ii) aCt) 

decreases monotonically as t decreases and has no lower bound, with 

a(o) 1 so as to give an asymptotically constant total cross section. 

The phase ¢(s,t) is defined so that, 

F(s + io, t) /F(s,t) /exp[i¢(s,t) J. 

The asymptotic phase for t == 0, as s tends to + 00 along the real 

axis (s + io) is chosen to be 1/2 11 (rather than 1/2 :rl + 2n11). 

This is the usual convention in Regge theory, and gives ¢ ~ +3/2 11, 

as s ~ -00 along (s + iO) . For t.O the phase of F as 

s ~ 00 will be given by 

¢(s,t) 

Phase contours in the real (s,t) plane are defined as the 

curves of constant phase. They are illustrated, for this model of a 

Regge background, in Figure 3-.1. We have shown the phase contours 
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ReF = 0, which are separated by contours ImF = O. The oscillations 

of the contours in this figure are due .to the simplicity of the. model 

and, if they occur in a more realistic model, one would expect them to 

be very small. However, oscillations will, in general, arise from other 

sources (as we see later), so we will take them into account in the 

following discussion. 

The topology of the phase contours, shown in Figure 3.1, is more 

generally typical than one might ex:pect from our special model. Given 

the assumptions of P9meron dominance and a continuously falling trajecto,ry 

a(t) for decreasing t, we note the following consequences: 

(i) Phase -contours are asymptotically constant, parallel to 

t = const. or to u = const. 

(ii) The phase contours Im¢(s,t) = 0 cannot cross the line t = 0 

or the line u -- 0 above the elastic threshold 2 s = ~m. This follows 

from the optical theorem and the positivity of the total cross section 

associated with a symmetric (even signature) amplitude. 

(iii) We expect phase contours to be continuous, except possibly at 

divergent singularities of the scattering amplitude. There are -no 

such Singularities in the physical region. It follows that the phase 

contour ¢ = -nrr/2, that is asymptotically parallel to t = const., 

must connect to the contour ¢ = -nrr/2 that is asymptotically parallel 

to u = constant. 

(iv) Phase contours can cross each other only at zeros of the 

scattering amplitude. On a given contour the phase changes by ±rr as 
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it crosses other contours. In this case the zeros of F(s,t) would be 

in the real (s,t) plane. We will see in Section 5 that such zeros 

may arise if we superimpose a resonance on a Regge background, and in 

Section 7 we will see that real zeros occur, for physical values of 

s and t, in pion-nucleon scattering amplitudes. 

It is tempting to assume that zeros of an amplitude will not 

occur for physical values of s· and t except at low energies or 

medium energies, where resonances are strong relative to the background, 

but we do not know that this is true in practice and will not assume it 

in general. However, it is more reasonable to suppose that any given 

phase contour will not encounter more than a finite number of zeros. 

The principal modifications to Figure 3.1, that we would expect 

in a more realistic model are in the low energy region where there may 

be zeros, and closed loop contours may develop. In addition, they will 

change if we have different asymptotic conditions. These will be 

studied later in this section. 

(b) Zeros of ImF 

In our model ImF -7 0, as s -7 00 for fixed t, when 

a(t) Thus, if l",e take a value 

-2n < a(t) < 2 - 2n, 
n 

t of t 
n 

such that 

then, for large fixed s, ImF(s,t) will have n zeros in the range 

o > t > t . 
n 



UCRL-1 7899 

Now consider F(s,t ) 
n 

-20-

in the complex s plane. Along the 

real axis ImF(s, t) will have at least n zeros" at the intersections 
n 

with the .constant, phase contours 

¢(s,t) - yrr, y 1,2", ·n. 

The case n = 2 is illustrated in Figure 3 .2(a) (b). As s varies along 

s + io from So - 4 - t .. to 00 in Figure 3. 2 (a); the phase and 
n' 

modulus of F(S,tn ) varies as indicated in Figure 3.2(b). 

When there are no zeros of F(s,t ) 'for complex s, the number 
n 

n of effective' intersections with ImF:::: 0 corresponds to the asymptotic 

power sa according to the inequality (3.4). If we consider the whole 

real axis' -00 to 00, ImF( s' + io, . t n ) will have 2n effective zeros. 

In ,Figure 3.2(c) and (d),we show the corresponding behavior of 

F(s,t ), when there are ineffective intersections with the phase contour 
n 

¢ = 2rr. Double (or even number) intersections of this type do not 

contribute to the asymptotic power of s. This is a simple example 

of the situCl,t,:i,Qn considered in Section 2(d) when we modified the phase 

representation. It is interesting to note that for aCt ) n 
exactly 

equal to . -2, there will be an infinite.nUmber of ineffective inter-

sections even in this very simple example. Correspondingly our method 

of Section 2(d) would introduce the ratio of two entire functions of 

the same order and type. 

(c) Regge Pole.Correction Terms 

For high energies the term given by the leading Regge trajectory 

is assumed to dominate over the correction terms given by other 
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trajectories and the background integral. However,these terms will be 

larger than those from crossed channel trajectories so that the small 

oscillations of phase lines that we considered in the last section will 

become modified. For example, if we choose t 
n 

so that 

for the leading trajectory, we will have the following contributions 

from the first and second trajectories in the t channel, 

F(s,t ) 
n 

+ sCX2(tn)b (t ) 
2 n 

(3.7) 

Hence, for large s, 

¢(s,t ) n 
. (n + l):rr + (_l)n+l sin GCX2(tn)/~ 

(3.8) 

where (CX2 +2n) < O. Thus as s -> CD the phase difference from Cn + Ihr 

tends to zero but has a constant sign, as is well known. However, the 

significant point that we wish to note, is the dominance of this phase 

correction term over the correction due to the u-channel pole. This 

dominance will make finite the number of intersections of the phase 

line ¢(s,t) (n + l)n with any fixed line t ::: t . 
n 

Thus the 

method of Section 2(d) for removing oscillations will not introduce 

entire functions, but only the ratio of polynomials in s. 
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At low energies we would, in general, expect the phase contours 

to be distorted by reson~nces. Equivalently they. could in principle be 

.represented by Regge poles plus the background integral. However, there 

is no inconsistency evident at .this stage of our discussion in assuming 

a weak resonance situation in the s-channel, so that the Regge background 

dominates in determining phase contour-seven at low energy . 

(d) Zeros of Residues 

If the residue b(t):= 0, whenever a:= -(2n + 1), thEm the phase 

of the t-channelRegge term in Eq .. (3.1). is no longer given by Eq. (3.3). 

Its value depends on the phase of the correction terms that come from 

other t-channel Regge poles. Suppose, for example, that these terms are 

real and positive when a t '" t ,where 
n 

-(2n + 1). 

Then the phase along s -I- iO for s -7 +00 will be given by 
v 

¢(s,t) 11[1 - cx(t)J. 

The phase for s -7 -00 will depend on the route taken from large real 
I 

s > a to large real s < O. If the route is aSJrmptotic along 

s == KexpiEl, with K large, the phase change will be an. Other routes 

give a change that depends on the location of complex zeros of the 

amplitude. We will consider this in more detail in the next paper. 

Typical phase contours in the s-channel, when b(t) is zero 

for a 
t :=. tn ' are shown in Figure 3.3(a). In Figure 3.3(b) the corres-

ponding behavior of d 2 F(S,tl · + €) is' shown for sreal (4m - tl < s <. 00). 
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In principle such violent phase fluctuations as t decrease 

through t 0 would be observable experimentally through corresponding 
1 

fluctuations in the polarization. We will see in Section 8 that zeros 

~f the pi exchange Regge term (a non-leading term) also cause fluctua-

tions of phase contours like those illustrated in Figure 3.3(a), (see 

Figure 8.2 showing phase contours for B(+) in pion-nucleon scattering). 

In suitable circumstances these fluctuations should be observable in 

sufficiently accurate experiments on polarization, for example in 

pion-nucleon scattering in the energy range 

0.4 < (-t) 2 
< 1. 2 (GeV) . 

(e) A Fixed Pomeranchuk Pole 

T = 4 to 6 Gev with 
rr 

If the leading Regge pole for t (0 is fixed at al(t) = 1, 

there will be striking and significant differences in phase contours 

from those discussed above. For any fixed t < 0, we would have 

(i) The asymptotic phase ¢(s,t) 

(ii) The asymptotic rate of change of /F/ will be the same as lsi. 

Thes-e-conditionsmean that only the phase contour ¢(s,t) =(1/2)-[[ 

can be asymptotically parallel to t O. This does not necessarily 

imply that other phase contours will close at finite values of s. 

For example, consider the model, 

F(s,t) () () () ' a0 bl tis + b2 t exp[-irra2 t. /2Js c 

(3.11) 

/ 
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If 

2t 
--) C~ as t ~ 0), 

where C is a finite constant arid Zo = cos eo' the phase at an angle 

eO will not tend to 1/2 n as s (or· t) tends to infinity. At 

smaller angles than (0 
o the phase yl(s,t) always tends to 1/2 n. 

This situation is illustrated in Figure 3.4(a), when (3.12) holds. In 

Figure 3.4 (b) we show the situation when the Pomeranchu.k pole dominates 

at all angles (C = 0, when Zo = 0). 

(f) Mandelstam-Regge Branch Cuts 
. . 

A similar situation to that for afixed·P~meranchuk pole may 

be expected from the assumption of Mandelstam~Regge branch cuts. 

Although the leading cut is fixed ate = 1, for t < 0, it is plausible 

that the discontinuity could be small. We will estimate the effect of 

branch cuts from a crude model for the strengths of their discontinuities. 

Consider a branch cut that arises from the exchange of N 

Pomeranchuk poles a( t), (Mandelstam/t ). The la_cation of the branch 

point is given by 

subject to 

1 
(_t)2. 
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The value of· a will depend on the form of the Pomeranchuk trajectory 
c 

a( t). We will assume that this is such that 

a N(t) 
c 

Since the branch cut arises from the exchange of N Pomeranchuk poles, 

we assume that its discontinuity, b N is related to the residue b(t)· 
c 

ata Pomeranchuk pole by 

To illustrate the effect of such branch cuts, we take 

b(t) eX]) [ - ( -t ) Y ] , for t« O. 

Then 

In the special case y = 1/2 , 

1 

eX]) [-( -tF J . 

Then the branch cut, for large It I (t < 0), will have a discontinuity 

for any N, whose magnitude is comparable with the residue at the 

Pomeranchuk pole. 

For a general value of y we can investigate the asymptotic 

form of the phase contours by considering the ratio (compare with 

(3. 12» ' 
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f{ J 1-2y 1 (' ") Y] 
exp UN' - 11 -,t, , N > 2, 

For y < 1/2 this ratio always satisfies the conditions for phase 

contours to be "open", (compare with Eq. (3.12)). They would have the 

general form 

t 

For y > 1/2, our estimated branch cut discontinuity, bN(t), 
c 

decreases more slowly with t than the residue b( t). AsN -7 00, 

b N(t) -7 1, for any fixed t. Thus, the leading branch cut (at 
c 

a 1) would dominate for large enough values of s. Then all phase c 

contours in t <. 0 would close, as indicated in Figure 3.4(b). 

.; .... , 
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4. OSCILLATIONS, ZEROS ANDHERGLOTZ CONDITIONS 

In this section we give an heuristic discussion of how zeros 

and oscillations of ImF are related to asymptotic behavior. In 

particular, we wish to see how the essential features of the theorems 

considered in Section 2 are related to the topology of phase contours. 

The latter will be considered both in the real (s,t) plane, as in 

Section 3, and in the complex s plane. Our aim is to see what aspects 

of phase contours are crucial to high energy behavior and what aspects 

are not directly significant. 

We begin by hoting some results on zeros and oscillations that 

follow from dispersion relations. We then consider how the zeros of 

ImF are related to high energy behavior and to.the zeros of F itself. 

Next we note how zeros of F affect the values of the phase ¢(s,t). 

Then we summarize the points relating to the removal of zeros and 

oscillations so as to express F in terms of a Herglotz function. 

(a) Dispersion Relations and Oscillations 

LetF(z,t) bea function that satisfies an unsubtracted 

dispersion relation for a given value of t, 

F(z,t) -'-. fOO 
7( 

a 

-b 

dxImF(x,t) -+ if 
x - Z 1/ 

dxImF(x,t) 
x - z (4.1) 

Our assumption requires that F -70 as 'z' -7 (]). If ImF(x, t) > 0, 

for x real along x + iO, we see that 

ImF(z,t) > 0, for Imz > O. (4.2) 
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Hence F(z,t) is Herglotz and,using also our assurrrption that (4.1) 

converges, 

(' ,., 

as Izl ~ 00, where C2 may be as small as we please. 

If we have power behavior asymptotically, 

IF(z,t)1 as /zl (4.4) 

then ':"1 < a < ° if (4.1) and (4.2) hold. If a < -1 we can 

write a superconvergence relation, 

CD 

. J ImF(x,t)dx 0. (4·5 ) 

-CO) 

It follows that 'ImF(x,t) must change sign at :Least once along the 

real x axis-.' By forming higher moments we see that ImF must change 

sign at least N times when a < -N. 

If a > 0, we cannot use an unsubtracted dispersion relation 

for F(z ,t). Ther-e may be complex zeros of F and/or real zeros of 

ImF; we consider these possibilities next. 

(b) Zeros of ImF 

We assume that F is antisymmetric (odd signature) and has 

power behavior at infinity. Then for /sl large, 
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F(s,t) , 

where 8 denotes arg s. This defines the mapping of the contour 

(4.6) 

C s 

in the s-plane to C
F 

in the' F plane, where Cs 

and large, 0.:S e .:S T(, (see Figure 4.1 (a D . When 

/sl fixed 

-2n -1 < a < -2n, 

the contour C
F 

will encircle the origin clockwise, n times, as 

indicated in Figure 4.1(b). Thus ImF will have 2n zeros. If a 

corresponds to a positive power C
F 

will he traced anticlockwise, but 

(as we see later) F must then have complex zeros. If F has even 

signature, in the figure (b) the contour C
F 

should be rotated through 

n/2 (anticlockwise). 

C I in s 

Denote 

without 

Now consider the mapping s ~F, as C s is deformed into 

Figure 4.l(aL where C I lies along + iO, with s s 
s 

the mapping of C I into the F plane by C I 

S F 

If F(s,t) * ° in Ims > 0, C
F 

will be deformed into 

crossing through the origin. The total number of times 

real. 

C I 
F 

C I 
F 

encircles the origin will be the same as for C
F

. Unfortunately' extra 

zeros of ImF on the contour C I 
F may be introduced during the 

deformation from the contour C
F

. This is because, for finite values 

of s, the amplitude F may no longer be dominated by the term shown 

in Eq. ( 4 .6) . Thus, for example, the curves C I 
F 

shown in 
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Figure 4.1 (c) and (d) would correspond to the same asymptotic 

behavior. 

We. would expect "ineffective" zero s of ImF, of the form shown 

in Figure 4.l(d), to be indicated by the form of the phase contours. 

Consider a particular contour 

¢(s,t) 

on which ImF = O. Let its real section include the curve shown in 

Figure 4. 2(a) . We will study its complex section for different values 

of t. 

Let be the values of t giving the lines shown in 

Figure 4.2(a). The asymptotic phase contours can be determined from 

Eg. (4.6), which gives 

¢(s;t) ~ rr(l -a) + as, (4.9) 

for s = K exp(i8), with K large and positive. Since ¢ increases 

monotonically with 8 , it is clear that the value- ¢ =nrr can be 

reached only once. For t t3 and s complex, there is a curve on 

¢(s,t~) nn through each of the real points sl' s2' s3 indicated 
) 

in Figure 4.2(a). This curve can go to infinity in lms > 0 only once. 

Hence its general form must be that shown in Figure 4.2(b). The 

corresponding complex sections of the phase contours (4.8) for t = t 2 

and t - t - 1 are'shoWn in Figure 4.2(c) and (d). Only the parts reached 
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from Ims > o are shown, so ,the broken lines, will correspond to the 

phase contour on a second sheet, through a branch cut in general. 

This discussion shows that if an amplitude F(s,t) is bounded 

by some power of s at infinity, for t = to' this power is directly 

related to the number of real phase contours, ¢(s,t) = nn:, that are 

intersected an odd number of times by the line t = to' Each phase 

contour corresponds to an extra power of plus or minus one, depending 

on whether the phase is decreasing or increasing as s passes through 

the right most intersection. A phase contour, ¢ nn:, that has an 

even nmnber of intersections with t to' can be ignored when deter

mining the nearest integer power of s in F( s, to)' as s ~ CD. 

Hence the phase contours shown in Figure 3.1, for example, can be used 

to determine the power behavior for large s; but for fixed s and 

large t they do not contribute to the power behavior, since 

intersects each contour an even number of times. 

s - s - 0 

Finally we note than an effective zero, of ImF(s,t) in the 

real axi s, cart appear as t varies, only by moving in from infinity in , 

the s plane. This follows from the continuity of the phase contours, 

so that ImF(s,t) = 0 can meet s real in an odd number of points, 

only if one point has moved in from infinity. The phase contour in 

the (s,t) plane, ¢(s,t) == nn:, must therefore by asymptotic to 
"-

t = constant, as in Ji'igure 4.3(a). The corresponding phase contour 

in the s plane, as t decreases by E, will cut off the corner of 

the large semicircle in Ims >0, as indicated in Figure 4.3(b). 
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(c) Zeros of F 

WhenF(s,t) has zeros in-the complex s - plane for Some value 

of t, the standard procedure mentioned in Section 2 is to remove the 

zeros by dividing them out of -F to give a-new function G that is 

free from complex zeros, 

G(s,t) (4.10) 

However, since we will be concerned with the use of phases to obtain a 

self consistent topology of phase contours for the amplitude F itself, 

it is necessary to obtain an ihtuitive picture of the effects of zeros. 

The phase of F(s,t) will depend on the route taken from the 

asymptotic region for forward scattering where the phase is first 

defined, to the point (s,t). - Similarly the phase change of F from 

s+ iO to -s + iO as s ~ 00, depends on whether we follow the circle 

at infinity or move along the real axis. The former path goes above 

the zeros and the latter below them. The phase difference for the two 

paths will be 

2nn (4.11) 

,,,here n denotes the number of zeros in Ims > O. 

We have seen that for a symmetric amplitude, 

F( s, t) [ f /}f ~ 1J 
ex]) : t, -a \.2 - ~ J ) 4.12) 
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where e = arg s. 

1 to 3 will be 
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The phase change along C 
s 

in Figure 4.1(a) from 

an, path C • s 
(4.13) 

However,if there are n zeros in Ims > 0, the phase change, from 

1 to 3 along C ' s 
in Figure 4'.1(a), 'lill be 

an - 2nn. (4.14) 

The case a = -(2 + E), with ° < E < 2 and n = 1, is 

illustrated in Figure 4.4(a) and (b). To deform from C to C I 
s s 

we must pull the contours across one zero of F. Thus the path of F 

in diagram (b) changes from one with effective oscillations of ImF 

to a path with ineffective oscillations. 

(d) Herglotz Conditions 

A symmetric amplitude (even signature) has at least one change 

of sign along .s + iO (in general there must be an odd number of 

changes). We can readily remove one oscillation, by multiplying by 

I (s - 4m2)sJ?" in the case of the forward amplitude,for example. 

Alternatively we could consider the number of 'Sign changes of ReF, 

since (except for the forward amplitude) there is no special advantage 

from working with 1m}' except that it is conventionally used in 

Herglotz conditions. We summarize the results of removing zeros and 

oscillations to give a Herglotz fUnction. Let 
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IF(s;t) I Is ,
a(t) as s ~ 00. (4.15) 

For a symmetric· amplitude, along s =1131 exIi (is), 0 <. S <. rr, 

rr - la I~ <¢(s,t) < Jl +Ia I~ (4.16) .. 

For an antisymmetric amplitude, 

n: 
2" -

n: .. 
<. 2" + (4.1'r) 

Let a -(N + E), where 0 ~ E< l,8.11d let there be n zeros 

of F for complex s in lms > 0, (exceptionally there may be real 

zeros but we choose t to avoid these). In general there will also 

be n zeros at conjugate points in lms <. O. 

Along s + iO there will be a phase change from s +00 to 

s CD, 

. an + 2nn:. (4.18) 

In practice the factor a( t) .. is expected to change continuously with 

t, but n(t) will change discontinuously as new zeros enter the half 

plane lms > O. These zeros may enter either at infinity., or at a 

singularity, or at a regular point. The conjugate zero will simultan-

eously enter the lower half plane. A knowledge of the effective oscilla-

tions, and effective zeros, permits a reduction of F to a function 

satisfying the Herglotz conditions. 
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5 . RESONANCE TERMS AND INTERFERENCE EFFECTS 

In this section we study zeros and phase contours for several 

interference models, and we relate the special results to the general 

conclusions suggested by examples in the previous section and by the 

theorems mentioned in Section 2 .. We emphasize that we do not. know a 

correct prescription for combining resonances with a background term. 

It is unlikely that there is a "best" method for separating resonances 

and a background. Thus our ,procedure in this section is concerned with 

phase contours in models which are not realistic but may throw light on 

an improved approach to the problem of resonance interference. 

We consider first a simple D state resonance plus constant 

background and locate the zeros. Next we consider how a variation of 

parameters in a model can cause a real zero to become complex. Then 

the zeros in the D-state resonance model are related to the asymptotic 

behavior in the t-channel and in the s-channel. We study also the 

manner in which phase contours intersect at a zero of the amplitude. 

We then give examples of phase contours in a model given by a resonance 

plus a Regge gackground. 

(a) Zeros for a Resonance Model 

We consider a D state resonance with a slowly varying back-

ground, 

F(s,t) f(s)P0(z) + B + iB', 
L 
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z' cos El 1 + 
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2t, 
, 2 

s - ,4m 

, 'J 
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Note that this differs from the' variable z used in Section 2. The 

partial wave component, omitting slowly varying factors is taken to 

be 

f(s) A - s 
+ 

ir 

Initially we fix s at the resonance value, s 
./ 

in th'e corrrplexz plane. Writing 
-1 C = (2r) , 

F(s,t) 
2' I 

iC(3z - 1) + B + iB 

A, and consider F 

The real and-imaginary parts in the z plane are harmonic functions 

given by 

x -6cxy- + B, (5.5 ) z 

C G(x2 -J y - y2) + BI • (S.6) z 

The phase contours in the complex z plane have two possible configura-

tions, which are shown in Figure s.l(a) and (b). These depend on 

.... , 

.. , 

'. 



.. 
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whether (B' - C) is negative or positive. The phase ¢(z) is 

ambiguous in that it depends on whether the zeros are encircled in a 

clockwise, or an anticlockwise, sense. These ambiguities are of great 

importance and will be discussed again later. Thus in Figure 5.1(a) 

and (b) we draw the contdurs 

x 
z 

y 
z 

0, ¢ 

0, ¢ 

° ± J(, 

~,7i ± If. 
2 (5·8) 

There are two zeros) since P2(z) is of second order in z. Thus, one 

zero in 1mz > ° may be expected to correspond to a power law 2 
z 

for large Izl, since in general there will be a corresponding zero in 

Imz < ° for the functions that we consider. 

When s is not at the resonance value, f(s) will not be 

pure imaginary. We write 

f(s) 

There are two effects that modify the contours shown in Figure 5.1. 

Firstly: If I decreases relative to the background term B + iB', 

as Vie move away from the resonance. This may effect the inequality 

(B' - C) > ° and change the contours from those in diagram 5.'l(b) to 

those in ,).1 (a) . Second_ly, the relative phase, of the resonance and 

background terms, changes', We write 
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B + iB' bexp(iy) . (5.10) 

F(s,t) ~itp~(8 - fr} ~l' lip(X2 -/) -I} - 61£ Ixy 

+ b exp i( y 8 + ~)J 

When e = /" the zeros of F in the z plane lie on xy = O. They 

will be real if, for the corresponding value 

b f < O. 
/' 

f of 
"I 

If I, 

A typical form of this solution is shown in Figure 5.2. 

(5.12) 

If the resonance parameters are varied, the two solutions of 

F(s,t) = 0, in the z plane, will remain real until b = f , when they 
/' 

coincide at z = O. For smaller values of f they become complex. 
/' 

This is a general feature, and it is useful in comparing different 

approximate solutions for a scattering amplitude F (see the discussion 

following in (h) and Section 7). We wiJ,.l consider the phase contours 

with resonance interference for real s and real t later in this 

section. 

(b) Real and Complex Zeros 

We give a plausibility argument for the following theorem: 

If two amplitudes are related analytically to each other by a variation 
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of their parameters (either resonance or background parameters), real 

zeros in the z~plane (z now denotes any variable in F) can become 

complex only when they meet in pairs. 

Consider the curves 

ImF( z,s, b) 0, ReF( z, s, b) 0, (5 ;.13) 

in the complex z plane, where b denotes one or more variable parameters. 

They will meet) in general/at a number of complex points, one of which 

we denote by 

z 

When s varies (in one dimension), the zero zO(s,b) describes a 

curve in the z plane. From the implicit function theorem, this will 

be an analytic curve if F is analytic. Hence we can go from the 

situation indicated by the continuous curve in Figure ~.3(a) to the 

broken .curve, by variation of b, only via a situation in which the 

two real zera.s meet before becoming complex. An alternative variation 

is shown in Figure 5.3(b) and gives the same conclusion. The curves 

indicate how zo(s) moves as s varies through real values. Thus 

Figure 5.3(a) could be approximated by 
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When b > 0; there are two real solutions to 1mzO = 0, namely, 
1 

So ±(b/aY~. However, for b < 0, eith~r Zo is complex or So 

is complex. We will see later iil this section how the corresponding 

phase contours appear in the real s; realt plane in these two 

situations (see Subsection 5(e)). 

(c) Zeros and Asymptotic Behavior 

We assume that Band B', in our model, behave like constants 

F(s,t) (5·]6) 

For fixed s, the large /z/ behavior of F(s,t) can be attributed to 

the two zeros zl' z2,which we assume to be located as in Figure 5.1(b). 

Our general method of converting F to a Herglotz function consists 

of factoring out the zeros' in 1mz > 0, and then removing oscillations 

of the resulting function along z real. 

We will ,see how this procedu~e works in our model, for which 

1mz1 > 0, but 1mz2 > 0 and ImF is positive along the real axis 

(Figure 5.1(b)). For .z == x, 

ImF(s,t) 

Consider the function 

G(z) F(s,ti 
z -zl (5. 18) 

, .. ' 
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Writing r for the phase of F, and 8 for the phase of (z - zl)' 

we see that 

G(Z) F exp i(r - 8). 

By assumption (5.17), 0 < r < rr, and 8 varies from -rr to 0 as 

z varies from - m to +00 along the real axis. Hence ()' - 8)·· 

goes through zero (2n + 1) times along the real axis. Let us take 

n = 0 initially, and let Zo (real) be the single zero of 1mG for z 

real. Then we obtain a Herglotz function by writing 

H( z) G(z) F(Stt) 

More generally if n > 0, we will have 2n ineffective zeros of ImG, 

and our Herglotz function will have the form 

H(z) F(si t ) TI(: 
l=l 

- a i ) . 
- h. 

l 

The point that we wish to note from this exa~le,is that a single zero 

in 1m2> 0, for an even function of z .• corresponds to a power behavior 

of degree two for large I zl. We will consider a generalization of this 

example to a Reggeized resonance in Section 6. 

(d) Poles and Zeros 

For fixed s and large Itl, the as~totic conditions are the 

same as for large Izi and the relation to zeros is the same. However, 
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for fixed t and large /sl, 

1, If(s) I 

Hence F will be dominated by B + iB/~ on our assumption that this 

is asymptotically constant. We will consider how the zeros of F in 

rms > 0 are related to this asymptotic behavior . 

By ccinstructionf(s}has no poles or zeros in· Ims > 0 

(our model is over-simplified in this respect since f(s) does not 

contain the usual Riemann sheet structure). There are no zeros of 

Imf(s), so it is a Herglotz function. We can deal with the zeros of 

F defined by Eq. (5,1) as before, .but there is now a double pale at 

s = 4m2 due to the transformation Z -7 S. Taking this into account~we 

obtain an s-plane Herglotz function from F, namely for fixed t, 

H(s,t) 

where and denote the two points (real and complex), that 

correspond to Zo and zl'. The double pole is, of course, a non

realistic feature of our model but it illustrates the compensating 

Effects of poles and zeros on high energy behavior and on phase contours. 

As s moves along (just above) the real axis from -00 to 00 the 

amplitude F(s,t) makes a circuit (-2rr) round the origin due to the 

double pole, which cancels the phase change o·f rr from each of the 
.' ...... 

zeros at s:= So and s = sl' 
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(e) Phase Contours Near a Zero 'and Near Pairs of Zeros 

We havenoted,in part (a) of ' this section, the amoiguity in 

phase,for a phase contour that goes through a zero of the amplitude. 

Now we consider the topology of phase contours in the real (s,t) plane 

near a zero. Let F be zero at the real point (so,to )' Then, 

assuming analyticity in the neighborhood, 

F(s,t) + + 

(s - s )a exp (is) . 0 + (t - to)b exp (iW) + 
(5.25 ) 

/Flexp Q¢(s,t)] (5. 26) 

Consider the phase ¢ along a line in the (s,t) plane, 

t to f,l(s - SO), 

and assume a > 0, b > O. Then (see Figure 5.4), 
'\ 

tan ¢ (iJ, ) a sin e + I:!: b sin \jJ 
a cos e + p b cos W (5·28) 

As ~l varies from -00 to 00, ¢ (~L) varies in the range 
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These phase contours correspqnd to pha:s~l:in,es that emerge from a "semi

circle round the zero (so,t
o

) in the real (s, t)· ·plane. The other 

half of the circle centered on (so,t6) will contain the continuations 

·of these phase contours through the zero at so,to ' each with phase 

cbange ;br" depending on whether the zero· is' avoided by an anticlockwise 

or a clockwise detour. The geometric interpretation of the above' 

discussion and the resulting phase contours nea~ a zero are illustrated 

in Figure 5.4. 

Noting that a range 2n ·of phase contours must be involved 

when we make a single circuit of one zero" we can readily extrapolate 

to the situation when there are two real zeros near to each other. 

From this we can extrapolate to the case of tlvo coincident zeros" and 

then to two neighboring complex zeros. The resulting phase contours 

are illustrated in Figure 5.5. 

(f) Phase Contours in a Model; Resonance and Regge Background 

One of our objectives in developing the use of phase contours 

is to contribute to the solution of the problem of combining the 

. asymptotic solutions of Regge theory with the low energy solutions of . 

Resonance models. As a first orientation on this problem we will 

consider the phase contours that arise from interference between various 

combinations of the following terms; 

(1) Pure Reggebackground type (1), Pomeranchuk exchange dominates 

in both forward and backward directions, 

.. 
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~(a + 1) (a + 3)sa exp( -ina/2U 

+ [-((3 + 1)((3 + 3)s(3 exp(-in:(3/2J 

where 

a == cx(t) ,= 1 + (O.5)t,. (5.31) 

(3(u) 1+ (O.5)u. (5.32) 

We have included residue factors that are zero at negative odd integers, 

but they are not very important in the interference region that we 

will consider in this section, (but see ,Section 3(d~. 

(2) Pure Regge background type (2), Pomeranchuk exchange dominates 

forward but an odd signature term dominates backward scattering, 

~(a + l)(a + 3)sa exp(-in:a/2~ 

+ ~(B + 2)(B + 4)sB exp{in(l -;.3)/2] (5.33) 

where 

ex = 1 + (O.5)t, 



(3) Pure Resonance, 

't (A- s \ + ir J ( ) G '-, ----'..l.-·---0 p. cos B 
( A) 2 ~L £ 

s - + 1 

The particle ,masses are taken to be unity. 

(4 ),(5) Interference Models J 

+ 

+ 

F 3' 
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(5.36) 

These models have been stUdied for several values of the parameters, 

and we believe it may be important to study how interference effects 

change as functions of the coupling strength,in order to understand 

bootstrap problems. HOIvever, for econom;Yin space, we give only two 

diagrams to indicate interference patterns, and briefly describe other 

variations. 

, The .phase cohtours for a pure Regge background of type FI 

have been illustrated in Section 3. The oscillations will be enhanced 

near the zeros of the residue factors. The general features of F2 

are similar to those of F
I

, except for a displacen;tent of the "symmetry" 

of the phase contours towards the direction of backward scattering. 

The phase contours for S-state interference are illustrated in 

E'igure (5.6) using the following parameters: 

'. 
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3, p, 0; r 0.2. (5·39 ) 

The fixed complex pole, at s = 3 + (0.2)i, leads to a bunching of the 

phase contours near s = 3 as suggested from our earlier discussion 

in this section. 

The interference model F 4 for a p-state resonance leads to 

a single zero that may be complex.' We have illustrated this model in 

Figure 5.7 for parameters that give a real zero, 

G 10, A 3,. p, 1, r "" 0.2. (5·40 ) 

It will be noted that only in the forward direction do we get the phase 

change through 90 deg. (as sincre&ses) that might be expected for a 

dominant resonance. This is because the background also has a phase 

that is not too different from 90 deg. In the near-backward direction 

the resonance gives a phase of -90 deg, and tends to cancel with the 

background. The result is a rather rapid change of phase, and in this 

example there is a real zero of the amplitude. In Section 7 we will 

see similar effects for pion nucleon scattering amplitudes obtained 

by phase shift analysis. 
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6. REGGEIZED RESONANCE TERMS 

One of the problems that must be solved in order to understand 

the relation between high energyapd low/,energy behavior ,is the manner 

in which zeros of the amplitude appear on the physical sheet as the 

momentum transfer is increased. In this section, we consider a model 

that throws some light on this problem, although it is unrealistic with 

regard to the singularities from· which the zeros appear. 

(a) Zeros of a ReggeTerm 

In a Regge model, a scattering amplitude may be approximated, 

for large z, by 

where, with equal mass particles, 

z 1 + 2t 
2 s - 4m 

(6.1) 

(6.2) 

When tis an integer pt(z) has t reall zeros, all within 

the range [-l,lj. These zeros lead to tIle familiar high z _behavior, 

t 
z. For .e real but not an integer, we consider 

n + E, O<E<l.\ 



.' 

~, 
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Near z ..,1, with z = x (real and Ixl <lL 

.. 
P.e(x) 

sin .err ~Og {~(l + Xl} + 2Y + 21jr(.e+, I 
lJ 

+ cos (,err) 
T( L - (6.4) 

where y and ~ denote Euler's constant and the ~-function, respectively. 

When (x + 1) is sufficiently small, the dominant term will be 

(_l)n(£ _ n) log ~(l + x). 

n+l I 111 (-1) E log 2(1 + x) . (6.6) 

A new zero develops in (-1 < z <. 1) when E > 0, which is not present 

when E <. 0. As E -1 ° the zero will tend to -1. The zeros of 

p.z(zL are shown-in Figure 6.1(a) for .e real. The corresponding zeros 

of F(s,t), given by (6.1), are shown in Figure6.l(b), whencx(s) 

increases through real values. In Regge theory with bosons, it is - . 
reasonable to assume cx(s) to be real for s below threshold. However, 

above threshold o:(s) will be complex. We will discuss the effects 

of this on phase contours at the end of this section. The zeros will 

still emerge from z = ,-1, but will then become complex. ' 
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(b) A'Symmetrized Regge Model 

Before considering phase contours for a Regge model, we will 

note the location of zeros when the model is first symmetrized to give 

even signature, and then a non-zero background is introduced. The even 

signature form will be 

F(s,z) 

This has an 'asYmptotic phase, for real positive z x + iO, 

rj(s, x + iO) Jt 
I '2 na(s), (6.8) 

which is characteristic of an even signature amplitude; This amplitude 

remains finite when a equals an odd integer, except at isolated zeros 

in the z. plane, and it does not have a pole when a is even. It is 

not a relevant model when a is less than zero, and will not be 

considered .fo~such values. We initially consider only real values of 

a(s), even though s should be above threshold when a > 2. 

The zero s zo (s) , of the amplitude are shown in Figure 6.2 (a) 

for real ,z, as a function of a(s). 

When there is a complex background, the zeros will become 

complex. In Figure 6.2(b) we show the trajectories of the two leading 

pairs of zeros in the complex z plane, as s varies. One pair of 

zeros starts from z ±l when exes) = 0, and the second pair starts 
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from z = ± 1 when a(s) = 2. They are taken to be symmetric in 

relation to z = 0 by analogy with Figure 5.1. However, with a 

background that depends on t one would not have this symmetry. 

(c)' Phase Contours for the Symmetrized Model 

It is useful to consider phase contours in the complex z 

plane and see how they vary for increasing a(s), and relate them to 

contours in the real (s,t) plane. We note again that, when there 

are zeros present, the labeling of phase contours becomes ambiguous. 

This difficulty could be removed by forming suitable integrals so as 

to construct univalent functions. However, we believe that information 

(about zeros in particular) would be lost in a formalism based on 

univalent functions, and a new'construction would be needed each time 

new zeros appeared. In ·spite of this, it is very probable that univalent 

functions would be required for rigorous developments of our heuristic 

approach. This would require an extension of the work of Kburi and 

Kinoshita on forward amplitudes.
ll 

Phase contours are shown in the z plane; for three values of 

a(s), in Figure 6.3(a), (b), and (c). It should be noted that the 

zeros emerge from the singular points (branch points at +1 and -1), 

bringing the phase contours with them. We would expect that this 

feature may occur only for an amplitude that diverges at the singular 

points, since otherwise any emerging zero would be swamped (i. e. dis

placed) by the background. In Figure 6.3(a) the contours ¢ = n should 
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be regarded as dividing at the real axis so that (rr.,. E) . goes through 

the first zero on the right, and (rr +E) goes through the first zero 

.on the left. Phase contours for intermediate values of ¢ are similarly 

distorted so that they cross the real axis only by going through one 

of the zeros of the amplitude (marked with X in Figure 6.3). 

In Figure 6.4, we show the corresponding phase contours in the 

real (s J t) plane.. The labeling of these contours uses the same 

prescription as in Figure 6.3, so that the. phase is continuous through t .. 
asymptotic values in theAplane. Equivalently, one could circle below 

all zeros in the real (s, t) plane of Figure 6.4, keeping t + iO 

above the t and u branch cuts in the t plane . 

. (d) Phase Contours and Complex ReggeTrajectories 

When a Regge pole is continued above threshold, the trajectory 

becomes complex 

0:( s) =: 

The corresponding Regge term in the amplitude for large t is given by 

0: b(s) t exp 
(6.10) 

When 0: is complex there are two new features to consider. The first 

arises from the effects on the phase from the resonance poles that 

.: 
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correspo'nd to zer~s of sin(~' aV. If our continuation in s is 

above the threshold branch cut, these resonance poles ,will be in the 

lower half of the second sheet of the s plan~ at points where a(s) 

is an even integer. This important feature will be considered in detail 

in the next paper, when we discuss crossing symmetry and phase contours. 

The ,second new feature)that arises when a is complex,comes 

from the exponent of t in (6.10). This gives a contribution to the 

phase equal to 

(6.11) 

where to provides an arbitrary normalization. As t tends to 

infinity, all phase contours will be dominated by this term, so they 

will all tend asymptotically to 2 
s = 4m ,where a 2 (s) becomes zero. 

For fixed s, there will be a logarithmic oscillation in the phase. 

This is a slow variation compared with oscillations that arise from 

interference between terms involving different powers of t. It may, 

therefore, be unimportant to some aspects of the study of phase 

contours. 
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7.' LOW ENERGY SOLUTIONS FOR PION NUCLEON PHASE CONTOURS 

(a:) Formulae and Kinematics 

It is notdlear which amplitudes are most suitable for showing 

the phase properties for any partic'ular collision process. There is a 

conflict between the requirements for simplicity at high energy, where 

exchanged Regge poles are assumed to dominate,and at low energy, where 

isospin amplitudes in the direct channel are more simple. We have 

given preference to high energy t-channel exchange processes. For 

u-channel exchange, the isospins are mixed. We study the phase contours 

for the following amplitudes for pion-nucleon scattering, 

AI (+) . (+) 1(";) (-) 
(7·1) ,. B , A , B , 

,,!,here 

AI A + ~L + t/4M] 
(7. 2 ) 

1 - t/ltM2 

EL pion lab: energy, and 

A
'

( +) 1 G/ -2 A (n p) I + J + A (n p) , (7.3) 
i 

i (-) 
A IG/( -)1 + ~ 2 A n p - A (n p) (7·4) 

,.-; 

B 
(+) and B 

(-) 
are given by similar relations. Thus 
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A/(cex) 

(7·6) 

The relation of these invariant amplitudes to the partial wave helicity 

amplitudes are given by Chew and Jacob15 and by Eden. l The related 

experimental quantities are, 

do 
[ I 2 2J (7·7) dt c KalA 1 + ~ IBI 

1 

p 
-2 1m B*A/(Ka~)2 

(7·8) 
KalA' 12 + ~IBI2 

where 

K 1 - t/4M2, (7.9) a 

[ 2 J, Kb 
t (M + EL) 

(7.10) 
- 4M2 1 - t/4M2 -

') 

c (0.22GM)'" 
(7·11) 2 

qs s 



s M2 + ,,2 ..... + 2MEL ' 

2 (c.m. momentum) . 

(b) Experimentally Determined Phase Contours 

UCRL-17899 

. The most recent analyses of partial wave phase shifts from 

16 . 17 
pion nucleon experiments are those of Lovelace, Bareyre and 

Johnson. 18 In and near the physical scattering region the phase and 

modulus of each of our invariant amplitudes can be computed from each 

of the phase shift solutions. We will illustrate the results in this 

section by selecting certain phase and modulus contours. At this 

stage we are concerned only with the form o·f the "experimental" 

amplitudes given by the phase shift solutions. For these, the phase 

contours provide: (i) an illustration of characteristic features such 

as zeros of the amplitude that were discussed earlier, (ii) a method for 

comparing different solutions for the same amplitude, and (iii) a 

means for noting "difficult" energies, where rapid phase changes may 

indicate an incorrectly continued solution, or may indicate a genuine 

experimental complexity. 

At a later stage it is hoped that background and resonance 

contributions can be sufficiently well understood to permit a solution 

of the problem of joining high energy and low energy solutions for 

scattering amplitudes. However, neither the data nor our knowledge of 

theory seems sufficient for this at present. We therefore give only a 

few phase contour diagrams to illustrate their general characteristics. 

.. 

.. 
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In Figures 7.1 and 7.2, respectively, we show the phase contours 

and the modulus contours derived from the Lovelace solutions to 

We have used the kinetic energy of the pion T 
n 

in the lab. system, 

instead of s, the invariant (energy)2, as the former is more commonly 

used in experimental work. They are related by 

s (M + 1-1)2 + 2MT • 
n 

Several aspects of the phase contour diagram, Figure 7.1, 

appear to be significant: 

(i) The resonances that show most conspicuously are those at 

T = 0.19 (the 1238 resonance) and the resonances near T = 0.9 
n n 

(1670, D15 ; 1688, Flr-; and 1700 , Sll)' The effect of the latter is 
::> I 

most noticeable below the resonance value, since the background phase 

in this region is about 100 deg. Above resonance, near t = 0, the 

background and resonance contributions are nearly in phase. Below the 

resonance its phase falls below 90 deg, and this brings the phase of 

the full amplitude down to 90 deg as indicated. The 1238 resonance is 

sufficiently dominant to give both a phase of 90 deg near the forward 

direction and minus 90 deg near the backward direction 

eLi) There is a concentration of phase contours along a scattering 

angle between 90 deg and 120 deg over the considerable energy range, 

T = 0.1 to 0.6 GeV. This corresponds to a valley in the modulus 
n 

contour diagram, Figure 7.2. As expected from our earlier discussion, 
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a small modulus permits (perhaps causes) rapid changes of phase of 

the. scattering amplitude. 

(iii) There are 'two real zeros of the scattering amplitude 

in the physical region, namely the points where the phase contours cross 

at (T, -t) equals (0.34, 0.27) and (1.26, 0.91). The first of these 
'r[ 

I 

is clearly in the region dominated by resonances, and it can be regarded 

as a result of resonance interference. The second one occurs at a 

hlgher energy, and may perhaps be more readily attributed to background 

interference df forward and backward Regge terms .. Both zeros occur 

within regions where the modulus of the amplitude is seen to be small 

in Figure 7.2. 
) 

(iv) From forward scattering (t = 0) out to nearly 90 deg angle 

of scattering, there is a phase plateau for A/(+)· in the second 

quadrant, mostly with the phase between 100 deg and 150 deg. It is 

interesting that Regge exchange gives a similar phase for A' (+), as 

we shall see in more detail in Section 8. This indicates that·the 

deviations that resonances cause from Regge background are remarkably 

small for this amplitude.(possibly indicating a bootstrap effect). 

For comparison with Figure 7.1, which was derived from the 

Lovelace16 phase shifts for A/ (+), we give in Figure 7.3 the phase 

contours for -A'(+) th t· b·t· d f . a are 0 alne rom a prelimlnary set of phase 
. 18 

shifts given by Johnson. It should be noted that our phase contour 

diagrams provide a more sensitive comparison between phase shift 

solutions than is justified by the experimental evidence, especially 

.. 
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where the modulus of the scattering amplitude is small. Below 

T=:0.45 the .Lovelace phase shifts were used. The comparison of the 
rr 

Johnson results that give Figure 7.3 and those of Lovelace (.Figure 7.1), 

should be made only above T =: 0.45 GeV~ 
rr 

There is a very satisfactory 

resemblance ·between Figure 7.1 and Figure 7.3. The most notable 

difference is that the zero of at (.126, 0.91) in Figure 7.1 

is not present in Figure 7.3. It seems that the latter corresponds to 

two complex zeros near the point (1.35,1.00). For consistency one 

would therefore expect a second real zero at a higher energy if the 

Lovelace solutions were continued up to T =: 1.6. 
rr 

The phase contours from the Loevlace phase shifts for 

and B 
(-) 

are shown in Figures 7.4, 7.5 and 7.6. They are 

obviously much more complicated that those for A I (+), and they are 

instructive in two respects. Firstly, they indicate regions, or energy 

band:s, of great complexity, that involve rapid changes of phase and 

should be verified by further experiment. This is particularly evident 

in the energy region 

0.80 < T < 0.90. 
rr 

This lies just below the three resonances (1670, 1680,1700) and has 

earlier been noted by Lovelace as a region where further experimental 

evidenGe is desi.rable. 
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The second application of phase contour diagrams lies in the 

search for continuity between 'phase shift solutions. Rapid changes of 

phase can be expected when the modUlus of an ampli tude is very small, 

but ,they are unlikely if it is large. In the latter case there would 

be dramatic changes in polarization that coUld be observed. 
. . ' 

Other applications of these phase contours include using thelll 

as a means of searching for complex zeros. The significance of complex 

zeros will be considered in the next paper. 

~" 

.-j. 

". 



;~ 
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8. HIGH ENERGY SOLUTIONS FOR PION-NUCLEON PHASE CONTOURS 

We hope eventually to find a self-consistent topology for phase 

contours that will assist in establishing a method for connecting high 

energy and low energy approximations for studying scattering amplitudes. 

At this stage, however, we are concerned primarily with finding out 

what phase contours look like, and how their main features can be 

interpreted. At high energy there are no model independent methods for 

determining phase contours from experiment. The nearest approach to 

phenomenology is given by the Regge solutions for near-forward, and for 

near-backward, scattering. Up to now the experimental data in forward 

and backward directions has been fitted almost independently. In order 

to study their relation to each other by means of phase contours we 

require an analytic function that goes over to the forward and backward 

Regge solutions in the appropriate regions. This can be obtained simply 

by adding the two solutions. We consider this procedure as a means of 

obtaining a first approximation to the correct topology of the actual 

phase contours. 

The sum of these Regge solutions is a valid approxiination within 

the Regge phenomenological assumptions, at high energies near the forvfard 

and backward directions. We will extrapolate in two ways. Firstly to 

large angles at high energies. This requires·specific assumptions that 

cannot at this stage be based on any experimental evidence. We assume 

(i) that the leading poles continue to dominate at large angles, and 

(ii) that the trajectories continue to fall as t decreases. The first 
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assumption probably does not affect the topology (as opposed to the 

spacing) at large angles and high energies. The second.assunrption 

affects their topology as was diseussedearlier in Section 3. 

Our second extrapolation of the sum of Regge solutions is to 

energies below those at which Reggeapproximations are reasonable. Our 

purpose here is to obtain the Regge "background" at low energies in a 

moderately realistic example, and also to study its phase contours and 

see whether there are any striking interference effects between the 

forward and backward Regge solutions, when their magnitudes are 

comparable. 

Our detailed assumptions and choice of Hegge solutions will be 

described in the next paragraph and in the Appendix. 

(a) The Regge Solutions Used 

We use a modified form of one of the Regge solutions for ,forward 

scattering, that have been shown to fit pion-nucleon high energy data by 

Harita, Riddell, Chiu and Phillips,19 -(denoted RRCP in the following). 

Their original-solutions, on which ours are based, are given below. 

Our modifications are chosen to .introduce zeros in the residue functions 

when the trajectory goes through a negative integer of appropriate 

signature. They are 

(i) For P I andP exchange contributions, when cx < '-1, 

A(modified) sin (iCX)A(original) . (8.1) 
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(ii) For p exchange contributions, when a < -2, 
P 

A(modified) -cos c~a) A(original). (8.2) 

In the backward direction, our amplitudes are modified from those of 

Chiu and Stack20 (discussed and tabulated in the Appendix). The modifi-

cation to permit extrapolation without unphysical pole contributions is, 

(iii) For Nand 6 exchange amplitudes, when a < -2, 

A(modified) 
sin [~7fG -~)J A(original) 

sin[~)r~2 - ~)J 

where· a
2 

= -2 + ilm 0( Similar modifications are introduced in the B 

amplitudes. There are some complications in evaluating the phase of the 

backward Regge amplitude due to the fact that the trajectory a(u) 
1 

contains a term involving (uF. These complications are discussed in 

the Appendix,where these amplitudes are given. 

The forward amplitudes that we modify, are those called solution 

1 by RRCP. The formulae for these amplitudes are; 

A' for P I and P, (8.4) 

for r 
(8.5 ) 
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B for P arid 

B 
for p, 

where 

~ (t) 
exp G G -~ na)] I 

1 
for P and P , 

sin - na 
2 . 

exp Gel 1 0J 1 _2 n - 2. na 
for p, 1 

~(t) 
cos 2 Ira 

and 

a( t) = a ( 0 ) + ta I . 

The symbol EL denotes the pion energy in the lab. system, and EO 

denotes a scale factor, which is taken to be 1 GeV. 

(8.6) 

(8;8) 

(8.9) 

(8.10) 
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:. The following values are chosen for the parameters, (RRCP solution 1), 

/ 

Co 
r1 

DO/CO D -C a(o) a '-'1 1 !2 \-2 -2 (Gevfl 
(GeV; (mb GeV) , (GeV) . (GeV) . 

P 1.0 0.12 7. 23 2.36 -3·69 7. 02 

pI' 0·73 1.50 lh.35 0.44 -3·52 3. 42 

a(o) a" 

p 0.20 

(b) Phase Contours From Regge Solutions. 

We have drawn the phase contour diagrams for the AI' and B 

amplitude s gi yen by the sum of the forward and backward Regge solutions. 

These solutions were chosen to fit experi~ental pion-nucleon results in 

the following regions: 

Forward solution (RRCP 1)19 

:) . 9 ~ T ~ 25 Ge V . 
11 

2 
o ~ -t < 1 (GeV / c) • 

Backward solution (Chiu and Stack)20 

4 ~ T < 10 GeV 
. 11 

-u ~ 1(GeV1c)2. 



J 
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. Our extrapolated solutions were evaluated in the whole of the 

physical region for pion nucleon scattering,for t;:nergiesin the range 
. ",' 

1 ~ T ~ 7 GeV. 
Jl 

The resulting phase contour diagrams are shown in Figure 8.1, A'(+); 

(+) . ,(-). (-) 
Figure 8.2, B ; Figure 8 .. 3, A ; Flgure 8.4, B . We have labeled 

the phases in the range 

-180 deg < ¢(s,t) ~ 180 deg. 

This avoids the difficulty of specifyirigapathby which each phase is 

to be evaluated, so as to prevent'am~iguities from the zeros of the. 

amplitudes. 

It will he seen that the pion nucleon phase contours have the 

characteristic topology, that was suggested by our simpler Regge model 

in Section 3, provided the pion energy exceeds about 4 GeV. However, 

at lower energies there are striking interference phenomena between 
I 

the forward and backward Reggeterms. 

At the highest. energies shown, the high densities .of phase 

contours at certain values of s, and of t, arise from the zeros 

in the residues of the leading terms in each amplitude. Thus in 

Figure 8.4, the zero of the factor a (t) in B(-) leads to a rapid 
p 

, 
change of phase near t = -0.6. At a (t) = 0, the p .. contribution has 

.p 

ImB(-) a pure imaginary phase factor (8.9). Thus will have a single 

zero while will have a double zero as s ~ 00. This gives a 
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rapid phase increase through 180 deg near the zero. At lower energies, 

the interference from poles exchanged in the u-channel, leads to a 

sequence of real zeros of 
(-) :a in the physical region. 

The effect of the zero in the p! contribution is somewhat 

different. This contribution appears in 
(+) 

B [and also 

At the zero of apI' there is a double zero of Im[P' termJ and a 

single zero of Re[P/ termJ. Combining thts with the P contribution, 

one finds a minimum in the phase of This minimum is indicated 

by the -120 deg contour in Figure 8.2. It will be recalled that near 

the forward direction,only P and pI contribute to 

The most striking effect of interference is the occurence of 

zeros if all four amplitudes in the physical region for pion nucleon 

scattering. None of them can be 'identified with the zeros at low 

energy that were indicated by the phase contour described in Section 7. 

We do not know how to combine resonances with a Regge background in a 

realistic way without double counting. Presumably resonances can be 

expected to move, these zeros, possibly to ml unphysical sheet. However, 

some of them are at sufficiently high energy that the effects of 

resonances should be small. These zeros are closely related to the 

occurrence of zeros in the residue factors, which lead to a sharp 

change in the interference between different Regge terms. When such 

zeros occur in the residue that corresponds to the leading trajectory, 

they lead to a condensation of phase lines (-90 deg < ¢ < 90 deg) 

as the energy becomes asymptotic. 
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Although the phases of the Regge solutions at low energy do 

not in general correspond at all closely to the "experimental" values 

of the phase obtained from the phase shift solutions in Section 7, 

there is one interesting exception. This is the AI (+) ampiitude in 

the near forward direction 

o < (-t) . 
2. . 

< 0.5 (GeV/, ) •.. 

In this range the Regge phase agree is quite. well with the phase shift 

solution Figure 7.1, down to 
I 

T := 1.06.GeV. 
:n: 

We have plotted the modulus 

contours for Al (+) in Figure 8.5. This should be compared with the 

modulus contours frorn the phase shift solutions shown in Figure 7.2. 

There is remarkable good agreement down to T. = 1.0 GeV. It is 

evident however that more subtle approximations will be required to 

obtain even qualitative agreement for the other amplitudes. 
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9. DISCUSSION 

In this paper our study of the properties of phases of scattering 

amplitudes has indicated a number of applications, particularly of the 

method of phase contours. The applications that we regard as most 

promising include: 

(1) The use of phase contours for the interpretation of experiments. 

We have noted their value for pion-nucleon scattering up to 1.4 Gev 

in Section 7, particularly when combined with modulus contours. Their 

functions include: the provision Of an instructive .visual comparison 

of different phase shift solutions; their use for indicating doubtful 

continuation of solutions from one energy to the next, and their use 

for indicating regions where the amplitude is so complicated that more 
\ 

detailed experiments are required. 

(2) The use of phase contours (and modulus contours) as a guide in 

developing a phenomenological theory that includes both the low and 

medium energy resonance regions and the high energy (Regge) regions. 

We have touche<ion this problem in Sections 7 and 8, but at this stage 

we have not attempted to combine resonances and Regge theory in a 

realistic model; our models discussed in Section 5 were designed only 

to give a preliminary orientation on phase contours for resonances plus 

a Regge background. 

(3) Crossing symmetry in one variable is implicit in Regge theory. 

It appears that phase contours provide a method for stUdying crossing 

symmetry in s, t and u variables. They lead to consistency 
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requirements between high energy behavior and the location of zeros of 

scattering amplitudes, and give rather a clear .indication of some effects 

of varying coupling parameters, such as scattering lengths. Some 

preliminary aspects of this problem were considered in Se~tio~ 6, and 

it will be developed further in the next paper of this series. 22 

(4) Phase contours, and the associated complex surfaces on which the 

phase of a scattering amplitude is constant,together with curves and 

surfaces of zeros, provide a method for specifying high energy behavior 

that is useful in the context of Regge theory and may also be used in 

generalizing that theory. This should permit one to specify conditions 

that show hOlv asymptotic behavior at fixed momentum transfer maybe 

related to fixed angle behavior. This will be discussed in a later 

paper. 
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APPENTIIX 

COlllJ?lications in Evaluating the Phase of the Backward Regge Amplitude 

Due to do: 
dw o 

Define the invariant amplitudes in the u-channel to be 

A(l) 

The Regge asymptotic behavior is given by (see for example Singh21 ) 

u Eu + M + 0: + _l t 
f i' s.-! i./u.. ... f.3 s ? ~ 

u fixed 

u fixed 

(E - M) - 1 _ _ u~ __ . _ - e-t -- !: 
f) S ? 5 

-Vu 

with ± indicating the r-' 
± It! u argumen t . 

The defined in this way is the same as the 

The phases of. AU, and by crossing also. AS, 
s 

A 
s and B can be evaluated through (1) and (2). 

Ii- e-in(O:-!) 

sin ~(o: - ~) 

A(2) 

in Chiu 20 and Stack. 

B
S 

and hence 
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To illustrate the complication, we will evaluate the corrections 

explicitly near u =0 for the nucleon amplitude. Fol1owin.g Chiu and 

stack, 

Expanding fl and f2 in .....;7:", one obtains 

E + M )' 
flu ~ :r;; ,cons t (1 + Ci'./u 

,where 

d 
11 ,r

dVu' 

Substituting (3) and (4) in (5) one obtains 

1 I a' ina! 
Cl 

a --+ a + -I- --+ 
Vuo 

1 + L 2 ' 
a + a O 0 2 2 

a
/
" '~ T cos:::O 

sin2{~~ 

l)n} 
' 2 2 + a' .ens 

-~)3 ' 
A(6) 

'.' 

A('t-) 

,4, 
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No'w let us look at a specific example: for the phase contours 

included, the backward amplitudes have the i'ollowingparameters -

-0.325 + O.llBVu -I- 1.061 u ) 

~N 

----~ .... --
------

with ~ ~ 0.B5. For completion, the A parameters are: 

-0.100 + 0.24B-V:; -I- 0.B44 u 

At T = 10 GeV, or s 
rr 

2 41 GeV ) one has 

From (4), (1) and (2) one has bear u 0 ~ 

A(B) 

A(lO) 



Hence the phase correction for AU is: (from (10)) 

·A 
9 
'c 

9 B 
c 

t -lL:- -0.18sMl ,~ 
g 1 ... 0.S5M) -20 deg, 

-1( 0.185] 
tg L 0.55 ~ +20 deg, 

UCRL-17899 

.here the 'overall signs are ignored: Of course in the limits ~ 00, 

eq.(6) itp.plies ClwilI eventualiy approach areal value. But e.g. 

10,one would need 

where we have picked $1 41 .. 

So 
2 

Is· ) ReCl = 1.85 4 a'en l7S~ . = 1.85 + 0.55, 

This gives 

or T 
:II 

9 1.4 ~ 10 GeV. 

However, the situation might not be as bad, if a l is very small, 

then from (6) one sees 9 could be small. At present the parameter 
c 

I cx is not very well determined from e}:periment. 

The phase for our solution is also complicated due to the 

presence of /::"contribution. Unfortunatelr we have cx/::,. slightly 

h.igher than cx. 
N 

So at super high energy! L, . will dominate over 

the nucleon contribution. 
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. FIGURE CAPTIONS 

Fig. 3.1. Phase contours in the real (s,t) plane for the simple Regge 

Fig. 3.2_. 

background given in Eq. (3.1). In this sketch the oscilla-

tions are large-r-tnan one finasfil a more phenomenological 

model (see Fig. 8.1, for example). 

(a) The line t = t , in the real (s,t) plane, with two 
n 

effective intersections, at -sl and s2' with ImF = 0 

contours. 

(b) The amplitude F, as s varies from So -to infinity, 

along t = t 
n 

in Fig. (a). 

(c)(d) The analagous diagrams to (a) (b), when there are also 

ineffective intersections with the ImF ~ 0 contours. 

Fig. 3.3. (a) Phase contours when the leading Regge trajectory has 

residue at 0 0 0 zero tl ' t2 ' t3 ' 

(b) The behavior of F along the line s real, t 

from a finite point So to infinity. 

Fig. 3.~. (a) Phase contours in the real (s,t) plane when the 

Inequality (3.12) is satisfied. 

t 0 
1 

'(b) Phase contours when a fixed Pomeranchuk pole dominates 

at fixed angles. 

+ E, 
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(a) 

(b) 

The contoursCs and C s 
in the complex s plane. 

An example of the mapping 

plane. 

of C 
s 

on to the F 

(eYed) Contours C
F 

. that correspond to similar asymptotic. 

behavior, C
F 

is the mapping of C s in (a) but 

corresponds to a simpler contour than CF in (b), 

Fig. 4.2. (a) The phase contour ¢(s,t) nn, giving ImF(s,t) 0, 

drawn in the real (s,t) plane. 

(b) ¢ = nn in the complex s plane for t t3' 

(c) ¢ nn for t t2' 

(d) ¢ = nn for t tl' 

Fig, 1+,3. (a) The phase contour¢(s,t) = nn in the real (s,t) plane. 

(b) ¢ = nll for complex s ,with t fixed just below the 

asymptotic value. 

Fig. 4.4. (a) The C and 
/-

in the plane. curves C s s s 

(b) The curves CF 
and C/ that correspond to C F s 

and C,; 
s· , when there is a complex zero of F at s = sO' 

Fig. 5.1. Phase contours in the complex z =: cos 9 plane, for the 

D-state resonance model at resonance, (a) with (B' - C) < 0, 

and (b) with (B' - C) > O. In both cases B > 0 and 

B' > O. 

. j 

" , 
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Fig. 5.2. A solution for the phase contours for complex z, near a 

D-state resonance ,. shmving two real zeros of the scattering 

amplitude F(s;t). 

Fig. 5.3. Illustrations of how curves of zeros z = zO(s,b) of 

F(s,t), (formed by varying s through real values), can 

change from a situation having two real zeros to one having 

two complex zeros when the parameter b is varied. 

Fig. 5.4. (a) The phase ¢ near a zero of F at (so,to )' with 

(s - so) = ~(t - to). The complement phase ¢ is obtained 

when ~ is constant but (s - so) and (t - to) change 

sign . 

. (b) Phase contours for real (s,t) near a zero of F(s,t) 

wi th ¢ = Ir chosen as the discontinuity line where ¢ 

changes by ±2:rr. 

Fig. 5.5. The drawings (a), (d) and (g) illustrate phase contours when 

there are two neighboring real zeros in the real (s,t) 

plane. Note that we interpret ISO deg and -180 deg as 

equivalent phase contours here. The figures (a), (b), (c) 

denote a variation of parameters for which the two zeros 

(a) become coincident (b) and then complex (c). Similar 

variations of parameters relate (d) to (e) and (f), and 

relate (g) to (11) and (i). 

r 
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Fig. 5.6. Phase contours when there is s-state interference with a 

Regge background, from aresonarice at s:= 3. "The :phase 

values ¢(s,t)' are shown in degrees for the amplitude F4 

'vi th G:= 10, A = 3, .£ := 0 and r:= 0.2. 

Fig. 5.7. Phase contours for the model' FIt r'with G = 10, A := 3, 

,e ::: 1, r = 0.2, showingP-state interference. Note that 

there is a zero of F where the':phase lines cross. 

Fig. 6.1. (a) Zeros of P
ll

(z) forR- and z real. 

(b) Zeros of F(s,t) given by Eq.(6.l) when a(s) is 

real. 

Fig. 6.2. (a) Zeros zO(~)' shown as a function of a(s) for the 

Regge model Eq. (6.7) without background. 

(b) Zeros zO(s) when the Regge model has a complex 1 back

g:('Q.uud. They are drawn in the z :plane as a(s) increases. 

Fig. 6.3. Phase contours,¢(s,z) = constant, in the z :plane for the 

symmetrized Regge model, Eq. (6.7), (a) when 0 -<. a <. 1, 

(b) when 1 < a<. 2, and (c) when 4 '< a <.5. Note that 

contours (not drawn) for intermediate values of the phase 

would all be distorted near' the real axis' so that they go 

throughan'a:p:propriate zero. 
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Fig. 6.4. Phase contours,in the real (s,t) plane, for a Regge model 

based on s-channel resonances,Eq. (6.7). For simplicity 

a(s) has been assumed to be real, and also to increase 

monotonically when s is above its threshold. 

Fig. 7.1. 

Fig. 7.2. 

Fig. 7.3. 

Fig. '7.4. 

Phase contours forA' (+) based on the 

derived by Lovelace (1966). 

Modulus contours for AI( +) basE:d on the 

shifts derived by Lovelace (1966). 

(TIP) phase shifts 

(rrp) phase 

Phase contours forA' (+) based on preliminary (rrp) phase 

shifts derived by Johnson (1967). 

Phase contours for 

1966) . 

(+) 
B (based on Lovelace phase shifts 

Fig. 7.5. Phase contours for A'(-) (based on Lovelace phase shifts 

1966) . 

Fig. 7.6. Phase contours for B 
(-) 

(based on Lovelace phase shifts 

1966) . 
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Fig. 8.1. Phase contours for A'(+) based on the superposition of 

forward and backward Regge solutions with extrapolation as 

described in the text. 

Fig. 8.2. Phase contours for (+) 
B base40n the superposition of 

. forward and backward Regge solutions. 

Fig. 8.3. Phase contours for A'(-). based on the superposition of 

forward .and backward Regge solutions. 

Fig. 8.4. Phase contours for B 
(-) 

based on the superposition of 

forward and backward Regge solutions. 

Fig. 8.5. Modulus contours for A'(+) based on the superposition of 

forward and backward Regge solutions. 
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'., This report was prepared as an account of Government 
sponsored work. Neither, the United States, nor the Com~ 
m1SS10n, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee ot contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to hi~ employment or contract 
with the Commission, or his employment with such contractor. 




