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THE MOLECULAR-BEAM ELECTRIC-RESONANCE SPECTRA OF 
THE LITHIUM HYDRIDES 

Elaine Rothstein 

Lawrence Radiation Laboratory 
and Department of Chemistry 

University of California 
Berkeley, Cal~fornia 

February 1968 

ABSTRACT 

Radio-frequency spectra have been observ~d in the first rotational 

state of Li 7n, Li 7D, Li
6n, and Li

6
D by the moleculaT-beam electr:lc

resonance method. Analysis of the spectra has made possible the deter

mination of accurate dipole moments and nuclear-hyperfine interaction 

constants. 

The experimental values are compared to the available quantum 

mechanical calculations. The polarizable ion model is also compared 

to the experiment. 
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I. INTRODUCTION 

The first moluculaJ;:-beam electric-resonance (MBE:R) spectrometer was 
1 

constructed in 1947 by H. K. Hughes, who obtained a crude spectrum of 

CsF. The idea was suggested by I. Rabi as an analogue to the magnetic-
2 

resonance molecular-beam spectrometer which had been previously developed. 

Subsequently, J. W. Trischka introduced a new homogeneous C-field, to 
3 obtain higher resolution, and many other improvements. Since then MBER 

spectroscopy has proven to be a valuable tool in obtaining the molecular 

electric dipole moments and nuclear hyperfine interaction constants of 

the alkali halides. For the background and history of MBER spectroscopy, 
. . 4 

the reader is referred to a book by N. F. Ramsey, a book by K. F. Smith5 
6 

and a review article by P. Kusch and V. W. Hughes. 

The present work is a continuation of 'the radio-frequency studies of 

the alkali halide molecules using a high resolution electric-resonance 

spectrometer. The spectrometer used in the present experiments has demon

strated very good resolution, even at strong Stark fields. This has made 
, . 

possible an accurate determination of electric dipole moments, as well as 

hyperfine interaction constants. This thesis presents the electric-reso-' 
7 7 - 6 . 6 nance studies of Li H, Li D, Li H, and Li D. 

This thesis compares the experimental re~ults with all available 

quantum mechanical calculations. The results of the polarizable ion 

model are compared to the experiment. 

II. EXPERIMENTAL PROCEDURE 

A. Introduction 

In molecular-beam electric-resonance experiments the molecules effuse 

from an oven and are focused or defocused onto a detector. In the vacuum 

between the oven and the detector (see Fig. 1) the inhomogeneous electric 

fields A and B deflect the molecules along an S-shaped path at resonance. 

The homogeneous electric field in the C region removes the degeneracy of 

thelmjl states. Perpendicularly to the Stark field in the C region, a 

radiofrequency field induces transitions which are detected as an increased 

beam intensity at the detector. 
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B. Oven 

The ovens used in these experiments were made from type 304 stain

less steel with outside diameter of 3/8 inch and a ten-mil wall thick

ness. The ends of the 6i-inch-long tub~ were plugged and a til x 5 mil' 

slit cut in the center of the tube. The oven was resistance heated by 

passing current through the tube. When the width of the oven slit is 

comparable to the mean free path, the situation is called molecular flow 

Or Knudsen effusion. The apparatus was constructed so that this condition 

is met by the molecules in the oven and by those travelling from the oven 

to the detector. 

Expressing temperature (T) in degrees Kelvin, prescure (p) in lIDU of 

mercury and the collision cross section (a) in cm2 (where a is calculated 

from the ha~d sphere approximation to be TI times the internuclear distance 

. squared), the mean free path is derived from the formula: 

in cm. (1) 

For LiH at 700 0 C and 1 mm Hg oven pressure, the mean free path in the 

oven is 10 mils. In the main chamber (see Fig. 2) with pressures on the· 
-6 . . order of 1 X 10 mm Hg at room temperature, the mean free path is on 

the order of 147 meters. At .the oven slit of width 5 mils and in the 
-

vertical length of the main chamber (on the order of 1 meter), one may 

consider that there are negligible collisions. For a thin-walled aperture 

the shape of the molecular beam follows the cosine law, with most of the 

molecules emerging in the forward direction. 

After loading a stainless steel oven with lithium hydride and allowing 

the oven to remain at about two hundred degrees for approximately eighteen 

hours, the oven chamber pressure dropped rapidly, indicating water trapped 

in the sample had boiled off. The temperature was then increased to 

500 0 C. After a period of eight hours, the oven chamber pressure dropped 

a factor of 1000 within a span of twenty minutes. The best spectra (sig

nal to noise of 80 or 100 to 1) were taken at this time. This technique 

is more an art than a science. In general, better spectra are obtained 

after the oven has been heated up for a while than at the beginning of a 

run. 
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apparatus. Field lengths and displacements. are to scale. Field 
gaps and beam displacements ~re exaggerated. Unshaded areas in 
chamber walls represent access ports. 

(1) Hot wire and ion accelerator 
(2) Glass cover port for optical alignment 
(3) Permanent magnet, 60°, l-cm gap 
(4), (5), (6), and (7) Outlets to liquid nitrogen 

traps and oil diffusion pumps 
(8) Gate valve and 'beam flag 

I 
I 
'I 
I 
I 

I 
vi 

I 

I 
i 



I~ 

'c' 

-5-

C. Detection 

Detection is accomplished by surface ionization on a hot tungsten 

wire. 
. 12· ' 

The intensity is of the order of 10 molecules per second im-

pinging on a one mil by ten mil strip of tungsten maintained at approx

imately 1200° C~ ~he positive ions are accelerated by an electric field 

(about 3000 volts forlithiUffi) into the field of a permanent magnet with 

a radius of curvature of 5 cm.; from there to a fourteen stage NRC elec-

. tron multiplier , with its first dynode maintai.ned at -3300 volts,. Pulses 

from the electron multiplier can either be fed to an electrometer and 

displayed on a Leeds and Northrup char~ recorder or amplified and fed 

into a Hewlett-Packard 5253B counter. Radiofrequency is introduced into the 

transition region and counted on another HP counter for one second 

simultaneously with one second beam intensity count. The frequency and 

counts are. recorded simultaneously on a HP 562A digital recorder. 

Average time per spectra is about ten minutes. Several plots of beam 

intensity versus frequency may be added together to reduce nOise, or 

a multichannel analyzer system may be used. 
-4 The analyzer has 100 channels and a time base of 5 x 10 seconds 

per channel. The reference voltage generator reproduces the voltage that 

the RAMP generator affects in the frequency synchronizer (HP 8708A). 

This voltage is balanced against that from the frequency generator (iIP 
• 

60BF or 606B) for a particular channel and the frequency recorded. The 

RAMP generator generates a voltage of 0 to 10 volts, variable in fre-
, 

quency, whose starting pulse is obtained.from an UPGEN pulse generator. 

The frequency synchronizer locks on a particular frequency and sweeps 

a range up to one megacycle with the help of the RAMP voltage. After 

sweeping spectra for thirty to sixty minutes, the information (channel 

number versus counts) is printed out and plotted. 

D. Stark Effect 

In the absence of an electric field, the dipole moment of a hetero

nuclear diatomic molecule averages to zero. In the more formal language, 

a non-degenerate system of definite angular momentum can have no odd 

electric multipole moments. The electric field twists the dipole and 

gives it a faster rotation when oriented in the direction of the field.· 
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Fig. 3. The effective electric dipole moment, ~ , for deflection of a 
diatomic molecule with a permanent dipole mo~ent,~. The numbers 
at the right o'f each curve represent the (J ,I m.r I) states. The 
dimensionless parameter A. is equal to f.lE/B where E is the 
electric field and B is the rotational constant. 
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where 

B = rotational constant 

J = rotational angular momentum 

u = dipole moment 

E = Stark field 

1
1

, 12 are nuclear spins 

cl ' c2 are spin rotation constants . 

c
3 

= glg2~2(1/r3) where gl and g2 are ~uclear 

c4 = electron 

and ~ is ~he nuclear magneton 

coupled spin - spinintera,ction 

~, ~ are nuclear quadrupole moments 

g factors 

are gradient of the electric field at nuclei 1 and 2 

. 
The molecular beam experiment measures, among other things, the 

effective dipole moment, which is a product of permanent dipole moment 

squared and the inverse of the rotational constant. In most cases the 

rotational constant is kno~, and the· experiment measures the dipole 
, 11 

moment. Crawford and Jorgenson measured the rotational constants for 

Li7H and L17D.' Their Be values as given in their paper could not be 

isotopically corrected to be consistent.with each other. In more recent 
12 years, molecular g factors have been measured. These are proportional 

to the moment of inertia of the electrons. When the Be values are cor

rected, as outlined in, the following, the rotational constants can be 

isotopically corrected. 

The ~ionic) values . for L.i7H and Li7D were extracted using the 

gJ(elec) and Be(exp) values. Both the gJ(elec) and BJ(nuc) values are 

inversely proportional to the moment of inertia, or directly proportional 

to ~he rotational constant. The 'measured BJ values and the Be(ionic) 

values were isotopically corrected for Li6H and L16o. The Be(calc) values 

were calculated and used to find the necessary Bv values. 
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Using ionic masses in the reduced mass formula and the molecular 

~gnet:lc moments12 to find the ionic rotationalconstantc from the data 

of Crawford and Jorgenson,ll one obtains 0.56321 for the ratio of the 

ionic rotational constant of Li7D to that of Li7H. The ratio of the 

reduced ionic masses of Li7H to that of Li7D is 0.56329. The value of 

. the equilibrium internuclear distance is 1. 59L~43 ±0.00003 K ~ This 

method was applied to find the corresponding constants for the other 

two isotopes. These rotational constants as well as vibrational frequen

cies and molecular magnetic inoments are listed in Table L Preliminary 

values of the constants for Li7D and Li6D were presented by Pearson and 

GOrdy13 at the Spring American Physical Society meeting. A set of con

stants for these molecules, using their values for Y,01 and Yll is listed 

in Table II. 

The fractional error in the Crawford and Jorgenson rotational con-
-4 stants is of the order of 1 x 10 • This will produce an uncertainty in 

. '_4 
. the measured dipole moments of the order of 3 x 10 Debye. The fractional 

error bet'Ween the rotational constants of Pears·on and Gordy and those of 
. -4 . 7 

Crawford and Jorgenson is 5 x.IO . for Li D and produces an uncertainty 

of 0.0015 D in the dipole moment. For Li6D there is a 0.0027 D difference 

between the two possible v = 0 dipole moments, however the ue (equilibrium 

dipole moment) values agree. 

B. Rotational Constants 

Summary of formulas: 
B - y. ( 1) . ( 1)2 v - 01 + Yll v + 2+ Y21 v + 2 

. . "2 
YOl = Be [1 + COl (Be/We) l 

. 2 
Yll = Be(Be/we)[6(1 +8.1 ) + (Be/We) Clll 

Y21 = 6Be(Be/we )2C 21 

a i 
= anharmonicity con~tant 

Be = equilibrium rotational constant 

Bv = rotational constant for vibrational state v 

Yij = Dunham coefficients 

• 



•• 

". 

-ll-

C
ij 

= constants 
, 

we = vibrational frequency at equilibrium 

(ionic)" I( ) 
u = M(Li+) . M(H-) M(Li+) + M(H-) 
u(ionic)= u = reduced mass 

. M. = mass of nucleus i in amu 
~ 

" gJ(nu~.) 

gJ(total) 

" 2 
= Mu Z./M. 

~"~ 

= gJ(elec.) + gJ(nuc.) 

~'J.gJ = rotational magnetic moment 

M = proton mass 

Z. = effective nuclear charge 
~ 

~ = nm = nuclear magnet on 

B" " (ionic) - B (EXP)(l (1 ) I ) e - e -gJ e ec. ~ Uo 

B (calc) (ionic)/( ( ) I ) e = Be l-gJ elec. ~ Uo = calculated Be value 

Be(EXP) = experimentally measured Be value 

Be(ionic) = derived Be value 

Uo = Bohr magneton 

Isotopic correction to we and B (ionic). 
e . . 

W a ={?; B a 
e e 

wb . e ua B b 
e 

, 
• 

ub 
= 

ua 

(5) 

(6) 
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Y01 

Li7D 4.23384 em -1 

Li7H 7.5131 -1 em 

6 
. 7.67090 'em -1 Li H 

. 6 . 
. 1i.D ' ... 4 -1 .39015 em . 

, 
B (ionic). 

e 

Li 7D 4.2360 -1 em 

. Li 7H . 7.5212 -1 em 

Li6H 7.67633 -1 em 

Li6D . 4.3933 
~1 em 

we 

-12-

Table I • 

Y11 Y21 error 

-0.09198 em -1 6.7 x 10..,4 0.0004 em -1 

-0.2132 -1 7.5 x 10-4 0.0004 em -1 em 

-0.2198 -1 4 ·-1 em 14.93 x 10- 0.0006 em 

-0.1043· -1 :. 4 
. 4.89 x 10- 0.0006 em -1 em 

0.12559 x 109 ke 

0.2220473 x 109 ke 

0.2266842 x 109 ke 

0.130053584 x 109 ke 

(e1ee) 
gJ . gJ meas. 

12 

0.122825 x 109 ke • 

0.215701 . x 109 ke 

0.2201736 x 109 ke 

0.1269558 x 109 ke 

(ionic) 
f.L 

Li 7D '. 1055.015 em -1 -0.692 -0.272 nm urn 

Li7H 

Li
6
H 

Li6D 

Li 7D 

Li7H 

Li
6

H 

ti
6

D 

1405.401 em -1 

1420.120 em -1 

1074.193 em -1 

r' e 

B (calc) 
e 

-1. 545 urn -0.654· urn 0.88164861 

-1.25l~ nm 

-0.7176 nm 

0.86358830 

1.5091451 

= 1.59443 ±0.00003 '~ 

0.12694414 x 109 ke 

0.22529107 X 109 ke 

0.23002299 x 109 ke 

0.1316'5777 x 109 ke 

• 
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Table II. 

YOl Yl1 Y21 

(x 109 kC) (x 109 kC) . (x 109 kc) 

Li 7D 0.12690536 -0.00274461 0.000018 

6· 
Li D 0.13161507 -0.00289890 0.000015 

BO Bl 

(x 109 kc) (x 109 kc) 

Li 7D 0.12553756 0.12282896 

Li
6
D 0.13016937 . 0.12730047 

Be re 

Li7D 0.12696035 x 109 kc 1. 59490 A 

Li
6
D 0.13467274 x 109 kc 1.59490 A 

Comparing the Crawford and Jorgenson values with the Pearson and 

Gordy values, the Li 7D values agree well. The difference between the 

two causes an uncertainty of 0.001 D in dipole moment. The Li6D values 

are quite different. Most of the difference is due to the approximations 

in the isotope correction. 

~. 
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I«hlfll<t>j) 12 ::: II air£j (1f!K lfll1f!£}1 2 
__ 

K£ 

The program calculates energy eigenvalues by diagonalizing-the energy' 

matrix and calculates the spectral line positions and 'intensities 

corresponding to a given set of input parameters a~cbrding to the selec-

tion rules ~lIJr::: 0, ±l, ±2, etc. The unknown parameters are varied 

to obtain a best fit to the observed spectra. 

-,. 

.. . 
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For the Li
6

H ~nd Li
6

D spectra, individual transitions could not be 

extracted from the data. The output from. the program described was in

troduced into a program which plotted the calculated spectra assuming 

guassian line shapes at each calc~lated line position a~d summed the un

resolved lines. This plot was compared to the experimental data in 

order to find the correct parameters. For Li7H, the single transitions 

were well described by guassians and the intensities calculated agreed 

with the experiment; therefore this procedure appears to be justified. 
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B. Radio-Frequency Spectra of Li7H 

'Table III. Experimental and calculated line positions for Li 7H 

line 

1 

2 

5 

6 

7 

8] 
9 

10 

11 

12 

13 

14 

15 

16 

17 

18] 
19 

v = 0 at 750 volts (experimental values represent the average 
of 13 runs) 

experiment 

3229.4 ±0.2 kc 

'3240.8 ±O.2 kc 

3251.3 ±0.2 kc 

3277·75 ±0.4 kc 

3305.3 ±0.2 kc 

3330.2 ±0.2 kc 

3364.4 ±0.2 kc 

3376.0 ±0.2 kc 

3432.8 ±0.2 kc 

, 3453.35±0.3 kc 

calculated 

3229·130 

3240.917 

3249. 889] 
3252.009 

'3273.267 

3277. 249 

3282.239 

'3304.808) 

3307. 439 

.3330.317 

3363.947 

3373·017 

3375.868 

'. 3377.422 

3378.004 

3432.9;:22 

3451.325 ) 

3455.730 

composite calculated 
position 

3251. 5 

3278.85 

3305.35 

3376.0 
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.. .. 

". 

SCALE SO.OOO KC. PER I". 

A ... . ; 

.' • :- o!t. •• 
\\;o"OC' .... ~ 

v = 0 experimental data (sum of 13 spectra) at 

v = 0 calculated spectra. 
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Table IV. Li7H v =0 results andcompa:dson. 

this work 

346.75 ±0.25 kc 

-9.05 ±0.05 kc 

10.025 ±0.075 kc 

0.45318 ±0.001 kc 

o ±0.3 lec 

5. 8820 ±O. 000)+ D 

Wharton, Klemperer 
and Gold (ref. 15) 

346 ±l 

-8 ±l 

10 ±l 

5.882 ±0.003 



-19-

Table V. Experimental and calculated line positions for Li7H v = 0 
at 750 volts (experimental vaiues represent the average of 12 runs). 

.. ' 
line experiment calculated composite calculated 

, 1 interference 3459.121 

2 with 3470.567 

3 
v=O, " -3479.247 

spectra 
4 3481.296 

5 3501.227 

6 3506.55 ±0.3 3505.228 3506.8 

7 3509.907 

: ) 3533.05 ±0.4 
3531. 770 

1 
3532·3 

3534.227 

10 3556.7 ±0·3 3556.403 

11 3588.121 

12 3588.6 ±0.3 3593.235 3588.5 

13 3597.231 ' 

14 3599.388 

15 3600.0 ±0.3 3601.433 3599.6 

16 3601.914 

17 3654.1 ±0:2 3654.438 

,.j. :) 1: .~' 

::~::~~:.) ~J 3674.35 '±O.5 3674.15 

'. 
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Table VI. I,i 7H v::: 1 results and comparison with previous work.· 

... 
this work Wharton, Klemperer, 

and Gold 
~' 

eq~i 332 ±0·5 328 ±4 

cH -9 ±0.5 -6 ±2 

cLi 9.8 ±O.l 10 ±2 

c
3 

0.43828 ±0.001 

c4 o ±0:5 

dipole 5.9905 ±0.0004 5 .. 990 ±O. 003 

I 

.. 
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c. Radio-Frequency Spectra of Li
6

H 

.' , 

....... .. 

" . 
'. . . . . -.. 

. .. "' .. ... . 

+ 
2070.000ICC. 

ICAL! 

Li
6
H v = 0 data (sum of six runs) at 600 volts. 

v = 0 

II 

" 
" " " 

, 
" " II 
" "' II I 

"' ·111 

calculated spectra. 

I 
I 
I , 
1\ 

. .. . . 

. . . ..... 

XBL 6711-6045 
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Table VII. 

this work Wharton, Klemperer, 
and Gold 

eq~i 7.2 ±0.8 kc 

cH -9·3 ±0.7 kc 

cLi }·9 ±0.5 kc 

c
3 

0.171109 ±0.001 kc 

c4 0 ±0.3 kc 

dipole 5.8836 ±0.0012 kc 5.884 ±0.003 
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6 Fig. 10. LiH v= 1 experimental data (swn of seven sets of data) 
at 600 volts. 

L 

Fig. 11. v = 1 
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III 

, I· 
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I 
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I 
I 
I 
I I 

calculated spectra. 

XBL 6711-6046 
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Table VIII. 
6 

Li H v = 1 results from this work. 

eqQ 7.2 ±0.8 
'" 

C 
H 

-9·3 ±0.7 

cLi 3·9 ±o.5 

c
3 

0.1658819 ±0.001 

c4 o ±0.3 

dipole 5.9929 ±0.0016 
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Fig. 12. Li
6
D v = 0 experimental data (sum of'll sets of' data) 
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Table· IX. Li
6
D v:::: 0 results. 

.. eq~i 7.5 ±l kc 

eq~ 33 ±l kc 

cLi 3.2 ±l kc 

cD -1.3 ±0.5 kc 

c-,: 0.026385 ±0.001 kc 
:; 

c4 0 ±0.3 kc 

dipole 5.8667 ±0.0012 D 

5.8694 ±0.0010 D (using rotational 
constants of Pearson and 
Gordy. ) 

:~ 
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6.. .' 
Li D v == 1 results. 

7.5 ±l 

33 ±l 

3.2 ±l. 

-1.3 ±0.5 

0.025770 ±O.OOl 

o ±0.3 

5.9443 ±0.0012 

5.9523 ±0.0010 (using rotational 
constants of Pearson and 
Gordy.) 
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E. Radio-Frequency Spectra of 1i7D 

Table :XI. 1i 7D v = 0 experimental and calculated line positions 
at 750 volts. 

iine experimental calculated composite calculated· 

Ia 5761. 901 ±0.4 5761.964 

Ib 5777.528 ±0.2 5776.802 \ 
5777.844 . 

5777;4 

IIa 5801. 430±0.8 . 5801.213 

lIb 5816.676 ±0.5 58l5.205j· 
5818.251 . 

. IlIa 5829. 242 ±O.7 5831.624 

11Th 5844.627 ±0.7 5845.l54\ 
5848.627 

5846.2 

IVa 5890.103±0.2 5890.696 

IVb 5899. 705 ±0 • .3 5900.009 

IVc 5914.354 ±0.2 . 5912.355/ 
5916.755 

5914.4 

Va 5960.431 ±O.3 5960.356 

Vb 5974.646 ±0.5 5974. 198 j 
5977.758 

5976.0 
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Table XII. 
7' . 

Li D v = 0 results and comparison 

this work 

33 ±l 

349 ±l 

o ±l 

5.5 ±0.25 

0.054842 ±O.OOl 

o ±0.3 kc 

5.8689 ±0.0005 D 

5.8677 ±0.0005 D"(using 
rotational constants 
of Pearson and Gordy) 

Wharton, Klemperer, 
and Gold (ref. 15.) 

33 ±l 

5.5 ±l 

5.868 ±0.003 

y' .. 



,. 

The values of the dipole moments for the isotopes were fitted to 

the equat,ion Il ,= Ile + (v + ~). Ill' The values of Ile and _Ill as well as 

a summary of 'the experimental values of Uo and ul are listed in Table 

XIII. The errors listed arise from several sources. The error due to 

uncertainty in the rotational constants of Crawford and Jorgenson is 

:3 X 10-4 Debye for Li7H and Li7D ~nd 5 X 10-4 D for Li6H and Li6D. 

Errors due to the rotational constants of Pearson and Gordy are not 

known. The errors due to their measurements of the frequency are of 

the order of 1 ppm and will produce a :3 ppm dipole moment error. The 

fitting error, due to uncertainties in the other molecular constants, 

is :3x 10-4 D. The error due to variation in the full width at half 

maximum of the guassians used to approximate the shape of the resonance 

distribution contributes 0.001 D in the case of Li6H and Li6D. This 

occurs in the case of 'these two. isotopes because the spectra is not 

well spread out and many lines overlap. The errors due to C field 

measurement and frequency calibration are 80 ppm and are negligible. 
12 ' 

Lawrence, 'Anderson, and Ramsey, measured the rotational magnetic 

moments of Li7H and Li7D. From their data they calculated the sign and 

magnitude of the electric dipole moment. For the purposes of making 

the isotope correction, the equation for the isotope shift of the 

molecular g factor, uR/J (where uR is the rotational magnetic moment 

and J the rotational quantum number) can be represented as: 

A = mome'nt of inert ia 

M proton mass 

e = electronic charge 

(8) 

6X = displacement of the center of mpss 

Ile = e (L: Zi)(D-d), the dipole moment and D and d, are the distance 

from the center of mass to the centroids of the nuclear charge and of 

the electronic charge, respectively. The result is u = +5.9 ±0.5 Debye, , e 
with the dipole pOinting toward the lithium nucleus. This convention is 

the same as that used in the tonic model. 
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Table XIII. 

flo ~1 fle flI 

Li7H 5.8820 ±0.0004 5.9905 ±0.0004 5.82775 0.1085 

~i6H 5.8836 ±0.0012 5.9929' ±0.0016 5.82895 0.1093 

Li6H 5.8667 ±0.0012 5.9443 ±0.0012 5.8279 0.0776 

* 5.8694 ±0.0010 5.9523 ±0.0010 5.82795 Q.0829 

Li7D 5.8689 ±0.0005 

* 5.8677 ±0.OO05 

* Using rotati~na1 constants of Pearson and Gordy. 

,~ 



The value Ue/(du/dr)r=rere = 1.8 ±0.3 was extracted by James, Norris, 

and Klemperer16 from measurements of the relative line intensities of the 

rotational fine structure. Li7H was heated to 1000° C in order to obtain 

appreciable absorption. Line intensities in the 0-1 and 1-2 rotation 

vibration band of LiH at 7~ were measured. Assuming the second derivative 

to be zero, ur calculated from this experiment is 0.06893 Debye. 

Considering the energy of interaction of the magnetic moment'of the 

ith nucleus wi'th the surrounding magnetic field using the rigid rotor 

approximation as described in a paper by White,17 the energy of interaction 
. ~ ~ ~ ~ 
)S -ui· H . The magnetic moment ui = gIuoNIi where gI is the gyromagnetic 

ratio of the nucleus, uoN is the nuclear magnet on and Ii the spin angular 

momentum. The field .at the ith nucleus is: 

~ 

H = -> q. tti J c(r .. )3 
l.J 

" 

qJ is the charge of the jth particle of the molecule, Vj its velocity 

and riJ the radius vector from the, ith nucleus to this particle. This 

sum can be divided into two parts, the sum over nuclei and the sum over 

electrons. 

Assuming that closed sheil electrons can be accounted for by the 

use of effective charge q! equal to the nuclear charge minus the number 
, J 

of inner shell electrons, then the, electronic term deals with valence 

electrons. The theory assumes that only one electron at a time will enter 

an excited state, ana that this electron ,will be a valence electron. The 

resultant formula for the magnetic interaction in a linear molecule is: 

[

, ,'1 '" l(oIL)n)1
2 ~ 

1,iJ. <'3') L' ,- L 
, OB, r AV. E -E ' . 

, , n n " 0 J 

'" qj ,-> -) 
" ] - I.J 

crij' 

A' moment of inertia of nuclear frame (component) x 

~ OB = Bohr magneton 

~ON = nuclear magnet on 

(10 ) 

,-

, ! 
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(2:..) = averaged over excited ele~tronic wave iunctions 
,r3 AV • 

= component of electronic angular momentum in x 
direction 

En = energy of nth excited state 

The x component of the electronic contribution to the molecular 

g factor 

r (elec)j 
gJ ' x 

(11) 

'.., 
is related to the electronic contribution to the spin-rotation constant. 

T~e spin rotation interaction is proportional to the nuclear g fac

tor and to the rotational constant. Correcting the Li 7H spin rota"~ion 
constants (CH" = -9.1 and cL. = 10.0) for the isotope effects, the con-

6 1 .. 6 
stants obtained for Li Hare cH = -9.3 and cLi = 3 .. 9; for Ll D they are 

cD = -0.8 and cLi = 2.3 and for Li7D they are cD = -0.9 an,d cLi = 5.6. 

The experimental values (listing the H or D first ~nd then the 

Li) for Li 6H are -9.3 10.7, 3.9 :to. 5; for Li 6D, -1. 3 ±o. 5, 3.2 ±l and 

for Li7D 0 11, 5.5 10.5. The isotopically corrected values are all 

within experimental error • . 
The spin rotation interaction arises from the reaction between a 

magnetic moment and the magnetic field at that nucleus. For a diatomic 

molecule AB, the field at nu~leus A is due to nucleus Band to the 

electrons. For hydrogen molecules17 and for the lithium hydrides the 

contribution from the nucleus is larger than that from the electrons. 

For LifH at the hydrogen nucleus, the Li nucleus contributes -11.4 kc 

and the electrons +2.4 kc for a grand total of -9 kc. 

The ,spin-spin interaction (c3) as calculated, were sufficient to 

explain the data, 'Without the need to adjust the calculated values. 

There is no evidence for the scalar spin-spi~ interaction constant c4 

in the literature nor in the experiments. 



V. MOLECULAR CONSTANTS 

Because the LiHmolecule is the simplest polar molecule, having 

only four electrons, there exists a wealth of calculations and theoretical 

discussien on this subject. Although the solution to th~ quantum mechan

ical problem involves approximations, especially in the form of the wave 

function, the results are encouraging~ Calculations of the quadrupole 

coupling constants, spin rotationconstant~ and dipole moment are available. 

These are ene-electron operators and Hartree Fock wave functions should 

give geod' values. The best test of theory involves calculation of' 

derivatives of these 'quantit:Les and compartson with (eqQ) 1 andur . For 

this, functions at variouG internuclear <1i::::tanccG are needed. '.L'here are 

nQt too many of' these calculations available, but wherever available 

these have been compared to the experiment. This is summarized in Table 

. XIV. In this table the conversion constant 27.2097 ev = 1 au has been 

used where necessary. 

Intreduction to. the Discussion: In Table XIV the calculations are 

listed in order of their "goodness" as given by the "energy criteria"

Leo the calculation giving the lowest energy is listed first. As can 

be seen frem the table, success in predicting the molecular properties 

. dees not always follow the same order. In the following paragraphs a 

brief description and discussion Of each of the calculations is given. 

For ease in refer~ing to the table, the discussion is identified by the 

calculation number appearing in the first column of Table XIV. 

A. Calculation 12 

Ransi130 reported wave functions for first rew diatomic molecules a 

few years age. The wave functions have also been used by others to cal~ 

culatemelecular properties. He did self-consistent field calculations 

with three kinds ef basis sets. They are called SAMO, BAMO, and BLMO 

because ef the way in which the orbital exponent was chosen. The orbital 

expenent in the Slater erbital Snlm = Nn(~)rn-le-~rY~(G,~) was chosed 

using Slater's rules in the SAMO calculation. For LiH, values 6.41 D, 

1.34 ev, and -7.96666 au for dipole moment, dissociation energy and 

molecular energy were obtained. The BAMO used best atomic ~ values 

determined from variatienal calculations on atoms. The values for the 



Table XIV. Calculated Molecular Properties 

. t ~ t ()* eqQ (Li7)* * C * 18§ 
calcn no. - researcher ref. J.leq• cLi H energy . I eqQ D . I --

Experiment 5.83 0.11 33 -14.75 10.14 -9.08 -8.0703 

1 Bender and Davidson 19 5.965 30.5 -8.0606 

2 Browne and Matsen 20 5.96 0.09 34.2 
,,-

-8.0561 

3 Matsen and Browne 21 5.57 -8.04379 

4 Ebbing 22 5.96 -8.04128 

5 Kahalas and Nesbet 23 

5a third calculation 5.831 39.24 45.85 -8.0171 

5b fifth calculation 5.8875 35.31 -18.91 -8.0171 I 
VJ 
\0 

Robinson) Stuart, I 

6 24 6.18 -8.0074 
and Matsen 

7 Karo and Olsen 25 6.05 .059 -7.99412 

8 Platas and Matsen 26 5.86 -7.9882 

9 Ormand and Matsen 27 5.57 -7.9858 

10 Csizmadia 28 6.0079 0.122 ' -7.984206 

11 Miller et alo 29 6004 -7.9820 

12 Ransil 30 
* -7.-96992 12a BLMO 5.92 

* 6041 -7.96666 12b S1'>Ji10 
* 6.48 -7.96598 12c BAMO 

: units used are Debye , 
units are kc/sec 

§energyis'il} atomic unit,s , .' . . . 
*SAMO refers to Slater Ato:inic (MO) calculation} BAMO refers to Best Atomic (MO) calculation" 

BLMO refers to Best Limited (MO) calculation. . 



Table XIV. continued 

).1 t - t :1= Q (L· 7) * cLi :1= c :1= § 
ca1cn no. - researcher ref. eq. ).11 eqQ(D) eq·I l H energy18 -

13 Kolker and Karp1us 
* 13a BLMO 

13b SAMO* 

13c BAMO* 

13d 

14 Kern and Lipscomb 

14a calculation I 

14b calculation II 

Stephens and 
15a Lip'scomb 

15'0 

!units used are Debye 
units are kc/sec 

31, 
32 

31, 
33 

34 

35 

36 

38.1 -38.6 -17.0 -7.96992 

45.3 -37.3 -17.9 -7.96666 

46.1 -31.2 --18.0 -7.96598 

35.5 

-7.96992 

'-6.0 -5.6 

-1. 7 -18.1 

9.51 -9·51 -7.96992 

9.56 -9.60 -7.96922 

§energy is in ato~ic units 
*SAMO refers to Slat~r Atomic (MO) calculation, BAMO refers to Best Atomic (MO) calculation, 

BUm refers to Best Limited (MO) ca1culation~ 

-,-

I 
+" 
0 
I 
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\ 

same'molecular constants as before. are 6.48 D, 1.31 ev, and -7.96598 au. 

The BLMO is the 'best limited molecular orbital' calculation. The 

orbitals are constructed of inner·and valence shell Slater type orbitals 

only. The orbital exponent was optimi.zed with respect to molecular 

energy. The dipole moment, dissociation energy, and~molecular energy 

are 5.92 D, 1.41 ev, and -7.96992 au. The experimental values are 

5.83 D, 2.516 ev, and -8.0703 au. The BLMO calculation makes no great 

improvement in energy over the SAMO or BAMO but does :Lmprove the dipole 

moment calculation significantly. 

B. Calculation 13 

The quadrupole moment, Q, is a measure of the departure of the nucleus 

from being spherical. The quadrupole coupling constant, eqQ, involves 

the product of two quantities, the nuclear quadrupole moment and the 

gradient of the electric field at the nucleus. Using three of Ransil's30 

31 . 
wave functions, Kolker and Karplus calculated the deuteron quadrupole 

coupling constant eqQo/h for LiD. The SAMO gave 45.3kc/sec, the BAMO 

gave 46.1 and the BLMO 38.1 kc/sec. They used a quadrupole moment of 

·2.82 x 10-27 cm2 • Using LiD w~ve functions, computed by Ransil,33 at 

a number of internuclear distances and averaging over molecular vibra

tions, their latest value was 35.5 kc/sec. They calculated (eqQ)v for 

several vibrational states, fitting them to the equation (eqQ)v = 
(eqQ)eq + (eqQ)r,(v+1) and in this way "averaged over molecular vibra

tions" to find (eqQ)eq' The BLMO is not much improvement in energy 

calculations but is significantly better for eqQ calculations. 

Using the SCF-LCAO-MO functions of Ransil,30 Kolker and Karplus32 

made a variation-perturbation calculation to obtain values of the nuclear 

magnetic shielding constants. These are related to the spin-rotation 

constant. For a nucleus of magnetic moment UN in an atom or molecule 

that is acted upon by a uniform magnetic field H, the shielding tensor 

ON is defined by the relation: 

(12) 

The electrons interact with the external field creating an additional 



field -oN.H at the nucleus. The shielding tensor can be expressed as a 

sum of a diamagnetic part 0Nd and a paramagnetic part 0NP Once a 

choice of gauge for the field had been made 0Nd can be calculated from 

ground state wave functions. ,o~ is more difficult to evaluate; it 

requires several approximations. 0NP is related to the spin-rotation 

constant. Using the rigid nuclear framework assumption17 and the for

mula: 

2 

1 ZN' hI) -e 
l( 0NP) =-- R - 4g MCN 2 

3mc . 
ZN' = charge of the other nucleus 

R = internuclear distance 

I = moment of inertia of molecule 

M = proton mass 

m = electron mass 

cN = spin-rotati0n constant 

g = proton g factor 

Values of the spin-rotation constant could be calculated from the 

paramagnetic part of the shielding tensor. The spin-rotation constants 

for H using the SAMO, BAMO, and BLMO functions, in that order, were 

-17.9, -18.0, and -17.0 kc/sec and the constants for Li were -37.3, 

-37.2, and -38.6 kc/sec. The experimental va.lues are -9.08 and 10.14. 

The calculations are very far from experiment. 

C. Calculation 14 

Kern and LiPscomb34 used Ransil's wave function30 to calculate spin 

rotat~on' constants f~r Li7 and H in Li7H. The magnetic field can be 
-4 

described as Vx (A+Vf(r )). The choice of 4- or the gauge, is arbitrary. 

They chose: 
-) 

Vf = H bR - +"'2"" (14) 

,- . 

'. 



... 

.where R is the vector from nucleus A to nucleus Band b is a dimension

less parameter, H is the external magnetic field. In their first cal

culation(I), b was chosen using the assumption that average excitation 

energies cancel-In particular that: 

(15) 

(oIM.' A fA -3p 10) 
.J\J1.U u yu 

(16) 

(17) 

where M .. A and P are the x and y components of angular and linear 
.A.M.U yu 

momentum respectively of electron u for nucleus A. The zeros are ground 

state wave functions and n corresponds to'the nth excited state. In a 

second calculation (II), b was chosen such that the origin is at the 

center of electronic charge. The reported values for the spin-rotation 

constant for Li7 for calculations I and II are -6.0 and -1.7 kc/sec; for 

H the values are -5.6 and -18.1 kc/sec. 

D. Calculation 5 

Kahalas and Nesbet23 made several series of calculations on LiH. 

They made various refinements in the basis set; they varied parameters 

in some runs to see hOI" the. computed values changed. From hTO of their 

runs, eqQI values .rere calculated. One of these gives a reasonable 

agreement with experiment. In their third series of runs, they inclu.ded 

three 7f orbitals, two on Li and one on H. Also utilized ,,,ere Li orbitals 

in the Is shell with different radial parts. There ~rere thirteen or-

bitals in all. Hithout cO!1figuration interaction, the dipo:"'c mo~neYlt 

COInI)uted ,.:as 5.831 D at 3.02 au. The molecular e!1e~'gy is -~(.9~)550,_;4 au 

.:l. 
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. 2 
eqQ for D in Li7D is 39.24 kc/sec using Qn = +2.738 x 10-27 cm. qj2e 

is made up of t"he sum of nuclear and electronic parts, opposite in sign 

and nearly equal in magnitude. qj2e at equilibrium is -0.02001720 au. 

Using these orbitals and allowing configuration i~teraction, it was 

found that configurations with a large contribution to the electric field 

gradient also give a large contribution to the energy. The minimum 

energy is -8.0171 au at R = 3.0581 au," The experimental value is -8.0703 

"au. qj2e at equilibrium is -0.02070 ali 3 (aH is a Bohr orbital equal to 

" 5.29167 x 10-9 cm). 

In the fourth series of runs} the orbital exponent of the da orbital 

was varied and the rezult compared to the second series in which no da 

orbitals were used. There is a ~~ change in the qj2e value, a 0.01% 

change in the minimum energy and a 1% change in the dipole moment. This 

implies that the agreemen~ of calculated electric field gradient and exper

iment is a sensitlvetest for the accuracy of a wave function. 

The fifth set of runs included da orbitals, 9cr orbitals andt~-1O 7f 

orbitals. Without configuration interaction eqQ for D in Li7D is cal

culated as 35.31 kc/sec and a dipole moment of 5.8875 D at R = 3.02 au. 

The minimum energy is -7.9859698 au. The .qj2e value is -0.01668187 ali 3• 

With configuration interaction the minimum energy was -8.0171 au at R = 
3.0423 au. qj2e "';ras -0.01660 aH- 3 • 

Using the experimental values for eqQ/h for Li7H at v = 0 and v = 1 

in the equation: 

(18) 

values of (eqQ)e = 354 • .].3 kc/sec and (eqQ)r = -14.75 kc/secwere obtained. 

Expanding the molecular quantity about S = (R-Re)/Re and averaging over 

vibrational states, using the anharmonic oscillator approximation: 

(eqQ) + e (19) 

(eqQ)r can be equated to the term in brackets and the first term is the 

same as the previous equation. 
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From the third set of calculation using (eqQ)e and the calculated 

qj2e, the nuclear quadrupole moment for Li7 is -3.6410420 x 10-26 cm2 . 

(eqQ)Iis 45.85 kc/sec. From the fifth set of calculations Q(Li7) = 

-4.62772 x 10-26 cm:? and (eqQ)I = -18.91 kc/sec. This last value agrees 

better with the experimental value of -14.75 kc/sec. 

E. Calculation 15 
7. ,-

Stevens, Pitzer, and LipscompJ) used parts of a cr basis set of 

eleven ,orbitals de~ived by Kahalas and Nesbet23 or four of Ransil's30 

best cr orbitals and an basis set of fourteen orbitals to calculate 

spin-rotation constan~s. The best values were 9.51 kc/sec for Li and 

-9.51 kc/sec for H. Stevens and Lipscomb36 in a later calculation, 

tested the orbital set for completeness. The energy was optimized at 

-7.96992 at R = 3.015 au. T~e spin-rotation constants and molecular 

magnetic moment were calculated at three distances. The final values 

were corrected for vibration. For v = 0 the values were cLi = 9.45, 

cH = -9.42 and uJ/J = -0.6677. For v = 1 the values were 9.24, -9.07, 

and -0.6536. The equilibrium values, using the formula: (c)v = 
{c)eq + (c)I'(v~), were cLi = 9.56 kc/sec, cH = -9.60 kc/sec and uJ/J = 

-0.6748 nm. The values of the first cOefficient were -0.21, 0.35, and 

0.0141. The experimental equilibrium values are cLi = 10.14" cH = -9.08 

and uJ/J::: _0.654. 12 This ,calculation agrees nicely with·'experiment. 

F. Calculation 7 

A value of iJ.I can be computed using the anharmonic oscillator 

approximation and computed values of' the first and second dipole moment 

derivatives. The equation is: 

(20) 

In paper 'I, by Karo and 01sen,25 a valence bond approach using numerical 

Hartree-Fock Li orbitals and a Is hydrogen orbital as a basis function 

vTaS undertaken. The ground state VB description uses a f"illed Is Li 

shell and a covalent bond, describing the pairing of the 2sLi and the 

IsH. In another calculation an s,p hybrid was used instead of the 2s 
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orbital. The CI( configuration interaction) treatment was superimposed 

on the Heitler-L6ndon type VB approximation. ' Calculation of energy, 

binding energy, and dipole moment in the range 2 to 8 au were made . 
• 

The dissociation energy at the equilibrium distanGewas1. 669 ey, the 

dipole moment +6.05 D, and the energy ~7.99412 au. From the information 

presented, .the values -1.0 D/'A and 0.86 D/'A2, were calc1,J.lated for the 

first' and second dipole derivatives. The computed valu( of uI is 0.05902 

Debye. 'Compare this to 0.1085 D, the experimental v'alu~. In paper II,37 

a SCF LCAO-MO approach was used. The AO I s (the same·· as in paper I) were 

used to form MO's. six configurations were included. At the internuclear 

distance, the results were the same as in paper 1. The VB approach is 

expected to be more accurate at larger distances, but this could not be 

confirmed. 

G. Calculation 4 

Ebbing,22 used a self-consistent field procedure w~ich included con

figuration interaction. He us~d 7a orbita.ls <lind' 37T~\brbitals . and as 
.. ~ " .: ;'" 

much as 53 configurations. The energy was calculated a:?-8.04128 au at 

an internuclear distance of 2.99 aUj the dipole was +5.96 D. 

H. Calculation 11 

Miller, Friedman, Hurst, and Matsen29 did a valence-bond calculation. 

They considered twenty configurations. ,Only six of them were of great 

importance: ls22s1s(H), ls22plS(H), ls21s2(H), ls22s2, ls22p2, and 

ls22s2p. A dipole moment of +6.04 D was calculatedj ionization energy 

was 7.52 ev, and total mole,cular energy -7.9820 au (experimental energy 

is -8.0703 au). 

1. Calculation 9 : 

'Ormand and Matsen27 used a ten-term wave function in elliptical 

coordinates. In this coordinate system, the center of coordinates is 

not oneither atom. After variation of the orbital exp,onent and minimi

zation of the energy, the best calculated energy was -7.9858 au. The 

dipole moment calculated was +5.574 D. 

J. Calculation 8 
Platas and Matsen26 included "hydrogen atom pol~ri~ation" by in

cluding the structur~e Li+(ls2)Ir(ls2p) in configuration interaction. 
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They used five Slater orbitals and six of the moreimporta,nt configurations 

in their ct.l.lculutton. The enerc:y crlleul.u.tcd Wtl.t:J -'7. 9HG2 (til :lnc:t d:i.polc 

was +5.86 Debye. 

K. Calculation 3 

Matsen.and Browne2l argue that AOO (atomic orbital configuration) 

methods are in practice more advantageous than SCF~MO (self-consistent 

field molecular orbital) methods. Even though SCF-MO's lend themselves 

to perturbation theory easily, AOC give accurate results with the use of 

modern computational methods. They constructed a twenty-term wave function 

from twenty-one atomic \orbitals. Their results are at equilibrium inter

nuclear distance R = 3.075 au, energy = -8.04379 au, binding energy of 

1. 793 ev, and dipole moment. of 5.57 D. 

L. Calculation 2 

In a later ca~culation, Brown and Matsen20 used mixed orbital sets 

composed of both Slater-type orbitals and elliptical orbitals. The 

Slater-type orbitals provide a good representation of the inner shell 

electrons and the elliptic orbitals provide good electronic distributions 

for delocalized valence electrons. They used a valence bond configuration 

interaction method with up to'twenty-eight configurations. The orbital 

exponents. for the Slater-type orbitals making up the core, were taken 

from an eight-term calculation of the Liatom which gave an energy of 

-7.470 au compared to the experimental value of -7)~79 au. The orbital 

exponents for the elliptical orbitals were determined from a twelve-term 

calculation of LiH using only a ls2 configuration for the Li core. They 

calculated an energy of -8.0561 au and a quadrupole coupling constant of 

34.2 kc/sec for D in LiD. The dipole moments. for the zero, first and 

second 'vibrational states were calculated at 5.93 D, 6.00 D, and 6.05 D. 

Fitting this to the formula: 

(21) 

The equilibrium value is 5.96 D, and the first and second coefficients 

are 0.09 and -O.Ol+. The experimental equllibrium dipole moment is 5.83 D 

and ur is 0.11 D. 



M. Calculation 6 

Recognizing that the neglect or incomplete allowance for electronic 

correlation is an important source of error in calculations, Robinson, 

Stuart, and Matsen2~- used different orbitals for different electrons in 

valence-bond wave functions. The three most important configurations 

are -Cls,ls!,2s;h), (ls,ls',2p;h), and Cls",ls"';h",h"'); primes indicate 

different orbital exponents. The lowest energy was -8.0074 au. The 

dipole moment associated with this energ;v is 6.18 D. 

N. Calculation 10 

Using gaussian-type functions, Csizmadia28 calculated energy and 

dipole moment at various values of internuclear distance. The equilibrium 

internuclear distance was 3.02 au. Using a six-term gaussian the energy, 

u and u I values, are -7.975811 au, 5.9179 D, and 0.043. With an eleven-eq 
term function the values are -7.969016 au, 6.0929 D, and 0.056. With 

a sixteen-term-fuJ:iction the energy, equilibrium dipole moment, and first 

dipole moment coefficient are -7.970022, 6.0139 D, and 0.057. With 

twenty-one terms the values are -7.985366 au, 6.0079, and 0.122. 

O. Calculation 1 

Bender and Davidson19 devised an iterative procedure for simultaneous 

calculation of natural orbitals and energy. With this procedure they 

have calculated a wave function that gives the lowest energy yet calculated. 

Lowdin38 introduced the concept of natural spin orbitals and equations for 

computing them. These orbitals, which diagonalize the first order density 

matrix, form an orthonormal set. The occupation number of each orbital 

gives a direct measure of its importance in the wave function. With 

forty-five configurations the energy calculated at R = 3.0147-au is . 
-8.0606 au. The equilibrium dipol~ moment is 5.9650 D and eqQd = 30.5 

kC/ sec (qD = O. ol~60 au). 

VI. POLARIZABLE ION MODEL FOR LITHIUM HYDRIDE 

Bonding in the alkali halide molecules is generally assumed to be 
39 40 41 strongly ionic and this has been the basis of several attempts ' , 

to propose a simple ionic model of the alkali halides. Since the electron 
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affinity of hydride ion is only' 0.715 ev as compared to over 3 evfor 

the halide ions one would expect a completely ionic description of LiH 

to be somewhat less satisfactory than for the Ii thiUJll halides. None

theless, the large d~pole moment of LiH (5.83 D) indicates substantial 

ionic character -and the ionic model should give at least an approximate 

description of the molecule. Rittner42 used such an ionic model, con

sisting of polarizable ions, to predict and correlate the dipole moments 

and dissociation energies of the alkali halides. He assumed that the 

alkali halide molecule is composed of two ions, each of which is polar

ized by the electrostatic field of the other. Using the same approach 

as Debye,39 who first treated the polarizable ion problem, the total 

molecular dipole moment can be expressed as: 

(22) 

Here +e and -e are the charges on the ions; ul and ~ are the induced 

dipole moments, and r is the internuclear separation. Designating the 

electrostatic field at the center of each ion as El and E2 and the 

dipole polarizabili ties .as 0:1 and ~, the induced moments can be written 

as: 

(24) 

Solving these equations simultaneously and substituting into Eq. (22), 

we obtain: 

B 
40,41 

Using the crystal lattice theory of orn, Rittner expressed the 

potential energy as: 

(~5a) 
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The ~ term arises from electrostatic interactions between the ions: 

charge-charge, charge-dipole, and dipole-dipole interactions. This "is 

wr"itten as 

2 
-e 

~ = -r 

The remaining term of the potential energy is the exponential repulsion 
-rip term, Ae 0 • 

The repulsion constants, A and p, are determined by use of the 

relationships: 

(dWt' '. =-.0 
dr =r e 

(27) 

(28) 

The force constant, k, is related to the vibrational frequency, vo' by . 

the relationship: 

vo 
where c = we (the vibrational constant) and uA is the reduced mass. 

Thus the experimental values of the equilibrium internuclear distance, 
--" -" - _. 

r e , and the vibrational constant, we' are input data for this version 

/ of the ionic model. 
!~3 Honig et al. extended Rittner's model to predict the Dunham 

44 
coeffici~nt al • The potential energy W(r) can be expanded about re 

and written as: 

(r-r )3w", (r )+ 
'() e e WIt r + ___ ~;--__ 

e ' 3! 
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or written in the usual Dunham form as: 

r-r e 
where ~ =-

re 
'defined as: 

and 

+ • e. 

and the second Dunham coefficient is 

, r 3w" t (r ) 
e e 

3~ao 

The coefficient al can therefore be calculated knowing the form of the 

potential energy curve and compared to the experimental value: 

As additional input data for the ionic model, one needs reasonable, 

estimates of the effective polarizabilities of the posittve and negative 

ions. The values of the polarizabilities that are usually extracted 

from experimental data or calculated are large distance, lOW-field, 

polarizabilities; that is they are thepolarizabilities when the per

turbing charge is entirely outside the electron distribution of the ion. 

A commonly used set of polarizabilities is that of pauling. 45 

Klemperer et a1. LI.6, 47, L1-8 examined the model 'for the alkali halides and 

found that the experimental dipole moments did not agree with the pre

dictions-- the calculated values being too small in all cases. They 

ar~ed that the polarizabilities should exhibit a saturation effect in 
I 

diatomic molecules and decrease with field strength. They forced the 

dipole m~ments to agree with experiment'al values by decreas ing the 

halide polarizabilities and then calculated the values of the dissociation 

energy, We' and the Dunham coefficient, a l • 

COhen,49 however, has shown that the polarizabilities do not 

necessarily decrease with increasine; field strene;th, as Klemperer has 

argued. 'rherel'ore Klemperer I s explanation for the apparent decrease in 



-52-

polarizabilities might not be correct. 
, 50 " 

Recently Burns has calculated the dipole, quadr~pole, octupole, 

and hexadecapole polarizabilities of F and Cl in order to determine 

the, antishielding factors for an interpretation of the quadrupole 

coupling constants in the alkali halides. The polarizabilities were 

,calculated for the alkali halide internuclear distances and were often 

much smaller than those for the free ion. These polarizabilities also 
, 

exhibited a variation with internuclear separation, that is they increased 

with increasing r. These results seem consistent since it would be ex-
\ 

pected that the polarizability should decrease with charge penetration. 
, 

At alkali halide internuclear distances the positive alkali core pene-

trates the electron density of the large halide ion, but the electron 

density is penetrated only for a few of the alkali ions, and thus this 

penetration effect is primarily important in the case of the halide 

polarizabilities. This effect should be much more extreme in the case 

of the large diffuse H- ion. 

It seems reasonable to expect the polarizabilities to fit an S

shaped curve varying from zero at r = 0 to the free ion value at some 

finite r value, R. This R value, approximates the limit of the electron 

distribution contributing to the,polarizability. 

In choosing val~es for the effective polarizabilities in the ionic 

model of LiH, the Li+ ion presents no serious difficulty. The ion is 

small and penetration of its electron distribution iG unimportant at 

the equilibrium internuclear distance. In addition the polarizability 

is small and accurate values are available. Some of the reported values 

are given in Table XV. Of these th~ most accurate are undoubtebly the 

0.0283 of Edl~n,51 obtained from an analysis of spectroscopic data; and 

th~ 0.0286 of Baber and Hasse,61 which they calculated using a wave function 

of the Hylleraas type. A brief summary of the methods used in calculating 

polarizabilities is given in the Appendix. 

The situation for H- is much less satisfactory; here, as mentioned 

.above, penetration of its electron distribution by the small Li + ion 

should have a large effect on Hs effective polarizability. Anurnber 

of values for the infinite distance polarizability of W ion are available 
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in the literature. Some of these are given in Table XV. Qf these 

the 31.4 of Sehwartz52 should ~e bY. far the most accurate. He used an 

18-parameter wave function of the Hylleraas type. 

That a large reduction in the effective polarizability of H- is 

necessary for even an approximate description of LiH by the ionic model 

enn be seen by cnlculnt:1.ng the d:!.poJ.e moment twine; Eq. (~:~5). U:~::i.ng :i.rrtcr

nuclear distance r := 1.591~1+3 A, 31. 4 x 10-2),1, em) as the dipole polariza

bility of t~e hydride ion,52 and 0.028 x 10-24 cm3 as the pqlarizability53 

of Li+, the dipole moment calculated is -69.5 Debye. The lithium end of 

the molecule is negative! Even using the smallest H- polarizability in 

Table XV helps only slightly-- the sign is still wrong. 

Unfortunately no calculations are available for the effect of pene

tration on the polarizability of H- ion, and there are only a few cal

culations for other ions. Callaway54 has calculated a polarization 

potential for some of the alkali ions, by perturbation theory, which 

vanishes at the origin. Allowing rl and r2 to denote the core electronic 

coordinates and rv to represent the ,valence electron,the polarization 

potential Vp(rv )' is given by: _ 

(34) 

He used,numerical values of the perturbed wave functions, which were 

computed by Sternheimer. Self-consistent wave functions were used for 

the unperturbed core functions. These were computed by Lcwdin65 for Na 

and Li; by Hartree and Hartree66 for K. Multiplying his potential by r4, 

where r is the distance from the core, if one neglects quadrupolarizability 

,and high~r order terms, equating'this to dipole polarizability one obtains 

numerical values for P91arizability versus distance. These are plotted 
" , 

+ + L1.· + for K , Na , and in Figs. 18 through 20. The infinite distance 

polarizabilitjes obtained from these plotb, agree reasonably well with 

values obtained by Sternheimer; these are summarized in Table XV. A 

distance corresponding to the "ionic radius" (Paulingb7 ) is indicated 

on the figures. All the polarizabilities are characterized by a very 
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Table XV •.. - Dipole polarizabilities 

" .. "'. 

ion Callawa;y other methods ref. 

H - 18.2 )\3 13.8 49 Cohen, coupled EF 

31.4 52 Schwartz,exact calculation 

16~7 55 Yoshime and Hurst 

13. 4 56 Wikner and Das 

14.9 57 Sternheimer 

10.0 45 Pauling 

38.7 51 
, 

Edlen 
, 

17·33 .51 Ed1en 

7.56 ·58 Schwartz 

30.2 59 Geltman 

Li+ 0.030 J..3 0.0307 57 Sternheimer 

0.0305 56 Wikner arid Das 
"-

0.024 -60 Mayer and Mayer 

0.0304 55 Yoshime and Hurst 

0.0286 61 Baber and Hasse 

0.0283 .... 
51 Edlen 

0.027 58 Schwartz 

0.0280 49 Cohen, coupled EF 

0.0304 62 Dalgarno and McNamee,un-
coupled EF 

0.0281 62 Dalgarno and McNamee, coupled 
EF 

Na+ 0.148 J,.3 0.148 51 Edh~n 

0.140 49 Cohen, coupled HF 

0.152 63 Sternheimer 
K+ 1.274 Jl.3 1.26 64 Sternheimer 

0.811 51 
, 

Edlen 

'41 
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Fig. 18. Variation of K+ polarizabili ty with distance (Callmray). 
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rapid decrease at about the ionic radius. 

The dipole polarizabilitiesof F and Cl- calculated by Burns50 

are shown in Fig~ 21. He used the variation of parameters method to 

calculate the polarizabilitiesfor the F. andCl- ions at several 

values of rand assume.d a cancellation of the. p ~s and s ~p contributions 

to the d~pole calculation. Sternheimer68 has shown that these terms do 

not cancel in the case of the halides. However these contr1.butions are 

reasonably small and Burn's calculations should give at least a quali

tative description of the variation of polarizability with distance. It 

is evident from Fig. 21 that the decrease in polarizabilityas one 

approaches a distance corresponding to the "ionic radius" is even more 

extreme for the larger, more loosely bound halides than for the alkali 

ions. 

Thus it is probably reasonable t'o expect an even larger effect for 

the very large and loosely bound H- ion. It is di.fficult to give a 

definite meaning to "ionic radius" for H-, nonetheless, Pauling67 gives 

a. value of 2.08,tt, obtained by extrapolation from other ions. At the 

equilibrium internuclear distance in LiH, 1.59 A, the Li+ ion is "inside" 

the "ionic radius". Thus one is led to expect a very small effective 

polarizability for H- ip the LiH'molecule. 

Since there are no quantitative calculations of the effect of pen

etration on the polarizability of H- we will adopt the procedure of 

Rice and Klemperer and force the effective polarizability of H to fit . 

the measured dipole moment of LiH. Using ue = 5.828 D, r = 1.596 J\, e 
OJ.. = 0.028 Jt3 in Eq. ~5,' we find D2 = 0.914 J\3 -a very small but per-

haps not unreasonable value in view of the preceding arguments. Using 

th~se values (and we = 1)~·05.65 cm-
l

) we can calculate the dissociation 

energy (to the ion3), W, from E.q. 25a; the second Dunham coefficient, 

al' from Eq. 32; and the change of' the dipole moment with vibrational 

state,uI , from Eq. 25, and Eq. 20 on page L~5. Table XVI compares the 

ref:iUlts of this calculation with experiment. Also shown al'e the results 

of a similar calculation for LiF. LiF is the alkali halide expected to most 

closely resemble LUI and is generally considered an iopic molecule. 

,. 

• 
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As can be seen from Table xyr (and not unexpectedly) the simple 

ionic model gives a somewhat poorer description of LiH than of LiF. 

The calculated quantities deviate from experiment in the same direction 

for both molecules but the deviations are considerably larger for LiH. 

LiH 

" 

W 

a1 
ur 

LiF 

W 

al 
uI 

Table XVI. Simple ionic model 

calculated 

7.00 ev 

-1.02 ev 

0.122 D 

7.88 ev 

-2·39 ev 

0.094 D 

experiment ref. 

7.17 ev 

-1.88 ev 

0.109 D 

7.93 ev 

-2.70 ev 

0.082 D 

" 
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APPENDIX 

In calculating polarizabilities quantum mechanically, there are 

several WHyS to proceed .. Variational calculations,perturbation tech

niques, Sternheimer's method, coupled and uncoupled Hartree-Fock methods, 

oscillator strength formulas, or. Thomas-Fermi model calculations. 

If an external charge Z' is located at ~, and r' is large, the in

teraction potential can be ~Titten as: 

i=lK=l 

00 

V(~,~') = Z'2 
K=l 

The perturbed wave function 'l/JK(~) can be expanded as: 

E 
_- E Z'E (K) Z,2E (K) . 

K 0 + 1 + '2 + •••• 

The wave equation of the perturbed system: (H + Z 'VK-EK)'VlK = 0 can be 

replaced by the sequence: (If-Eohrlo := 0,--· 

(H-E ).ql (K) +( V .-E
J 

(K) )1/l := 0, etc. 
o 1 K - 0 

This may be solved formally by the approximation: 

,I, (K)(---)) _ " (K)?I (-)) 
'1-'1 r - L at ~~t r 

t 

where 'l/Jt(;) is the eigenfunction of the tth excited state of the 

• 



.' 

unperturbed syst~m, satisfying the equation: 

(H-E )7/1 (r-» = 0 
t t 

The general formula for the polarizability is: 

where the prime means to exclude t = 0 in the sum. 

This formula can be used to derive values of dipole polarizab~lities 

for atoms for which oscillator strengths are known. The electric dipole 

) oscillator strengths corresponding to the transition from state 7//
0 

to 

state 1/J
t 

is defined by: 

Substituting this into the preceding equation, the polarizability 

formula is:. 

aot =2: ' fot/(Et -Eo )2 

t 

Geltman59 arrived at the value )0.2.1\3 for the H- polarizability using 

thi,s method. Donath70 essentially used the 08cillator strength formula. 

The wave functions of some of the discrete states were derived from 

variational methods and used in :,ome parts of the sum. 

ad is sensitive to the adopted representation of the unperturbed 
,61 (1) 

wave function. Baber and Hasse chose 7fl for Li + as 
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For </1
0 

they used a six-parameter wave function and found 0.02862 'A3 

for the polarizability. 

In the 'Hartree approximation the unperturbed function is written in 

the form: 

</1 (1) o TIN (o)~) 
=, u. (r. 

i=l .l l 

The first order perturbed wave function is defined by: 

N u. (1) (r.) 
1/11 (1) =~ l' l' 

</1 (1) 
. (0\ ) 0 

i=l u. r. 
l. l 

The polarizability is given by the following ~ormulas: 

a2L(n,£) = -2 ~ 
n' £' 
=In!. 

lu(n',£'),vLu(n,£)1
2 

€(o)(n'£') _,€(o)(n£) 

The (n£) summation is over the occupied orbitals and (n'£") is over all 

pos~ible orbitals and includes an integration over the continuum. In 

the Sternheimer procedure, in summing over all shells there occurs a 

near canc;:ellation of contributions from transitions between occupied 

orbitals. The cancellation is not complete because vi(ri) differ for 

different electron shells and u(nJ.) are not members of the same com

plete set. Upward transitions from the outermost shells provide the 
+ 63 ITlr'J.jor contribution to the polarizabiE ty. 11'01' Na , Sternheimer finds 

.t.-

'.' 

.. 

I 
1. , 
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a (2s-p) = 0.117 anda
d

(2p-s) =-0.098. The largest contribution to 
d 7-

a is a (2p-d) = 0.133. The net polarizability is 0.152 AJ. 
d d. ' 

In the evaluation of the self-consistent interaction potential 

Vi(r
i

), Sternheimer solves an equatio~l numerically. This numerical 

integration is one of the chief characteristics of the Sternheimer pro

cedure. 

Instead of a perturbation approach, a variational approach using a 

trial function such as: 

or a more flexible trial function such as 

U'i(l)(r.,) = (a'+ br. + cr 2)V (r )u (o)(r ) . 1 .. . 
1 1 l' 111 

.' . 56 
which was used by Wiknerand Das can be used. 

Sternheimermodified the uncoupled Hartree approximation by using 

Hartree-Fock orbitals. Parkinson71 used anti-symmetrized combinations, 

of product type ' 

N 

IT lii (o)(r
i

) 

i=l 

solutions. In the uncoupled Hartree-Fock approximation, unphysical 

transitions between occupied orbitals, such as occur in the Sternheimer 

proGedure, are removed. The unperturbed wave function is written as an 

antisymmetrized product of one electron orbitals. 
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.. 
The first order perturbed wave function is: 

The polarizability is given by the formula: 

i I
(U (0) vu.(l)) _~(. (o)v (0))(' (1) (0))] 

i . , L J. L '1< LUi u i ' '1< 
. . k . ' .' 

parallel spins 
(", 

Alternately a variational method can be used with the trial function 

which yields the formula: 

'11 he values obtained usine; the uncoupled aI)proxlmatton are much 

smaller, generally, than those from the Sternheimer procedure. The 

fully coupled approximation usually gives lower bounds for polarizabil

ities. 62 The values from the Sternheimer, uncoupled Hartree-Fock and 

; , 

j 
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+ coupled Hartree-Fock for Li are 0.0307, 0.0304, and 0.0281, as art 

example. The previous formulas for polarizabilities from the uncoupled 

perturbation method remain valid .in the fully coupled Hartree-Fock 

approximation. The wave function is written differently, as: 

,The perturbed orbitals are coup).ed both by direct and exchange inter

actions in the Hamiltonian. The polarizabiHties derived in this way 

are more exact; they are correct to first order. For polarizabilities 

derived from the uncoupled approximation there is a non-vanishing first 

order correction. 
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