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Abstract 

The approxiITlate tiITle-dependent steady- state teITlperature of 

a thin rotating nuclear target systeITl is found by solving the differen-

Hal equation for a corresponding one- space-diITlensional heat transfer 

probleITl in terITlS of an eigenfunction series. The series obtained can 

be evaluated nUITlerically to necessary design accuracy with use of only 

a sITlall aITlount of cOITlputer tiITle. The results are given for a typical 

probleITl, for which the solution is depicted graphically. 
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Introduction 

The advent of large beam energies in particle ~ccelerato rs 

requires that some scheme be used to prevent the melting of solid 

beam targets. One scheme is rotating the target, so that the portions . . 

of it exposed to the beam are bombarded for only a fraction of each 

rotation. In this paper such anuclear target system is considered; it 

consists of a plane target of thickness a attached to a heat-conducting 

backing of thickness b that dissipatesheat'to a coolant (fig. 1). The 

coolant either is maintained at a constant fixed temperature TO' cor-. 

responding to boiling heat transfer, or has a film coefficient. h with a 

constant fixed sink te~perature TO' corresponding to nonboiling heat 

transfer. The target is rotated with period T at constant speed, and 

a uniform beam, parallel to the axis of rotation, of width € impinges 

on. the target at a distance R from the axis to the center of the beam. 

For design purposes it is of interest to know the steady-state temper-

ature of the target and backing as a function of time, and,in particular, 

to know if the maximum temperatures lie below certain upper bounds. 

Rough estimates for the peak temperatures for a similar target system 

have been given elsewhere as obtained by bulk time-averaged heat

transfer considera~ions 1). Such estimates, however, may provide in-

sufficient information for the proper design of an optimal rotation speed, 

for which more detailed estimates, especially of the time dependence, 

are required. 
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In this study, temperature estimates are obtained by solving 

the differential equation for a one- space-dimensional time-dependent 

problem approximating the original one. 'In the approximating problem 

only the temperature' on the,surface of the circular cylinder traced out 

by the center line of the beam is' .considered, since it is there that the 

maximum temperature occurs. The temperature is taken tobea func

tion only of the distance along the beam direction; that is, conductibn 

perpendicular to the axis of the beam is neglected compared with'cbrr

duction aloni the axis. If the target and backing are thiIicompared 

'~ththe width of the beam, then this is a good approximation. {Ii any 

case, 'neglecting the transverse conduction results in temperalutes 

that e+r in being tooiarge, so that designs based on them will aiso 

s'atisfy: theti:i?~er temperature bounds 0'£ the original higher-dim~nsib:b.al 

'problem. The'advantage 6f this one-space-dimensional approxima'tion 

'over the original pro blem is thitit is easily and simply solved in terms 

'Of a~ 'eigenfunction se ries with only a small amount of cornputational 

eIfo ~t. 

Mathernaticar Forrnulation 

The approximating problem is depicted in Fig. 2. 
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The target occupies the region -a~ x ~ 0 and has thermal conductivity 

K
1

, density Pi' specific heat C
1

, and diffusivity D 1= K1/P1C1; the 

conducting backing occupies the region 0 < x ~ b and has thermal con-

ductivity K Z' density PZ' specific heat C Z' and diffusivity D Z= K Z/ PZC Z' 

The. beam travels in the positive x direction, impinging on the target at 

x = -a. The fraction of the heat energy absorbed by the target (and pos

sibly backing) in the length (x, x+dx) is f(x)dx, where f(x) is a given 
b _ 

function of x, and J f (x)dx = 1. It is assumed at x = -a that no heat 
-a 

is conducted away from the target and at x = b that the coolant either is 

maintained at a constant temperature TO (6 = 0), or has a film coefficient 

h with a constant sink temperature TO (6 =1), The time scale is defined 

so that when the time t is zero the beam is just beginning to pass the 

chosen one-dimensional element. The total rate of heat energy absorp

tion by the element per unit 'time during one period is then 

PT 

Z'IT RET 
P 

0, 

O<t~T , 
P 

T < t ~ T, 
P 

ET 
where T - -- is the length of time it takes the beam to .pass by the p - Z'ITR 

element, and P is the power of the beam absorbed by the target and 

backing. 

The governing steady- state equations for the temperature T for 

one period are 



a f(t: x) 

at 

-4-

2-- --= Di a T(t, x) + Q(t) fIx) 

a x 2 C i P i 

a f(t: x) = D a 2f(t: x) +aw f(x) 
n- t 2 n 2 C 
u uX 2 P2 

with boundary conditions 
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-a <x< 0 

o < t <7 

O<x< b 

aT -
ax (t, -a) = 0, 

a f - -- -
oK

2 
ax (t,b)+h[T(t,b)- T o]=O,o=Oori, 

inte rface conditions 

-- + = T(t, 0 ), 

of - -
K1 a x (t,O ) = K aT (- 0+), 2' ax t, 

and periodicity condition 

T(O, x) = f(T, x). 

The problem can be written in dimensionless form by letting -

T = 

H = 

g = 

hb 
K Q' ' _ 2 

, 

7 = 
P 

DiT 
E 

2 
a 

-a ~ x ~ 0 

- ,-

0 <x~b 

aT -a ~ x ~ 0 

f = 
b -

0 x~b -f < , 
M 
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where the dimensionles s parameters a and Mare 

M = 

The reference temperature T chosen here for the nondimensionaliza
r 

tion is T = 
r 

PT 
;::--;':"""-::::--=--, the temperature increment in the target that 
2rr a ERp 1C 1 

would result were all the heat energy per period transferred instanta-

neously (;;: - 0) and unifo rmly [f(x) 
p 

= 1 _ a ~ x ~ 0; f {x;} = 0, 0 < x ~ b] to 
a' 

it from the beam. 

The equations then become 

aT a
2

T + f 0 <t < T at = 
~ 

.. 
T P 

P -1 < £ < 0, 

a 2 T 0< £< a, 
( 1) 

aT 
at = 

a £2 
, T < t < T 

--- P 

with boundary and interface conditions· 

aT 
""8["(t,-1) =0,. o ~l (t,a) + H T(t,a) = 0, 0' = 0 or 1, 

(2) 

+ = T(t, 0 ), 
aT - M aT + aT (t, 0 ) = a "'iff" (t; 0 ), 

and pe riodicity and contiilUity conditions 

T(O,£) ,= T(r,£), + T(r -, £) = T(r ,£). 
p p 

(3 ) 

Solution 

The solution in terms of the associated eigenfunctions is found 

in a manner similar to that in Ref. 2. Consider the associated eigen-

value problem for T
k

(£)., 



with 

and 

+ Ak
2 

Tk = 0, 

dT
k 

dr(-1) = 0 

Its solution is 
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-1<~<O, 

o < ~ < a, 

dT 
= M _k_(O+) 

a d~ , 

() = 0 or 1. 

f cos Ak cos Ak~ - sinAk sinAk~ 

l cos Ak cos Ak~ - ~ sinAk sin Ak~ , o < ~ ~ a, 

with the eigenvalues given by 

k = 1,2,3, (5) 

Only the positive eigenvalues need be considered; let them be ordered 

so tha t 0 < A1 < A 2 < A 3 < 

The eigenfunctions {Tk(~)} do not form an 0 rthogonal set over 

(-1, a), but they are biorthogonal with the (discontinuous) functions 

O<~~a; 

that is, 

{ if k= j . 

= 0 ifk ~ j 

(4) 



If A = k 
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H M ) (0' . 2,\, 2'\) 
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k

) M-
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, k= 1,2,3,···, 

then the eigenfunctions, are normalized EiO that 

by 

where 

The expansion of f(S) in terms of these eigenfunctions is given 

00 

f(S) = I Bk Tk(s), 

k=1 

( 6) 

(7) 

The solution of the original problem for one period is then found in the 

form 

00 

T(t, s) = I C k (t) Tk (s) 

k =1 

o ~ t ~ T, - 1 ~ ~ .~ 0' (8) 

by subs tituting Eq s. (6) and (8) into Eq. (1), which yields the equations 



d C
k = dt 

d C
k 

cit = 

B 
A 2 C +2 

k k T 
P 

2 
Ak C k , 

- 8-

0< t < T 
P 

T < t < T 
P 
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The solution satisfying the periodicity and continuity conditions, Eq. (3), 

is 

2 2 

f 

-A (T-T) 
1-~ k p - A t 

1 -
k 

O<t~T 
2 

e 
-A

k 
T P 

Bk 1- e 
Ck(t) = ( (9) 

2 

l Ak T -A 2 2 P T 

1-e 
k p -A

k 
(t-T ), 

2 
e p T < t ~ T • 

-A
k 

T P 

1-e 

It is of interest also to have expressions for the tiITIe-average of . 

the teITIpe rature at any point S and for the heat flux into the coolant at 

s = a. The average teITIperature can be found by taking the average of 

Ck(t) over one period, and is 

T (s) .. av = ;. r T(t, S)dt = I \ 
o k =1 Ak

T 

(10) 

The (diITIensional) heat flux at S = a is 

aK T 
. 2 .. r 
b 

00 

l Ak Ak Ck(t)(cos Ak sinaAk+~ sin Ak cos aAk )· 

k=1 



" 
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NUITlerical COITlputations 

COITlputations were carried out for the case in which the beaITl 

energy is totally absorbed by the target in a ITlanner that decreases 

linearly with penetration depth. That is, 

{ 
x 

-2-2 
y (x) a = 

0 

-a ~ x ~ 0 

O<x~b 

or 

{ 
-2S 

f (S) = 
0 O,<S~Q.'· 

The corresponding expansion coefficients for f(S}, Eq. (7), are given 

by 

k = 1, 2, 3, 

For this f( S) the average teITlperature, Eq. (10), can be expressed in 

closed forITl as 

~ 2 
- S +~ 

Q.' 
-1~~'~ 0 3 M + °MH' 

Tav(s) =.1 ( 11) 
T 

2 Q.' 
S +~ 

Q.' 
0< S ~ Q.' . M M +. ° MH' 

A Chippewa FORTRAN prograITl was written to SUITl the series, 

Eq. (8), for the teITlperatures at desired values of x and t; the neces-

saryeigenvalues, Eg. (5)" were calculated by using a revised version 
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of the program described in Ref. 3 for calculating similar eigenvalues. 

A typical case run with the program was one for a 0.01- cm platinum tar-

get and a 0.3-cm copper backing (for which a = 16.3 and M = 39.3 to 

three figures) with P = 10 kW, T = 0.06 sec, R = 10 cm, E = 1.0 cm, 

and TO = 160°C with 6 = 0 (fixed coolant temperature). About 30 terms 

in Eq. (8) were required to give an error of less than about 0.5°C in T 

for small t (the order of T ), but far fewer terms were required to give 
p 

this accuracy for larger t. Calculations of T from Eqs. (10) and (11) av . 

agreed to within the expected accuracy. The time required to calculate 

T for a grid of ten different x and eleven differe~t t values, including 

the eigenvalue computations, was les s than half a second on the CDC 6600 

computer. (For {) = 1, slightly more time was required.) Figures 3, 4, 

and 5 show the behavior of the solution. The results of other calculations 

and engineering design conclusions are presented elsewhere
4

). 

It should be noted that the present study requires that 6 be con-

stant at either 0 or 1 in the boundary condition at S = a, Eq. (2). 

The case in which 0 switches between 0 and 1 as a function of T(t, a) 

and ~l(t, a) (intermittent coolant boiling) is not included here, and re

quires additional formulation. 

This work was performed in conjunction with Finn Reinath; who 

suggested the original problem, and Raymond Schwarz, who wrote portions 

of the computer program. 
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Figure Captions 

Target system. 

One- dimensional problem. 

Temperature vs time at the target interfaces, 

x = - a and x::: O. 

Temperature at the beginning and end of the heating 

pulse and the time-average temperature vs distance. 

Heat flux into coolant at x = b vs time. 
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Beam Target· Backing 
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