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ABSTRACT 

A generalized logistic equation is proposed for the 
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mathematical representation of batch culture kinetic data. 

Properties of the equation are discussed. A computer program 

is used to fit the generalized equation to both artificial 

and actual hatch culture data. The equation is shown to 

be capahle of fitting data exhibiting lag, exponential, 

deceleration,stationary, and death phases, as 1tTell as 

diauxic growth. The fitted equation is u3eful for differen-

tietion, interpolation, nn~ other manipulations of the data, 

and it 1:; u. convenient mean:; of dat!J. ::;torage. 

* Present address: Department of Chemical Engineering 
Cornell University, Ithaca, N. Y. 
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INTRODUCTION 

The interpretation of batch culture kinetic data is a problem 

that arises frequently in many biochemical engineering studies ranging 

from basic research on microbial kinetics to work on the development 

of new processes or the improvement of existing ones. The critical 

kinetic parameters that must be extracted from these stUdies are yields 

and rates, because the economics of a process depend upon the amount of 

product that can be obtained from a given starting material and on the 

rate at which it can be produced. In many cases, a large number of 

batch experiments are performed to test the effects of different varia

bles such as temperature and the concentration of various components of 

the growth medium. These results must then be differentiated graphically 

or by some other means if accurate values of growth, product formation, 

and substrate consumption rates are desired. Graphical differentiation 

of large amounts of kinetic data is tedious and susceptible to subjec

tive errors. The use of interpolation formulae for numerical differ

entiation can lead to large errors if there is much scatter in the data 

or if the data are widely spaced. 

These difficulties may be avoided by fitting a suitable equation 

to the kinetic data and differentiating the fitted equation to determine 

rates. By using a systematic fitting procedure such as the method of 

least squares, the influence of random errors in the data is greatly 

reduced and errors of judgment inherent in graphical differentiation 

of data are eliminated. With such an approach, mbre reliable data 

values can be weighted accordingly. When the magnitude of the errors 

1 
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in the data is known,the quality can be directly tested. Finally, 

the process of data analysis can be made much easier and quicker by 

using a computer to perform the calculations. This paper -reports the 

selection of a suitable equation for the representation of batch cuI;. 

ture kinetic data, describes how it is used to analyze data, and 

discusses some typical results obtained in the application to both 

artificial data and actual data. 

mORY 

The choice of-the equation to be used to represent a set of data 

is crucial to the success of the\mdertaking. For example,onewould 

-not- choose a periodic or . discontinuous function to represent. the change 

of sugar concentration with time in a normal batch culture of yeast. 

To simplify data analysis, it is desirable to use a single type of 

-equation to represent all, or at least most, types of data encountered. 

The equation must _be able to represent all phases of batch culture, 

including lag, acceleration; exponential, deceleration,· stationary, -and 

declining growth phases, as well as special phenomena such as diauxie. 

The need is thus for a flexible equation. Flexibility is also needed 

to ensure that the equation can be fit to the data with a small number 

of parameters without imparting a serious bias to the results. Once 

fitted to the data, the equation must be easy to use. These _and some 

other desirable properties of an equatioriused fOr the analysis of batch 

culture kinetic data are summarized in table I. 

~ E'orisider some particular examples. The simple polynomial 

ShOWIi in equation (1) is often used to represent data of unknown function

al form. 
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y 

where y = dependent variable 

t time of incubation 

ao' etc. = constants 

n + a t 
n 

(1) 

The polynomial has many advantages, including ease of fitting and use, 

flexibility, and differentiability. However, it does not satisfy criteria 

1, 3, and 5,because it cannot exhibit a stationary phase or a zero 

derivative at large times and a large number of terms may be required 

to obtain an adequate fit to typical batch culture data. Also, the 

fitted parameters have no direct physical meaning. 

A functional form that would contain parameters having direct 

physical meaning can be obtained by assuming that the cell growth rate 

depends on the concentration of limiting substrate according to the 

familiar Monod equation. 1 

Pm 8 
ji-:=K +8 

S 

where A. = Specific growth rate 

,tl 
m 

K 
s 
8 

= 
= 

Maximum specific growth rate 

Monod constant 

Concentration of limiting substrate 

By assuming the yield of cells to be directly proportional to the 

(2) 

amount of limiting substrate consumed, one can derive the following 

2 formula. 

t 
(s + K ) o s 

;U S 
max 0 l· X/y:.. 8

0
-\. 

Ks ln Xoj -S . 
. . y 0 
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where S = initial substrate concentration 
0 

X = cell concentration at tiine T 

X = initial cell concentration 
0 

y = yield coefficient 

The, fi ttable parameters (Ks0 max' and Y) now have direct physic,al 

meaning, arid from this standpoint, ,equation (3) is superior to the 

siinple polynomial, at least when describing the time dependence of 

the cell concentration. Knowles, Downing, and Barrett have success-

'fully applied this approach to the determination. of the kinetic 

parameters for nitrifying bacteria in mixed culture.3 In their work, 

a computer program was used to calculate thefittable parameters 

" . '3 
(K "n. ,and Y), by a least squares technique. s ,,-- max· ' , 

However, use of the Monod equati()n suffers from certain disadvan-

tages. First, the equation used to describe the concentration of the 

limiting substrate is not of the same mathematical form as the equation 

used to describe the cell concentration so that siinilar but separate 

procedures must be employed to fit the two equations to the substrate 

and cell concentration data. In fact, the determination of the fittable 

parameters should be done for both substrate and cell concentration 

data simultaneously, fitting the data to both equations at once, s'o that 

only one set of values for K , Y, and # will be obtained for a given 
s m 

batch culture experiment. The procedure of computing the parameters 

from the data is thus relatively complicated and may also involve the 

use of large mnountsof computer time, particularly if the program is 

4 
not designed carefully. 
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The inconvenience associated with using Equation (3) to calculate 

cell concentrations or growth rates once the parameters have been 

determined is an additional drawback. However, the major disadvantage 

of the integrated Monod equation is its lack of flexibility. It cannot 

be used to represent either a lag phase or a phase of decline, and 

there are not enough fittable parameters to permit the description of 

systems not obeying Monod's equation or exhibiting a constant yield 

coefficient. nlUS the method pioneered by Knowles, Downing, and Barrett, 

while useful for many cultures, is not sufficiently general for many 

other types of batch culture data. 

A third type of equation that is often used to model population 

growth is the logistic equation. Among the first to use this equation 

with populations were Verhulst, Pearl and Reed. 5,6 It has the follow-

ing form: 

K 
Y = 

1 + exp (a + al t) 
0 

where y = dependent variable 

t = time 

ao' ai' K = constants 

The logistic equation gives a sigmoidal curve when a
1 

is negative; 

thus approximating a portion of a simple batch culture population. 

However, it' does not allow for a lag phase or a phase of decline. 

Also, it is not as flexible as would be desired. But at least the 

parameters are capable of some physical interpretation. For example, 

if used to describe the cell concentration" the parameter K represents 

the value of the cell concentration in the stationary phase, the 

parameter a
l 

represents the maximum specific growth rate, and the 

(4 ) 
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third parameter, a , is related to the ratio of initial to final cell 
o 

concentration. The logistic equation also offers the advantage of 

being comparatively easy to use,m8.king it possible to calculate explicit

ly the values of the dependent variable and its derivatives. 

The only serious drawback of the logistic equation is thus its 

lack of flexibility. This problem may be overcome by generalizing the 

equation through the use ofa more general function for the argument 

of the exponential term in the denominator. Upon generalization, the 

logistic equation thus becomes 

where 

K 
Y ;0:"1 + eXP[F(t

l 
)] 

F(t l )' == some function of time 

tl == t - t . L 
tL length of lag phase 

t > tL 

Introduction of the new time scale,. t l , permits bettermodelingo~ 

the lag phase. An equation of this form retains a number of advantages 

for the purpose at hand, even for fairly complex F(t
l

). These advan-

tages include ease of use, physical meaning for at least some parameters, 

and constant -limiting values of y at small and large values of t l • 

Although better choices ofF(t) may exist, a simple polynomial 

was selected, giving the following equation: 

(6 ) 

As was pointed out by Dewitt, this particular form of the generalized 

logistic equation can fit many types of data of sigmoidal form. 7 It 

is a1:~o easy to mll.ke inttiri.lcntimnte:=;of the vn.llJec:of the para.meters, 

simplifying 1ts une. Jut ndrlitional advantage of this equ1.l.tion for model-

i.nc; kinetIc cIa.ta ir~ that at low values of y/K, exponential p:.rowth is well 

. ... ;,. 

-. 
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approximated, gradually going over to product-inhibited growth at large 

time values. Equation (7) shows the dependence of the specific growth 

rate on values o.f y and t l • 

The generalized logistic equation thus meets the need for flexibility, 

being especially adaptable to systems with product inhibition. However, 

it should be emphasized that only K, ao' and a l have any direct physical 

(biological)meaning. 

Properties of the generalized logistic equation were discussed by 

Dewitt. 7 An outline of the properties will be given here. 

Equation (7) can be rearranged to give the following form 

dy 
dt 

Because y is always greater than zero and less than K, the sign of .the 

first derivative, dy/dt, is determined by F'(tl ), which may take on 

successively positive and negative values at various times values. 

Points of inflection of Eq. (5) occur whenEq. (9) is satisfied. 

F"(t ) 
Y = K/2 (1 _ 1) 

(F'(t
l

))2 

(8 ) 

Depending on the number of terms in F' (t l ) and their signs, a number of 

relative maxima and minima may be obtained. For example, for F(t1 ) a 

234 5 
a2 t 1 + a3 t 1 + a4 t 1 + a5 t l' 

and up to 3 relative minima and 3 relative maxima may be obtained, as 

shown in Fig. 1. In Fig. 1, at low values of the independent variable, 

lower order terms predominate, with higher order terms becoming the 

determining factors at high values of the independent variables. For 

the case shown, a
l

, a
3

, and a
5 

have negative values while ao' a2 , and 



-8-

a4 have positive values •. Of course, the values of ao' a
l
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•.• a can 
n 

. take on any values desired to obtain curves of the desired type. The 

curve just shown demonstrates the maximum degree of flexibility obtain-

able with fifth order polynomial. In general, the maximum number of 

relative minima and maxima in the first quadrant may be at most one 

. greater than the deg.ree of the polynomial. The highest order term ulti-

mately determines the' asymptotes of the curve. Thus there are ·four 

possible results because a may be positive or negative and n maybe odd 
n . 

.' . 

or even. Figure 2 shows the four possible cases. Note that all vaiues 

of the dependent variable lie between y = K and y = O. For the modeling 

of bacterial growth, n was always given an odd value,values of 1,3, and 5 

being chosen, so that only curves of the second and the fourth types 

shown in Fig. 2 were used. Because the microbial growth is limited to 

the first quadrant, these two cases proved adequate to give the two 

dE;!sired alternatives of an asymptotic approach to a constant at large 

values of time and the case of an asymptotic approach to a zero value 

at large values of time. The first case could represent product con-

centrations versus time, while the second case could represent viable 

cell count versus time, which would approach zero concentration at 

very long incubation times. The flexibility of the model thus appears 

to be adequate to fit all types of. batch culture data including data 

from complex ferment'ations. However, the non-linear least squares 

technique does not always succeed in fitting complex data, as will be 

discussed shortly, and better results could be obtained by employing 

a more sophisticated method of determining the parameters. 

It should be recognized that the curves drawn in Figs~ 1 and 2 

do not represent actual plots of the generalized logistic equation. 

! 

• 
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They are hand-drawn curves, meant to illustrate tl').e qualitative behavior 

of the equation. 

METHODS 

To reduce the labor of fitting the equation to the data, .acomputer 

program in Chippewa Fortran was written for use with a Control Data 6600 

Computer. A method of non-linear least squares curve~fitting was used 

... to fit the equation to the data. The method is that given by Scarbor<?u/;yl. 

A linear least squares method will not work becaus.e the generalized 

logistic equation is nonlinear in the parameters· to be computed~ The 

nonlinear method consists of making initial guesses :for the values of 

the ·coefficients and correcting these initial guesses by repeated iteration 

. until a desired degree. of convergence is obtained. The technique of making 

initial guesses is described· in Appendix I. Correct~onsare obtained by: 

. assuming a Taylor series expansion of the fittihg function in it~ co-. 

efficients; .analogous to the Newton-Raphson tec}:mique of ~eeking roots of . 

a nonlinear equation •.. The method and a detai.led outline of the comput.er . 

progra'm is given by Edwards. 9 A brief description of the program .is 

presented in Appendix II. Many groups of· data may be analyzed in sequ~:hce· 
. " ' ." 

?y the program. The. program fits succeedingly complex forms of the gen

eralizedlogistic equation to the data, statistically testing each succeed

ing,equation until a fit is obtained that satisfies aChi-squaretest. 

The compu.ter program also tabulates observed and calculated valueS of the .. 

~ata, tabulates values of the .c~lculated parameters, and prepares graphs 

comparing calcuiated 'and observed data. 

Because standard deviations were not available for much of the 

data discussed in this paper, estimates of the goodness of fit were 

,obtained by calculating an average relative error. 

. -- J~.; 

,.; ",,:,," 
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~'he following formula was used: 

Al

'l /d'~a;ta' \.. Calculated data value - Observed value I. 

_ Observed data value 
R = 100% x~,~p_o_i_n_t_s ____ ~ ________________________________________ __ 

Number of data points 

where R = average relative error (%) 

RESULTS 

(10) 

Both artificial and real batch culture kinetic data were suppiied 

to the compu.ter program to test its performance. Some of the results 

will now be described. Further applications are reported elsewhere. 9 

One test of the equation was made using data from an imaginary 

culture showing an exponential increase of cell concentration followed by 

a phase of constant cell concentration. For convenience, these data will 

be referred to as the exponential model~. 

The artificial data values are listed in the second column of 

Table II and are shown as open circles in Fig. 3. The exponential data· 

. 10 
were taken from a table·of exponentials. By plotting the imaginary 

data on semi-log graph paper, the data representing the exponential growth 

period fallon one straight line of positive slope and the points repre-

senting the stationary period fallon a second, intersecting horizontal 

straight line. The slope discontinuity prevented the continuousf}iction 

from fitting the curve perfectly and provided a stress on the model. 
. . 

These hypothetical results would never be achieved in practice, but 

a close approximation might be made by a culture growing on a synthetic 

mecli 11m 1 i rni tcd b.v :.t earl)nrl :~OUTC(~ -i.f thcinocuhlTn were n YOlID!;, adapt.ed., 

and eX[Joncntially growing culture that would continue growing exponentially 

J. 
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upon inoculation. Cell mass versus time would most likely follow a course 

well approximated by an exponential and a resting phase, although cell 

number might not, there being a tendency for cell division to continue 

for a short period even after exhaustion of the carbon source. Figure 3 

and Table II compare the exponential model to the curves fit by the 

computer for the cases of first degree polynomial (which is equivalent 

to the simple logistic equation) with a fifth degree polynomial in the· 

generalized form of the equation. The first degree equation is satisfac-

tory in the low values of cell concentration, but it is inadequate at 

high cell concentrations, giving an average relative error of 6.910. In 

. the case of the fifth degree polynomial, the fit is good throughout, with 

an average relative error of less than 2%. The equations fit to the data 

are, respectively, 
239·966 

N = (11) 
1+ exp(5.5530-0.5389t) 

151.473 
N 

(12) 

Use of Eq. (12) is clearly inconvenient without use cf a computer or 

desk calCtllator. The fit of the specific growth rates calculated by 

computer are compared to the exponential model in Fig. 4 and Table III. 

As can be seen, the first degree equation again fails, particularly at 

high values of time and cell concentration, but the fifth degree 

equation does a good job of representing a general form of the variation 

of the specific growth rate with time. Average relative errors in cal

culated specific/growth rates were 9.6% and 5.4% for the first and fifth 

degree caseD;better results c0uld be obtained by smoothing of the specific 

growth rate data obtained by computer. 
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A second test was made using the batch culture kin'etic data of 

L d k · 11 . ue e l.ng. Luedeking studied the lactic acid producing bacteria, 

Lactobacillus delbruckii. His data were especially useful as a test 

because he also tabulated graphically-measured growth rates. 

The generalized logistic equation fit to the cell concentration 

data of Luedekirig's run number 13 has the following form: 

9.4906 

N= (~) 
1+exp(4 .6029-.4622t+.~ 10374t2-. 03l35t3 +. 003279t 4_ .1.192X10-,4 t 5 ) 

The actual data are compared with the values calculated with 

equation (13) in Fig.'5 and Table IV. An average relative error of 

4.1% resulted with very good agreement between calculated and observed 

data over the entire range of values. Growth rates determined from the 

data by graphical. differentiation by Luedeking are compared with values 

calculated by analytical differentiation of Eq. (13) are compared ip 

Fig. 6 and Table IV. Once again" very good agreement is obtained con-

firming, the adequacy of the generalized logistic equation. 
" 

Figures 7 and 8 show the results obtained by fitting the generalized 

logistic eq~ation to some data obtained by Edwards with cultures of a 

salt-tolerant strain of sulfate-reducing bacteria. 9 Figure 7 is a graph 

of the cell concentration (as measured by an optical counting technique)' 

as a'function of incubation time. Data are shown for cultures at three 

different initial pH values. A third-degrEe generalized logistic equation . I .. ' 

was fitted to the data for each. culture. The resulting equations are 

given in Fig. 7; the curves represent the values calculated with each 

equation. Two important points should be mentioned in connection with 

these data. First, the data were not .taken as frequently as would have 

been denirnble and they Flre eomewhnt scattered due to the limitations of 
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the optical counting technique. Second, the data point taken after 

3.9 days for the culture with an initial pH of 8.60 seems to be a bad 

data point, appearing to be low by a factor of about two. The datum 

was included to see how it would affect the results. In spite of these 

two weaknesses in the data, the generalized logistic equation fitted the 

data very well, giving Chi-square values with probabilities of >98~o, >95%, 

and ">80% for the experiments at initial pH values of 7.60, 7.99, and 8.60, 

respectively. The lower probability obtained for the fit to the culture 

with an initial pH value of 8.60 resulted from inclusion of the question

able data value observed at 3.9 days. There is further evidence for 

the success of fit. Qualitative examination of the data in Fig. 7 suggests 

that the only major effect of the initial pH in this experiment was to 

alter the length of the lag phase. Otherwise, rates and yields appear 

to be about the same for all three cultures. Specific growth rates cal

culated by the computer from the differentiated form of the three fitted 

equations are plotted in Fig. 8 as a function of incubation time. It 

can be seen that the calculated specific growth rates confirm quantitative

ly what visual examination of the data suggests. The magnitude and shape 

of the three curves in Fig. 8 are all very similar, except that they are 

somewhat displaced in time. Again the effect of including the question

able point (for the culture with an initial pH value of 8.60) is appar-

ant from the shape of the specific growth rate curve calculated for that 

culture at low values of inCUbation time and from the broadenir'ig of the 

curve. However, it is encouraging that :inc1usion of the point. does not 

appear to influence the values of the specific growth rate calculated 

for higher incubation times. 

Figure 9 i11ustratec the application of the generalized logistic 
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equation to product concentration in batch cultures •. The data are from 

a different set of experiments with the same strain of sulfate-reducing 

bacteria used in the work justdescribed. 9 In this case, the initial 

concentration was varied and other variables were held constant. As 

before, data were not spaced close enough to permit very accurate fitting, 

yet good results were still,obtained using the generalized logistic equa

tion. The three curves drawn in Fig. 9. represent the following three 

equations: 

For 0,1% yeast extract, 

Ls-J ~. 24.0lrnM 
1 +exp L6.4538-2.373lt+0.2402t2_0.009275t3J (14 ) 

For 0.5% yeast extract, 

~ J 28.33mM 
S-- ~ -1-+e-x-p---:C==-4-.-5-5-5-7 --1-.-O-86-9....;..t-'-1-+'-0-.-0-15-2-3'-t"A~---'-'-7-.• -76-5-7-x-I-0-"5'-t7i ) (i5 ) 

tl = t.~ 1.1 days 

For 1.0% yeast extract, 

ls-3 = Hexp l21.998 _ 
31.55mM 

lO.3017t + 1.9084t
2 

- O~13018t3J 
(16 ) 

Some slight distortion can be seen between six and eight days for the 

culture having an initial yeast extract concentration of 0.5% and between 

seven and nine days for the culture with an initial yeast extract con;.. 

cent~ation of 1.0%. The distortion, though slight, was reflected in 

Chi-square values of much lower probability for equations (15) and (16). 

I" However, the results were quite good in vie"T of the limited number of 

data points available to be fitted:they illustrate the usefulness of the 

generalized logistic equation in extracting information from limited 

experimental data. 

All tests up to this point were made using data that approached a 

, ~ I 
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positive, non-zero constant at large values of time. However, as was 

pointed out in the section on the mathematical properties, the general-

ized logistic equation can also approach zero at large times. This 

property is important because variables such as viable count tend to 

falloff to zero values in the period after the stationary phase. 

Also, intermediate products can accumulate in the early phases of a 

culture and then be consumed before the fermentation is complete •. Thus, 

mathematical representation of the concentrations of such intermediate 

products requires a function capable of showing a maximum and then de-

creasing to zero or some other low value. An example is the diphasic 

bioxidation of glucose to 5-ketogluconic acid by Acetobacter suboxydans, 

which shows an accUmulation of gluconic acid. 

Synthetic data were assumed with a lag phase of 10.5 time units 

and having a bell-shaped curve. A generalized logistic equation was. 

then fitted to the data. Table V and FigJ.O compare the test data with 

the fitted equation. The fitted equation has the form 

y 
1.3B05 x loB 

23 1 + exp(4.5593 - .B6477t l - .649B9tl + .100Bt l ) 

tl ::: t - 10·5 hr 

Good agreement between the test data and Eq.(17) is evident. 

Thus the bell-shaped curve may be added to the list of curves 

that the model is cmrpable of fitting • 

(17) 

As mentioned in the discussion of the properties of the generalized 

logistic equation, it has the capability of fitting complex curves. 

Hosler n.nd John:::on obtained fairly complex data in their study of the 

penecillin fermentation. 12 In their work, mycelial nitrogen showed 

diauxie at intermediate incubation times and decreased at long inc'J.bation 
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times. The computer progrsIfi fit a. third degree model to the data with 

the following form: 

(18) 

Table VI and Fig. ll compare observed and fitted data. Agreement is 

poor. The bad results are partly due to the paucity o~data pOints, 

partly to the irregular shape of the data, and pa.rtly to the low number 

of coefficients in the fitting curve. There :were too few .points to 

determine the parameters successfully with a higher order equation 

using the simple non-linear curve-fitting technique applied here. 

Better results can be expected even when dealing with fairly complex 

data, provided that an adequate number of data have been taken over 

the entire range of interest, and provided a more powerful curve-fitting 

technique is used, ensuring convergence even with complex data. 

The last test was made with data measured by Monod growing 

Escherichia coli in a medium containing glucose and sorbitil both at 

concentrations of 100 mg/l. 1 First, the cells used glucose exclusively. 

Then, after all glucose had been consUmed, a short lag and then growth 

of sorbitol ensued. Monod named this phenomenon of consecutive utili

zation of substrates with an intervening lag diauxie. l Figure J2 and 

Table VII compare the observed data with values calculated from what 

will be referred to as the one part model and the. two part model. The 

one part model fitted the data with a single equation. The equation 

obtained had the form 

66.374 
y==-----'--------- (19) 

1 +exp(3.2298 - 0.8449t) 

.• 
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The locus of Eq. (19) is the solid curve in Fig. 12. As can be seen, 

the one part model did not give a good fit, showing no plateau at 

either intermediate or large times. Again, convergence difficulties 

prevented fitting a higher order equation to this complex data. To 

increase the quality of the fit, the data were broken into two parts 

and two separate equations were used to describe the two parts. With 

this approach, results were very good. For times less than 3.6 hrs, 

Eq. (20) was applied. 

29·62 
y - . 

- 2 3 4 5 
1+exp(2.387-.7017t+.6046t -1.313t +.7225t -.1285t ) 

For times greater than 3.6 hrs, Eq. (21) was used to fit the data. 

29·500 
y = 29. 0+ ------------------::::------~ 

1+exp(4.0603-.0597(t-3.6) -1.626(t-3.6)2_1.1903(t-3.6)3) 

Excellent agreement was found between model and data, as shown by 

Table VII and by Fig. 12, where the two part model is represented by' 

the dashed curve. The average relative error was 0.78%. 

DISCUSSION 

Adequate representation of simple batch culture kinetic data may 

be obtained using the generalized logistic equation. This was borne 

out by both the results discussed here and a considerable body of 

other results obtained in analysis of data from a kinetic study of 

sulfate reduction by bacteria discussed elsewhere. 9 The generalized 

logistic equation can be used to describe the decrease of substrate 

concentration with time in a batch culture, although only the description 

of cell and product concentrations were attempted in this study. 

For more complicated data, such as that obtained with the peni-

cillin fermentation, the generali6ecl logistic equation can be used only 

· .'.'. ... '.-
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when adequate data is available over the entire range of interest. 

Convergence difficulties may also arise in fitting complex data with 

the method used here to compute parameters. By using a more sophisti:.. 

cated technique to determine the best values of the fittable parameters, 

the generaliz.ed logistic equation should be able to describe the more 

complex data, also. With the present approach, good results may be 

obtained by dividing complex data into two or more regions, as was done 

with the diauxie data of Monod, but this decreases the convenience of 

the method somewhat. The representation of the lag phase could be 

improved, because use of the present method results in a discontinuity 

at the end of the lag phase. However, this disadvantage is not serious 

because the rate of product formation at the end of the lag is not generally 

significant anyway. 

Despite the success obtained by choosing a polynomial for F(t), still 

better results might result from JIsing a different ,functional form. 

For example, 
. t 

F(t) = aO+alta2+aSea4 (22) 

will give still greater flexibility for fitting complex batch data. The 

disadvantage of such a form is the increased difficulty of qbtaining 

good initial estimates of the parameters for use in beginning the itera-

tion. Troubles sometimes arose in using the Chi-square criterion to 
( 

test goodness of fit for the sulfate reduction system, the primary 

. reason being the difficulty of getting accurate estimates of the 

standard deviations of the an~lytical procedures. 9 ACcurate standard 

deviations are also heeded if one wishes to weight the data according to 

statistical criteria. If such information is not available, adequate 

results can be obtained by using unit weighting factors when data values 

1 
i 

.1 

! 
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do not vary by more than about two orders of magnitude. For wider var-

iations (c. g. total cell count) data pointG can be 'weighted in inverse 

proportion to their magnitude. 

CONCLUSIONS 

A generalized form of the logistic equation was shown to be useful 

in the analysis of a variety of batch culture kinetic data. By using 

a computer program to perform the analysis, the data may be reduced 

quickly to an equation. The equation may be used to perform manipula-

tions of the data (e.g., differentiation or interpolation) and physical 

meaning can be derived from the values of some of the parameters in the 

equation. The equation is a method of storing data concisely. The 

computer can also be used to prepare graphs comparing the observed data 
( 

and the fitted curve, but better results could be obtained with complex 

data if a more powerful numeric~l method was used to determine the 

fittable parameters. The generalized logistic equation should prove to 

be a useful tool in the treatment of batch culture kinetic data. 
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Table I. Desirable Properties of a Fitting Equati9n 

1. Capable of representing all phases of batch~ulture 
growth and metabolism. 

2. Sufficiently i'lexible to fit many types of data 
wit~out introducing distortion. 

3. At. least some of the. fittable parainetershave direct 
physlcal meaning. 

4. Continuous~ differentiable, explicit time derivative. 

5. Derivative zero initial~y and at very large times. 

6. Parameters easi~ evaluated. 

7. Easy to use model once parameters detennined. 

• 
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:r..c:.~;)c:-.~e;-. t 
v~~:"~":":t.:! 

o 

2 

3 
L;. 

5 
o 

9 
:0 

Data. 

. Given 

1.0000 

1.6437 

2'.72.03 

4.40l7 

12.182 

20.03-5 

33·:::'5 
5:"'.593 

9:>·017 

148.4.;.1 

11,.3.4: 

. 
Deper.G.ent vtl~iablc 

C&.::"'culat.:;d, 
F(t) firs~ ccGrce 

1.0000 

2.7022 

4.5952 
7.7706 . 

13·0:"9 

21.435 

3~·6:5 

53·7~ 
79.486 

·~lO.19 

t" 
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CCllcula ted. 
F(t) fifth Qeg~ee 

1.0000 

1.6773 
2.6915 

• L~ .4136 

20.:>~ 

32·3~5 

93.892 
13<3.12 

150.83 

151.47 

·1 

I 

.ofl 
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Table III. Specific growth rates, exponential model 

I:"~G..Cl)C:".I<lent .S:ir.~e derivcltive of 
v~ri~b:e dependent vaii~b1e 

0 

1 

2 

3 
, .. 
5 
(; 

7 
0 

9 
10 
- ; ...... 
'::'2 

, Given 

" 

" 

" 
" 

" 
" 
" 
" 
" 

o 
o 

Co::'cula"ted, 
F(t) i'i:cst degree 

·535 
.533 
·529 ,-, 

,.52,1 
: ·510 

·4-91 
.461 
;418 

·360 
. ~291. 

.219 

.154 , 
-

UCRL-17953 

Calcu13teci, 
F(t) fifth degree 

.479 
·510 

·522 
.503 
.474 
.481 

.212 

.0162 

.00012 

i 
, I 

I 

• I 

I 
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'l'c',blc IV. Comparison of obG8rved and c;ro:phically measured values "witr'! 
computer calculated values (observed data in from run 13 of Luede;~ing) 

" 
?i~-;,.e Observed CLilculated Grapnical CO~lp'uter 
I, ) cell cone; cell cone. grovith rote calcula-;;ed. ,nrs 

(UOD/inl) (VOn/ml) (vOn/ml/h:r ) growth -:a.l.:.e 
(UOD/:al/hr) 

1.0 0.123 0.138 0.046 

2.0 0.139 0.190 0.061 

2.·5 0.10 . 0.077 

3·0 0.283 0.268 0.13 0.099 

3·5 0.16 0.130 

4.0 0.442 0.400 
.. 

0.19 0.172 

L~. 5 0.24 0.228 

5·0 0·30 0.;'00 

).5 0.82 0.802 0·37 0.3-89 

6.0 0.45 0.1;.96 

6.25 1.12 1.154 

6·50 0·56 0.6l8 

i·a 0.71 0.750 

"{.17 1.77 1.773 -
:·50 0.88 0.885 

7.70 2.24 2.23 

8.00 1.04 1.019 

8.25 2.73 2.79 

8.50 1.17 1.147 

9·0 3·77 3·67 1.31 1.271 

9·50 1.43· 1.393 

9·53 4.43 4.38· 

10.00 5·00 5·07 1.55 1.512 

10·50 5·72 5.85 .1.63 1.612 

11.00 6.78 6.67 1.68 1.653 

11.50 7.51 7),8 1.56 1.578 

12.00 8.23 8.22 1.29 1.3L;,0 

, 



Tirr,e 
(hr::;) 

12·3j 

12.50 
12.67 
13·00 

13·50 
14.00 

Ob::;ervca. 
cell conc. 

tUOD/ml) 

8.63 

8.78 

9·27 
9·49 
9·}8 

, . . -26..: .UCRL-17953 

Table IV (continued) 

C"llculu ted 
~ 

Graphical. Cbr::pu "e:' 
cell conc. c;ro;..th rate ~alcu2..a.tt2c.. 

(UOD/ml) (UOD/ml/hr) r;r.o\ .. , t}"i l·<J.-:'-.e 
( .. ~.., /_0/.,., . . uvu, 1I .... .L ."UJ. I 

8.62 
1.06 0·965 

[3095 

9·18 0·76 0·564 
9.38 0.17 0.257 
9.46 

• 1 
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'.:'uble V. Comparison of :::ynthetic data and computer fit values, 
bell-shaped curve 

I~d.e;>cnG.ent De~endent variable . . 
voria"ole . ·Origi:-.a1 ~'i ~ted 

data values 
,. 

2:1000 X 10° 0 2.1000 X 10° 

10.5 " " 
11.0 " 2.5397 X 106 

,. 
5.6976 X 106 11.5 5.0210 X 10° ' .. 

12.0 1.5620 X 107 1.4531 X 107 

l2;5 4.2250 X 107 3.6143 X 107 

8.1530 X 107 .-, 

13·0 7.2:i..lO x10' 

13·5 1.1090 X 108 1.05.::.6 X :'08 

14.0 ,1.241.0 X 108 1.2308 X 108 

14.5' 1.2950 X 108 1.3048 X 102 

15.0 1 ""40 ,~8 1.3317 X 10
8 

• .).1. X ~U 

15·5 1.3140 X 108 1·3364 X 108 

1.2970 X 108 
(' 

16.0 1.3202 X lOU 
8 1.2492 X l08 16.5 1.2260 X 10 

17.0 9.0400 X 107 9.6335 X 107 
'7 .-, 

17.5 2.9880 X 10' 3.l074 X 10' 
r ,-

:8.0 2.33::'0 X lOo 2.3806 X 10° 

18.5 6.8590 X 10 
4 6.5128 X 10

4 
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10 Comparison of fitted curve with data of Hosler and Johnson 

Time Y.yce::i&l ni tror;6r.l 
(i?ours) , Oocervcd .' Calcu1.ated 

(mg/~.~.'ter) (rll6/liter ) 

0 ' 100. 100.0 

16 200 235.7 
28 

30 900 508.5 
40 920 ," 804.3 

45 . 920 871.0 

50 

53 1010 1235·1 

67 '1690 . 1603·8 

75 2000 1738,1 

90 1800'" 1849.4 

E5 1600 1598·3 

• 
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Table VII. Comparison of di~luxie data or ~:onod 1 with fitted c.ata 
,'-

'j;irae O';)ticcil der.sity 
(hours) Data of V.or,od 1-part li.ode1 2-part mOdel 

0 2·5 2·50 2;500 \ 
1.00 5·0 5·60 5·100 I' 
::'.40 7.8 7·59 7·565 ; 

1.90 11.0 10·92 11.444 .~ 2.10 13·5 12·55 13·179 Part 

2·50 18.0 16·36 
'.; 17.964 1 

2.80 19·68 23:614 
't 

23·5 I 
3.15 29·0 24.00 ~8 .820 i 
).60 29·5 30.07 f:!9.621 ) 

29·500 ...... 
I 

4.00 30.0 35·67 30.000 , 

\ 4.2') 32.0 39·11 32.000 

4.60 40.0 43·71 40.000 \ 
4.90 ,48.0 47·33 48.000 ,~ , Part 

53·0 49·00 53·000 
2 

?05 ( 
5·25 58.0 51.08 58.000 

I 5·50 58.5 53.42 '58.500 

5·85 58·5 56·23 58.500 ) 6.10 58.5 57 ·92 58.500 

• 
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APPENDIX I 

ESTIYATION OF COEFFICIEN"TS IN THE GE1"ERALIZED LOGISTIC EQUAT:::O~ . 

Accu~ate· initial guesses· fo.r: ~he. values of the· coefficie~ts i,n"

crease tl1e likelyhood that the iterative curve;..fitt::'ng techniClue used. 

will converge to the correct values and ree.ucesthe murtber of iteratio~s 

rCCluired. Assuming that a fairly good estimate. can be ~de for K; we 

define 

G(t,y) = In(K ; y) 

+ t 2 a t). 4 + = 8 + 8 t + +a4t 
0 1 

8
2 3· . '.' 

Assume that the initial value G(o,yoL and three equally spacee. values 

G(t l 'Yl)' G(t2 'Y2)' and G(t3 'Y3). are known .(t3 = 3ti,sndt2 ::: 2t1 )· 

Then the following equations may be e.erivedto rr.ake 1n1t1ai guesses of 

the coefficients a 
0' 

a
l

, etc. 

For F(t) a o 
+ a, t 

1 
Q G 

0 0 

3
1 = (Gl - Go)/tl 

., 
.. 

For F(t} a + fllt + 't2 
0 

. 8 2 

a = Go 0 

'a, = (4(G
1 Go) - (G

2 
Go))/2tl 

8 2 = ( (G
2 

-G ) - 2(Gl - Go))/2t/ 
0 

.. 

:?or F(t) a '+ fllt + a .... (2 +' a ... 3 
0 . 2" 3" 

Defining B '-1 - Gl - G 
0 .. 

B2 = G2 
- ' G 

0 

B3 = G2 - G 
0 

, . 

• 
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a l = (3Bl - 1. 5 B
2 + B2 + B3/3) /t l 

, 2 
a2 = (4B2 B3 - 5Bl )/2t l ' 

a3 = (~ - 3B2 + 3Bl )/6t1
3 

,These equations were used in the computer program to make initial 

guesses of the coefficients from given equally-spaced data. For 

fitting of ret) for fourth and fifth degree cases, zero values of a4 

and a
5 

were used for the initial guess. When analyzing a'set of 

data with a lag phase, the foregoing procedure was applied to the 

data after the time scale had been shifted to place the origin at 

the end of the lag phase • 



. , 
1 

-32-

APPENDIX II 

COMPUTER PROGRAM 

UCRL-17953 

The camputer pragrani developed to analyze batch culture kinetic 

data is described by Edwards.' A brief description will be given 

here. Several groups of data may be analyzed in sequence. During 

analysis af a graup, the fallawing pracedure is fo.llawed: First, the 

data are read into the camputer, alang with standard deviatians of 

the data, the duratian of the lag phase required, and estimates of 

dependent variable far use in making estimates of the initial values 

af the parameters of the fitting equation. The standard deviatians 

are needed to. calculate weighting factarsfor the data in the least 

squares analysis and for use in the statistical test of goodness af 

fit af the final equatian. Weighting functions are calculated and 

the data, standard deviatians, and the weights af the data are printed 

out. 

If the time lag is not zero, the coordinates are shifted so that 

in the new caordinate system, t l = t ... t
L

, where tl = new time scale, 

t = real time scale, and tL 

the dependent variable at t 

length of the lag phase. The value of 

tL is assumed to be the average of all 

values for t ~tL and the fitting of the equation to the remaining 

data is done in the new coordinates. 

Estimates of the carrections to the estimated values of the fitting 

parameters are computed far F(t l ) = ao + alt l and the values of the para-

meters are carrected. This process is continued until the sum of the 

absolute magnitude af the ratio. of the changes in the coefficients to 

their absalute value is les::; than .001. The values of the corrections 

• 
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and the corrected pur:uneters are printed out at each step. At each 

tenth step, the values of the data and the corresponding values cal

culated with the fit equation are compared in a table. A maximum of 

100 iterations is allowed to reach the desired convergence on the fit 

parameters. After the fitted values are obtained, the data and the 

values computed with the fitting equ.ation are compared. Then the calcu

lated derivatives and specific rates are calculated at regular intervals 

and printed-out also. Finally, a graph is prepared comparing the ori

ginal data points with the line connecting the values calculated using 

the fitted equation. The process, starting with estimation of para

meters a.nd optImization by iteration, is repeated for third and fifth 

degree polynomials, provided that the number of data warrant it and 

that the additional terms are necessary to improve the fit to the data. 

The next variable in that group of data is then analyzed by the same 

procedure, until the last variable has been analyzed. The next set of 

data is then analyzed. Cell concentration data must always be analyzed 

first because the fitted values of cell concentration are needed in 

computation of specific rates of change in later variables. The graphs 

prepared by the computer are very helpful in decisions about the ade

quacy of the equations fitted with the program. Chi-square values are 

also computed to assist in judgment of the goodness of 'fit. 
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Pig. 2. rO~9ible limiting CO~C3 for fitting model at large positive 
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Fig. 9. Effect of the initial concentration of yeast extract 
on sulfide production in batch culture 
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FiG. 12 ,Cell concentration versus time in diauxic bat'ch culture 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com~ 
m1SS10n, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 




