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ABSTRACT

Diséontinuity equationsbare derived fof physicalQregion'normal
thresholds‘in all direct and crossed channels. The discontinuity is
given as a unitaritj-type integral with anvintegrand that contains,
as factors, the two physical scattering functions corresponding to the.
two vertices of the Landau diagram associated with the normal thresh-
hold. There is also a third factor, which for the case of a leading
normal threshold with any number of particles isvthe Hermitian_conju-
gate of the elastic scattering matrix associated with the set of
internal lines of the Landau diagram. Fo? non-leading normal thresh- v
holds below the lowest four-particle threshold the extra factor is
defined by an integral equation that resembles unitarity, but has a

o

restricted set of intermediate particles.
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"I. INTRODUCTION

This paper is the second in a sérieél deﬁoted to calculating
aiscontinuities around physical-region singuléritieslof mpltiparticle
scatterihg functions. The aim ﬁere is to thain discontinuify formulas :
for normél thresholds. These ndrﬁal—threshold formulas are important
both in.their bwn right and as the basic ingredients,of the discontinuityv
formulas for ﬁore complicated singularities.

The main Eonteﬁt ih this paper consists in the derivation of some
physical-region identities. These identities express, typically,'any
physical-region scattering function as a sum of terms each consisting of
a unitarity-type integral over.ﬁ product of physicél scattering functions,‘
or their conjugatés. Each.term is convenientiy represented by a bubble |
diagram, in -which plus and minus bubbles'represent the cbnnected parts
of scattering amplitudes and their conjugates, respectively, and the '
iines connecting these bubbles represent physical particles. The iden-
tities are defiyed from unitarity and'cluster properties alone, no analyt-
icity property being invoked. Like unitarity, these idenfities ﬁold at
all real values of{the external momentum vectors. Their importance.lies
in the fact ﬁhat they explicitly display the discontinuity around normal
thresholds. | I> |

| The reéult that the discontinuity is explicitly displayed by
certain terms in these identities follows from certain topological prop-
erties of the diagrams that represent the other térms,together with some -
structure theorems derived earlier® that specifyy the analytic structure
of bubble diagram functions. These structure theorems say that the

bubble diagram function MB corresponding to the bubble diagrmnr B has
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thevfollqwing,propérties: ,MB is singular only at‘points lying on Landau

surfaces, and only on those Landau surfaces L(D) that correspond to

Lendau diagrams D2>CB. A Landau diagram DB is a diagram that'iSf

'a contraction of a diagram D' constructed by replaging'the bubbles of:‘; S

B by connected diagrams.' Moreover, the sigﬁs. of the Landau «a's of
the lines of this D'. are restricted by the condition that theQ{internal)
linés of diagrams replacing plus or ﬁinus bubblés mast be positive or |
negative, respectively; If only one :D:2<:B gives a L(D) passing

through a point P 1lying inside the physical region, then the function

MB  can be continued around L(D) near P by passing into a well-defined

1

"upper-half plane," which can be defined geometrically in terms of the .

diagram that generates P, If several surfaces pass through P then the '_»‘>H

continuation can be made through the intersection of the various upper

o

half planes, provided this intersection is nonempty. The relation between =

‘the diagram DDCB and the corresponding half plane is such that if two ST

diagrams ere identical except for a single overall reversal of the signs

of all the «a's, then the two corresponding half planes are opposite half

planes. Thus if a point P 1lies on the L(D) of two such DDGB, ‘then no -

continuation is possible, in general. The hypothesis of the structure
theorems is the analyticity,property of the physical region scattering
functions obtained from S-matrix macroscopic causality conditions, as is
discussed in Section VIII.

Our key identity reads; in box nofation,l
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The shaded strips represent sets of any number of lines. A plus box

represents the scattering matrix S5 a plus circle its connected part.
Sf; a minus circle its connected part. A plus
or minus box with a little circle on it represents S or st minus.its_
connecfed part. The subscript c¢ denotes conﬂected part. Fiﬁally the |
box R, denotes a well-defined set of bubble diagrams, each of which
reﬁresents a well-défined integral ovér‘a product of physical-region
scattering amplitudes or their conjugsates.

The importance of (1.l) arises from the following property,of"
R,: No bubble diagram B in the sum represented by the box Re >supports

any Landau diagram_ D' that contracts to any diagram of the form

D+nQb' ~>®), where
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"The. plvus‘s.:igns‘von “thé vli-nes iﬁdicate that:_ fﬁe cori;esponding Landau
d's are po'sit'ive. The jslimivlar diagram with minus signs on all lJ‘._n_es isv _
denoted by D_n(a)" ——>w) . A diagiam of the form ‘D+n(w‘ —w) or |
,D-n(és' —-w), for any p.ositive.integer n, is called a 4)' - ® normal.
. threshold diagram, and will be denoted by D(w' »w).
| Because the box Rc has the propei-ty just_ déscribed, 'lwe know
from t»h‘e‘ quoted,strﬁc’ture ﬁheorerﬁs the fo;lowing fact: ‘The function Rc
- represented by the box Rc continues into itself via a "minus ie con~

tinuation” past any singularity corresponding to any pure (positive or

negative) - a Landau diagram D ~that contracts to any D(w' -}0.\). [The

minus ie continuation is the one opposite to the physical.continuation. :

That R, ~must continue in this way follows from the fact that these: -

T pure= O diagrams‘. must be pure minus - Q diagrams.] Using this fact, one':"v .
immediately deduces from (1.1) the discontinuity formula for the leading .

w' - normal threshold, near points lying "inside" the physical region.

[The "leading" a)'v —® normal threshold is the multipa.rtic_lé (n > 2)
' sw normal threshold with the smgllest value, ML’ of the w' -w
exchange c.m. energy E(w' - o). A poiﬁton this threshold lies "inside"
th.e physicallregion .if any neighborhood of that point contains physica.l
points lying below the thresholds (i.e., at E(w' .—->'cu) < ML) and

_physical points lying above the threshold (i.e., at Elo' -w) > ML)]

The ai'gument goes as follows: Let P' be a point in the physical region _

lying just below the leading ' —w normal threshold. The first two
terms on the right of (1.1) vanish at P'. Let P" be a point such that

there is a physical-region path P'P" from P' to P" with the

¥ .
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following two properties: (a) Every singularity:of R, on P'P"

cdrresponds to a Landau diagram that can be contracted to a o' —®

normal threshold diagram. (b) No singularity of R, 'dn P'P" corréfj '
sponding to a D  having both positive and negative o's coincides with
a singularity corresponding to a diagram D¥*, unless D¥ is the same as
D up to an overall change of .sign of all fhe .a's. [Thisrsecgnd condi-
ton says that mixed-o singulerities of R, on P'P" do not "acciden-

tally" lie on top of singularities associated_with diagrams of essentially

different topological structure.] For any such P" the function Rt(P")
is an explicit expression in terms of strictly physical-region scattering = -

© functions of the continuation of the physical scattering function from

P' to P" along a path that has a minus ie continuation aroﬁnd every

pure-¢ singularity. This is because ahy pure-¢ singularity (i.e., one

~

‘corresponding to a diagram in which all o's have the same sign) must be

a pure minus-«a singularity, around which the fuhction continues via a

minus i€ rule, and each mixed-0 singularity has a well-defined rule for
: Yhe ; |

continuation, since,possibility that D* in (b) differs from D by an

overall change of signs of the a's is precluded by property (a) plus

the fact that Rc has no singularities corresponding to D+ﬁ(w’~§ ).

Since the last term on the right 6f (1.1) is the continuation of the

- scattering function from P' to P", the sum of the first two terms is.

§

precisely the diécontinuity of the scattering function at P" corres-
ponding to the ﬁath P'P". This argument is given in more detail, énd
is generalized, in Section VIII.

At points P" sufficiently near almost any point P -on the

on the :
threshold the second term/right of (1.1) is zero. Thus the discontinuity
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" around the threshold'singularity alone is given by thé first term on the

right of (1.1). This result is represented by the equation

L3y
whiéh is valid Just abovebalmpstvali'pointé on ﬁhé 1eadiﬁg fhreshold 'TL.
The symbol on the left representé‘the discontinuity of the-scattering |
'amplitudelardund. TL. Equation (1.3) is:a special case of & general rule
first conjectured and discussed in Ref. k. _ |

The above arguments appiy equall& weil to fhe'pne—parficle
o' oo normalvtﬁreshold. In that case the minus box in (1;3) becomes
“unity and the diséontinuity'formula becomes the weli—known pole~
vfactqrization property.?
Results similar to those for the.ieading normal threshéld des- .
cribed above are obtained for the nonléading normal thresholds-iying

inside the physical region below the four-particle threshold in the

o' = channel, The analog of (1.3) reads
> ~
o we _\
(1.4)

The Pi bar imposes the restriction that the sum of the rest mésses of

the particles associated with the lines cut by the bar be not less than’

the mass Mi associated with the threshold. Ti' in question., The -i

box is defined by the equation
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where the bar on a box signifies that an I box has been subtracted off.

This equation becomes the unitarity equation if the _Pi bar is omitfed,
and the (-i) boxes are replaced by minus boxes. Equation (1.k4) is
closély connected to a formula obtained by Olive6 for two-particle
thresholds.

Equation (l.1), and the similar equation leading to (1.4), are

- physical-region identities. Thus they may be substituted into the plus

bubble appearing in the first term on the right. In this way discon-
tinuity equations for more cbmplicated singularities can be obtained. '
The main task in this paper is to derive the identity (1.1), and

ones similar to it, and to substantiate the claims made regarding the

. properties of Ré. This involves repeated use of only the unitarity and -

“cluster properties; analyticity properties are not involved. The first

step is to develop a diagram calculus to deal with the cluster properties

and unitarity equations for indeterminate numbers of particles. This is -

"done in Section II. Sections III and IV establish some terminology and

place on a firm basis some simple preliminary propositions. These two

sections can be skimmed on first reading.  The main proofs are in

Sections V and VI. Section VII contains some incidental remarks concerning

other. forms of the results. _The analyticity properties that follow from
the identities established in Sections V and VI are described in detail

in Section VIII.

iz + 4 +@d-im=0, 015



UCRL~-17902"

IT. 'REPRESENTATION OF THE CLUSTER PROPERTY

B A box labelied by a symbol and connected to. a. set of lines

represents a certain sum of bubble diagraﬁs. Thé lines on the right

-

and left will be'called the incoming and outgoing lines, reSpectively.r
A plus (minus) box represents a sum over a column_of.plué (minus) -~ -
bubbles, the sum being over all different wajs that the given incoming
~and outgoing lines can_be connected to each other by bubbles,'subject
only to the‘conditions:that each line touch préciselj'one bubble and
each bubble touch af least one.incoming line and at least one outgding ‘ 
.line. .[Each incoming and butgoing line terminates at or emerges frony.v
respectively, the bubble it touches.] | |

An "I" box is constructed by the samé rules, withlthe added
~condition that each bubble touch precisely one incoming line and .
precisely one outgoing line. No distinction is drawn between a plus,
-minus, or I bubble that satisfies this condition.

The unitarity equation

>
.

e A+ - Yme =o] - *me=cd 1z 6 (2.1)

is regarded as an equivaleﬁce relation connecting differen£ box'diagrams.
As expléined in I, the rule for'multiplication of diagrams'is‘thatv
topologically equivalent diagrams of the naturai product are counted
precisely once.' This leads to the second fundamental equivalence

relation
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where the same choice of + 1s to be used throughout. Tnese two
fundamental equivalences, when combined with cluster properties, wilin
‘yield our results.

Often a set of intermediate lines connecting two boxes will not
be explicitiy showni ‘the two boxes will simbly be moved into contaét.dx

In the above equations, and in what follows, sets of lines are

labelled by Greek letters. These sets are allowed to be empty, unless

‘otherwise stated. The equation & = O means the set « 1is empty,

o # 0 means it is not empty, and @ > 1 means the set has more

’ nhanlone line. The lines are considered to run from right to left and
symbols X (a) and X (q) denote the sets of leadlng and trailing
end points, respectively, of the lines of the set a.

The cluster properties reside in the definitions of the plus

and minus boxes in terms of their respective bubbles. To exploit these'f;'

properties we do not fully decompose the boxes into their constituent
bubbles, but make, rather, partial decompositions into sets of terms '
with different connectedness properties. The first of these partial

decompositions is expressed by the equation
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e kA
. . PRy

The first term on the right represents the sum of those terms of the
left that confain at least one bubble touching lines in both ai- and
a2.

set B into two sets Bi and B,. Each term of this sum consists

The second term consists of a sum over all decompositions of the

of the indicated boxes combined according to a product rule of composi-
Itioﬁ, This rule gives, for each.pair consisting of one term from each
‘box, a coiﬁmn consisﬁing of the sum of the Bubbles of “the two membefs
of tﬁis pair. The validity of (2.3) is proved in Appendix A. -
Henceforth, we adopt a summation convention that serves to
eliminate the summation sigﬁ in (2.5), and in éimilar equations thatv -
| follow. If a set ¢ appéaring on the left is partitioned in all
possibleways into certain sets appearing on the right, then these
latter_wiil be‘denoted by ¢j: A summation over all partitions of the
¢ into the various ¢j is always implied. ‘Occasionally the s?t on
the left will already have an index, but the rule still applies. For‘v.

1

examplé, ‘Q, is partitioned into sets Oij'
‘A sééond important decomposition rule is

UCRL-17902



Sl Here L L

| UCRL-17902 -

‘-fli',f

; R M7 _[312 R AR

1+

,¢;22Z

 f“arZZ

I+

T Dl e e L e e e s e e o

1+

7 Bj; e

I+

ZZ ﬁgs ( 2 llb)

B N <Y/

ERN

: R ™7 .“v.v.;.‘f'm‘~—.- s

o Q@ B .
- 7z B, ~ (2.5)

i 3

'afis.défined"fo be empty if oy = O or oy, = 0. Otherwise it is - = -

. the sum of all contributlons to

With the property th&t ea.ch line of 0112 touches a. bubble that touches

et lee.st one line of a2 ‘The box diagram
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is definéd_fp be empty if Xy = 0 or aél = 0. Otherwise it is -

the sum of all contributions to

Ay Z +Z [32 | ;_;.,(.42‘8.)_5 N

“that have thé property that each line of %5 touches a bubble that
 touches at least one line of 0y, and vice versa. Equations (2.ka)
and (2.4b) are proved in Appendix A.

The decomposition (2.3) also applies to the I box, but the

a,ZIl alzj:bﬁl (29 o
2 2B = A1 ZB> |

first term on the right of (2.3) is then empty. Thus,

. and

_‘ CIZ,IZB| :ia"%I‘ o . '('2-9)./'
- Z B2 02212[32' . -
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)
The I box (2.9) or (2.9)' is equivalent to the identity when
pgstmultiplyiﬁg - bubble-diagram symmetric in the set of lines «
or when premultiplying a bubble diagram symmetric in. the set of lines
3._4This follows from the definition of the I box and from the fact that
in products of boxes topologically. equivalent contributions are counted :
only once. Thus, for instance, : _ ' : "3  R
even though

==+ > 7

From (2.9), (2.9)', and (2.2) we obtain

e Y 1 R

| 1Ze = L

a, Z* QLI ZB SR AR
et e,  (2.12)

and _%

%
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a, Z4 |

I+
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|+

B,

VZ B2

I+

ZZ By

Z B,

O0#, 741
a A]
a2 1 |

| +

7Z B

+

e e

A

(2.13)

I+

[The number of lines crossing an interface between boxes or

represented by a shaded strip is always allowed to be zero, unless:

B

- otherwise stated. ]

Remark 2.1. Equations completely anaiogous to those discussed in this_”

section but with the role of the'incoming and outgoing particles

switched are denoted by a primed equatioh number. We shall usé, in

" particular, the equations

I+

Z B

VZ B,

= q Zt[ + T

A+t B, t
o (23
7 6, it
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N
|+
N
=

QZ_

Z. B2

where the box diagram

(24q)

|

‘ _QzZi BI2'

YZ B

: . is defined in analogy with the definition of (2.5).

future use the definition

[ =dZk-dDr . )

(2.5)

We also record for
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III. CUT SETS AND DIAGRAMS THAT CANNOT BE CONTRACTED

. TO POSITIVE-O NORMAL-THRESHOLD DIAGRAMS

Consider a ﬁransition from the System of .m initial particles'
to the system of ﬁv final pafticles; Any Sepdration of the n +m
) paiticles info two disjoint subséts defines.a channél} If thewtwo
sﬁbsets are precisely the initial and final sets, then the channel is
called the direct channel. If each subset contains both initial and_
 final particies, then the éhannel is called a ‘cross channel..'If one
subséﬁ contains only initial or only final particles and the other

- .subset contains both initial and final particles, then the:channeliis = -

called a subchannel. The three cases are indicated in Fig. 1.(following page) - -

where we have labelled one of the two subsets of lines ¢y and the
other '. By convention the set « does not consist only of initial
lines, and ' does not consist only of final lines. The sets o

and ' .are further subdivided into the sets Wy * oy gnd. “ﬁj + wb"
respectively, where w *+ “i' is the set of final lines and W +_w2"
.is the'set of initial lines. The sets of external end points of the
lines of @ and .w'.lare denoted 5# X)) = anu&) + X;(wg) and
X(o') = X+(wl') '+"X-(w2'), fespéétively. ‘The "' —»o channel”

will mean the channel labelled in this way.




. | | UCRL-17902
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(@) (b) 0

Fig. 1. Three types of channels.
(a) The direct channel.
(b) A cross channel.

(¢) A subchannel.
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The «' — o channel energy E(w' —o) is

1
=
1

| (o)

T Teim)

evalvated in a frame where the corresponding three-momentum is zero.
. The set I(a) is the set of indices labelling the lines of Q. Thus
the reaction energy E(w' —w) is the net center-of-mass energy

~ flowing from X(o') to X(w).

Definition 3.1. An (w, ') cut set of s Landau diagram D supported.l

by the bubble diagram B [i.e., D><B] is a (possibly empty)
collection C of lines of D with the following properties:

(1), Every path in D that starts in X(w') and ends in X(w)
passes along the interior of some line of C, and (2), Property (1)

is not satisfied by any proper subset of C.

Proposition 3.1. Let C be an (w, ') cut set of a DDCB and let

'C' be the set of all interior points of all lines of C. Let X(C, w)

and X(C, o') be the parts of D connected in D - C' to X(w) and

X(w') respectively. Then,
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@) J'é(c;a;)(\i(c,m') = 0 }(‘t.he_ empty sef)',‘_'_ .
(i1) eﬁch‘line of C has one of its end points in f(C,w)_ .
: and its other end point in X(C, o), |

(111) D - ¢ = X(C,w)UT(C,0'). |
Proof. . (i) If i(C,@) and X(C,n') had a common point, then X(w)
could be connected to X(w'). in D - C'. But then C -could ﬁot be
an (w,:w') cut set, contrary to assumption. (ii) The lines of 'D
can intersect (by definition) only at their end points. Leﬁ Cw be
the set of lines of C that have an end point in. X(C,w). Since
X(C,0) and X(C,n') are disjoint, every path in "D ffom X(w) to |
X(w') must leave X(C,w) via a line of C,- .Thus,' X(w) and X(m').
cannqt be connected by any path in D - Cw', where Cw' is the set of
all interior points of all lines of Cm.. But then C = must be just
C, fbr if Cw were a proper subset of C then-the second requirement
on the (w, ') cut set C .would be violated. Similarly, every line

of C must have an end point in X(C,w'). Since I(C,n) and X(C,w')

are disjoint, one end point of each line of C must lie in X(C,w)

~ and the other must lie in X(C,w'). (iii) Suppose there were a part

of D - C' not connected in D - C' to X(w) or to X(w'). Then,

by virtue . of (ii) this part cannot be connected in D to X(w) or.

to X(w"). But all parts of any DDCB are connected in D to
external lines of B, and hence to X(w) or to X(w'), by virtue of

the conditions on DOCB. In particular,‘each bubble‘Of B has both

incoming and outgoing lines. The partial ordering condition on the
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bubbles of B gﬁsuresvthat each bubble lies on a path that starts at

: somé,incoming line of B and ends at some.éutgoing‘iine of B. In -
forming ﬁ::CZB thebpbblesare replacéd by:connected diagrams. Thus':i
every point of DB is connected to both the incomingvand the
~outgoing lines of B, and hence to XQD)L).X(@').

A schematlc representation of Propos1t10n 3.1 is showﬁ 1n.

Fig. 2, (follow1ng page).

Definition 3.2. A simple (w, w') cut set C is an (w, w’) cut sét

C such_that-every line of C has its. leading end p01nt in K(C,w)

7

‘and its trailing end point in X(C,w )

Definition 3.3, A simple positive (0, »') cut.set is,a simple

(v, ®') cut sef,having no '"minus lines". [A minus line. is a line
of DODCB thgt is an internal line of a Landau diagram ch
corresponding to- a minus bubble b of B. Such lines muét carry
negative Landau-Q's, according to the rules set down in Ref. 1.]

Definition 3.4. MR (w, »') is the set of all bubble diagrams B with -

the property that no DD>CB contains a simple positive (w, w') cut

set.

Definition 3.5. '@c(w, w') 1is the set of all bubble diagrams B for which o

at least one of the following two conditions holds: — o
. (1) B is not a connected diagram.

(2) No DDCB contains a simple p031t1ve (o, w') cut set

such that X(C,») and X(C,n') are both connected |

diagrams.
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x+(w',{</ ?/(/c{ﬁl)//y E} - lwg) ‘ v

' - U5 > L A=
L N L s ALy

!

T b
- N . - I
T X+(w:){ X (¢, w) } X~ (wa)
. p

The topological structure induced by an (w,w') cut set C.

The directed line segments Liec are shown. The lines are all
shown directed to the left in accordance with the discussion at

the end of this section. The X(C,n) and X(C,w') parts of

DDCB (indicated by the shaded areas of the figure) mey be

disconnected diagrams. Each point of X(C,w) [X(C,w')] is
connected in X(C,w) [X(C,w')] to one or more of the external

end points X(w) [X(w')] exhibited in the figure. Some of the

+

J
segments of € may lie in X+(wl), and some of the trailing end

of the upward-directed line

~points L;, L;,'°'L; of the downward-directed line segments of

C may lie in ‘X-(wé), and similarly for the lower end points

of these linés. The ordering of the end points' [i.e5, L; > Lg]

is not significant. The set C is called a simple (wyw') cut

" set (see Def. 3.2) if and only if the set of downward-directed

line segments [i.e., those leading from X(C,w) to X(C,n')]

is empty.



UCRL-17902

. -2

: It is évidenﬁ that . o
; '_@(w: ") CA, (0, w'). )
B These definitions isolate the class of bubble diagrams that
' cannot support any Dh+(w' —®): It is clear from the definition of
"sup?ort" (see Ref. 1 Sec. II) that no bubble diagram belonging to
lzc(w, ') can contain any Dn+(w' —-w),. or any D that contracts
to -any Dn+(w' o). , , .

The importance to us of this cléssification arises from" the

Third Structure Theorem, which ensures that the bubble-diagram function .

MB reprssented by any B € £%2(w, ") has a minus ie continuation
into itself around the singularity associated with any D'C'B that
can bevsontracted to any o' s normsl threshold diagram. Our.
principal task will be to prove that certain bubble diagrams are
equivalent to diagrams belonging to 1&%(&,(&‘).

It should be made clear that the diagrams ﬁ:)C:B we are
discussing are simply topological structures. = They should nos_be .
confused with the geometric structures D obtained from them by_

‘ mappling each line Lj of D into’'a four-vector Aﬁ = .aﬁpj, The -

diagrams T are a geometric representation of all the lLandau equations;

including the loop equations, whereas the diagrams DDCB represent -
only the conservation laws. In particular, the significance of the

arrows on the lines of D arises from the conservation laws

(3.2) 1 |
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}:ps €4n =} 6; Since each pJO' is by.definitidn'positivehﬁnd -

3 _ _ : _
‘the arrow oh each line Lj poinfs to the end at which. éjn is plus_
one, these airows simply indicate the direction of the flow of positive
energy. This interpretation of the arrows in terms of energy flow. is

~ independent of the sign of aj"

The lines of & bubble diagram are defined to be directed from *-

right tolleft; The lines in the interior of each plus bubble will also’

be directed from right to left, provided the vector diagram ﬁéb is

mapped into the topological space by a monotonic mapping that placeé

points of greafer energy further left. The interior lines of each minusf

bubble will be leftward-directed if the opposite rule is used. Thus,.
if these rules are adopted, then all the vectors of any D!'C B will

point from right to left, and one has a diagrammatic iepresentation of

the conservation laws in which positive energy flows from right to left.

The convention just established plays no essential rolg in our
arguments. But it makes geometrically obvious the fact that each point
of any DB 1lies on a continuous directed path P that runs from
the trailing end point of some incoming line of B to the leading end
point of some outgoing line of  B, and is such that each line segment.
Lj lying on .P has the-éame direction as P itseJ.ff That such a P‘
exists follows analytically from energy conéervation and thevpartial

ordering requirement imposed on bubble diagrams (see Section II of I).

B Uy S SO

o g

AT 2 o e oy v
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* " IV. A CHARACTERIZATION OF BUBBLE DIACRAMS THAT
© SUPPORT NO POSITIVE-Q DIAGRAMS THAT CONTRACT TO

A o' —-w NORMAL-THRESHOLD DIAGRAM

The.characferization we seek is expressed in terms of "pathé;" v
A ééthjin D 1is a continuous directed curve composed Qf an ordered
"sequence of line segments Lj of D. Neighboring segments meet at
-colncident end points. Bach segment LJ of a path P éan be indepen-
dently directed either along the path or against it.  The direction of.
the path is specified by speéifying its origin and ifs destination; *
~ The direction of the line segment Ly of D is ‘from L3 to Lg, as

already mentioned.

Definition 4.1. A P e f’im(DxB) is a path in DXB ."having the .
property that each 'LJ. lying on P 1is either directed against P or.
is a minus line [as defined in Def. (3.3)]. |

Proposition 4.1, TIf every DDCB contains a P ¢ fm(DDCB) that

runs from X+(w1’) to X-(wg), then B belongs to -¢?(w, w’), and
conversely. |
Proof. If B does not belong to 4(&), cn'),'then some DDCB must
have a simple'positive (w, w’) cut set. C. Any path P ffom |
X+(wl/) to 'X-(wé) must contain liﬁes of C. The first of these
lines encountered as P 1is traced ouf is d nonminus line directed-_,_‘
along P. Thus this DDCB can contain no. Pe ﬁm(DDCB)'.

To prove the converse, suppose some DDCB confa.ins no

Pe fom(DDCB) that runs from X+(wl’ ) to X (w Then any path

)
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p in this DDCB  from X+(wl’) “to X-(me)' must have a first segment
Lp. that is both nonminus and directed along the path. Let the union

of the Lp _over all paths p from X+(w1/) to X‘(wé) be denoted by
'k)lb, and define C = (L)Ib)\}wl{}wg’. The sets X(w) and X(w”)

certainly cannot be connected in D - 5’, where _E/ is the set of
interior points of C. Soﬁe swbset C of C is therefore an (wy, o)
cut set. Each line of C ié a nonminuslline with either its trailing
“end point in X(C,0!) or its leading end point in X(C,w). Thus, by’
virtue of Prépoéition 3.1, each leading end point of C is in X(C,w) - o
and eéch trailing end pdintvis in X(C,»’). Thus C is a simple .

positive . (w, aS’) cut set for this DDCB But then B cannot |
belong té 4?(&, o). ' : 1 : 5 .;

A few'examples illustrating Proposition 4.1 and tﬁe various |

definitions of Section III are given in Fig,v3. In these examples oﬁé

should. insert various connected Landau diasgrmas for the bubbles.

However, fhe results are independent of the form of these diagrams

D b.A We need only the genersl result that there is a path from any '

c

.incoming liné of any ch to some outgoing line such that the.
direction of the path agrees with the directions of all its segments.
This follows from energy conservation and the fact that energy'flOWS

in along incoming lines and out along outgoing lines. (See the

discussion at the end of Section III.)
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The bubble diagrams B, and B, belong to Q(m,w'), whereas

"B, and Bh do not. Ihié follows from Proposition _h.l: For

3
every DDCB, or DDCB2 there is a path P running from

+,0, - ' . .
X (a)ll ) to X (wz) such that P | is in ‘f;m(DDCBl)v or

-fom(DDCBQ), respectively. But not every D:C‘.B3 or

D>CB), has a path P running from X+(ml') to X-(wg), such

oy ‘ . s
3) or om(DDCBh)’ respectively.

That 33 and B), do not belong to &(w, ®') may also be
seen directly from Definition 3.4, since the lines Li of B3
and the lines L,j’ Lk’ and LS of Bh are a suuplg positive

(w,') cut set for some D‘.)CB5 or DDCBA, respectively.
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'f?v;f%NoRMAxeTHRESHbiD.EfoNSIONs“oFISCATTERING"FUNCTIONST

n}ﬂl“" jﬁff”# A.A Two Ba81c Identltles

Unltarlty can be regarded as an equivalence relatlonshlp between BRI

- dlfferent box dlagrams In this sectlon certaln box dlagrams are
converted by repea,ted use of unlta!‘lty &nd the Cluster propertles to” L ,

f.; certaln equlvalent box dlagrams

,1PerOSiti0n 5.1. The cluster propertles and unitarity imply that ""5

— : [ S S ¥

I w. ~ ‘ wé w) + w2 W S S w2 : e A f
T B e R B A b A

.y

vwhere the R box represents a sum- of bubble diagrams all of whlch

belong to »ﬂ(m, ® )

Proof. The propos1tlon follows immediately from (2 l) and (2 2) if

C oy = O or if w1 theﬁ‘ R'—,O.' Tnusvwe aesnme_thet« wa - and 1 i;L:”-5: S
Sy are nonempty. The use first of (2.3)', and then of (2.1), (2.2),

¢ and (2.4a) .gives
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Cow ' +RBw, -+ w w, w

! ',j+ o= SR B0 = = i Y B

e tRw, o7 |- +w) w Z W,

: wZzg pw, Y A_ (2t 2w, ,

; =, + ,+ | +| | <z i , :
WB__pve w7z -y g .

]
; (5.2) '

" [The various summations-reéﬁired by the formulas of SectionlII

are implied by the summation conventlon for internal lines 1ntroduced in

‘Section II of I ] Alternatively, the use first of unltarlty, then of

(2.13), (2.2), and again unltarltyvgives

wy + W, wZ |+ Bw, 0 wyzf
+ | = - + | == ,+ wz{i:
) . wl + wzl N . - n
| , ! _ w,’z + sz LYY
i‘ (5.3)

_ The application first of (2 3) , and then of (2.1), (2.2), and (2 ha) -

N

N

to the first term on the right side of- (5 3) gives

N~
*

]

sy

© UCRL-17902 -
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- + | _ L
+ +{ v
w! Z _z'w{,_ : w(z Zw!

+ | <7 L

o/Z_mw; . (5.4)

S ; ;‘ o |  w & A + w,

P . S + + 7 + w71
R S E A —d | wi wl'Z

wg B N o (5.5) i R e

R e, OFulATwme,
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A rearrangement of terms, and an application of (2.2) and unitarity

converts this to

wp  OFunZ T,

+ro =wZgl
' + ! T4 + !
w/ Z wy wh Z
a
. l wl w' + " + Wo
i - + | - -1, A%’+
i / ‘ /
&) w! 7 L A- 7 kv

(5.6)

Equation (5.6) can be iterated. Iterating n times, each time

simplifying by means of unitarity and (2.2), one obtains
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0# w) ! A+ w
w, Bw, WA + W, O#w,,z+_ Z z+ )
! H = 7 — 7// [ X X}
WiZ  Zup .w|4I , @3l Pl + 2 w!
¢ r + KW, 7AHIIIIIIS, 2.
1
W, Z . w! 2
ay
k-t Vzi-i-sz
a2’ Z4+|"
2.0 77
! | |2 ' By
| k()-"»‘Ec.«m L -# Z A Ll 4 aee
+(-1) I Y, + 2
| W A by |
By, B> wl 7
2=
A
.° 7 + |- 2
a aé". ‘ B//
! 1NN n
nO#: wy + 7/A+ Z %
- - !
+(-1) o - I ] . We
{ :
A
wl'zzl—-
a
ap.1 -
0.. Z.’. - 'A/
d' .0 % 2
Q%.'__ 7 n
' 5 £ 3 ,3///////////////////
L nHw Z W 222 %- 1 +Z
+-1) | ! +‘ 'l“‘ 7/{////////////////////////4 W)
- [}
w! wd b \4 - 77777772 .
\A_P L ~ (5.7)

s



UCRL-17902

P -32-

| The mumber of iterations n is fixed so that
E(@; o) < (n+ l)Eo,'where Eq is the rest energy of the lightest
" particle. The definition of the box diagram (2.5)" requires that the

sets ai,

these sets is empty. |
_ Let the box diagrams on the right of (5.7) be denoted by Hyy

Hl’.
Hl -the second, etec. Any Landau diagram.suppbrted by any Hi contains

) + e cqq *
a path P ¢ '4Zm(D:><:Hi)' from X (mif) to X (w?), as will now be

., Hk""’ Hn’ Hn+l’ where YHO “is the first_term on the right,

: : . + / .
shown., For any H, but H ., each end p01nt.of X (wll ) is

- connected to the'trailing end point of some incoming line of the leftmost

- upper . plus box by‘azpath whose sense is opposed to that of each line
of that plus box. This féllows‘from energy conservation; (See the
discussion at the end of Section III.) This concludes the_argumenf_for

H For the remaining Hi’ 0 <ign, the path just constructed can,

O.
by virtue of the definition of (2.5)', be continued to some point of
X+(al) by a path composed only of minus lines and hence lying in
1pom(D:><:Hi). The same argument allows the path to be continued to - -

Q

o9 then to

%

/ . o
ell H, but H ., belong to ,é?(w, w )f Cons1der'f1nally Ho,

i 1°
Since the sets B, are nbnempty, the energy E(£) of the set &
satisfies E(¢) > E(w@) + (n + l)EO. On the other hand, the

condition on n 1is that

and Bs be nonémpty: Otherwise the set of diagrams containing ‘::;

, and so on to Xf(ma). Thus, according to‘Propositionthl,‘ 

e Tp ¢ e e et 3, o e Yo

o o et g o gt
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E(w,vm') EE,E(ah) - E(8) + E(8) - ;E(wg):v< (n + l)EO. These

. inequalities combine to give E(&) > E(wi)."But then energy conserva- -
tion implies.that the second term in the first parenthesis va.nishes.7
Furthermore, in the first term in the first parenthesis some energy mst

flow from X (E) to X+(w1’). This ensures that there is a path

/p o/ : v
P e Om(n:c:Hn +l) from X (a)l ) to X (£). This path can then be = .

extended to X-(wé) by means of the_sdme_arguments as before. Thus,

all terms on the right of (5.7) belong to (ﬁ?&n, w’), and Proposition
5.1 is proved.

By (2.14) the first term on the right of (5.1) can be written

in the form

wd 2w W)z~ w2 | :
_ vz - 27 _
-— /] p / . .

+ w ! 7z Wy :

+
€
+|
i | N
b
+ e
+}
| N
£
N
b g
+ 4
| N
€
N

+ + +{
w"Z Zwé w| Z Zwé w! 2 w,",. o
| (5.8)

Then Def. 3.5 [which implies that B belongs to ?{L(w, w’) if it L
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belongs to 44?(&, ®')] together with (2.14) and (5.8) allows (5,1)

to be written in the»form

5§
1
:\
el
SN
g =
N\
"y
+
i
+ ¢

w, ZZ_G*EZ‘“Z Wz  Zw w w ‘
; + + ° ! R 2
-+ _ - - + Chy !
! + +{ w,Za “zw
§ w 7w w 4 P, 2"» ‘_
i (5.9) f

where the R, box consists of a sum of terms of 4&3(&,(3 ).

Our next objective is to show that the second and thlrd terms
on the right of (5.9) can be placed in the 1ast term. To this end we
first prove

Proposition 5.2 The box diagfam'

.
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: is'eQuivaleht,to a diagram B,/ such that the only simple positive

1
(o, p+7y) ‘cut set C .of any . Dé><:4%f is the set‘of,lines a.
Proof. Let -Bl’ ‘be the right side of (B.4). In each term let aI,’

‘be the subset of o .connected to the I box. ‘The set C evidently .
contains ai.' For the first term on the right of (B.4) the setl o
.is d and the required resultvclearly holds. ‘For any. D’ supported
by any other term the definition of (2.5) guaranteeé that any_poihf |
of X ('~ o&) lies at the end éf some path P e.1f;nO)e>C?Bl’) that

starts in X+(B). [One uses the properties of (2.5), to trace a path

/ consisting only of minus lines from each point of X_(ai) to some

v P
point of x'(si). This path can then be extended to a-path P" ending
‘at some point of X(S); .One-uses the properties of (2.5) to éét

" through each minus box of the form (2.5) encountered on'the path from'
X-(Si) to X(B). The desired P 1is the negative ofA P".] No point
of sﬁch a path P  can belong to any simple positive cut set. Thus,
all points of X (&) must belong to X(C, B + 7), by the definition of
X(Cc, B + y). Thus, ﬁhe only simple positive (a, B ; y) cut set is |
a. |

1
0’ - a 1ie in X(C, B + 7). This gives the following

This proof also shows that for any D™>cCB /, all points of

Corollary to 5.2. Suppose the Bl

of (5.10) is part of some box

 diagram
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Then the replacement of Bl in B by the equivalent .Bll of

Propoéitionl5;2'gives a B’ with the property that, for any simple

positive (0, &’) cut set C of any D'><B’, all the points of

X"(¢) will belong to ¥(C, w’) if all points of X (B) and X (v) =

l, - o, where Dl’ is that part of D’_

lie in X(C, o’) if all points of X (B)

-do. In fact, all points of D

which is supported by Bl’,

and X (y) do.

eProposition 5B The cluster properties and unitarity imply that

w w, w w ) L
FORPO = _.'ﬁf‘y o+ g B
wf wy = — + ' v, 15
' ' 2 wZ wp :
(5.12)
wp 2 w
= ‘”t@_ :"4+ 4__"2 +“ AR P
w + “ i e P:ZZ c:za%
é , S WA m
C - (5.13)

The ‘Rc box is now, and hereafter, a generic symbol used to denote any
sum of bubble diagrams each term of which belongs to .ﬁEb(w, w’).
Proof. The corollary to 5.2 applied to the third term on the right of

(5.9) gives
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N _
- |
IZ‘

N
+ S
1 o
_E
N
+
Q
N &

/ .
?
wy + B2 “7. e
o . = . V72 = w’z czw'
E : Icz B/ , [ 2
3 . W Z ! ZWwa

LT v ey

The last step follows from the_fact'thét any simple positive (w, w’)
cut set C that leaves X (a) in X(c, w’) must make X(C, o) a

disconnected diagram. A similar argument applies to the second term on

- the right of (5.9). This proves (5.12).. The contribution to the fourth

term on the right of (5.9) coming from the connected part of the minus
box clearly has no positive cut set C that leaves X(C, w) and
X(c, o) béth connected diagrams. Thus it belongs to Aﬁab(w, o’), and
the'proof is complete. | '

_The form of the first term on the right=of (5.13) is invariant -
under the crossing (incoming <« outgoing) of lines of o or of w’.
However, .no analyticity or crossing propertiés have been used to-derive»
(5.13) . the result is obtained strictly from unitarity and clustef

 properties in the direct channel.

L+ oot Soesro 1t e s b AS et ob kit i e 8 P R AL . bt g, P 48 4 1 by e e e

v e o o 4 o Trr— 4 e e




For E(w, o) less than the lowest four-particle o’ —w

i threshold, E),, the second term on the right side of (5.13) belongs

to A%z(w, ® ). This is proved in Section VI. Thus, for this energy

range Eq. (5~13); reduces to

[E(w,w)<E,] (5.15)

UCRL-17902

g e e e e e v = et a6 L

Pysie e



et e S At

UCRL-17902

-39

B. Expension Exhibiting the Discontinuity of the Scattering

Function for Nonleading Normal Thresholds

The expression for the'scattering funetion givenAby
Proposition 5.3 exhibits the discontinuity function for the leading
normal threshold in the (w, w!) chanﬁel. To exhibit the discontinuity

for nonleading normal threshold at channel energy E(w, o') = M, we

use the i-box formalism of paper I. This formalism applies only if
E(w, /) is below the'four-particle threshold of the ' —w channel.

Thus the fbllowihg results are similarly restricted;

The basic identity we need is

awpi -Qi Q;
Z2-% = 7Z-% + Z-

?

where Pi end Qi are the projection operators associated with the -

mass M, [see (5.5) of I]. To prove (5.16) we first use (2.9), (5.8),' >;“

(5.5), and (5.19) of I to obtain

\

7 (5.18)

T
H

g ot e T AT s 4o e e e
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7. = — 7

A
1=

P
7

NN

~

Definition (5.4L4) of I converts (5.17) to

! + 7

NN

N

N_D

AN

AN
~———

(5.19)
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-'}hl-_;'j_
o : Application of (5.18) to the term in parentheses yields (5 16)

Substitution of (5 16) into (5 1) yleldsvf;;‘j

S wHA P .
+[ — AN 4|
SRR Y ! . v ’ '

'By:Preposition 5.2 the second term on'the-right‘of (5.20) is equivalent :'“"

“to . _A.-r.'_,-e-:rr.t-,w.- o e e e - e e e st e ‘M,_-.m.v - .. s . o ‘.j’.M_‘).‘,

AT (5 21)

I

| ”Some new definitions are now needed. Let C (m, ')v

denote any simple pos1tive (o, w') cut set'composed of llﬁes such

.‘3: that the sum of their masses is greater than or equal to M Let '}?'

 42 .Qn, ') represent the set of all bubble dlagrams B w1th»the 'fj_

il,: _-property that no DDCB has a cut set C .' Let
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._represent any sum of bubble dia.gra_x;ls each term of which eipher is

set ¢t such that ?(Ci, w) and ')-((Ci', ®’) are both connected

are subsets of @ i(w, Y. The function corresponding to any

. Be€ @ (w, o’ ) has, by virtue of ‘the Third Structure Theorem, 8 minus..

ie continuation into itself. past any norma,l ’chreshold singularltles ’

!/

at E(w, o Yy = M, that is associated with a o' —w normal threshold

' diagranm.

By the Corollary to (5.2), any simple positive (w, w)

set, and in pa.rticula.r any C (w, w') , contained in a Landau dlagram

D supported by (5 21) must be composed only of lines of that part of

D that is supported by

- -i.disconnected, or does not support any La.ndé.u diagram containing a cg_t N

diagrams. Evidently, the sets Lo, w’), @c(w,- '), and &i(w, ‘D")..l' N

| ~-'1"2'- .

fé~ | L o o ST Ty

..'i ' w Z .,Z Wa 15_;_,

R (w w )—~ 'IR'[ 2 (5.22) |
'1 - “’l Z  w, v
o b | :

- ‘zl‘eézje‘sgnt_é.‘n'y sum of terms Of_ ,ez_i(a), ®”). |
..:Similarly, let ‘ gf

- o w qd Rw, ok
: — ! — ! N a4 = |
"Rl (w;w/)=R. = R < Y
e MR RI=Re ! Cpwl ‘(5.'2:3 ) I
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- fThe.function Ji is‘defined by .Fredholm theory (see‘Appendix B of I).
Its analytlc structure is, however, exhibited by the terms of the formal

J_ expansion:

90 oo el
Vs AT - R

(5.25)

",{f.fﬂ{ci:‘_Eachttern in*tnis expansion consists of'minus bubbles and'sets of lineslbgfvﬂﬁffft

ﬁj‘jrestricted by the Q; bar conditions. Consequently, no Landau diagram L

: ifivsupported by eny term on the right of (5.25) can contain & cut set

'C (0, ). Therefore (5 21) belongs to ,é? (w, » ), and (5 20) can be ;;'f¢fiﬁf“

written

. . w A
'?' 7 /lnz 21-_1ZP'_; s + ;ZZR"é'i
w/ / P el W 4 pw S _
w, Z w! . AN .
| s2e

i

The formula just obtained is the i-box version of Proposition 5. l. Tf,f*‘
It can be simplified by further manipulations Alternatively, one. can

'-apply,(5.16) directly to (5.15). Then one obtains




s e w—

'Ezuﬁzgﬁ' S
.(&27)

o—

w \
' L+ -1 -7 W,
o+ N ,t R
. . w’ 7 @ w‘, /7
WA |

The second term on the right can be incorporated into the last,

o be virtue of the following prop031tion.,L

- Proposition 5.2C. Consider the diagram .

e e : - : . RS- 1 S

B ZA _Z,Zr'::l B A2 Y

- If the center-of-mass energy of the set & is below the four-particle

thresholdin the B + 7 -Q channel then B, is equivalent to a

2

bubble diagram B' having the . property that for any D:>C:B the

2
only simpletpositive- (o, B # y) cut set C with connected X(C, B+ 7)

.. i8 « itself

This proposition, which is similar to PropOSition 5.2, upon

'_ vhich it is based is proved in Appendix C. Combined with the

~ properties of oJy .of (5.25) 1t shows that the second term on the right'fsz

of (5.27) belongs to Ajecl(w, w’). Thus we obtain

(s.28)

UCRL-17902 = .
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.mm'f}u’ I e Y& W2 p. WA _Bw
Wy 2 _ /72— + R
! w, = / o' d 7z wl
K l 1 2 wl O /4 u)z ) | 2 . ‘

| o (5.29) "

'I‘he second term on the right has a minus. ie . continuation into"itself -
past the normal threshold at E(w, ') = M;. The first term is

therefore the discontinuity of M+_ around this threshold.
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| VI. ANALYSIS OF THE SECOND TERM

A. General Result E

.In this section the second term on the right of »(5.12).ﬁis i; .7 
further analyzed. 'That is,_ﬁaricﬁs bubble diagrams included in this
tefm, but belonging to 1&1(&, w'),»are identified and éeparated out;

A generalization of Proposition 5.2 is needed: '

' Proposition 6.1. The box diagram |

3 +zZr )

is equivalent to a box diagram BB’ such that, for any Df><::BB’ the

only simple positive (@, B + y +d) cut set C containing no line of
'8 1is the set a. |

Proof. Equations (2.3)' and (2.ka)’give
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Since no line of & can be in the cut set C, every line of o in the
first term of (6.3) evidently must be. [By definition, no line from any
nminus bubble can be included in this cut set.] Then the Corollary td
5.2 completes the proof for this first term. For the second.term the
definition of the box diagram (2.5)', together with the requirement that

~ .each bubble has both incoming and outgoing liﬁes, enéures that each line -
of @, 1is connected to & minus bubble (including trivial bubbles) that
is connected to a line'of 5. Tﬁus each line of 'al must belong to C.-
Each point of X+(§) lies on a minus bubble that is connected to a line
of B aﬁd it must therefore belong to E(C, B + 7 +.8). vTheh the

Corollary to 5.2 completes the proof.

3

of (5.11). The replacement of the two By

Corollary 6.1 Suppose the B, of (6;1) is part of the box diagram B

parts of:(6.3) by the 3{_
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of Proposition 5.2 converts B‘ to B" and converts B to an equiva-

3 3
lent B’ -having the property that, for any simple positive (w, w’)

cut C of any D'=>cB’, all the points of X (&) belong to X(C, w')

~if all points of X+(B), X-(y),'and X(8) do. Let the part of D'

supported by B"‘ be called D‘/. Then all points'of. D.’ - @ belong

3 3 3
to X(C, o!) if all points of X (B), X (y) and X(3) do.

Proposition 6.2. Unitarity and the Cluster Properties imply that

e
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The subscript ¢ ‘on :c indicates a sum over connected tefms only.
The condition o > 1° means the set O must have more than one line.

The prime on the summation symbol indicates that it includes only one

of the k! j! topologically equivalent terms coming from the relabeling

of the sets of initial and final lines. [And, as thrdughout this pﬁpér,
once the sets of external lines are fixed, the sums are 6nly over
topologically distinct. diagrams. ]

Proof. Let the right-hand plus box in'thélsecond term on the right of
(5.12) be expahded according to (D.11) of Appendix D, with the lineév

i,j,***n of ¢ identified with the lines that go to the minus box.

' The terms G;j---k of (D.11) give structures of the form
wl’i & /‘ £
i o p by
w7+ i
7 ) X+ /
al- . 2w}
v 7779, p
; +Zw .
Wi Z e

(6.5)

One observes that no D supported by any term of this structure can

have a simple positive (w, ') cut set C such that X(C, o) and -

'X(C, w) are both connected diagrams. For if X(C, w') is connected,

“then the lines i, j,***k mst evidently belong to X(¢, w'). But then

by Corollary 6.1 all the points of X (@) must belong to X(C, w').

" UCRL-17902
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This means that X(C, w) cannot be a connected diagram. A similar
argument applies to the left<hand circled plus box of (:6.5). Thus all

the contributions associated with the G.

150k terms of (D.11l) glVé

- terms that belong to /&%(w, o'). The remaining term becomes the second

term on the right of (6.4), after the contribution coming from the _
connected part of the minus box is shifted to Rc. This completes the

proof of Proposition 6.2, .
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B. Special Cases

Caée 1: E(w, o') below fhe four-particle threshold

‘ In this case the conditions on the second term on the right of (6.4) .

cannot be met. This proves (5.15)

Case 2: E(w, o') below the five-particle threshold E_
J

It is shown in Appendix E that for this case (6.4) gives

The first two terms on the right contain all the singularities assbciated :

CU| 2
!
w
| /
/
wy
cu,,

" (6.6)

with positive-o Landau diagrams that can be contracted to any Dn+(®’ —Sw®).

~ The positive-a double~cross diagram obtained by shrinking the bubbles

of thé second term on the right to points, and assigning plus signs to

the lines, is such a diagram. It is readily confirmed that the

r e 2t b e



“types in R, ‘is precisely the first two terms on the right of (6.4)
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positive-o contributions to the double-cross diagrdm from the sum :of
the first two terms in (6.6) are equal to the positive—a:contributiohs, i

from ... . e - , L . ~

Ty

The significance of the results obtained in‘thisjsectién is this:
The function represented by R, in (6.4) or (6.6) must, by virtue of the i

third»sfructure theorem; continue into itself in a well defined way -

. around any Landau surface L(D), near P ¢ L(D), for any D that contracts

to a o' —;¢_ normal threshold diagram, provided the only singularity
sgrfaces of R, through P are L(D) and L(D*)) where D* is
obtained from D by reversing the sigﬁs of all the a’s.. And if ﬁ

is a pure-a diagram, then this well-defined continuation is the minus
ie (i.e., nonphysical) éontinﬁation. Thué_the discontinuity éorrespon-
diné to' any path P'P" that encounters only sinéulafities of these

or (6.6).
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- VII. SHEET CONVERTERS

Below the lowest four-particle threshold Eha in the channel

B + 7 -« one obtains from (5.18), (5.10), and Proposition 5.2 the

result-“m e e o o
: ‘ az+zr—-°m+mr=a B,z 7+ AL gl ez ;
o BZ B ZZZZZ2] . BZZ B 27777 , i
= , AT

where _Bl, is the right side of (B.4), and satisfies the following.

proposition.

Proposition 7.1

Let & and B be sets that satisfy Q@ +f=0a+p, 0 <a
and &N 6 = 0. The only simple positive (5& 3

any-]f:;<:£&f is Q.

This proposition is a trivial extension of Propositibn 5.2,
By virtue of Proposition 7.1l and the Third Structure Theoren,

we know that the function represented by the connected part of Bl'

has a minus ie continuation into itself around any singularity

associated with any diagram 'D€:><:Bll that can be contracted to any

3 + y ,a& normal threshold diagram. Using the properties of (5.25)

and Bl’ “one finds a similar result for the second term on the right

of (7.1): The connected part of the second term on the right of (7.1):

. has & minus 1ie¢ continuétion into itself around any singularity in the

interval

+ ) cut set C of
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A Q

/ "that can be contracted. to any .

 é$soéiéted witﬁ any dlagram 'D):><:Bl

B+yad normal threshold disgram.. Let the set "of. singulerities just. .
described be called si(a,é‘ + 7). | | |

Since the connected parﬁs of both terﬁs on the right of (7.1)

goptinue into themselves Qia a minus ie rule'around all Singularitiesv

- of \Si(a,g + 7),-and since (7.1) holds idenfically throughout the
;physical‘region,vthe connected part of the left side must continue'into o
"~ itself via the‘same rule. If Mi is. chosen greéter thanuthe physical :
._threshold iq the B +vy - chanhél, so that the»physicél region

Ancludes pdints where E(a, B + y) < Mi’ then the connected part of

either side of (7.1) can be identified as the continuation of the

| scattering functioﬁ from physiéal points E(a,p + y) < Mi to points

in E(o,p + 7) > M, lying underneath the cuts associated with fhe

singularities of Si(&,g + ). Continuability past other singularities

is not guarantéed, however, |

- The result just obtained is represented by the equation

e C e e e — Y S Uy R N Y s

P.

i
Y +Zmil'

A
N

» N
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where the right side represents the continuation of the scafterlng
function to the underside of the cuts associated w1th the s1ngular1t1es
of Si(a,ﬁ + 7). [Some terms on the left of (7.1)-are transferred, to
the right by the methods of Appendii C (see C.3), in order to get R
(7.2). The symbol -i in the right-hand térm is sir@ly i in.
References 1, 2, and 6.] |

‘The.restriction that Mi be above thé'lowest physical thresh-
' hold in the channel B + y - means that the lines a of (7.2) can
be considered cut by a Qi bar. Oﬁe wéuld like to have this equati;n :
also with a P

i
inserted into the discontinuity formula (5.29).

bar on these lines, since the formulas could then be

To obtain this result one must use the pole-factorizatlon
theorem5 in (5.26). We do not pursue the matter here, but only. remark
"that the formulas in terms of the i boxes are the_moré useful ones
anyway. For the-expression in.terms of functions on other sheets
introduces,.in effect, new unknown functions. And there is a different
new unknown function for each choice of the "other" external lineé
. [for example, those in the sets B and 3 of (7.2)]. The i box
formula gives the discontinuity directly in terms of physical functibns.

alone, and the i box is independent of the "other" lines.
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. VIII. ANATYTICITY FROPERTIES

' .The‘phasé*épace factors in unitarity equations have singularities. . -

Corfesponding'sihgularities must appear in some Séattering function.'

~These latter singularities can combine with phase~space'singularities

to yield still other singularities of scattering functions, and so on.

) o 8 : . ' :
. It has been shown that all singularities generated in this way by

unitarity must lie on Landsu surfaces. The first part of our (maximal)

analyticity assumption is, accordingly, that all physical-region

singularities of scattering functions lie on Iandau surfaces.
Physical-rééioh éingulgrities lying on Landaﬁ sﬁrfaces are

physically interpretable in terms of the notion that momentum-énergy is',

transferred over macroscopic distances only by physical particles. 1In

v particulér, if the singularities of scattering functions are confined
‘to Landau surfaces, then transition amplitudes can be shown to fall off = .

- faster than any power of a scaling parameter T unless the trajectory

regions defined by the wave packets of the initial particles can be E
connected to those of the final particles by a_network of physilcal

2 In the limit of large ‘7 the distances involved become
infinite. If one invokes the macroscépic causality requirement that
the transition amplitudes fall off fast unless all the particles of thé
network move fofward in time, then the singularities are gonfined to

the positive-a brancﬁes of the Landau surfaces.9 Moreover, the
scattering functions on the two sides of these surfaces are analytically'
connected by a path that moves into a certain well-defined upﬁer half

9

plane. This rule of continuation is called continuation via a rlus ie
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rule, Continuation through the opposite half plane is called
continuation via & minus ie rule.

The work“of Reference 9 establishes alse-that if seVeral Landau

surfaces intefsect, then the rules of continuation are compatible in the .

following sense:. If the various intersecting Landau eurfaces are ail
associated with diegrams that are contractions of any‘one single parent
diagram,.then‘the intersection of the wvarious upper. half planes is
nonempty, and‘ﬁence a region of continuation exists; if theAdiagrams.
; corresponding to one subset of the surfaces intersecting at point X
have a.common‘ﬁarent, but no two that incluﬁe one of the remaining
diagrams'have.a common parent, then in a neighborhood of X ﬁhe
seattering function can be decomposed into a sum of funetiens each
havihg only certain of the singulafities, and haviﬁg e Well-defined
rule of continuation past these singulafities.
The above results provide a rule for continuafion of scattering

functions‘around all known combinations ef intersecting singelarity v |
surfaces. To include any possible others, we assume that Singularities

1

that are "unrelated at K" are ’independent at X." _Singularities
"unrelafed at X" are singularities corresponding to aiagrams that have
no common parent whose surface contains‘ K. Singularities "independent
at X" ere singularities at X that can be separated into different |
terms of an expansion of the scattering function; The assuﬁption that

unrelated singularities are independent ensures .that there is a well-.

defined rule of continﬁation past all combinations of intersecting
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: surfaces of 31ngularities of the scatterlng functlon This rule is
'_called the;' general_ ie rule | It ensures that an 1ntegral over & _uf
.“scatterlng function can be'deflned locally, as a sum of contour integrals{?,df

" that detour around singularities in a manner determined by the plus

iev rules for the individual singularity surfaces.

The gener&l“.ie rule is the hypothesis of tnree‘"structure '
theorems" proved in Ref. 2. These theorems'provide the analftic basis
of the present workr‘ The First Structure Theorem says that the functlon “
corresponding to a connected bubble diagram B can have 81ngular1t1es
only on the Landau surfaces corresponding to Landau dlagrams DDCB. - -
.A diagram Df)CZB is a diagram that cen be obtained by inserting N
connected Landau diegrams for fhe-buboles of 'B; and fhen»contracting

somed(or no) lines. The Second Structure Theorem says that these

" diagrams DDCB. can be further restricted bﬁ demanding that the

a's on the lines of ' DIDCB that arelinterior lines of plus or minus'
"bubbles of B have plus or minus signs; respectively. The Third
Structure Theorem gives the rule for continuation_around.the singularity
essociated witn a given DDCB. It says'that ii"si?[D] is the only
Landau surface passing through a point X, and if the momenta, p‘j

and Fe&nman 03 of the internal lines of the corresponding Landau
diagram are given uniquely by continuous functions a (K) and p (K)
for points on EZ:[D] near K, then the functlon represented by B
continues into itself when continued asround ng[DINCZB] near K by

& path in the upper half plane of the variable
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o) = c(K;‘K)_;Z L® @2 )

_ The éum is ovér ali,iﬁternal.lines, and‘ pj<K). iswggy Féﬁ.qf'.pjv._
.coﬁsistéht with the cohservation laws at K. [A ﬂumbef of useful -
'_.eéuivalent'éxprgssioné for.  o(K; K) are given in Ref;r2.] The sigﬁg
of_fhe ai(K) in (8.1) are:fixed according to the rﬁle given above:

a's from lines lying inside plus (minus) bubbles are positive
(negative)._ By virtue of the Third Structure Theorem, the function
represented by any bubble diagram B always has a well-defined
continuation into itself past thevsingularity surfaces near g point-
P unless there are several Di)ﬁ:B with surfaqes Eii[D]--that

intersect at P gnd have incompatible rules : for continuation.

The position of a Landau surface corresponding to a given D S

is not changed if tﬁe signs of all its «a's are reversed. But thg

rule for continuation past tﬁe corfeSponding.singularity is reverééda'”
Thus if both‘théée D are supported by some B,.then the Third
Structure Theorem fails to provide any (single) path of continuationv
for this function. This ié'precisely'what happehs at a fhreshold: |
The siﬂgularity surface‘cofresponds to two DB that specify
opposité rules for continuation. Accordingly,'the function representéd
by: B on the side of the threshold is nétvanalytically connected to

the function represented by B on the other side.
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It should bé'emphasized that the contours of integration in the

‘definitions of bubble diagram functions are alwaYS fixed to be féal,‘ 

excépt for the infinitesimal distortions away from the singularities of .

the scattering functions of the integrand: One never distorts (by

' finite amounts) any contours, but uses always the originally definéd B

(almost) real contours. Thus when we say that a function corresponding

to a bubble diagram B continues into itself, we mean the function

-defined by B with real undistorted contours of integration continues

into the function defined by B with real undistorted contours, alwéys‘;

excepting of course the infinitesimal distortions required by the

" definitions of scattering functions.

Qur procedure has been fovderivé universal‘physical-region
identities of the form Mf = T + R, where M+ is the physical scattgriné o
fupction, T is a threshold term that vanishes below the threshold. |
t corresponaing to a certain positive-& nofmal threshold diagram D+,
end R is a function that has no singularity corresponding to any |
Landau diagram that can be contracted to D'. Let D™ be the diagram

obtained from D+ by reversing the signs of all the a's. The

_singularity_surface corresponding to D also lies at the threshold

-t, but the continuation past it is via the minus ie rule. Thus if

the only singularities of. R near some point P on t are ones

. + -
corresponding to D or D, then R must have a minus ie continu-
ation into itself past t near P, since the construction of R

rules out singularities corresponding to D+.
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Because' T vanishes below threshold, R ~is equalfto ’M+

'there. Thus R is an explicit expression in terms of phy31cal

amplitudes (i €., scatterlng functions at phys1cal points) of a function
that equals M below t near P but has a minus ie continuation. .
into itself past t near P. Since M+ has a plus ie continuatidn
into itself past t, the discontinuity around +t  near P 1is Jjust ,T'

Ih the argument just given it was assumed that éach‘singularity ‘:i
of R _nedr P correspohdsvto one of the threshold diégrams fD+ or
D-;- The argument can be extended easily, however, to,fhe case in which
each singularity of R near P éorresponds, merely, to some pure
(positive or negative)-a diagramlthat contracts to Df or D”. Those
contracting to D+ aré ruled out by the construction of R, while‘tﬁose
that contract to D  must be pure negative-o diagrams. Therefore R
again continues info itself around t near P via the minus ie rule.
Since only a finite number of pure-0 singularity surfaées enter any
bounded region,lo the point P can be taken to lie on no pure-c
surface other than t. Then the plus andminus ie -continuations are
simply into the'upper and lower half E(w' —w) plane respectively.

The above arguments covér only singularities corresponding to‘ _ 
pure-0 diagrams that contract to D+ or D . However, for‘almoét
every point P on t the contraction condition can be ignored. For,
for almost every P on t there is a‘neighborhood N(P) of P such
that each pure-a sufface that intersects N(P) corresponds to a

+ -
diagram that contracts to D or D . This follows from the general



| theory of'pure;a surfaces developed in Ref. 9. That theory tells us
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that, apart from a sét of pointé 62Q) (of zero meésure-on t) where -

- certain external lines are parallel, the set of points lylng on

pos1t1ve-a surfaces are the union of a set of (codlmen81on l) analytlc B

.manlfolds only a finite number of which pass through any ‘bounded reglpn. _,,{f,_

" Thus for almost every point P on t there is a neighborhood N(P)

of P that intersects no Landau surface except those that coincide w1th :

- t. The general theory also tells us that the normal to the surface at
“any point P lying on just one surface unlquely determlnes the p031t10ns= =

' of the external lines of the geometric Landau diagram D(P) that

generates this point P. This means that any pure-o diagram whose

'singularity surface contains a P lying on no Landau surface except

t hmust be such that all the lines w intersect at one point and all

-the lines ' intersect at another point. But any pure-a diagram of

this kind can be contracted to D+ or D . Thus for almost all points
P on t, R has minus ie continuation into itself around t near
P, provided R has no mixed-d singularities passing near P.

A theory of mixed-o Landau éurfaces analogous to the,theory of
pure-0. Landau surfaces developed in Réf. 9 is not available. It seems
likely, however, that almost every point P on t will have a
neighborhood that intersects no Landau surfaces except ones corresponding
to diagrams that contract to a normal or pseudonormal (w' - w)

threshold diagram.ll .Let us assume this is true.
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S & als§ séems likely that in eqﬁations dérived'from‘unitarity
and cluster properties alone there will be no sysﬁematic cancellationé -
-betweén pure~0 and mixed-¢ singularities;»_That is, if one side of such .
an eQuation'ﬁas only pure-ol éingularities, in some neighborhood N(P), 3 -
then so should the other side.‘ In particular!_we do,not»éxpect
singularities associated with normal thrgéhold diagrams to be canéelled
by singularities associated with pseudonormal fhreshold diagrams, siﬁce;

these will be moved relative to each other by small variations of the

masses. The absence of such cancellations will also be assumed. [These‘v"‘

,assumptioﬁs ere either impiicit or explicit in ail derivations 6f
discontinuities:from unitarity. ] _ |

These two assumptions ailow us‘to;conclude tﬁgt R ﬁas no
mixedéa singuwlarities in a neighborhobd N(P) of almoét any péint P  '
on t. Energy conservation precludes the poséibility that T has any':
pseudonormal‘threshold singulerities near t. Then, sincé M -T has‘
only pure;a singularities in a neighborhood N(P) of almost every P
of t, so must R. '

A more extensive study of the mixed-o singuiarities is needed.

But that is a subject in itself.



| UCRL-17902
;gu;

APPENDICES‘.]NT_

. Appendix A;;;Prodf'ovaecomposiﬁidn-Rules;v

.. Every contribution to the left side of (2.3) that is not
cpntained in-the first term on the right is a column of bubbies no#él
‘ 9f whicﬁ is Coﬁnécted to both .Oi .énd >dé;_ Ahy such term océufsvgé.a 
,_'contribﬁtion to the second term on thevright. No two different contfi?-”7
 butions to the left can occur as the‘same contribution to the second»
 term on the rigﬁf;' Thus the left side is contained iﬁ‘the.right, Evefyj£ "
: contribution to the second'term on the right-occurs as.a contribution to o
the left. No two different contributioﬁs to the seéond‘term_on the rigﬁt
_ can occur as. the same contribution to‘the left. No contribution to the
sécond term on the right is contained in the-subset of fhose céntributionsi
“to the left that constitute the first term on the right. Thus the right
side is contained in the left side. Therefore the fwo sides of (2.3)
are identical sets of diagrams.
Each contribution to the left side of (2.4a) is contained in

one and only one térm on the rightf This term is.one iﬁ which QiE
“is the subset‘of‘ Qi consisting of lines conﬁected to bubbles that are
connected tq a,, and By is the subset of B consisting of lines
conneé‘oefz‘t to bubbles c¢onnected to Ocia Uo&e. A given contribution ’qo
the left occurs as precisely one contribution to this unique term in
which it Appears. No two different contributions‘to the left occur as

the same contribution on the right. And every contribution on the right
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" considering the 3- 3 box

j_reads=

‘;2“(1 "'Zs-_-@: +Z£ (A3)':
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v'aoccurs at least once on the left. Thus the two smdes of (2 ha) are:

’;'.1dentical. A completely 31milar argument proves (2 hb)

An illustratlon of the decomp081tlon formulas is prov1ded by

e i s et b 6

'% | ——— b4 B e
N ‘ R o

. 7For the case . ai [l, 2), a,=1(3), end B ;5£4; 5;_6?;_E§;S(2,3)'> | :’ [5;7

s ze,. f .
(A, 2) |

" The first term on the rlght of (A 2) is then by deflnltion the sum of

' bubble diagrams

where the sum sign labeled "i" has the same significance as in I (See”-_. -
the first paragraph of Section IV of I). The second tefm on the right

of (A.2) is



UCRL-17902

o
5 4 2—{-
63—

The e@ressa.ons (A 3) and (A h) add up to the usua.l cluster ex‘pansmn
C of the 33, box [Eq (h L) of I], as we see by substltutlng the expansmn

of the 2-+ 2 box [Eq (A 8) of 11 mto (A ).

R L TR e SR R

TN Mt kR
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~ Appendix B: Iferabion of Certain Box Diagrams -

In'this'éppendix the box diagram Bl .defined by'(5}lo) is

converted to an equivalent box diagram Bl’ used in the proof of
Proposition 5.2.

. Equations (2.3) and (2.12) give

i

Ty
e+ p 2+

o | oz~ ez~ | |
+%7+m—+27

B Z4+4-|— B+

azZAlpgz?,
S s T, .

[

Use of unitarity, and then (2.ka), converts this to

(B.1)

i
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B AR , A3

. (Be2)

ihis equa.tidh .can_be _itera{;ed ‘by replacing the la.sf. factor of the last

term by the entire right side. An n-fold iteration gives
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Let the nuMber ‘of iterations n ;be_aﬁ‘leastéééudlﬁt6§theHnumber_”¢

”3;V'of lines n(a) ‘of the set Xo2 Then the'last'term'on'the-fight'SideA

‘ _':of (B 3) is an empty set, since the definltlon of (2 5) 1mplies that if 5

"any of the sets Qi’a2". ’ a is empty, then no diagram satisfylng

l

l the requlred conditlons exists. Thus for any n> n(a) we have .
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If the set o ig_empty, then all terms of .the right side of

(B.4) except the first are empty. Thus, the right side of (B.k) is in

. this case
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Equation (B.y) is therefore a trivial identity for n(c) - 0. If

a ﬂz 73

B 4

Bzt

A f'n(a).fvl;'Eq. (B.4) is

B4
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. Appendix C. Proposition 5.2C

Cbnsider the diagram

o

UCRL-17902

o
N
l

L e
Y

B,z v

I
Q
|

N
L
IR
{

i

(C.I )

If thé-center-of—mass energy of the set « is below the four-particle

threshold in the channel B + y —Q, then 32 is equivalent to a

bubble diagram B

2

! such that for any D€:><:B2' the only simple .

positive (o, B + y) cut set C with connected X(C, B +y) is «a

itself, Mbredver p/ - o lies in X(c, B +¥).

Proof. The arguments establishing Proposition 5.2 apply equally well

to the connected part of B., which is _

R R

azZ4 —
B ZZ

+

2y :;3'22£;:

C

(c.2)

If o is taken to be a single line, the second term on the right of

(C.2) drops out, and Proposition 5.2 proves the proposition. If the

center-of-mass energy of the set «a is less than the three- or four-

particle threshold, respectively, then the second term on the right of

(c.2) is
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or
i
) ‘ . i
respectively. (Topologically equivalent contributions to the right
‘side are to be counted only once.) The only simple positive (o, B +'7) o
cut set :C of any of the bubble diagrams of (C.3) or (C.4) such that
X(C, p +7) 1is connected is the set a. This follows at once from
Definition 3.1, Proposition 3.1, and from the fact that no line of c A -

can be a minus line. Proposition 5.2, applied to the left side of

(C.2), completes the proof.



v
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‘ Corollag . Suppose B, of (c.1) is partof'-Bgf (S'll)f' Replacement

of B, by the Be" of the proposition converts B to B'. ILet ¢

- be any simple positive (w, ') cut set of any D'o>eB!. 1

" X(C, w") is connected, then all points of X (&) belong to X(C, ')

if all points of X (5) {J X"(y) belong to X(w').

Proof. The above proof still a.pplles, if the X (B) U X" (y) belong:

to X(w').
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. Appendix D. . The Pfinciple of Inclusion énd Exclusion and an

Expansion on Unconnected Lines .. .=

~Let A be‘a set such that each member of the set either has 6r';

has not the property "i." The subset of A consisting of members that °

et

have the property "i" are designated by Ai’ ‘'The subset:of A

consisting of members that have not the property "i" are designated

by Ai(i =1, 2,°**,n). Then,
+ A o o (p.1)

By a repeated application of (D.l) we obtain

i

A

A+ Al :

‘(D;z)l "

]
i
+
.
=
+
oo
+
-1

It follows from (D.1) also that

WP A e

, and by (D.1),

By the definition of Ay

Ky = (- a)y = By - A, (D.4)

Substituting (D.3) and (D.4) into (D.2), we obtain



v
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R

Equation (D.5) can be generalized to the formula

i i<
= ('l)s ' § Aij...k ot
: i<k ‘
s A AT ©:6)

where s 1s the number of subscripts in A and where each

i3+ ek
summation runs from 1 to n. [For a proof of (D.6) see Ref. 12.]

Consider now a plus or minus box of the form

+
G™ = Tz a,

s 2 (D.7)

where o consists of precisely n lines. Let the property "i" be:

the property that line 1 of o 1is connected in G* to no line of
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gy

o-1 = o-(i). Let G} ve the subset of diagrams of ¥ with the

property i. Then G: has the form

Gi = = O'-'iZ | (D.8) R

| +
N
o)
o

.

This is because each term of G?.L" occurs as one and as only one term
on the right; no two different terms of Gi:t ocecur as a single term
~on the right; and each term on the right occurs at least once in Gi

_ Simlla.rly, for i ;f. ,j,

. 1& 2, e
|

o | - |

] oc-i-jZ
Bz Z
ete. The term Gﬂe n is the term of G¥ such that each line i

of ¢ is;,connected in G to some line of ¢ - i. Thus it has the

form
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[Reeen o
Cgttzeeens TBalyo (D.10) !
: . = BZA—| :

where the prime‘on the summation symbol indicates that only one of the

k! topologically equivalent diagrams obtained by reordering the bubbles

is to be counted,'and the condition qf4! 1l nmeans that the set o,

has two or more lines. That is, the sum is over all ways of partitioning -

the set o into sets qr4= 1, the set B into the sets Bk’ and the

set Q into the sets Qk, a8 specified by the summation cohvention of

Section II.

o ! N
Let Gt_ be Gt minus its connected part. . The expression

o]
given above for Gi also applies to Gi except that the sum of columns .

of bubbles on the right of (D.10) does not include a column consisting

0 . .
of just one bubble., Since G?. : = G:j~--k’

1§k the appllgat;on of

. )
-(D.6) to the function (‘}:b yields



" UCRL-17902

'.v'-;;‘a.re of the form 1nd1ca.ted in '(D 9) a,nd G*l2"'n

7 is glven 'by (D ’J.O) w1th the restrlctlon k > l.v
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. Appendix E. The Double~Cross Term

In this appendix we prove Eq. (6.6). If E(w, w/) is less than
the five-particle th'reshold, then the columns of plu.s'bubbl'es in the
~ second term on the right of (64&) each consist of precisely two bubbles,

and this term, denoted by B6’ is given by

where topologically equivalent diagrams are to be counted only once.
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. Ohly'the'last bubble diagram on the right of (E.l) can contain

e simple positive (v, w') cut set -C such that X(C, w) eand X(C, w’)

are both connected. This follows directly from the properties of cut-_ “: RS

- sets established by Prdposition 3.1. In particqlar, any DDCB is

divided by C into three disjoint sets X(c, w), X(c, w') and CI{

fthe first two of which must be connected; Since .C' 'cdntains no minus_w

lines, the part of D 'contained in any minus bubble must belong to

ceither X(C, w) or X(C, w’). This precludes the possibility that the - ..
_other one is connected, in the éase of the fourth and fifth terms on

the right of (E.1). For the third term the requirement that X(C, w) e

be connected im@lies that either (i) lines e and c. belong to
X(c, w), or (ii) lines b and 4 belong to X(C, w). The requirément" v
thé,t X(c, w!) be connected implies that either @') lines a and b . -
belong to X(C, w’'), or (i") lines ¢ and a belong to X(C, w’).
These conditions ére‘incompatible with the requiremént '
;)E(C-, ) M), I(C, w;) = 0. Except for fhe last tefm, the remaining
bubble diagrams 6f the right side 6f (E.l) are ruled oﬁt in the same

way. -The last term does not belong to lgzh(ay o’ )3 the lines intersected

by the dotted curve are a simple positive (w, o’) cut set.
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