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Discontinuity equations are derived f'or physical-region normal 

thresholds~n all direct and crossed channels. The discontinuity is 

given as a unitarity-type integral with an integrand that contains, 

as f'actors, the two physical scattering functions corresponding to the 

two vertices of' the Landau diagram associated with the normal thresh-

hold. There is also a third f'actor, which f'or the case of' a leading 

normal threshold with any number of' particles is the Hermitian conju-

gate of' the elastic scattering matrix associated with the set of' 

internal lines of' the Landau diagram. For non-leading normal thresh-

holds b,elow the lowest f'our-particle threshold the extra f'actor is 

def'ined by an integral equation that resembles unitarity, but has a 

restricted set of' intermediate particles. 
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I. INTRODUCTION 

1 This paper is the second in a series devoted to calculating 

discontinuities around physical-region singularities,of multiparticle 

scattering functions. The aim here is to obtain discontinuity formulas· 

for normal thresholds. These normal-threshold formulas are important 

both in their own right and as the basic ingredients of the discontinuity 

formulas for more complicated singularities. 

The main content in this paper consists in the derivation of some 

physical-region identities. These identities express, typically, any 

physicai-region scattering function as a sum of terms each consisting of 

a unitarity-type integral over a product of physical scattering functions, 

or their conjugates. Each term is conveniently represented by a bubble 

diagram, in4ihich plus and minus bubbles represent the connected parts 

of scattering amplitudes and their conjugates, respectively, and the 

lines connecting these bubbles represent physical particles. The iden-

tities are derived from unitarity and cluster properties alone, no analyt­

icity property being invoked. Like unitarity, these identities hold at 

all real values of the external momentum vectors. Their importance lies 

in the fact that they explicitly display the discontinuity around normal 

thresholds. 

The result that the discontinuity is explicitly displayed by 

certain terms in these identities follows from certain topological prop-

erties of the diagrams that represent the other terms, together with some. 

structure ·theorems derived earlier2 that specify the analytic structure 

of bubble diagram functions. These structure theorems say that the 

bubble diagram function MB corresponding to the bubble diagram B has 
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the following properties : MB is singular only at points lying on Landau 

surfaces, and only on those Landau surfaces L(D) that correspond to 

Landau diagrams D ~CB. A Landau diagram D::>CB is a diagram that is 

a contraction of a diagram D' constructed by replacing the bubbles of. 

B by connected diagrams. Moreover, the signs of the Landau a's of 

the lines of this D' are restricted by the condition that the, (internal) 

lines of diagrams replacing plus or minus bubbles mU8t be pocli ti veor 

negative, respectively. If only one D=,C=B gives a L(D) passing 

through a point P lying inside the physical region, then the function 

~ can be continued around L(D) near P by passing into a well-defined 

"upper-half plane," which can be defined geometrically in terms of the 

diagram that generates P. If several surfaces pass through· P then the 

continuation can be made through the intersection of the various upper 

half planes, provided this intersection is nonempty. The relation between 

the diagram D~B and the corresponding half plane is such .that if two 

diagrams are identical except for a single overall reversal of the signs 

of all the a's, then the two corresponding half planes are opposite half 

planes. Thus if a point P lies on the L(D) of two such D:::><B,then no 

continuation is possible, in general. The hypothesis of the structure 

theorems is the analyticity property of the physical region scattering 

functions obtained from S-matrix macroscopic causality conditions, as is 

discussed in Section VIII. 

Our key identity reads, in box notation,l 

.' 
~I 
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I 
• t 

a..-~-4 + 
WI 

I 
w' 2 

w' 2 

w'8W2 + I Rc W' w2 I ,. 
( 1.1 ) 

The shaded strips represent sets of any number of lines. A plus box 

represents the scattering matrix S; a plus circle its connected part. 

A minus box represents st; a minus circle its connected part. A plus 

or minus box with a little circle on it represents S or st minus its, 

connected part. The subscript c denotes connected part. Finally the 

box Rc denotes a well-defined set of bubble diagrams, each of which 

represents a well-defined integral over a product of physical-region 

scattering amplitudes or their conjugates. 

The importance of (1.1) arises from the following property of 

! 
i 

Rc: No bubble diagram B in the sum represented by the box Rc supports 

any Landau diagram D' that contracts to any diagram of the form 

D+ (ill' ~ill), where 
n , 

" . ..1 ... __ . 

. J ,£.~ , . 
( I .2 ) 

+ I 
On (w -w) 
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The plus signs on the lines indicate that the corresponding Landau 

a's are positive. The similar diagram with minus signs on all lines is 

denoted by D - (ro' ~ ro) . A diagram of the form: D + ((j)' ~ ro) or 
n n 

D- (ro' ~(j)), for any positive integer n, is called a ro' ~ro normal 
n 

threshold diagram, and will be denoted by D(ro' ~ ro). 

Because the box R has the property just described, we know c 

from the quoted structure theorems the following fact : The function Rc 

'represented by the box R continues into itself via a "minus i€ con­c 

tinuation" past any singularity corresponding to any pure (positive 9r 

negative) - a Landau diagram D that contracts,to any D(ro' ~ro). [The. 

minus i€ continuation is the one opposite to the physical.continuation. 

That R c must continue in this way follows from the fact that thes~' 

pure ... a diagrams must be pure minus - ex diagrams. ] Using this fact, one 

immediately deduces from (1.1) the discontinuity formula for the leading 

ro' ~ro normal threshold, near points lying "inside" the physical region. 

[The "leading" ro' ~(j) normal threshold is the multiparticle (n ~ 2) 

ro' ~ro normal threshold with the smallest value, ~,of the (j)' ~ro 

exchange c.m. energy E(ro' ~ro). A point on this threshold lies "inside" 

the physical region if any neighborhood of that point contains physical 

points lying below the thresholds (Le., at E(ro'~ro) <.~) and 

. physical points lying above the threshold (i.'e., at E(ro' ~ro) > ~). ] 

The argument goes as follows: Let P' be a point in the physical region 

lying just below the leading ro' ~ronormal threshold. The first two 

terms on the right of (1.1) vanish at P'. Let pIt be a point such that 

there is a physical-region pathP'P" from P' to pIt Vfith the 

, 

i I 
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Every singularity of R on P' P" . c 

corresponds to a Landau diagram that can be contracted to a m' ~m 

normal threshold diagram. (b) No singularity of Rc on p'p" corre­

sponding to a D having both posi ti ve and negative a' s coincides with 

a singularity corresponding to a diagram D*, unless D* is the same as 

D up to an overall change of.sign of all the a's. [This second condi-

tion says that mixed-a singularities of R on p'p" do not "acciden­c 

tally" lie on top of singularities associated with diagrams of essentially 

different topological structure.] For any such p" the function ~(p") 

is an explicit expression in terms of strictly physical-region scattering 

functions of the continuation of the physical scattering function from 

P' to p" along a path that has a minus i€ continuation around every 

pure-a singularity. This is because any pure-a singularity (i.e., one 

corresponding to a diagram in which all a' s have the same sign) must be 

a pure minus- a Singularity, around which the function continues via a 

minus i€ rule, and each mixed-a singularity has a well-defined rule for 
'tt-e 

continuation, sinceApossibility that D* in (b) differs from D by an 

overall change of signs of the a's is precluded by property (a) plus 

the fact that Rc has no Singularities corresponding to D+n(m'~ m). 

Since the last term on the right of (1.1) is the continuation of the 

scattering function from P' to p", the sum of the first two terms is. 

precisely the discontinuity of the scattering function at p" corres-

ponding to the path P'P". This argument is given in more detail, and 

is generalized, in Section VIII. 

At points p" sufficiently near almost any point P 'on the 
jon the 

threshold the second term right of (1.1) is zero. Thus the discontinuity 
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around the threshold singularity alone is given by the first term on the 

right of (1.1). This result is represented by the equation 

" 

. , 

WI 
2 

( I. 3 ) 

which is valid just above almost all points on the leading threshold T
L

• 

The symbol on the left represents the discontinuity of the scattering 

amplitude around TL• Equation (1.3) is a special case of a general rule 

first conjectured and discussed in Ref. 4. 

The above arguments apply equally well to the one-particle 

w' ~w normal threshold. In that case the minus box in (1.3) becomes 

. unity and the discontinuity formula becomes the well-known pole­

fact~rization property.5 

Results similar to those for the leading normal threshold des-

cribed above are obtained for the nonleading normal thresholds lying 

inside the physical region below the four-particle threshold in the 

w' ~w channel. The analog of (1.3) reads 

.' 

w' 2 

(t.4)< 

The Pi bar imposes the restriction that the sum of the rest masses of 
~ 

the particles associated with' the lines cut by the bar be not less than 

the mass Mi associated with the threshold. Ti in question. The -i 

box is defined by the equation 

,IV 
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where the bar on a box signifies that an I box has been subtracted off. 

This equation becomes the unitarity equation if the Pi bar is omitted, 

and the (-i) boxes are replaced by minus boxes. Equation (1.4) is 

closely connected to a formula obtained by Olive6 for two-particle 

thresholds. 

Equation (;:L.l), and the similar equation leading to (1.4), ate 

physical-region identities. Thus they may be substituted into the plus 

bubble appearing in the first term on the right. In this way discon-

tinuity equations for more complicated singularities can be obtained. 

The main task in this paper is to derive the identity (1.1), and 

ones similar to it, and to substantiate the claims made regarding the 

properties of R. This involves repeated use of only the unitarity and c 

. cluster p~operties; analyticity properties are not involved. The first 

step is to develop a diagram calculus to deal with the cluster properties 

and unitarity equations for indeterminate numbers of particles. This is 

. done in Section II. Sections III and IV establish some terminology and 

place on a firm basis some simple preliminary propositions. These two 

sec.tions ,can be skimmed on first reading. . The main proofs are in 

Sectiorrs V and VI. Section VII contains some incidental remarks concerning 

other forms of the results. The analyticity properties that follow from 

the identities established in Sections V and VI are described in detail 

in Section VIII. 
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II. 'REPRESENTATION OF THE CLUSTER PROPERTY 

A box labelled by a symbol and connected to a, set of lines ' 
~; , 

represents a certain sum of bubble diagrams. The lines on the right 

and left will be called the incoming and outgoing lines, respectively. 

A plus (minus) box represents a sum over a column of,plus (minus) 

bubbles, the sum being over all different ways that the given incomi~g 

and outgoing lines can be connected to each other by bubbles, subject 

only to the, conditions that each line touch precisely one bubble an~ 

each bubble touch at least one incoming line and at least one outgoing 

line. [Each incoming and outgoing line terminates at or emerges from, 

respectively, the, bubble it touches.] 

An "I" box is constructed by the same ruies, with the added 

condition that each bubble touch precisely one incoming line and 

precisely one outgoing line. No distinction is drawn between a plus, 

minus, or I bubble that satisfies this condition. 

The unitarity equation 

I . 

a~p=a~p=a~(3 (2.1) 

is regarded as an equivalence relation connecting different box diagrams. 

As explained in I, the rule for multiplication of diagrams 'is that 

topologically equivalent diagrams of the natural product are counted 

precisely once." This leads to the second fundamental equivalence 

relation 
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a~y= 
P~8 

a~y ·a~y (2.2) 
P~8 fJ~8, 

where the same choice of + is to be used throughout. These two 

fundamental equivalences, when combined with cluster properties, will 

yield our results. 

Often a set of intermediate lines connecting two boxes will not 

be explicitly shown: the two boxes will simply be moved into contact. 

In the above equations, and in what follows, sets of lines are 

labelled by Greek letters. These sets are allowed to be empty, unless 

otherwise stated. The equation a = 0 means the set a is empty, 

a ~O means it is not empty, and a >1 means the set has more 

than one line. The lines are considered to run from right to left and 

:I... 1 x+(a) symuo s and x-(a) denote the sets of leading and trailing 

end points, respectively, of the lines of the set a. 

The cluster properties reside in the definitions of the plus 

and minus boxes in terms of their respective bubbles. To exploit these 

properties we do not fully decompose the boxes into their constituent 

bubbles, but make, rather, partial decompositions into sets of terms 

with different connectedness properties. The first of these partial 

decompositions is e)~ressed by. the equation 
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The first term on the right represents the sum of those terms of the 

left that contain at least one bubble touching lines in both OJ. and 

a2 • The second term consists of a sum over all decompositions of the 

set ~ into two sets ~l and ~2. Each term of this sum consists 

of the indicated boxes combined according to a product rule of composi-

tion. This rule gives, for each pair consisting of one term from each 

.box, a column consisting of the sum of the bubbles of the two members 

of this pair. The validity of (2.3) is proved in Appendix A. 

Henceforth' we adopt a summation convention that serves to 

eliminate the summation sign in (2.3), and in similar equations that 

follow. If a set ¢ appearing on the left is partitioned in all 

possible ways into certain' flets appearing on the right, then these 

latter will be denoted by ¢j: A summation over all partitions of the 

¢ into the varioUs ¢j is always implied. Occasionally the set on 

the left will already have an index, but the rule still applies. For 

example, is partitioned into sets 

A second important decomposition rule is 
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f32 

Here 

- ' , 
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(2. 40) 

'. 

(2.4 b) 

j.,-' 

!: 
I·· 

i 
" 

I 

i . 
! " 
i' 
[:,' . 
[,.: .~,'~. 
r. 

, ' 

I c" 
I' 
I 

, ,,' -'-, 
'F :, :' ',' 

J :. ~ 

( 2 5 ) \ 
'. I ' i: '{,:" 

::i8 defined to be empty if 0:2 = 0 or 0).2 '= 0 • Otherwise it is 

the sum of all contributions to 

a12~"" ", 
", , ,- {32 
, a2 ," ' 

( 2.6 ) 
..... - .~ ... } 

with the property that each line of 0).2 touchesa.bubbl~ that touches' 

at least one line of 0:2 ° The box diagram 
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( 2. 7 ) 

is defined to be empty if ~2 = 0 or a2l = O. Otherwise it is 

the sum of all contributions to 

• a'2~. f3 
• a21~~ 2 

that have the property that each line of ~2 touches a bubble that 

touches at least one line of a2l, and vice versa. Equations (2.4a) 

and (2.4b) are proved in Appendix A. 

The decomposition (2.3) also applies to the I box, but the 

first term on the right of (2.3) is then empty. Thus, 

and 

. 
a.~ (3, 
~f32 

(2.9) 

( 2.9 ) / 
• 

.. ~ .. ' 
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The I box (2.9) or (2.9)' is equivalent to the identity when 

postmultiplying a bubble diagram symmetric in the set of lines a 

or when premultiplying a bubble diagram symmetric in. the set of lines 

~ .. This follows from the definition of the I box and from the fact that 

in products of boxes topologically equivalent contributions are counted 

only once. Thus, for instance, 

even though 

+ -
From (2.9),(2.9)', and (2.2) we obtain 

I 

and 

al~(31 

a2~ ±I I ~ (32 

( 2.10 1 

• (2.11) 

(2.12) . 

OJ •. 
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a l f3 1 Q, {31 .... 
t', 

°2 {32 f32 
.... 

'; . 

{3, 
., 

\ 

+ --
• 

(2.13): 

[The number of lines crossing an interface between boxes or 

represented bya shaded strip is always allowed to be zero, unless 

otherwise stated.] 

Remark 2.1. Equations completely analogous to those discussed in this 

section but with the role of the incoming and outgoing particles 

switched are denoted by a primed equation number. We shall use, in 

particular, the equations 

--_.- .. -.-------_ .. _._--------_._ ... _ ... _._----- -----.-----~---. ----.. ----- ---_ .. - ... _-_ .•. _-----_ ... -'_ .. _. __ ._. --, .... 

a ( 2.3) I 



.. 
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. and 

------. ---.---------~ .-------.~.--- ... ---- -~-.-~.-~.--... ---.:...- -~.------~--.~-:-.-.--~-- _. - - ...... --_ .. -.- -

( 2.40) 

, 

where the box diagram 

~- "-_. 
" . 

. ;. 

, I .. 
I-, 

. --'-'-----.. ---.--.-.,-... ---.. --.-~---.-.-.. -- ---._--_ .... _--- --.--.-.----.-----.---:---~---.-,-----~ '-.-~ '''._-''''-'---, 

+ ~12 

~2 
(2.5)' . 

is defined in analogy with the definition of (2.5). We also record for 

future use the definition 

(2. 14 ) 
• 
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III. CUT SETS AND DIAGRAMS THAT CANNOT BE CONTRACTED 

TO POSITIVE-a NORMAL-THRESHOLD DIAGRAMS 

Consider a transition from the system of m initial particles 

to the system of n final particles. Any separation of the ·n + in 

particles into two disjoint subsets defines a channel. If the two 

subsets are precisely the initial and final sets, then the channel is 

called the direct channel. If each subset contains both initial and 

. final particles, then the channel is called across channel. If one 

subset contains only initial or only final particles and the other 

subset contains both initial and final particles, then ,thechanneLds 

called a subchannel. The three cases are indicated in Fig.L(following page} 

where we have labelled one of the two subsets of lines w and the 

other w'. By convention the set w does not consist only of initial 

lines, and w' does not consist only of final lines. The sets w 

and w' are further subdivided into the sets ~ + w2 and ~' + ro2 ' , 

respectively, where ll1. + ~' is the set of final lines and ~ +(J)' 
2 

is the set of initial lines. The sets of external end points of the 

lines of w and w' are denoted byX(w) - x+(Wi) + X- (w
2

) and 

X(w') - X+(~') + X-(w2'), respectively. The tIro' ~'w channel" 

will mean the channel labelled in this way. 
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(0 ) 

Fig. 1. Three types of channels. 

·(a) The direct channel. 

(b) A cross channel. 

(c) A subchannel. 

(b) 

UCRL-17902 

(c) 
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The ().)' ~ ().) channel energy E«).)' ~ ().) is, 

V- o 

L-Pj
' 

j E I(~') 

UCRL-17902 

evaluated in a frame where the corresponding three-momentum is zero. 

The set rea) is the set of indices labelling the lines of a. Thus 

the reaction energy E«(J)' ~(J) is the net center-of-mass energy 

r10wing from X«).)') to X«(J). 

Definition 3.1. An ..l.(.:;;:(J)J..Z ..,;(J):;;;,.-' ),--...;c...;u.;..;t--.,;;.s...;,e...;,t of a Landau diagram D 1 supported 

by the bubble diagram B [i.e., D-::>CB] is a (possibly empty) 

collection C of lines of D with the following properties: 

(1») Every path in D that starts in X«).)') and ends in X«(J) 

passes ~ong the interior of some line of C, and (2), Property (1) 

is not satisfied by any proper subset of C. 

Proposition 3.1. Let C be an «).), ().)') cut set of a D~C:B and let 

, C' be the set of all interior points of all lines of C. Let X( C, (J) 

and X(C, (J)') be the parts of D connected in D - C' to X«(J) and 

X«).)') respectively. Then, 

, . { 

" 

r 
I 
,{ 

1 
! 

! 
I 
I 
I 

I 

i 

1 
1 
r 
l 
l 

": l 
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I 

(i) . X-(C,()))OX(C,())')= 0 (the empty set)" 

(ii) each line of . C has one of its end points in X(C,())) 

" ".:,," and its other end point in X(C, ())'), 

(iii) D - C' = X(C,O))UX(C,())'). 

Proof. (i) If X(C,())) and X(C,())') had a common point, then X«())) 

could be connected to X«())'), in D - C'. But then C could not be 

an «()),(:())~,) cut set, contrary to assumption.. (ii) The lines of D 

can' intersect (by definition) only at their end points. Let C be 
()) 

the, set of lines of C that have an end point in X( C ,())) • Since 

X(C,())) and X(C,())') are disjoint, every path in 'D from X«())) to 

X«())' ) must leave X(C,())) via a line of C . 
()) 

Thus, X«())) and X«())') 

cannot be connected by any path in D - C " where C' is the set of 
()) ()) 

all interior points of all lines of C. But then C must be just 
, ()) ()) 

C, for if C were a proper subset of C then·the second requirement 
()) 

on the «()), ())') cut set C would be violated. Similarly, every line 

of C must have an endpoint in X(C,ill'). Since X(C,())) and X(C,ill') 

are disjoint, one end point of each line of C must lie in X(C,ill) 

and the other must lie in X(C,())'). (iii) Suppose there were a part 

of D - C' not connected in D - C' to X«())) or to X«())'). Then, 

, by virtue .• of (ii) this part cannot be connected in D to X«())) or 

to X(ill"). But all parts of any D::>CB are connected in D to 

external lines of B, and hence to X«())) or to X«())'), by virtue of 

the conditions on D~<:B. In particular, each bubble of B has both 

incoming and outgoing lines. The partial ordering condition on the 
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bubbl~of B ensures that each bubble lies on a path that starts at 

some incoming line of B and ends at some outgoing line of B. In 

forming D:::>CB the bubbles are replaced by connected diagrams. Thus 

every point of .D:::::>CB is connected to both the incoming and the 

outgoing lines of B, and hence to X(ill) U X(ill' ). 

A schematic representation of Proposition 3.1 is shown in 

Fig. 2,.( following page). 

Definition 3.2. A simple (ill, ill') cut set C is an (ill, ill') cut set 

C such that'every line of C has its leading end point in ,X(C,ill)' 

and'its trailing end point in X(C,m') 

Definition 3.3. A simple positive (ill, ill') cut set is a simple 

(rn, rn') cut set having no "minus lines". [A minus line. is a line 

of D:::>CB that is an internal line of a Landau diagram D b c 

corresponding to' a minus bubble b of B. Such lines must carry 

negative Landau~'s, according to the rules set down in Ref. 1.J 

Definition 3.4. A? (ill,' ill') is the set of all bubble diagrams B with·' 

the property that no D=><:B contains a simple positive (ill, ill') cut 

set. 

Definition 3.5.t14.(ill, ill') is the set of all bubble diagrams Bfor which 

at least one of the following two conditions holds: 

(1) B is not a connected diagram. 

(2) No D:>C:B contains a simple positive (ill, ill') cut set' 

such that X(C,ill) and X(C,~') are both connected 

diagrams. 

• 
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. _~...J-_..-.-_____ .-, __ .l. __ ---, __ ~ •• __ ,,~ _____ . ______ ............ ____ . ______ •. ____ ~ -~'" .". - _ •• ,- ." 

Fig. 2. The topological structure induced by an (~,m') cut set C. 

The directed line segments L.EC are shown. 
~ 

The lines are all 
, 

shown directed to the left in accordance with the discussion at 

the end of this section. The X(C,m) and X(C,m') parts of 

D::>CB (indicated by the shaded areas of the figure) may be 

disconnected diagrams. Each point of X(C,m) [X(C,m')] is 

connected in X(C,m) [X(C,m')] to one or more of the external 

end points X(m) [X(m')] exhibited in the figure. Some of the 

.leading end points L;""L; of the upward-directed line 

segments of C may lie in X+(~), and some of the trailing end 

·points L- L- "'L- of the downward-directed line segments of 
s' w' q 

C may lie in X-(m2), and similarly for the lower end points 

+ -of these lines. The ordering of the end points [Le., L1 > LjJ 

is not significant. The set C is called a simple (m,m') cut 

set (see Def. 3.2) if and only if the set of downward-directed 

line segments [i.e., those leading fromX(C,m) to X(C,m~)] 

is empty. 
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It is evident that 

These definitions isolate the class of bubble diagrams that 

cannot support any Dn +((J.)' -+(J.)): . It is clear from the definition of 

"support" (see Ref. 1 Sec. II) that no bubble diagram belonging to 
+ . 

can contain any Dn ((J.)' -'+(J.)), or any D that contracts 

to any D +((J.)f -'+(J.)). 
n 

The importance to us of this classification arises from-the 

Third Structure Theorem, which e~sures that the bubble-diagram function 

represented by any B E IR. (ro, (J.)':) . has a minus 
c iE continuation 

into itself around the singularity associated with any D:C.:.B that 

can be contracted to any (J.)', -'-?ro normal threshold diagram. Our 

principal task will be to prove that certain bubble diagrams are 

equivalent to diagrams belonging to ~ ((J.), (J.)'). 

It should be made clear that the diagrams ~C:B we are 

discussing are simply topological structures. They should not be 

confused with the geometric structures D obtained from them by 

mapping each line L
j 

of D into 'a four-vector 6
j 

The· 

diagrams n are a geometric representation of all the Landau equations, 

including the loop equations, whereas the diagrams D:>C:B represent 

only the conservation laws. In particular, the significance of the 

arrows on the lines of D arises from the conservation laws 

~I 

., 
.. 
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0: 
o· Since each Pj is by definition positive and 

'the arrow on each line points to the end at which is plus 

one, thel?e arrows simply indicate the direction of the flow of :positive 

energy. This interpretation of the arrows in terms of energy flow is 

independent of the sign of ex .•. 
J 

The lines of a bubble diagram are defined to be directed from 

right to left. The lines in the interior of each plus bubble will also' 

be directed from right to left, provided the vector diagram IT b is c 

mapped into the topological space by a monotonic mapping that places 

points of greater energy further left. The interior lines of each minus 

bubble will be leftward-directed if the opposite rule is used. Thus" 

if these rules are adopted, then all the vectors of any. DIe B will 

point from right to left, and one has a diagrammatic representation of 

the conservation laws in which positive 'energy flows from right to left. 

The convention just established plays no essential role in our 

arguments. But it makes geometrically obvious the fact that each point 

of any D~C:B lies on a continuous directed path P that runs from 

the trailing end point of some incoming line of B to the leading end 

point of some outgoing line of B, and is such that each line segment. 

L
j 

lying on P has the same direction as P itself. That such a P 

exists follows analytically from energy conservation and the partial 

ordering requirement imposed on bubble diagrams (see Section II of I). 

I 

, 

l ,. 

t 
I 

! 

1 . 

I, 

i 

i; 

r 
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IV. A CHARACTERIZATION OF BUBBLE DIAGRAMS THAT 

SUPPORT' NO POSITIVE-a DIAGRAMS THAT CONTRACT TO 

A (1) I ~ (1) NORMAL-THRESHOLD DIAGRAM 

The characterization we seek is expressed in terms 'of "paths. II 

A path in D is a continuous directed curve composed of an ordered 

sequence of line segments L
j 

of D. Neighboring segments meet at 

coincident end points. Each segment L
j 

of a path P can be indepen­

dently directed either along the path or against it. The direction of 

the path is specified by specifying its origin and its destination~ 

The direction of the line segment Lj 

already mentioned. 

of D is 'from L
j 

+ to L
j

, as 

Definition 4.1. A P € ~m(D~B) is a path in D:X=Bhaving the 

property that each 'L.lying on P is either directed against P or D 

J 

is a minus line [as defined in Def. (3.3)]. 

'If every D:>CB contains a P € fJ (D:>CB) 
" om 

that Proposition 4.1. 

conversely. 

Proof. If B does not belong to 1«(1), (1)/), then some D'::>CB must 

have a simple positive «(1), (1)/) cut set, C. Any path P from 

X+«(1)l/) to X-«(1)2) must contain lines of C. The first of these 

lines encpuntered as P is traced out is a nonminus line directed' 

along P. Thus this D:>CB' can contain no P € fom(D::::>CB). 

To prove the converse, suppose some D::>CB contains no 

P € ~m(D~B) that runs from X+«(1)l/) to X-«(1)2)' Then any path 

\. .. 

;.. '. 
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p in this D-=>CB from X+(m I) 
1 

to X- (m2) must have a first segment 

L that is both nonminus and directed along the path. Let the union p 

of the L over all paths p. from X+ (m/) to X-(m2) be denoted by p 

,UL , and define C = (U Lp)V (.()l Vm2 I. The sets X(m) and X(mi') . p 

certainly cannot be connected in D - e/, where e' is the set of 

interior points of C. Some subset C of C is therefore an (m, m/) 

cut set. Each line of C· is a nonminus line with either its trailing 

end point in X(C,ml ) or its leading end point in X(C,m). Thus, by' 

virtue of Proposition 3.1,. each leading end point of C is in X(C,m) 

and each trailing end point is in X(C,m'). Thus C is a simple 

positive. (m, m/) cut set for this D~CB. But then B cannot 

belong to -I< (m, a:I). 

A few examples illustrating Proposition 4.1 and the various 

definitions of Section III are given in Fig. 3. In these examples one 

should insert various connected Landau diagrmas for the bubbles. 

However, the results are independent of the form of these diagrams 

Deb. We need only the general result that there is a path from any 

incoming line of any D b to some outgoing line such that the 
c 

direction of the path agrees with the directions of all its segments. 

This follows from energy conservation and the fact that energy flows 

in along incoming lines and out along outgoing ·lines. (See the 

discussion at the end of Section III.) 

.; 



/ 

UCRL-17902 

.. 26-

{ IE 
W2 

wI L· , 
I E 

}w~ i { E , 
Wi 

I .;: 
( 

8 3 84 
1· 

.. ..... ---_._ ...• _ .. . ............ ~-

Fig. 3. TP.e bubble diagrams Bl and B2 belong to Q (m,m' ), whereas 

B3 . and B4 do not. 

every D.:::>C Bl or 

X + (~.') to X- (m2 ) 

This follows 

D::>CB2 there 

such that P 

from Proposition 4.1: For 

is a path P running from 

is in .f (D~CB1) or 
om 

P
om

(D;::'CB
2

), respectively. But not every D:::><:B
3 

or 

~C:B4 has ~ path P rUnning from X+(~') to X-(m2 ) such 

that P is in. ~m(D'::>C:B3) or' ~m(D=:>CB4)' respectively. 

That B3 and B4 do not belong to -R. (m, m') may also be 

seen directly from Definition 3.4, since the lines Li of B3 

and the lines L., TL, and L J -k s of B4 are a simple positive 

(m,m' ) cut set for some D~CB3 or D~C:B4' respectively. 
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, V ~ .. > NORMAL-THRESHOLD EXPANSIONS" OF SCATTERING FUNCTIONS 

A. Two Ba'sic Identities 

Unitarity can be regarded as an equivalence relationship between 

different box diagrams. In this. section certain box diagrams are 

converted by repeated use ofunitari ty: and the cluster properties to. 

certain equivalent box diagrams. 

Proposition 5.1. The cluster properties andunitarity imply that 

WI'S, W2 

W' W' , 2 w' I 

W'8W' + R 2 , , 
W'W, W2 , 

2 

(5.1 ) 

where the R box represents a sum or bubble diagrams all of which 

belong to .(( (ill, ill'). 

Proof~ The proposition follows immediately from (2.1) and (2.2) if 

(.l)2 = 0 or if I 
UJ. = 0: then R = O. Thus we assume that- ill2 and 

ill 1 are nonempty. The use first of 1 
f ' 

(2.3) , and then of (2.1), (2.2), 

and (2.4a)' gives 

\. 

, '" 

.; :" 

," .~' 
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.-----' .-------.---....---~-., .. ---~----~--:...-.-... --.----.-..... ~ .. 

(5.2) 

, [The various summations· required by the formulas of Section II 

are implied by the summation c6nveIJ.tion for internal lines introduced in 
, . 

. Section II of I.] Al ternati v~iy;-: ,the uie first of uni tari ty, then of 

(2.13), (2.2), and again unitaritygives 

, 
., 

( 5.3 ) 

The application first of (2.3)', ~d then of (2.1), (2.2), and (2.4a)' .. 

to the ·first term on the right side of (5.3) gives 

":. 

. 
; , 

; . 

. <,I 
-4. ~ 

! 

I 

, I 
I 

I 
" f , 
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, " 'i .;.. ... ~:.....,..->:...,.~.~~,.-~--. .---:-.--~--------~.------~~--'.~~.~-- .. ---.-.:....'--~~-.. _-:'---,---..- -~-~-.----,:---... ......:....- -_.' 

.,j 

"',1 

, ': 
-~ , 
, 1 

>~ 
_ '~~'::'_'_"7"' __ '~ _. __ ._ ... _ 

+ 1--....-... + 

WI _ .... r- 2 

.----... . .. _ W2 

'wI 
2 

Comblning(5.2), (5.3), and (5.4), one obtains 

w,w' 
2 I. 

.. UCRL-17902 

. , 
, 
, ' 
1. ' 

,. 
::,' 

i' 
.. ~ '. ' 

; " 

( 5.5) 

.;, 

"" 

.. 
f~' 

1 
I 
f" 

I 
! 

i 
f 

! 
" ! 

J' 
i 

: 
j, 
t 
r 
I 

\, -', r 
'I 
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A rearrangement of terms, and an application of (2.2) and unitarity 

converts this to 

-.! 

~.---'";'-.-~..,.--- ..... -.. - - -.. .- .. -

WI, 
t 

'~ . . 
" 

( 5.6) 

Equation (5.6) can be iterated. Iterating n times, each time 

simplifYing by means of unitarity and (2.2), one, obtains 

" 

... ' 
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The number of iterations n is fixed so that 

E(~, 00') <: (n + l)EO' where EO is the rest energy of the lightest 

particle. The definition of the box diagram (2.5)' requires that the 

and ~. be nonempty: 
~ 

Otherwise the set of diagrams containing 

these sets is empty. 

Let the box diagrams on the right of (5.7) be denoted by HO' 
. ' 

H··· H··· Hn' Hn+l , where HO is the first term on the right, l' 'k' , 

Hl the second, etc. Any Landau diagram .supported by any Hi contains 

a path P € {J (D?CH.) from X+((1).,/) to X- (002), as will now be om ~ -J. 

shown. For any Hi but Hn+l each end point of X+(~l') is 

connected to the trailing end 'point of some incoming line of the leftmost 

upper, plus box by a path whose sense is opposed to that of each line 

of that plus box. This follows from energy conservation. (See the 

discussion at the end of Section III.) This concludes the argument for 

For the remaining H., 
~ 

o < i ~ n, the path just constructed can, 

by virtue of the definition of (2.5)', be continued to some point of 

X+(~) by a path composed only of minus lines and hence lying in 

.-f om(D:::>CHi ) . The same argument allows the path to be continued to 

a2, then to a
3

, and so on to X-(002). Thus, according to Proposition ,4.1, 

all Hi. but Hn+l belong to ~(oo, 00'). Consider finally H 1. n+ 

Since the sets ~i are nonempty, the energy E(s) of the set s 

satisfies E(~) ~ E(002) + (n + l)Eo' On the other hand, the 

condition on n is that 

. 'f'_ :.' 

.,. 

;, 

, 
1 

i 
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. inequalities combine to give E(~) > E(~).· But then energy conserva­

tion implies that the second term in the first parenthesis vanishes. 7 

Furthermore, in the first term in the first parenthesis some energy must 

flow from X-(~) to X+(~/). This ensures that there is a path 

p € ~m(D~C:Hn+l) from X+(ml
/ ) to X-(~). This path can then be 

extended to X-(m2 ) by means of the same arguments as before. Thus, 

all terms on the right of (5.7) belong to .~(m, m'), and Proposition 

5.1 is proved. 

By (2.14) the first term on the right of (5.1) can be written 

in the form 

+ 

WI w2 WI w2 WI w2 

+ + 
+ 

wi wi wi Wi Wi I 
I 2 I 2 I w2 • 

(5.8 ) 

Then Def. 3.5 [which implies that B belongs to ffc(m, m') if it 
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belongs to JRCw, Wi)] together with (2.14) and(5~8) allows (5~1) 

to be written in the form 

W' I 

+ I 

, 1 

A') , ' 
where the Rc box consists of a sum of terms of ~(w, w ). 

w' 2 

, . 

Our next objective is to show that the second and third terms 

on the right of (5.9) can be placed in the last term. To this end we 

first prove 

Proposition 5.2 The box diagram 

--- - "". -- -". 

a 

~Y a 
B, 

{3 {3 
+ 

( 5. 10) 

,. 

.. i , 
! 
i , 
I 
I 

I 
.1 
! 
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. . . I 
is equivalent to a d~agram Bl . such that the only simple positive 

(a, (3+ y) cut set C . of any nS CB I 
1 

is the set of lines a. 

Proof. Let B I be the right side of (B.4). 
1 

In each term let aI 

be the subset of a .connected to the I box. The set C evidently. 

contains ~. For the first term on the right of (B.4) the set ~ 

.is a and the required result clearly holds. For any n' supported 

by any other term the definition of (2.5) guarantees that any point 

of X- (a . - a
I

) lies at the end ~f some path P € ,p (n S CB1 ' ) that 
. om 

.+ 
starts in X «(3). [One uses the properties of (2.5), to trace a path 

pi conSisting only of minus lines from each point of x-(a.) to some 
~ 

point of X-(5i ). This path can then be extended to a..path p" ending 

at some point of X«(3): One uses the properties of (2.5) to get 

through each minus box of the form (2.5) encountered on the path from 

X- (5i ) to X«(3). The desired P is the negative of pl!. ] No point 

of such a path P. can belong to any simple positive cut set~ Thus, 

all points of x-(a) must belong to X(C, (3 + y), by the definition of 

X(C, (3 + y). Thus, the ~nly simple positive (a, (3 + y) cutset is 

a. 

I I This proof also shows that for any n -::>C Bl , all points of 

D' - a lie in X(C, (3 + y). This gives the following 

Corollary to 5.2. Suppose the Bl of (5.10) is part of some box 

diagram 
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i 
. i 8 = (5.11 ) . : I' 
, 

Then the replacement of Bl 
I 

in B by the equivalent Bl of 

Proposition 5.2 gives a B' with the property that, for any simple 

positive (m, (1/) cut set C of any D''::'CB', all the points of 

will belong toX( C, m I) if all points of + X «(3) 

do. In fact, all points of DI' - a, where 

which is supported by Bl" lie in X(C, m' ) 

and X-(y) do. 

D 'is that part of D I 
I 

if all. points of X+«(3) 

Proposition 5.3. The cluster properties and unitarity imply that 

.' t Z 

" 

The Rc box is now, and hereafter, a generic symbol.used to denote any 

Bum of bubble diagrams each term of which belongs to .Ii (w, wI). 
C 

Proof. The corollary to 5.2 applied to the third term on the right of 

(5.9) gives 
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( 5.14) 

The last step follows from the fact that any simple positive (ro, ro') 

cut set C that leaves x-Cal in I(c, ro/) must make I(c, ro) a. 

disconnected diagram. A similar argument applies to the second term on 

~he right of (5.9). This proves (5,,12)~·. The contribution to the fourth 

term on the right of (5.9) coming from the connected part of the minus 

box clearly has no positive cut set C that leaves I(c, ro) and 

X(c, ro/) . both connected diagrams. 

the proof is complete. 

Thus it belongs to ~ (ro, ro/), and 
c 

The form of the first term on the right'of (5.13) is invariant 

under the crossing (incoming ~ outgoing) of lines of ro or of ro'. 

However,.no analyticity or crossing properties have been used to derive 

(5,.13). the result is obtained strictly from uni tari ty and cluster 

properties in the direct channel. 

. t 
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For E«(J.), (J.)'). less than the lowest four-particle (J.)' ~ (J.) 

threshold, E4, the second term on the right side of (5.13) belongs 

to .)f( «(J.), (J.) ). This is proved in Section VI. Thus, for this energy 
c 

range Eq. (5.13' ~ reduces to 

[E (w,w')< E4] (5.15) 

. ...,,, . 
. '. 
~. 

i 
. i 

i. 

I. 

, 
'" ' , 

i 
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B. Expansion Exhibiting the Discontinuity of the Scattering 

Function for Nonleading Nor.mal Thresholds 

The expression for the scattering function given by 

Proposition 5.3 exhibits the discontinuity function for the leading 

normal threshold in the (ru, ru') channel. To exhibit the di.scontinuity 

for nonleading normal threshold at channel energy E(ru, ru') = M. we 
~ 

use the i-box formalism of paper I. This formalism applies only if 

E (ru, ru/ ) is below the' four-particle threshold of the ru' -+ ru channel. 

Thus the following results are similarly restricted. 

The basic identity we need is 

-- + (5.16) , 

where Pi and Qi are the projection operators associated with the 

mass Mi [see (5.5) of IJ. To prove (5.16) we first use (2.9), (5.8),' 

(5.5), and (5.19) of I to obtain 

r· 

" 

". i 
r 
I 

f 
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Q. . 
firh, 'I" 

= -9.jy - ~ -I i ~ + @ 

! . 
i 

. ~ 

'. 

( 5. 17 ) 

. and 
..... _-_ .. __ .... __ .... --

. 0-'0- · I - -.. - I 

Qj '. 

~\I-~+0. 
(5.18) ; 

Definition (5.44) of I converts (5.17) to 

(5.19) 
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Application of' (5.18): to the term in parentheses yields (5~16}~. 
, ... - , 

,~" , 
Substi tutioh of' (5.l6} into (5.1) yields 

, ". " .. 

, ., _ ... _.¥ .-~ .--~---- .------ ------~--- ----------------- -.--- ---,_.- -- -.------. - -- -.~ ------~-.-----~.------ -,------.--' -~ ...... -"~1- ,. 
I 

+ 
+ 

WI 
2 '" ... !U 

I 
;; 

f:' ... -.. ,' ," 
, 

, 

w' I (5.20) t· 
. ~~ , 

By Proposition 5.2 the second term on the right of' (.5.20) is equivalent . 

. to 

( 5.21 ) 
.'; ... '-.--~~: ... 

!3ome newdef'ini tions are now needed. Let ci
«(1), (1)') ==C

i 

,denote any simple positive «(1), u.l) cut set composed of' lines such 

that the sum of' their masses is greater than or equal to Mi. Let 

. A<.. i«(1), (1)') rep~esent the set of' all bubble diagrams B with the 

. i 
property that no D~C:B has a cut set C. Let 

. . : . . -

f . 
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. ' . ..;..' -.:...' -,----,' ... _-'--'---'_.-----.- ---_. -'..._-.:....------_._. -----_ .. - ------.- .---.. _ ... _._-------.- _., ------ . 

--;.' 

'I 

i 
'1 ., 

.. '1 

'1 
'j 
:/ 

.... <:. 

. WSW R I ( W, WI) ==.' ~R I . . ~ 
. w, W2 

..,- ":---.-- ·-·~·-·----·7--- ..... -. 

~epres~nt any sum of terms or' ~i(m, m') . 

. Siniilarly, let 

II' .: 

t· i . 
~. ~ .. ~ 

(5.22) .. / ,:': .. '~: 
1" . '.' 
,.'. . i 

L· 
..--.~.-,...,-:-- ..,.....-~-'-. 

-----_. --------------------_._---------_._. -----'-_. . .., :. 
-.....:..~..:...---.-~~} ~ ., ...• 

Wigi W 2 

W' C W' 
I . 2 

R i ( , i) = Ri c w, W . ,- . C ( 5,.23 ) --
~",':$.,)' .' 

f··:' . ", " 

r -, . 

t-
i.;' 
I . 

. ~.: 

I 

, ' 

.: 
" 

·t· 
- .... ~ -- .~ ... -'~-, . ' 

4. ___________ • ___ ••• _. ___ ._ . .,.:;.....--=-.. _ .. ___ ~._ .. ____ -,. __ ... _.~. _____ • _ 

. represent any sum of bubble diagrams .each term of which either is 

.. ·:.::.dlsconnected, o:r does not support any Landau diagram containing a cut '" .... 

i i -i set C. such that X(C, m) . and X(C, m/) are both connected 

diagrams. Evidently, the sets .f<...(m, m'), fP (m, m'), .and ~i(m, m')' . . c. . 

are subsets of .&C i(m, m/ ). The function corresponding to any 

B E If c i.(ro, 01) has, by virtue of 'the .Third. structure Theorem, a minus "­

ie continuatio~ into' itself pas't any norma:l threshold Singularities 

at E(m, ro') = Mi that is associated with a m
' 
~ro normal threshold' 

diagram. 

,By the Corollary to (5.2), any simpleposi ti ve (m, m/) . cut 

set, and in particular any Ci(m, m'), contained in a Landau diagram 

D. supported by (5.21) must be composed only of lines of that part of 

D that is supported by 
. /' 

, ._. 
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' ... -, ..... ~." .. " .. - -' .~, .. "- ~:, ······ .. f .' 

J. 
I 
- .. - ( 5.24 ) 

e· 

•...• - ....... -.---.. _" "':"--.--:-.-.-.---.-,.. ...... --.... ~", . -'-' .'-.,- -,- - ... -

. Thei'unct1on ·.Ji . is defined by Fredholm theory (see Appendix B of I) . 

Its analytic structUre is, however, exhibited by the terms of the formal 

expansion: 

. " .' 

: ~·~._'H _____ •• __ ._. ____ ..:._. __ ~_ .. ~ ___ ._ •. _.~~_._. _____ • ___ ~, __ • __ ._ ~~._~_.~_,~._ ...... _ •• ~ ... _____ ._ ...... ___ ~ •• __ .:. _ . __ ~ ___ ........... _._+ __ : _"'_ 

J _ Q@'Oi. 
. - I -I 

~i ~llil~i ~ + - - - ••• 
(5.25 ) 

Each term in this expansion consists of minus bubbles and' sets of lines 
) 

. restricted by the Q. bar conditions. 
~ 

Consequently, no Landau diagram 

supported by any term on the right of (5.25) can contain a' cut set 

ci(w, wi). Therefore (5.21) belongs to J!(i(w, w'), and (5.20). can be 

written 

! ", 

, . 
. ' -,' ':'. 

The formula just obtained is the i-box version of Proposition 5.1-

>It can be~im:plified by further manipulations . Alternatively, one can 

··apply (5.16) directly to (5.15). Then one obtains 

!'" 

.-", 
~ .,' . 

.~ ': .. 

, "~. ,., 

.. .. ~. 
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, J 
1 
I 
,j 

l 
I 
1 
'i-

I 
, 1 , 

", i 
" i 

! 
" ~ 

, . -W2 Q.Q. 
w~ II 

+. ,+ ' -I i,I-~,+ ,+ 
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The' second term on the right can be'incorporated into the, last, 

by virtue of the following proposition •. 

Proposition 5.2C. Consider the diagram . ",1,:, 

':. 

' ..... 

: .... 

'\ . 

_._--------------_._ ... _----, ._--_._---,--- .-------,-----~-.--'---' --,-.-~ ,.--,'---.~:~~>:" ',' " . 

a --- Y. 

(5.28)' 

If the center-of-mass ener~ of the set ex is below the four-particle 

threshold in, 'the t3 + '1, ~ ex channel, then B2 is equivalent to a 
. I ' I I 

,bubble diagram B2' having ,the ,property that for any D '::>CB2 the 

only simpl~ positive' (ex, t3 + '1) cut set C with connected X(C, t3 + '1) 

is ex itself. 

This proposition, which·is simila.r to Proposition 5.2, upon 

which it is based, i'8 proved in Appendix C. Combined with the 

properties of ,'Ji ,.of '(5.25) it shows that the second termon the right' 

of (5.27) belongs to .I? ci(oo, (0
/
). Thus we obtain 

I. , •.•. 

f , ',' .. 
! 
i. 
I . .' 

i' , 
f 
I':'." 

! r . 
I' 

I 

'. 
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(5.29 ) 

The second term on the right has a minus i€ continuation into itself 

past the normal threshold at E(w, Wi) = Mi. The first term is 

therefore the discontinuity of M+ around this threshold. 

" 
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VI., ANALYSIS OF THE SECOND TERM 

A. General Re sul t 

In this section the second term on the right of '(5.12) is 

further analyzed. That is, various bubble diagrams included in this 

term, but belonging to ~(w, w'), are identified and separated out. c . 

A generalization of Proposition 5.2 is needed: 

, Proposition 6.1. The box diagram 

.. 

.. _____________ ..... ______ . __ ._.'-___ ._ .. ______ . ______________ . ____ " __ .. ___ ._L . _____ ~. __ ~_. __ ~._. __ • __ .... ~~ ____ -__ • ___ , 
, 
'. ' 

a 

, I I 
is equivalent to a box diagram B3 such that, for any D::>CB3 the 

only simple positive (a, ~ + y + 0) cut set C containing no line of 

o is the set a. 

Proof. Equations (2.3)' and (2.4a)'give 

.Y , 
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Y (6.2) 

+ y 

• (6.3) 
Since no line of 0 can be in the cut set C, every line of <=1. in the 

first term of (6.3) evidently must be.. [By definition, no line from any 

minus bubble can be included in this cut set.] Then the Corollary to 

5.2 completes the proof for this first term. For the second term the 

definition of the box diagram (2.5)' , together with the requirement that 

,each bubble has both incoming and outgoing lines, ensures that each line 

of ~ is connected to a minus bubble (including trivial bubbles) that 

is connected to a line of o. Thus each line of '<=1. must belong to C.' 

Each point of X+(s) lies on a minus bubble that is connected to a line 

of 0 arid it must therefore belong to X(C, t3 + 1'+0). Then the 

Corollary to 5.2 completes the proof. 

Corollary 6.1 Suppose the B3 of (6.1) is part of the box diagram B 

of (5.11). The replacement of the two Bl parts of (6.3) by the B{. 

t I . 

! 
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of Proposition 5.2 converts B3 to B3' and converts B to an equiva­

lent B'having the property that, f~r any simple positive (m, m') 

cut C of any D'~C:B', all the points of -x~(a) belong to X(C, m') 

if all points of x+(~), X-Cy), and x(a) do._ Let the part of D' 

supported by B3' be called D
3
'. Then all points of D3' - a belong 

to X(C, m') if all points of X+(~), X-(y) and x(a) do. 

Proposition 6.2. Unitarity and the Cluster Properties imply that 
1-- -------------- -------------------------------------- ------------------ - - ---------- ------ - ----- ---'----------- ---,---.. -

WI 
W2 
W' 2 

---.-------

I 

Wn 

W'2 

• 
• 

W
lk

_ 

C 

k,j,a r ,/3r>1 

w'8 WI C , + 
(6.4 ) • 
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indicates a sum over connected terms only. 

The condition 0: > 1" means the set 0: must have more than one line. 

The prime on the summation symbol indicates that it includes only one 

of the k! j~ topologically equivalent terms coming from the relabeling' 

of the sets of initial and final lines. [And, as throughout this paper, 

once the sets of external lines are fixed, the sums are only over 

topologically distinct. diagrams.] 

Proof. Let the right-hand plus box in the second term on the right of 

(5.12).' be expanded according to (D.ll) of Appendix D, with the lines 

i,j,···n of a identified with the lines that go to the minus box. 

The terms + 
G.. k of 
~J ••• (D.ll) give structures of the form 

\ ' .. 

( 6.5 ) 

One observes that no D supported by any term of this structure can 

have a simple positive (ill,: (Or) cutset e such that 'K(c, (0 ')and 

'K(e, (0) are both connected diagrams. For if 'K(c, ~I) is connected,_ 

then the lines i, j,···k must evidently belong to 'KCc, (0'). But then 

by Corollary 6.1 all the points of X-Co:) must belong to 'K(C, (0'). 

I 

I 
! 
'I 
l , 
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This means that X(C, w) cannot be a connected diagram. A similar 

argument applies to the left-hand circled plus box of (::6.5). Thus all 

the contributions associated with the G;.· k. terms of (D.ll) give 
~J ••• 

terms that belong to ~(w, Wi). The remaining term becomes the second c 

term on the right of (6.4), after the contribution coming from the 

connected part of the minus box is shifted to 

proof of Proposition 6.2 .. 

R • c This completes the 

i 
·1 
I 

I 
i 
I 

i 
I 

I 
1 i . 

I 
I .. ~ i 

I 
I 

I 
i , 
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B. Special Cases 

Case 1: E(m, m') below the four-particle threshold 

In this case the conditions on the second term on the right of (6.4) 

cannot be met. This proves (5.15) 

Case 2: below the five-particle threshold E 

It is shown in Appendix E that for this case (6.4) gives 
-,~, --- --, ----~--- .,--------- ,----,-- ---"-. ...:..;.---"--,---

w' --- ~,,- 2 

w,' 

( 6.6) 
The first two terms on the right contain all the singularities associated 

+ with positive-a Landau diagrams that can be contracted to any Dn (m' ~m). 

The positive-a double-cross diagram obtained by shrinking the bubbles 

of the second term on the right to points, and assigning plus signs to 

the lines, is such a diagram. It is readily confirmed that the 

r _ 
! 
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positive-a contributions to the double-cross diagram from the suiil.:of 

the first two terms in (6.6) are equal to the positive-a contributions 
, / 

-" ...... from ~"~ . 
~.-~---.--.------.---- - ... --.--.. -.-- --_ .. ,--_.---- .. - , .... __ .. _. " -.--.---.-~-----,- ----" .. -" " .... _--- .. -.- .-.~' 

(6.7) 

The significance of the results obtained in this section is .this: 

The function represented by Rc in (6.4) or (6.6) must, by virtue of the 

third structure theorem, continue into. itself' in a ,well defined way 

......... , 

", 
, 

, 
~. 

around any ,Landau surface L(D), near PE LCD), for any D that contracts 

to a (J)" -? (J) normal threshold diagram, provided the only singularity 

surfaces of Rc through P are LCD) and LCD*) ') wher~D* is 

obtained from D by reversing the signs of all the a's. And if D 

is a pure-a diagram, then this well-defined continuation is the minus 

i€ (i.e., nonphysical) continuation. Thus the discontinuity correspon­

ding to' any path p'p" that encounters only singularities of these 

types in Rc is precisely the first two terms on the right of (6.4) 

or (6.6)-. 

" 

,. 



UCRL-17902 

-53-

. VII. SHEET CONVERTERS 

a Below the lowest four-particle threshold E4 in the channel 

~ + 1 ~a one obtains from (5.18), (5.10), and Proposition 5.2 the 

result 

., , ( 7. I ) 
i. 

where B I 
1 

is the right side of (B.4), and satisfies the following 

proposition. 

Prol2osition 1.1 

Let ti 

and G ""' g = O. 

any· Dt::> CB 'I 
1 

and 
A 

be ~ 

The only 

is "" a. 

sets that satisfy d + g = a +~, Q c: a 

" -1 simple positive (~~ ~ + 1) cut set C of 

This proposition is a trivial extension of Proposition 5.2. 

By virtue of Proposition 7.1 and the Third Structure Theorem, 

we know that the function represented by the connected part of B1' 

has a minus i€ continuation into itself around any singularity 

associated with any diagram D'OCB1' that can be contracted to any 

~ + 1 ~ ~ normal .threshold diagram. USing the properties of (5.25) 

and Bl~< one finds a similar result for the second term on the right 

of (7.1): The connected part of the second term on the right of (7.1) 

has a minus i€ continuation into itself around any singularity in the 

interval 
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'.' I ' I 
associated 'With any diagram D :::>CB

l 
'that can be contracted to any" , ' ' 

1\ '", ' 
~ + y ~a normal threshold diagram." Let the set of singularities just, 4 

described be called S.(~,~ + y). 
~ 

Since the connected parts of both terms on the right of (7.1) 

continue into themselves via a minus i€ rule around all singularities 

of Si(d,g + y), and since (7.1) holds identically throughout the 

physical region, the connected part of the left side must continue into 

itself via the same rule. If Mi is chosen greater than the physical 

threshold in the ~ + y ~ a channel, so that the physical re"gion 

,includes pOints where E(a, ~ + y) < Mi' then the connected part of 

either side of (7.1) can be identified as the continuation of the 

scattering function from physical points E(a,~ + y) < Mi to points 

in E(a,~ + y) > Mi lying underneath the cuts associated 'With the 

singularities of S.(d,g + i). Continuability past other singularities 
~ 

is not guaranteed, however. 

The result just obtained is represented by the equation 

(7.2) 
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where the right· side represents the continuation of the scattering 

function to the underside of the. cuts associated with the singularities 

of Si (d,-g + r). [Some terms on the left of (7.1) are transferred, to 

the right by the methods of Appendix C (see C.3), in order to get 

(7.2). The symbol -i in the right-hand term is simplyi in 

References 1, 2, and 6.J 

The restriction that Mi be above the lowest physical thresh­

hold in the channel ~ + r 4a means that the lines a 01"(7.2) can 

be considered cut by a Qi bar. One would like to have this equation 

also with a Pi bar on these lines, since the formula could then be 

.inserted into the discontinuity formula (5.29). 

To obtain this result one must use the pole-factorization 

theorem5 in (5. 26). We do not pursue the matter here, but only remar.k' 

that the formulas in terms of the i boxes are the more useful ones 

anyway. For the expression in,terms of functions on other sheets 

introduces, in effect, new unknown functions. And there is a different 

new unknown function for each choice of the "other" external lines 

[for example, those in the sets ~ and r of (7. 2).J. The i box 

formula gives the discontinuity directly in terms of physical functions 
, 

alone, and the i box is independent of the "other" lines. 

.: 

I 
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VIII. ANALYTICITY PROPERTIES 

The phase~-space factors in unitarity equations have singularities. 

Corresponding singularities must appear in some scattering function. 

These latter singularities can combine with phase-space singularities 

to yield still other singularities of scattering fUnctions, and so on. 
", 8 

It has been shown that all singularities generated in this way by 

unitarity must lie on Landau surfaces. The first part of our (maximal) 

analyticity assumption is, accordingly, that all physical-region 

singularities of scattering functions lie on Landau surfaces. 

Physical-region singularities lying on Landau surfaces are 

physically interpretable in terms of the notion that momentum-energy is 

transferred over macroscopic distances only by physical particles. In 

particular, if the singularities of scattering functions are confined 

to Landau surfaces, then transition amplitudes can be shown to falloff 

faster than any power of a sca.ling parameter l' unless the trajectory 

regions defined by the wave packets of the initial particles can be 

connected to those of the final particles by a network of physical 

particles. 9 In the limit of large l' the distances involved become 

infinite. If one invokes the macroscopic causality requirement that 

the transition amplitudes falloff fast unless all the particles of the 

network move forward in time, then the singularities are confined to 

the positive-a branches of the Landau surfaces. 9 Moreover, the 

scattering functions on the two sides of these surfaces are analytically 

connected by a path that moves into a certain well-defined upper half 

plane. 9 This rule of continuation is called continuation via a plus i€ 

" 

'W 
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rule. Continuation through tne opposite half plane is called 

continuation via a minus i€ rule. 

The work of Reference 9 establishes also that if several Landau 

surfaces intersect, then the rules of continuation are compatible in the 

following sense: If the various intersecting Landau surfaces are all 

associated with diagrams that are contractions of anyone single parent 

diagram, then the intersection of the various upper. half planes is 

nonempty, and hence a region of continuation exists; if the diagrams 

corresponding to one subset of the surfaces intersecting at pointK 

have a common ,parent, but no two that include one of the remaining 

diagrams have. a common parent, then in a neighborhood of K the 

scattering function can be decomposed into a sum of functions each 

having only certain of the singularities, and having a well-defined 

.rule of continuation past these singularities. 

The above results provide a rule for continuation of scattering 

functions around all known combinations of intersecting singularity 

surfaces. To include any possible others, we assume that Singularities 

that are "unrelated at K" are "independent at K." Singularities 
;' 

"unrelated at K" are singularities corresponding to diagrams that have 

no common parent whose surface contains K. Singularities "independent 

at K" are singularities at -K that can be separated into different 

terms of an expansion of the scattering function. The assumption that 

unrelated singularities are independent ensures .that there is a well- . 

defined rule of continuation past all combinations of intersecting 
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surfaces of' singularities of the scattering.f'unction .. · This rule is 

called the "general i€ rule." It ensures that'an integral over a 

scattering function can be defined locally, as a sum of contour integrals 

that detour around singularities in a manner determined by the plus 

i€ rules for the individual singularity surfaces. 

The general ... i€ rule is the hypothesis of three "structure 

theorems" proved in Ref. 2. These theorems provide the analytic basis, 

of ,the present work. The First structure Theorem says that the function 

corresponding to a connected bubble diagramB can have singularities 

only on the Landau surfaces corresponding to Landau diagrams D~C:B. 

A diagram D~C:B is. a diagram that can be obtained by inserting 

connected Landau diagrams for the bubbles of B, and then contracting 

some (or no) lines. The Second structure Theorem says that these 

diagrams D~C:B, can be further restricted by demanding that the 

a's on the lines of' D~C:B that are interior lines of plus or minus 

'bubbles 'of' B have plus or minus signs, respectively. The Third 

Structure Theorem,gives the rule for continuation around the singularity 

associated with a given D::::>CB. It says that if :ot'[D] is the only 

.,: . 
. ~ 

Landau surface passing through a point K, and if the momenta Pj 

and Feynman a j of the internal lines of the corresponding Landau 

diagralD- are given uniquely by continuous functions aj(K) and Pj(K) 

for points on ;;( [D J. near ie, then the function represented by B 

continues into itself when continued around ;(. [D~B] near K by 

a path in the upper half plane of the variable 

·1 

" 
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;: ~ a.(X) Pj(K)·P.(K). .L J . J 
(8.1) 

-j 

The sum is over all.internal lines, and Pj(K) is anY .set ~f Pj 

consistent with the conservation laws at K. [A number of useful 

equivalent expressions for. cr(K; R) are given in Ref. 2.J The sign~ 

of the a.(X) in (8.1) are fixed according to the rule given above: 
l. 

a's from iines lying Inside plus (minus) bubbles are positive 

(negative). By virtue of the Third Struc"ture Theorem, the function 

represented by any bubble diagram B always has a well-defined 

continuation into itself past the singularity surfaces near a point 

P unless there are several D:'C:B with surfaces ~[DJ that 

intersect at P and have incompatible rules for continuation. 

The position of a Landau surface corresponding to a given D 

~ not changed if the signs of all its a's are reversed. But the 

rule for continuation past the corresponding singularity is reversed •. 

Thus if both these D are supported by some B, then the Third 

Structure Theorem fails to provide any (single) path of continuation 

for this function. This is precisely what happens at a threshold: 

The singularity surface corresponds to two D~C:B that specify 

opposite rules for continuation. Accordingly, the function represented 

by B on the side of the threshold is not analytically connected to 

the " function represented by B on the other side. 
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It should be emphasized that the contours of integration in the 

definitions of bubble diagram functions are always fixed to be real, 

except for the infinitesimal distortions away from the singularities of 

the scattering functions of the integrand: One never distorts (by 

. finite amounts) any contours, but uses always the originally defined 

(almost) real contours. Thus when we say that a function corresponding 

to a bubble diagram B continues into itself, we mean the function 

defined by B with real undistorted contours of integration continues 

into the function defined by B with real undistorted contours, always 

excepting of course the infinitesimal distortions required by the 

definitions of scattering functions. 

Our procedure has been to derive universal physical-region 

identities of the form M+ = T + R, where M+ is the physical scatt~ring 

function, T is a threshold term that vanishes below the threshold 

t corresponding to a certain positive~ normal threshold diagram D+, 

and R is a function that has no singularity corresponding to any 

Landau diagram that can be contracted to D+. Let D be the diagram 

obtained from D+ by reversing the signs of all the a's. The 

singularity surface corresponding to D- also lies at the threshold 

,t, but the continuation past it is via the minus ie rule. Thus if 

the only singularities of R near some point P on t are ones 

corresponding to or D , then R must have a mjnus iE continu-

ation into itself past t near P, since the construction of R 

rules out Singularities corresponding to D+. 

",,", 
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Because T vanishes below threshold, R is equal toM+ 

there. Thus R is an explicit expression in terms of physical 

amplitudes (1. e., scattering functions at physical points) of a function 

that equals + M below t near P but has a minus ie continuation. 

+ into itself past t near P. Since M has a plus ie continuation 

into itself past t, the·discontinuity around t near P is just T.· 

In the argument just given it was assumed that each Singularity 

of R near P 
.. + 

corresponds to one of the threshold diagramsD or 

D. The argument can be extended easily, however, to the case in which 

each singularity of R near P corresponds, merely, to some pure 

(positive or negative)-a diagram that contracts to D+ or D. Those 

contracting to D+ are ruled out by the construction of R, while those 

that contract to D- must be pure negative-a diagrams. Therefore R 

again continues into itself around t near P via the minus ie rule. 

Since only a finite number of pure-a singularity surfaces enter any 

bounded region,lO the point P can be taken to lie on no pure-a 

surface other than t. Then the plus and minus iecontinuations are 

Simply into the upper and lower half E(ro' ~ro) plane respectively. 

The above arguments cover only singularities corresponding to 

pure-a diagrams.that contract to D+ or D. However, for almost 

every point P on t the contraction condition can be ignored. For, 

for almost every P on t there is a neighborhood N(P) of P such 

that each pure-a surface that intersects N(P) corresponds to a 

+ 
diagram that contracts to D or D. This follows from the general 
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theory of pure.;.a surfaces developed in Ref. 9. That theory tells us 

that, apart from a set of points ~O (of zero measure on t) where 

. certain external lines are parallel, the set of points lying 'on 

positive-a surfaces are the union Qf a set of (codimension 1) analytic 

manifolds only a finite number of which pass through any bounded region. 

Thus for almost every point P on t there is a neighborhood N(P) 

of P that intersects no Landau surface except those that coincide with 

t. The general theory also tells US that the normal to the surface at 

any point P lying on just one surface uniquely determines the positions 

of the external lines of the geometric Landau diagram n(p) that 

generates this point P. This means that any pure-a diagram whose 

singularity surface contains a P lying on no Landau surface except 

t . must be such that all the lines m intersect at one point and all 

the lines m' intersect at another point. But any pure-a diagram of 

this kind can be contracted to or Thus for almost all points 

P on t, R has minus i€ continuation into itself'around t near 

P, provided R has no mixed-a singularities passing near P. 

A theory of mixed-a Landau surfaces analogous'to the theory of 

pure-a Landau surfaces developed in Ref. 9 is not available. It seems 

likely, however, that almost every point P on t will have a 

neighborhood that intersects no Landau surfaces except ones corresponding 

to diagrams that contract. to a normal or pseudonormal (m' ~m) 

threshold diagram. ll Let us assume this is true. 

.-
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It also seems likely that in equations derived from .unitarity 

and cluster properties alone there will be no systematic cancellations 

between pure-a: and mixed-a: singularities. That is,if one side of such 

an equation has only pure-a: singularities, in some neighborhood N(P), 

then so should the other side. In particular" we do not expect 

singularities associated with normal threshold diagrams to be cancelled 
q 

by Singularities associated with pseudonormal threshold diagrams, since 

these will be moved relative to each other by small variations of the 
. 

masses. The absence of such cancellations will also be assumed. [These 

. assumptions are either implicit or explicit in all derivations of 

discontinuities from unitar~ty.] 

These two assumptions allow us to ,conclude that R has no 

mixed~a: Singularities in a neighborhood N(P) of almost any point P 

on t. Energy conservation precludes the possibility that T has any 

pseudonormal threshold singularities near t. Then, since + M -T has 

only pure-a: singularities in a neighborhood N(P) of almost every P 

of t, so must R. 

A more extensive study of the mixed-a: singularities is needed. 

But that is a subject in itself. 
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APPENDICES 

Appendix A~.':Pro6f of Decompositioh: Rules 

Every contribution to the left side of (2.3) that is not 

contained in the first term on the right is a column of bubbles none 

·of which is connected to. both al and a2 • Any such term occurs as a 

contribution to the second term on the right. No two different contri-

butions to the left can occur as the same contribution to the second 

term on the right. Thus the left side is contained in' the right. Every 

contribution to the second term on the right occurs as a contribution to 

the left. No two different contributions to the second'term on the right 

can occur as. the same contribution to the left. No contribution to the 

second term on the right is contained in the subset of those contributions 

to the left that constitute the first term on the right. Thus the right 

side is contained in the left side. Therefore the two sides of (2.3) 

are identical sets of diagrams. 

Each contribution to the left side of (2.4a) is contained in 

one and only one term on the right. This term is one in which ex.. 
. 1.2 

is the subset of OJ. consisting of lines connected to bubbles that are 

connected to a2, and t32 is the subset of t3 consisting of lines 

connecte~ to bubbles connected to ~2~a2' A given contribution to 

the left occurs as precisely one contribution to this unique term in 

which it appears. No two different contributions to the left occur as 

the same contribution on the right. And every contribution on the right 

. ~. 
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. occurs at least once on the left •. Thus the two sidesof(2~4a) are 

identical. A completely similar argument proves (2 .4b). 

An illustration of ·the decomposition formulas i~s provided by 

considering the 3-) 3 box 
. ~ _ ._._._._ ••• _._.~ __ •. ______ ._ • ..,. ••• ____ . __ ._~._._~ ___ .... -_.c.. _________ •• 

I 4 
+ ( A.I 2 5 

:3 6 • 

. For the case. ~ = (1, 2), a2 =. (3), and ~ = (4, 5, 6), Eq. (2.3) 

) .. ..... ' 
.\ \; . 

reads _--'--___ ... .:.....~ __ .,_' __ ~. ____ ._ .. _____ ._~ __ . _______ . __ ..-:_~._ .. ____ ... __ . ___ ._~"" .. ,,"_." .. ci..:_~ .. 
. . \ 

( .A.2) 

The first term on the right of (A.2) is then by definition the sum of 

bubble diagrams 

(A.3 ) 

where the sum sign labeled "i" has the same significance as in I (see 

the first paragraph of Section IV, of I). The second term on the right 

9f (A.2) is 

.,' 
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1~·4 2 - . 5 
3 . 6 

./ 
The expressions (A.3) and (A.4) add up to the usual.cluster expansion 

of .the 3~ 3, box [Eq. (4.4) of I], as we see by substituting the expansion 

of the· 2~ 2 box [Eq.(A.8) of I) into (A.4). 

. .... 

..•. " 

. ~ .. 

';>, 

',,' 

'j 

:.' :. 

. :." 
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Appendix :81, .Iteta.~:tbh .of. Certain. Box Diagrams 

In this appendix the box diagram Bl defined by (5~lO) is 

converted to an equivalent box diagram 

Proposition 5.2. 

Equations (2.3) and (2.12) give 

B I 
1 

used in the proof of 

. --.. -' ---.-- ---~." . -_. ~.-- .. ----- -_ .. _---"- .-.. :.--- -_." -.-.- _._- -. - ---- .... ------'- ....... ...-..---.--.-------, .. ---~ ... -- ~ ............... -. -'-" . 

I y= 

a 
- ~-...... + 

f$ 

--
• 

( B. I ) 
Use of Unitarity, and then (2.4a), converts this to 



',j , , 

a 

,/3 

J 
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a ~Y2 ~-I+FY a + y 

/3~YI f3 

a ~Y2 + a. 
f3 ~YI f3 

( B. 2 ) 

This equation can, be iterated by replacing the last factor of the last 

term by the entire right side. An n-fold iteration gives 

Y 

I, 
'" 
i 
~ . , ' 

,.' 

.. 



----------~.-.~-~--. 

2 . ; 

1 

.. 
. +(_l)n+I~~-i~ -I + r 

2 
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,-, '.' 
••.. 'I 

"" '.":< ~.:.~ 1 • - .. ~ .• , 

,Let thenum.ber of iterations n be at least'equai'.to the :,number 
. ~ - . . 

o:fIines n(a) of the set a. Then the lastt~rm on the tight' side' 

of (B.3) is an empty set, since the definition of (2.5) implies that if 

any of the' sets 0).,a2,···,' a n+l is empty, thEm no diagram satisfying 

the required conditions exists. Thus for any n ~ n(a) we have 

.. : . 

-',,"'. '" 

.0" 

.. ". 

" 

. \.' '~'. 

. ... " 

r 



... 

,. 
, 

... ! 

! 
, . 

i 
! 

, , 
, i 
, ! 

I 
1 
! : ... + (-I)n 
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: - . 

y 

( B.4 ) 
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If the set" ex is empty, then all terms of, the right side of 

(B.4) except the first are empty. Thus, the right side of (B.4) is in 

'this case 

......... --~----~--- _ .. 
~------.--------.. -.--.-----.-------- .. ---. ~-- - -, . - --' ~ - ---·~-i 

4 a 9.iF- "2 I - P~Y 
,:;::,j fl @ "1 

L ,'. '. ',. ' 

i 

• 

, 
j., :" 

( B.5 ) i, 
, ,-I . 

. . 
Equation (B.4) is therefore a trivial identity for n(ex) = O. If 

n(ex) = l~ Eq. (B.~) is 

-' ------_. ----------_.------_.'-------------------------._., .-~ ..... ------

+ " -

(B .6 ) 

r 
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Appendix C. Proposition 5.2C 

Consi,der the diagram 

.; .---~-.-:.>.---.-.------~--... ----.--.. -.. -----.---.. -__ ._. __ .. __ ... c •.. _._ ...• ----'-... - .. -.l--.--.-..... --.~-- ..... -.------ ... 
, 
i 

·1 , a -1 8 2. - y - y 

,'-'\ 

l 
I ,. 

r ' 

:~ , ., • (C. I L 

If the center-of-mass energy of the set a is below the four-particle 

threshold in the channel ~ + y ~a, then B2 is equivalent to a 

bubble diagram B
2

' such that for any D'::>CB2 ' the only simple 

positive Ca, ~ + y) cut set C with connected xCC, ~ + y) is a 

itself., Moreover DI - a lies in X(C, ~ + y). 

Proof. The arguments establishing ProposJtion 5.2 apply equally well 

to the connected part of B, which is ._. __ . . .. ____ . .... ..... __ ..... _.... _. 1 .. 

+ + 

( C. 2 ) 
If a is taken to be a single line, the second term on the right of 

(C.2) drops out, and Proposition 5.2 proves the proposition. If the 

center-of-mass energy of the set a is less than the three- or four-

particle threshold, respectively, then the second term on the right of 

(C.2) is 
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•• ~---- ••• --~ •• ",-.. - .... "--~ ".~- __ "",, ____ • _______ .... ", •••• __ .~.' r_ ~ _. __ ,_. 

(a 0= Y, ! ~. 

a 
Y

2 
i 

C ( C. 3 ) 
---.--~ .. -- - .. , .. 

or 

- ... '~'.--.-----~~~.--------.-------------------~---___ ._ ___ _ _ ._~ __ __'___l ..... ________ .• _ 

1 = a 
C 

Y, 

;+a +a,{ 

Y
2 

a2 Y2 . 
~2 I 

(C. 4) 

respectively. (Topologically equivalent contributions to the right 

side are to be counted only once.) The only simple positive (a, ~ + y) 

cut set, C of' any of' the bubble diagrams of' (C.3) or (C.4) such that 

x(C, ~ ~ y) is connected is the set a. This f'ollows at once f'rom 

Def'inition 3.1, Proposition 3.1, and f'rom the f'act that no line of' C 

can be a minus line. Proposition 5.2, applied to the left side of' 

(C.2), completes the proof. 

1 
',., .. 

i .• ' 

i . 
I 

" 
!", 

\-, ' 

[ .. , 

r 
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Corollary. Suppose B2 of (C.l) is partof'Bof (5.11). Replacement 

of B2 by the B2/. of the proposition converts B to B'. Let C 

be any simple positive (~, al) cut set of any ·D'~CB/. If 

. X(C, w') is connected, then all points of x-(a) belong to X(C,(J)i) 

if all points of X+(t3) U X-(r) belong to X(w f
). 

Proof. The above proof still applies, if the X+(t3) U X-(r)· belong 

to X(w') • 
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Appendix D. The Principle of Inclusion and Exclusion and an 

Expansion on Unconnected Lines .. ",;' 

Let A be a set such that each member of the set either has or 

has not the property "i." The subset of A consisting of members that 

have the property "i" are designated by A. . The ' subset iol'A 
l' 

consisting of members that have not the property "i" are designated 

by Ai(i = 1, 2,·· ·"n). Then, 

i 
+ A. 

By a repeated application of (D.l) we obtain 

~2 + 
. 2 

+ 
I"' . 

+ A12. = A, A'2 1. 

It follows from (D.l) also that 

~2 = ~ - ~2· 

By the definition of Ai' and by (D.l) , 

. 
Al = (A - ~)2 = A - ~2· 2 2 

Substituting (D.3) and (D.4) into (D.2), we obtain 

(D.l) 

(D.2) 

(D.3) 

(D.4) 

'" 

'. 
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12 
- ~2 + A • 

Equation (D.5) can be generalized to the formula 

A = \ A.. L ~. 
+ ••• 

i i<j 

C A. j k + 1. ••• 

i<j<·· .<k 

12··· ·n A , 

s is the number of subscripts in A.. k and .where . ~J •••. 

UCRL-17902 

(D.6) 

each 

summation runs from 1 to n~ [For a proof of (D.6) see Ref. 12.] 

Consider now a plus or minus box of the form 

( 0.7) 

where (J consists of precisely n lines. Let the property "i" be 

the property that line i of a is connected in G± to no line of 
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(1 - i _ (1 - (i}. Let . G~ be the subset of diagrams of . G± with the . 
lo 

property i. Then 
± . 

G. has the form 
lo 

.H ______ ....... ~ __ · ___ · ___ L_._~_~___ .~ ____ . ____ ._ . _______ , ___ " _._._. ___ ._.~. __ ~_ .. _________ ..... __ . __ :....-..,--............ ___ .0. __ ..... ~ 

. + 
G:­

I 

(j~.n 
~~ 

___ - ._ .... __ ---....-__ . _.H_ 

(0.8) 

• 

This is because each term of G~ occurs as one and as only r;:>ne term • 

on the right; no two different terms of G7 occur as a single term 
lo 

± on the right; and each term on the right occurs at least once in G .• 
lo 

Similarly, for i ~ j, 

~I~.nl 
• 

. t: .. 
",I" 

;e.n + J~ ( 0.9) ; - ~2 ± Sl2 G~ - --
I J 

• • 0"-1-] § t J n3 
~3 -

etc. +12· ··n ± The term G- is the term of G such that each line i 

of (1 is ,connected in G to some line of (1 - i. Thus it has the 

form 
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, . , 

, j 

G±12 ••• n= 
12---" 
u~.Q 
fJ~· 

( 0.10) 

l 
~ 
" I 

! . 

where the prime on the summation symbol indicates that only one of the 

k! topologically equivalent diagrams obtained by reordering the bubbles 

is to be counted, and the condition C1 .t= 1 means that the set 
r . 

has two or more lines. That is, the sum is over all ways of partitioning 

the set C1 into sets C1r =l= 1, the set t3 into the sets t3
k

, and the 

set n into· the sets ~,as specified by the summation convention of 

Section II. 

Let 
0+ a- be G± minus its connected part. The expression 

given above for G± also applies to 
o± 
G except that the sum of columns, 

of bubbles on the right of (D.10) does not include a column consisting 

o± 
of just one bubble. Since G.. 'k 

lJ' •• 

( 6) 
'. o± 

D. to the function G yields 

= 
.± 
G. . k' lJ' •• 

the application of 
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"J 
"J. ; ~1 .•. ~ 
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':I ; .. , 
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·i 
~j 
':>.i 

J 
l 

':1 
,I 
'~ .;"J 

~, .' :j 
;j 

:) 
r.~i 
;.5 
:! 
rJ 
1 
t~; 

;i , 
if 
J 
:, 
" 

j 
.; 
f 

1 ;J.-

~ 
~l 
} 
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+ ..... 

,f 

.. ~ .. 

"~'I;""';"'" 
' . ~ . . , ' 

'UCRL-17902 

., 
G;j' 
~ . 

"i<j< ... <k ",.,,' 

';I: " 
where the, G.. k' are of the form indicated in (D.9) and, 

~J ••• 
, ' 

is given by (D.1.0) Ydth the restrictionk > '1. 

'.; 

'.' .. : 

i' •••. / 

't: 

.',: 
.~ . 

...•... 
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Appendix E. The Double-Cross Term 

In this appendix we prove Eq. (6'.6).' If E(w, wI) is less than 
. .., 

the five-particle threshold, then the columns of plus bubbles in the 

' .. . second term on the right of (6.4) each consist of precisely two bubbles, 

and this term, denoted by B6, is given by 

r 

WII 
, 

W2, 

+ + 
ul ~2 

, 
W~2 

w
22 22 

,w22 

I w" 
IIIn I 

W2, 

+ 
111'2 I 

""2 1II~2 11122 
.' 

w22 "'22 w'2 
.- . 

W" 
,'V7' 

+ , 

111'2 
, 

( E. I ) w
22 , 

'n' 

where topologically equivalent diagrams are to be counted only once. 
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Only the last 'bubble diagram on the right of (E.l) can contain 

a simple positive (w, w'), cut setC such that X(C, w) and, X(C', Wi) 

are both connected., This follows directly from the properties of cut 

sets established by Proposition 3.1. In partic~ar, any D~C:B is 

divided by C' into three disjoint sets X(C, w), X(C, Wi) and C/ , 

the first two of which must be connected. Since C' 'contains no minus 

lines, the part of D contained in any minus bubble must belong to 

.either X(C, w) or X(C, wi). This precludes the possibility that the, 

other one is connected, in the case of the fourth and fifth terms on 

the right of (E.l). For the third term the requirement that X(C, w) 

be connected implies that either (i) lines a and c belong to 

X(c, w), or (ii) lines b and d belong to X(C, w). The requirement 

that X(C, w') be connected implies that either Q:') lines a and b 

belong to X( C, Wi), or (i") lines c and d belong to X( C, Wi). 

These conditions are incompatible with the requirement 

x(C, (1)) n.X(C, (1)') = O. Except for the last term, the remaining 

bubble diagrams of the right side of (E.l) are ruled out in the same 

way. The last term does not belong to ~c«(1)J (1)/); the lines intersected 

by the dotted curve are a simple positive «(1), (1)/) cut set. 

v 

'.,,0. 
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