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I. Introduction

Tt is now well known thét nonlinééf optical effects arise as a
result of nonlinear response of a medium tb intense light fields. The
‘ description of these effects is often semi-classical and non statistical_;
the light fields are treated as ciassical waves with no fluctuetions
elther in amplitudes or phases. Such a description neglects tre contribﬁ-
tion of spontaneous emiésion to the stimulated scattering. The que;tions '
qf how the statisticél properties of the light fields are disturbed and
how the nonlinear optical effects depend on the statistical properties B
of light fields are also left unanswered. In fact, as one would expect,
statistical treatment of nonlinear effects should»be more 1mp§rtant
~ since they always manifest stronger fluctuations than linear effects.v’~
Thus, a complete description of a nonlineaf_optical effect requifes the
application of quantum statistics.l | -

In this review, we shall not concern ourselves too much aﬁout how
the statistical properties of the intense pumﬁ fields are changed in a
nonlinear optical process, We shall always assume that the depletion of
power in the pump fields is negligible. Consequently, the perturbance |
" in the statistical properties of the pump fields can aléo be neglected,
‘WéAare more interested in how the average rate of a nonlinear opfical N
process is effected by statistical fluctuations in the pump fields and .
in the ﬁaterial properties. Above all, it is interesting to find the
vstatistical properties of the fields generated or amplified in the
nonlinear process as a function of the statistical properties of the pump

‘fields and of the medium. Conversely, measurements on the nonlinearly
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.generated flelds should yleld information about the statistical propérties
of the pux;lp field and/or of the medium, |

In the following sections, four important problems of nonlinear
optics will be discussed, namely, multiphoton emission and absorption,
.incoherent scattering, sum and difference frequency generation, and.
parametric amplificatlon and oscillation. aEach field component ié assumed
to be a single mode. Extension of the calculations to mulfimode problems
is straightforward, and will be discussed briefly in Seec. VI. We shall
assume for all cases except incoherent scattering that the light fields
are contained in & cavity, However, as one would expect from the
corregponding clasgical description, a cavity problem of coherent scattering
can bé converted to a steady-state travelling wave problem by simply
replacing t by -zel/e/n where 2 is the difection of propagation. That
this is also true for our quantum description will be illustrated in the

final section,

II. Multiphoton Absorption and Emission; Raman Transitions

Let us begin by agsuming as the unperturbed system the flelds in a
caﬁity filled with linear, isotropic, non-absorbing medium with a linear
dielectric constant ek(g) at frequency W . From the Dirac quantization

process,2 we can write the vector potential In the usual form

0

Mz) = o3 (2tifas )2 (a0 (2)exp(imyt) + af wi(x) exp(-1wy t)) (1)

where akf and a, are the creation and the annihilation operators for the



v

© states Hll > and HJE > with a :t‘requency separat_ion w,
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kthlnode. The spatial function En(i)'is on eigenfunction of the ‘\5f
equation

]
: 1.
- , . : \

'[ v2 * wkzek(f:)/czl A\}k(i) =0’

-

L

and obeys the orthonormality condition ' . , }- B
' l : , ;‘ !
' f(ekeo) g (x) « (r)d =8 + - | (9‘3

The Hamiltonlen for this unperturbed system is simply

o % T l L , . ‘
“o i’ Limk(ak & ) +3 mauter ‘ (h)_

. The Hamiltenian describing abéorption or cnission of photons in the medium

is then taken as a perturbation. .
~ Consider first the case of single-photon transitlons between two

o1 = wk. @13
can be described by a perturbing Hamiltonlan

}iaz‘a{&czic (r)+Lc ol (+)(

12 k 21 %1 B (5)
where Cy47 'c21, cii, an;l c;i are creation and annihilation operators
for electronic stetes 1 and 2 respectively at the 1B atom, & is
the electric-dip’ole -matrix element between the two states, and
P
B ) - 5 )(r ' = 1oty )2 wl el (6

T T RTREATI T
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Ve are interested in the change of statistical properties of the. fields,

which 'is most easily .described by the density matrix formalism. In ' ‘

-
[
i

the interaction representation, fthe density matrix p obeys the equation

. of motion

111 3p /0t - [ﬁ; p] | | (7)

. . . . X . . . .’ ;‘ .
where o ' '

31; = exp(ﬁot/ii)uﬂl exp(-:iﬂot/ﬁ)

- )3;' (& cgi cli ( )(r ) exp[i(w 2l)t]'+ Ad,jo:?nt). - (8) |

By using & procedure often used i} the relaxatlion calculation for magnetic ‘ \’," i
resonance ,3 Eq. (7). ’can be reduced to glve an equation of motion for | : i g
the denslty matrix Py of the fields alone. TFirst, the equation ib Pk

3 .
expanded through iteration to yield : o : i

op(t .+ Aﬁ)/at = (1/11’:)[&?;(1; + A‘E), p(t)]

. 2 t+AL W% § * ' l ' .;. |
~(1A) (e ae), [ (67),0(8) e+ (9)
‘ t - -

Then, on irreversdible approximation on the density matrix is used by

- ascuming that the &ivancl equilibrium of the matter system is hardly:

disturbed by interaction with the photon fields, so that we can write b

Cp(t) = pF(t) H bAi(O), where pAi(O) is the density matrix for the
th
17" atcm at thermal equilibrium with diagonal matrix elements piA a




%
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-

o o
Pop indicating the thermal populations in the two states l""'f' and [y, >

The off-diagonal elements of pA(O) -alveys vanish. Zguatien (9) cen
now beAreduced4by talking trage over the matier syste=. With the help

of Bq. (8), straightforward calculation will lead to

7 . = - T . + % o
5pF(t)/at 3[(&1: aka - Eak pF ak + pF ak ak)ﬁla

’ + o aat t o' S
B L e e R N AT R €

p=1 aewklﬁlelgk(gi) lag(g:k)/n |
= ferfu 1612 g(u) /i 1 f, & ly ()12 w(x)

' ot '
g(wk) = (1/27) fA exp[-i(wk - wzl_)t]dt
-t
where N(ﬁ) is the atomic denmsity at r. If At < ﬁ/tﬂll, higher-order
terms in Eq. (9) or (10) can be neglected., If, in addition,
ot >> (1/linewidth), then the limits of integretion in g(w ) can be

approximated by «» to +» ., and hence g(wk) beccmes a d=function,

14

or more generally'a lineshape function centered at w_. . . These restric-

21

tions on At are in fact exactly the same as those required for ordinary
time~dependent perturbation calculation.

Equation (10) governs -the change of statistical properties of the

photon system in the single-photon absorption (pzA > pZA) or emission

(pgA < pZA) proéess. This 1s actually the same equation derived by

a4

o e R A e

e e g
g AR A TR T T T T ST AT (A
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" by spontaneous emission in the ebsorbing medium,
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Scully and L.amb5 Tor a'laser amplifier or oscillator except that the
higher~-order nonlinear terms have been neglected. The derivation can

of course be extended to include the nonlinear terms without much diffi-

culty. The solution of Eq. (10) can be obtained analytically for indivi- =

dual density matrix elements in the number representation, if either

.pzA or pgA vanishes. In the absorption process, it is easy to show

that at zero temperature (pgA = 0), the statistical properties of a
photon system, which can be described by the P~representation,6 re@ain

: |
basically unchange_d..l At finilte temperature, however, they are disturbed

i
A similar calculation cen be applied to the case of two-photﬁh
absorption or emission. Here, the perturblng Haniltonian for tranc viong

between the states ]wl > and ]we > is . _ “'3

ll Z (Q(a) T e )(r )E&( )(r ) + Adjoint] . Ei‘a (31}

21%14 k

[OR

where 5(2) is the matrix element'for_the ﬁwo-phoﬁon transitions. . Using

exactly the same procedure a8 in the single-photon transition case, onc

would obtain

BpF/at -ﬁ(a) [(a qa & &p pp = 28, 8 pg ak q% * Pp ak q& e 2 )plA

+(ak ap 8y aﬁ o Pp~ 2ake£ Pp- 28, q& Ppdy8p * Pp By Bp ah a*)qu

\LET

V- T AP Ty
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with

6@ = w163 Patu o) Ly & 1) b () Pl .

The above equation of motion governs the change of statistical proPérfies

In perticular,
i

,frcm Eq. (12), we find for k # 4, 7 : '

of the photon fields in two-photon absorption or emission.

a<a;ak>/at;=a<a£a{>/at | SR _ S

o Ny
DG 50 < o o -y <l b

ey
'y

. (13)
end for k=4 .

1.

2 <aay >t = m(a)[(pm pE’A) < maady > - ag(2< e >+ DI ()

~ Equations (13) and (lh) show that the raté of photon absorption or emission

depends on the second-order correlation function of the fields, and

hence on the initial statistical properties of the fields. For k = {4

:i ‘
even the initial two-photon transition rate is higher for chaotic

than for coherent fields, since6. o g

t t Y-
<aaaa >Ehaot1c = 2(< a'a >) | Y

+ + . + 2 o : o

, B8 882 herent = (<a'a>) ) ' A (15) §

Physically, a chaotic field has more fluctuations. Nonlinear response Wi

always emplifies the fluctuations, and yields a higher average value.
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. Lambropoulous ot al. have also discussed thé‘case of two~-photon absorition ‘%

and emission with Ik = 4. Although in a different form, they find the |
. |: L N
- same equation as our Lq. (12). Their derivation is however much more

1
[

- complicated and less transparent. ' B

Analytical solution of pp(t) for Eq. (12) can be obtained for. \

plA =0 or p2A 0 :Ln the number reprer:‘.erﬁ:.frt::Lon.8 Consider {wo-photon

emission with plA = 0. Iquation (12) gives _ _ P

apnkn’&;nl'{ nzf: /bt = C#pnkn‘&;n]l{ndd + Dn p(n':l)k(n-'l);&; (n' -l)k(n'..l)'{)/

= 533, [+ 1) (g 2+ (o + Do+ 1)
Dn = 2{3(2)¢3§A.[nkn&n;c n{l']a . | ‘ _ » (16){':"

From the above equation, we obtailn the Laplace transfom of p

| i nkn/t,n n[,’ ‘
oy’ () 7 Payyng ny! O GCENC SO NCE A I
u 1.1 4 S

5 Plam1) (n-:a)%,(n»i) (a' -1)&(°’H /qu[o<s,-cn_q>

an
vhere M denotes the smallest integer among the set {nk, np, ni, n’i,/] :"
" The inverse transfomm yields |
.(t) . [ D, . (c,..=cC _)] .
Ponaginy np' 1=0 r=0 =o n-r ;“n-q E
a=0 f
q¥r ;
(0) grn(c .
X P(n ~1)y:(n' 1), (o'~ exp(C__ %) (163
(n-1), (a=1)p; (0" 1) (n'-1)y n-r
~

ST e e e et e e e

e

T T R T T TR,
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‘which fully describes the statistical propertiés of a two-photon amplifier
or oscillator. Because of limited spébe,.we shall not go into detailed
‘analysis of Eq. (18) here except a fev remarks. 1) If initially,

. . 1 ' .
p has only diagonal elements '(nk = nk-ﬂ np = np ),-then it remains so
at any time +t. In fact, the off-diagonal elements of p, even 1if they
exist, would vanish eventually through diffusion processes as in the case

' 5, 6
of a laser oscillator. 2) If initially, op ) (0) = Py ( ’p (
L VI TR IR

has a distribution peaked at n = n, and np =1y , then as time
’ 0

progresses, the peak will move td larger values of n, and np , as.one

would expect from a two~photon amplifier or oscillator. Statistical:
properties of the fields also change with time. 3) Since higher—ordér

terms have beén neglected in the calculation, the solution does not‘égow
saturation of amplification or stabilization of oscillation. ' i%
| The two=-photon oecillator is of great practical importance, sinc?
there is potential possibility of its becoming a tunable oscillator.‘xIt

is interesting to note thet if'initially Ek 1s a strong coherent flg;d,
such that E_ (x) 4y Eq. (11) can be treated as constant c numbers,f,f
then the Hemiltonian 3{1 reduces to the form for single~photon tran81twons,
‘an& the E& field cfeated in the‘two-photon emission process has the -

seme statistical properties as those of the field created in a laser

oscillator. This 1s of course a practically realizable case. !

’abgbrption‘
/

The calculation can be extended to the case of n-photon
or emission. The perturbing Hemiltonian thén becomes /

N

Y T TRy YT
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e
M, Z[e(n g o1 I

e

The corresponding equation of motion for Pp is

| . | ) .
R A
g =+ (Lt Koo fL oy [l ol 2L ot
y = t Bt n o2 T+ o
: ’ (kl—:-[i "X 1{!1 "k PF T ¢ kl}l "x fF kl;llaf kal;Il Py kgl ali)p% ] .
N (20)

- (n) _ (2 2 2 -.(.n)é v  3. B e
o) = (en/f) (1 2m 161 a( 2wy @antp) 1] Ly )]

-

The calculation requires only slight modification if in an n-pho‘con'transi- .

tlon process, photons yrith k=1, ***, m are absorbed, but photons with

k=m+ 1, *°**, n are emitted. The perturbing Hemiltonian becomes

Ibt )3 [g(n) Cpoy nkn g~ )( 1) ]— ;1(:)(331) + AdJjoint) | (21)

- and the equation of motion for Pp must be modified accordingly. A case
" of practical interest is the Réman transitions, in which one photon at
w’& is absorbed and another photon at wB emitted as the atomic energy

system makes transition from ]\!ll> to 1‘,!2 >« The equation of motion

for pf, in this case is"

%/t = -p (2){(8"1{’;&8&%&: Pp ~ Qa&a: Pp a.};as * pFa,Easa/&a:) piA

tot ot to ot 4 '
+ (3 oy aPp = 28 agp oga + ety o 8 dop] (22)

gl({")(zi) + Adjoint)}. - (19)




{
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' from which we obtain the.rate of St;kes' generation’ ;
d3<ala '>./Bt = =3 <;£ a&ﬁ / ot 1‘
o 5 B _ L \
| = 26(2) [(pgj\- pgA) < a}; a.'t a: a > ‘f !
+< a;’ ap> p?A - < az a > pgAj ‘ (23)

as was given by Hellwarth.9 Usually, Ep 1s a strong field, such thet .
' ap and a,?j in Eq. (22) can be treated as constant c¢ numbers bﬁ‘c subject

to statistics. The solution of Eq. (23) then becomes

Voo
Voo

. . . l. .
t +
<a 8> (t) = Txp %(o)([ <ara > (0) + A/B] exp(Bt) - A/B) i (2k)
vhere , ' ‘ ‘ i
A e 26(2)a LEP v,
) . ’ov ’& plA v '\:' ",'

B= 26(.2)[ a’é/-r a’&(pgA. e D:T_A) - DSAI d 25(2) &/&1‘ &'&(piA.. pgj;)'{gj. i

"It 18 clear from Iq. (24) that a chaotic pump field would yield a more,.‘

intense Stokes field than a coherent pump field, B:ane6
L

Trgpg (0) exnl 25(2)agtay (02, 03,01 = E 1283 (62, = 021" <(ajag) >/
n=0
<(a'€é'{’,,)n>chaotic =nl < a/tfa& >
< (a Ty ) =<aya, S8 ' (25)
4 "L’ “coherent {8
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.- In many cases, one may also find pgA = Q. 'I‘hexi, analyticai solution
for pF(t) can be obtained from Eq. _(22) using the same prb_cedure .as_
in the two-photon emission case. With ap and. o.% treated as constant
¢ numbers with a statistical distribution, the denoity matrix elements

Tor the growing Stokes field at time + axrxe given by ‘

[
H

L 1 | |
ns n' (t) = iz.o r}}o i n-q/qgo (cn-r - cn_q)] | | .
afx |
* "('n-i)s,(n'-n;(") e"P_("n-f:‘“) R (26)
. with . - v -

o lagroyr2wBlelaeg

| b2 aa(2) o 0
D, = (ml3 n © 2 a,&r 8p Pry

If in addition, the pump field Ep is also coherent, 'bh.en ap and a&f
can be replaced by constants (=73 and a,{;: 'e. Equation t22) for the
Stokes field now beccmes the same as for a laser &mjalﬁ.?fd‘ei{axcépt that
p?A and pgA are interchanged. Therefore, the statistical properties
“of the Stokes field generated in stimulated Raman transitions would also

| be the same as those .of a laser amplifier.. S8aturation of Stokes amplifi-

cation or oscillation has not been teken into accowt in the above dis-

cussion.
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III, Incoherent Scattering - : ‘-';

'Linear, incoherent Rayleigh and Brillouin scattering belongs to uhe

class of nonlinear optics in the sense that an excitational wave in thle 1_‘

medium now pleys the role of a light wave. The quantum description of

“incoherent scattering has close resemblance to the classical description.lQ

"let us consider only scattering by density fluctuations. The

perturbing Hamiltonian in this case is
D P &
Hy= - L 0BT () » p o By U (xy) + Adjoint]
i,k ~ ) . 0

where p is the polarizabllity, ko the pump mode, 'and, k the scattered

modes, If wve take into account the propagation effect by a.ssuming running

modes for the fields with

l
gk(,l:,) = e (l/L3 exp(ik"r), .
then Eq. (26) becomes
'?ﬁil = Z [ za.1 (t) ay (t) f "4 Adgoin'b] | _ ('28)4

vwhere in the Heisenberpg representation,

- 11 |
= - 2 3 & - * . e - ] g
_ :C'k 2 (2n'iiw X /ekL ) & " P 'eko exp[i(},s ,.150) ri],

The corresponding equation of motion is

(27) -

ey
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v

dak(t)/dt = ima (t) - (i/h)fk*ak (t) « (29)

Usually, the pump field is of relatifely high intensity, and i=s
hardly disturbed by incoherent scattering. We can therefore tresat 8k,
and aio as ¢ numbers; but subJect to statistical distfibution. The problem
then becomes essentially classical, In fact, it reduces to the one
discussed by Glauber on radiation by a prescribed current diétribution.6
The solution of Eq. (29) would lead to the classical expression for
scattered radiétion. In our notations, at a point r sufficlently far

away from the scattering region, the scattered field is glven by’l

E£;3<E’t) B ako”E<£’t) exp(ik *R)f, @’r' N(zjt)exp [1(k -k)'x']  (30)
ke A 5.1/2 |
F(z,t) = (k x ip ko)x (E/lz-ﬁl)(Qﬂﬁmb/eko )" exp(ixer-in_t)

where R 1s the centér of the scattering volume V. From Eq. (30), we

obtaln the first-order correlation function

(+) (-) oo t . ,
Te (T1%9) B (rpty > = E(zy )'E () < akoako>~ exp [ike (r,~r;)-do (£, ~%5)]

x [, @0rar! Wz, by (x5 b, >expl 1k, k) (z-z')].

(31)

Note that the Fourier transform of < gg:)(z,tl) gg;)(z,tz) > gives the
power sﬁectral density of the scattered radiation, and the Fourier trans-

form of < Egz)(rl,t) Ei;)(re,t)> gives the power density distribution
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of the scattered radintioz; in f;he wave=vector space. From Eq. (31),

it is clear that the average scattering in‘.:ensity' is proportional

.to the average number of photons in the pump mode, and is independent
of the coherent property of the pump field. Highereorder correlation
ftmétions of E_, can be cbtained from Eq,._ﬂ (30), ond hence

the statistical properties of the scattered radiation are described
completely. It is seen that the nth order correlation functions of
E,, 18 related to'the n order correlation functions of 2

and N(s,t). Therefore, 1f the statistical properties of the pump
field are known, ‘hen measurements of correlation functions of E sc
(for exemple, from photon counting measurementsé) would yleld infore
mation about the statistical properties of the density variation, _
Thus, for example, if the thermal density fluctuations are elastic with
e GCeussian distribution, the 1*® order correlation functions of N(z,t)

can be written a56
(n) _ (1) .
S e Torten) - % JE:.GN (€50555 Zp(nes)?Ppinrs)’

vhere the sum . 1s taken over the n! possible ways of permuting the
b

- set of coordinates x %

l’ n”'l;..‘ 'x;an,tal ®
is in a coberent state, so that ak can be replaced by the paremeter
)

@, , then it is readily shon thet the o

0 ,
of E, can also be written as
~8C

If the pump field

order correla’cioﬁ fﬁnction

G’gn) (rl,t eee r on? t ) = H (1)(3.’

P jo1 Eee J’tJ’ Tp(n+)) p(n+.5)

-




=150~ UCRL-1804k

which indicates that the scattered radiation is also chaofic with a
Gaussien distribution. Cr&signani, Di Porto, et a.l.11 have discussed
the possibility of investigating statistical fluctuations in liquids
and in plasmes from the photon statistlics of the scattered light.

 The integral in Eq. (31) 18 sometimes decomposed in two parts.12

I, adradrt < N(z,t,)N(x',) > expli(k - k) (z - £'))

= [, B < Bl N(Eb,)> + [ 8307 <(zb, IN(E ) >emmld (e, Jo(re )]

rfr! . | e
(32)

The second part in the above equation shows expliclt dependence
on correlation of density fluctuations at two space-time points,
Higher order correlation functions can be expressed in s similar way. ;

The deneity fluctuations arve ususlly Fourier decomposed into

N(r,t) = L N (r,t)exp(iger = 1w t),

(£,t) - JEotlexp(iger ot (33)
Then, it is clear from Eq. (30) that the scattered radiation with wave
vector
8-k

form of acoustlic phonons. Accordingly, Nq and qu become operators

comes essentially from the Fourier components Nq(g,t) with

Uz W

« In crystals, density fluctuations can be gquantized in the

proportional to the annihilatlon and the creation operators of phonons

respectively,
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For Incoherent scattering, explicit expression of the density
matrix for the scattered radiation can also be obtained, following
"Glauber",s calculation for the radiation by a prescribed current distribu-~

tion.6 We find

Py ()

D(eg )0 > < 0 p™ () )

n

D(c, )

explo, (a, SN, t) a; - Adjoint]
o :
"or 1n the coherent-state representation,
P (t) = g > <]

k

| t 1/2 1/2 3\A upyef '
where ozk(ako,lv,t) = (-i/h)(j; dt(ETTﬁmko N /ekoL.)ek 2 ¢k° a .

[y @z Nx,t) exp [4(kk ) « x]
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with the statistical distribution of 8, and N(x, t) taken into-

account., - ' -

Eqe (33) would yield the same expressions for the correlation

functions.of E_ . -as obtained from Eq. (30). Thus,
< Egcﬁ(r 2ty Yeeor E(+)(r o b ): ( )(rn+1: tn+1) e E(c? (= >
"is proportional to
2n | 2n '  2n
< (ak 2 (o "> ! (Ha3 )<HN(r 58, )> expli (i k) T ri-zr )
. 1=n+l i=1

- ' Clearly, the staﬁiétical propexrties of ﬁhe scattered radlation are deter- .
nmined by thoée of incident radiation and density wvariations.

.The calculation can be extended tg the case of incoherent nonlinear
scattering, recently reported by Terhune, et zaxl.l3 Here, two photons -
in the pump mddes }50 and }/{(‘) are scattered by density variations into

. & single photon in the scattered mode k. The perturﬁing Hamiltonian 1s
~J/ .

Y - - Z [ Ek+)(r . 2(2)’ 5:5:;) (z,) }3‘1(%)(51) + Adjotnt]. )
we'find the samelequations as Eqs, (30) -v(3h), except that

» 3,2 Ly )
1(2nﬁwko/ek L’) ak exp(%yo 5) is now replaced by

° 1
' AN
-(2-mi/L3 ) (w wk:/el e ak 8t exp{i(}\g&}\%) or] , gk by e
oo (o

and P by P( )a‘ Thus, the statistical properties of the nonliﬂéd}ly

v
~v

Q
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' L

scattered radiation are' fully deécribed,_and again, they depend on those

§

. of incident radiation and density variations in the medium. In partiéular, E

. . ' - . . . - . . ] :]
the intensity of the scattered radiation < Egg)(r,t) Egc)(r,t) > is I
' Pt s a3ead . . T &

d ! T S - -l o = ¥

proportional to < a a 'a 8 '> fv rdr <N(£,t)1\(£,t)>exp{1(£5o '30) ('.:, r )]._,‘

. o "0 "o "o : v,

Then, if k_ = k;, even the scattering intensity depends on the statistics .
of the pump modes, and is two times higher for chaotic than for coherent

fields.

}
i
i
!

IV. Sum-Frequency Generation o . ;?
. . . . ‘ ‘:;"’
The sum-frequency gereration is closely related to incoherent nonlinear%

-~

scattering discussed in the previous section. In fact, thevsame Hamiltonian

H
1

0

i
r
t

i

<

v

b

3

‘applies to both cases. The difference is that here the density N(s,t)
is constant .throughout the medium. Therefore, the scattered radiation :

is non-vanishing only in the phase matched direction given by ,% =1§o +,50 .

and is called the coherent scattering.. The calculation is however
- essentially the smae as the incoherent scattéring case., Again, if the _
pump fields are very intense and hardly disturbed by the sum-frequency 0

generation, then a) and a,, can be treated as constant ¢ numbers
: "o o ‘ ‘

but subject to statistics, and the problem reduces to that of radiation

by a prescribed current distribution.6

Thus, in the Heisenberg representation, the equation of motion for

a 1slu

k
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: |

) . “ !:A?

day /ot = -dwa (8) - (1/0)f, 3 (t)a, () - (36) ¢ -

o o .

Sl

13w w! 92aA  (2). A ~ f

£, = =NV il W . . ~ R

" (8 wowiw, /e, S e L”)" e, Y %

from which we obtain ' %
ak(t),= (2, (0) - (i/h) fkakoakét] exp(-1(w+ w ')e). (37) ;g

The density matrix fbr the sum-frequency field is é
' | . B | i
D(ak) = expl ak(al,a 1,t) a - Ad301nt] B _ f& _ _ +

°7o L o

B “b it

. o s &

ak(ak )a‘k' )t) = (l/ﬁ) f d-t fl ak a.k' ' . . f; ‘ ‘»T\‘
o o o . , St G

I i

< (8, )™(@)™ = < (o, Y™ )"> : o

Ay 7 A8y % /% T e - e

o o . zﬁ :

From either Eq. (37) or (38), correlation fun ctions of ak can be’ obtalned
B £
in terms of correlation functions of ak and ak -« Therefore, the

o .
statistical properties of the sum—freqpency field depend on the statlstlcal
properties of the punp filelds, It is easily seen that for coherent
pump . fields, if pk(O) = |0 >< 0], the n®Porder correlation function of.

the sum-frequency field is proportionai to the 2nth~order correlation;

function of the pump fields. Therefore, measurements of the statistics:

\

e ST MO
i T :

e e e e o e 0 e e
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. of the sum-frequency or more conveniently, thé second-harmonic output
would yield direct information abéut_the statistiés of the pump fields.
Beran, et al. Z have proposed a‘practical means using the combined expexi-

-mental arrangement'of secondﬁhaxmonic generation in nonlinear e¢rystals
and Young's'double slit interference to measure the second-order correlatio

' functions of Lhe pump fields.

The sum~-frequency output has the average photon number given by

<a11;a>(t)=<a

h‘_l.

ak.> (0) + (i/1) [f;: <a.;; -é]’;mk>(o)_ - £,< a; a a, 1> (0)]
. ) o ~o o

+ (2]t 121:2/112) <al a*va a 1> (0) , (39)
: ko MR N N

‘which shows explicitly that for < ak(0)> = 0, the average sum-frequency
output, or the rate of sum-frequency generation a<al 2 >(t) /as, is

k
“proportional to ‘< al a;:ak ak:> (0). Therefore, in the second-harmonic

00 00
generation where ko =k o? the  second~harmonic output depends on the
initial statistical properties of the pump field, and is two times larger‘

for a cheotic than for a coherent pump field.

In the above,discussion,‘reaction of the sum-frequency generatidn

on the pump fields have been neglected. UWhen this is taken into account,

the sum~frequency generation would depend on higher-order correlation
function of the initial pump fields, and the calculation becomes more

involved. Duéuing and Armstrongl6 have discussed the statistics of

~ second-harmonic generation with apprecilable depletion of pump power in'

the classical limit.

(4

1,

i

|
<
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V. Parametric Amplificaéion and Oscillation’

Parametric conversion has recently received nuch attention. It
is important because it leads to the realization of tunable optical

oscillator.l7 More generally, it also describes stimnlated Raman ahd
Brillouin processes in vwhich elementary boson excitations in the me@ium :

: {
play the role of one of the photon modes.lav Physically, paramétric

conversion is simply the inverse process of sum-frequency genératiqhﬁ
_ - s

)

Here however, the sum-frequency field is the pump mode and the others are
the generated signal and idler modes. ' | S i
. ‘i.,

The same perturbing Hamiltonian in Iq. (35) also describes thé'i

v

[
parametric process. In notations familiar for parametric amplificat@bn,

it reads

M- -Ll 318)(39" \%(e)_: 2 8( () + aagotns] )

-

vhere the subscripts p, s, and I denote pump, signal, and idler modes

respectively. The Heilsenberg equations of motion for a, and a_' ave

I
A
- N ‘ ' L ¥§:
das/dt = -wa (t) - 1nab(t) aI(t),. o i
t e ot ¥+, . + ' : o
daI/dt = 1wIaI(t) + ik ap(t;as(b)
: N L
- . 3..3 92 a  _(2) A A N
k = -NV(8rii wpwswl/epeseIL ) ep g; e er . ,(?IZE

Again, we assume a pump field of high intensity unperturbed by the paiameﬁ:i?i

e
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-

process, so that 'hk and aT ‘can be treated as constant ¢ nunbers

k
but subject to statistical wvariation. The solution of Eq. (41) can be
easily foundflg
iy
: t 2 .y , o 3
as(t) = {as(O) cosh[lh-l(ap ap) t] ;
| | ) 1
e P\2 o t 42 R
+ [1~ap/]*€|(ap ap) ] aI(O) sinh;lﬂl(&p aP) £]) exp( i‘”st)i'
1 o v
a.(t) = { a (0) coshf]n](a T )2 ¢] ’ : n
I ol PP : ,1

V.
-
R

!

1 1

\
\

+ [inap/[u[(ap?ap)g] a;(o) sinh[]ul(apfap)§ t] exp(-iglt).ﬁ (42)

s
- ‘l,

From the above expressions, correlation functions of all orders of fékf
PRI L S

and aI can be obtained. Note that we have the invariant condition

d(asfas)/dt = d(aITaI)/at.‘ The same is true in sum-frequency generation.

The statistical propertiés of the generated signal and idler modes

are thus fully described and shown to be dependent on the initial statistical.

properties of the pump field. In particular, for < aSaI > (O) =0, .wve

B B t
find the average number of photons in the signal out,

<«
B
i

1 8> (0) - 1]

ot 1t
<a a > (t) = 5[< a  a> (0) -<a

|
1

. 1
1 T U T2,
* 5 (<asas>(o)+ <a.IaI> (O)+1)< cosh[2|nl(apap) t ] >

1

where < cos h(2lm](a; ap)2t] > is apparently much larger for a chaotic

___,. - e e e et e
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-

than for a coherent pump field. Statistical properties of a parametric
amplifier or bscillatpr have been discussed by Gordon et al.l9 They
have, however, neglected the sta%istics of the pump mode. Their results
thereforé apply only to a coherent pump field;

. For the present cése, the density matrix for the generated fields

. . .20
is most conveniently obtained through the use of characteristic function:E%2J~

Let us consider the density matrices for the signal and for the idler

fields separately, ps(t) = TrIps,I(t) ‘and pI(t) = Tr p (t). The

s,I
corresponding characteristic functions are defined asgo

Ko(rot) = T, L (o, 1(6) explya,T(0)] expl-y a (0)])
| (b
’ *
Xp(7,6) = Tr, 10p, (8) exp Lyay' (0)expl-7 ar(0)])
thch can be rearranged to give i
Xg(7,%) = Trg 1 (p (0) py(0) exp[7as?(t)37exp[-7*as(t)]]
(b5)

X (7,8) = Try 1 (0g(0) py(0) explya,’(8)] expl-yay())).

Explicit expressions of the characteristic functions can now be obtained
by substituting the expressions of as(t) and. aI(t) of Eq. (42) and
the initial distribution pS(O) and pI(O) into Bg. (45). The density
matrices ps(t) and pI(t) are uniquely determined by the characteristic

functions Xs(r,t) and XI(y,t).el If the Fourier transforms of ¥ _(7,1)

o ez s

I T
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.
-

' \' ’ . ’ .. {
and” XI(y,t) exist, then ps(t)’ and pI(t) can assume a P-representaclon?)

’ t)l O‘S> <C‘s|.

. ' . ) . i 2
, ' ps(t) = fa O‘GPS(O‘S:_ a

P
| (16)
Y .‘ 2 T 2 . ' D 3
Pelay 8y, %) = (1/n7) [ @ X(7, a,, t) explagy - a5 7)
with a similar expression for pI(ﬂ). If the pump field also has a P-
representation, p_(t) = [ a%ap (e )lo ><a |, we would find
P Fptl pppp P o
P (a,t) = (1) | a%a P (a) X (7, o, ) explay’ - o). (b)
s S’ . p 7 p p J p) s - 5 4 ‘

~

19

first used this method to Find the density matrices for

22

Gordon et al.
the siznal output from a parametric oscillator. Mollow and Glarber
ﬁave given explidit expressions of the density matrices correspondind e)
~vavious input distribution ps(o) and pléo). They have also showm that

a P-reyresentation necessarily exists for the signal output after a critical
tine is reached, and that a non-negative P=-function, whicb reserbles a
classic&} dictribution, shows up at scmevhat later times. The statistics

of the ﬁump‘field, however, have pot been included in their treatment.

‘The joint density matrix ps,I(t) can also be defined uniquely by a joint
characteristic function XS;I(n,gb t), or a corresponding Wigney aistribution

2
function as discussed by Mollow and Glauber in great details. 2

Dv reglecting the depletion of pump power, we have not takea into
accounlt ratuvration of parametric awplification here. The geuneral. calculasion

conzidaving the reaction of parametric conversion oa the pump. ficld would

be oxtremely difficuli.

e -

é‘.;
i
e
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'

'VI. Multimode Problems : i

“In all previous sections, we asSumed that eachAfiéld component;g

w

‘specified by, say, k and. W o qonsists of a single mode, as indiéét%d
explicitly in Eq. (6). The calculations can however be extended to %hé
multimode case, even though it becomes Somewhat more complex. Let us |
assume that there is a set of spatial modes for each fleld component - of

frequency wk. e have

1

f The calculations in previous sections should then be modified accordingly.

Thus, for eyample, in the case of two-photon ebsorption or emls°1on

‘with k =4, we find

><z akkax{/at - trky Pas) o o)< 3 QPO H QNSRS
" pgA(E < El({+)El({~)> (x,t) +.2)] -  "

y = U603 P s )/ (49)

In the case of parametric oscillation, we have approximately

< ES)Eg-) > (2,t) = < Eg+)Eg')> (r,0) < coéha[]x' l(El(:)Eé"))l/zt} >

* < E§-)E§+)> (r,0) < sinhz['lm'l(EI()"‘)El()-))l/Qt] 5

'= (_%iwp/eprﬁ)“l/ % (50)

1 \: 't,
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apsumlng < E( ) “(+) > (0) = 0. In all cases, the magnitudes of

correlation functions depend on both the mode structure and the Staulatho

“of the fields. Tor stationary fields with large number of modes, we have

. . 2
<ENPE > < En I ENT

= n! < E< Eﬁ . ' (51),

where

w( CI{)-'-_- exp [~ ] fkle/ < E](:)El(;) > /7rl< El({+)El({-)> .

" Equation (Sl) actually holds for arbitrary chaotic flelds 1ndependenu of

the number of modes, as followed directly from Eq. (25) This is expectcd

since physically a stationary field composed of many uncorrelated modes
is equivalent to a chaotic field. Thus, for chaotlc fleldg, the rate of

a nonlinear optical process is unchanged in going from the single-mode

to the multimode limit. For coherent fields, however, the rate increases .

as a result of its dependence on higher-order correlation functions

and Eq. (51). TFor coherent fields with many correlated modes, the rate

incfease could be much higher. The latter case may actually happen in

nonlinear optical experiments using laser beams, and is possibly the "

cause of the observed anomalous gain in stinulated Raman

scattering in non-~self-focusing materials.

o




_VIi. Traveling Vave Problems

In many experiments, we are interested in the change of statistical

v

properties of the beam as it propagates through a nonlinear'medium; Forﬂ

steady-state propagation, the statistical properties of the beam shouId f .

be functions of position only, independent of time. Therefore, a proper
1
description of such problems requires existance of a local:stetistical

\
average which changes with position. This can be achieved by using

localized operators and a localized density matrix. ‘
. A . i A I
Let 2z be the direction of propagation. Since the field amplitudes

depend only on 2z, the vector poteﬁtial for a plane wave can be written

]
'

. ; 4
as : A

Az,t) = o T (/24,6050 (y(2)exp(-1) + w(dexp(1ge))

Y (2) = b (2) exp(iza) (52)
o, (2), b, (2)] = 8,

Here, the localized annihilation and creation operators b and b are

defined under the assumption that < (bf)m(bk)n > does not vary
appreciably in a distance d large ccmpared with the wavelength,23 and 1

that X = 2m/d, vhere n is an integer for free fields, bk is inde~

pendent of 2. Then, the field in a volume of length d, centered at z,

. "’9
can be quantized with a corresponding localized photon number operator.‘d“r

UCﬁ@-lBOhh
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Rz) = ¢ /13) Toi(a) v (=) T (s3)
: k : :

vhere A ‘18 ‘the cross-sectional arvea of the beam. We now define the
localized Hamiltonian and momentum operators as
A 4 ‘z°+d/2 i
Wz) = (B3/a) f H(z) az : G
: z =d/2 - C
: o
o
Pz y - 53z ) oe2
~(zo) 2z w(zo)/ce T
wvhere H(z) is the Hamiltonianqaensity at 2z. Note that 3i(zo) has the
same form as that of a cavity except that a and aT are replaced by , ) E

b(zo) and b?(zo). ' The momentum operator plays the role of a translation

' : ok
operator. ' v ‘

e @)/ = i A, BB @ (55!

Accordingly, the unitary translation operator is

<

. ' R ’ 4 , - ' i
U(z,z ) = expl(ifu) [ Hz)a2l, C(56)
) zo
vhere the space-ordered product { )+ has a similar definition as fhe
tlne~ordered product. Fields at different spatial points are then{conncctﬂ’
i

by the unitary transformation v .

Kl

e et g wen
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BB () = e,z B (2 )0z, ). | RN

- Thus, fleld at arbltrary point can be found in terms of the field at
the boundary. In fact, the operator equations (53) ylelds the seme
field amplitude equation as in the classical description. For example,

in sum frequency generation, Eq. (55) gives
1

dx‘k(')(z)/dz = :I.l:Ek(')(z) + [i?nwllcekg(z)]rf(z)/e\k- g(z)-gk/e\k,El({:)(z)Elg)(z’)

070

(58)
We also define a localized density matrix p(z) as é.escribing an ensemble
of photon systems which has the statistical properties; of fields at z.
The density matrices at different spatlal points are also connected by

the unitary transformation

o(2) = Uz,2o)o(z,) U Hz,zg)e (59)

The equation of motion for p(z) is

3(2)z = (/1) [p(2), Pz)] o (60)
Correlation functlions of fields are gilven by

< E(+) (zl’tl) .o .E(+) (zn’tn)E(-‘.) (zn-l-l’tn'*'l) oo OE(-) (Zan)tan) >

)o . ‘E(-)(Zan,t‘&l))

= Tr(p(o)E(+)(zl,tl)...E(*)(zn,tn)E(‘)(zml,tml

|

= Tr [p(z)E(+)(O,tl) ...E(*)(o,tn)E(')(o,t
for Z = aee =2

)BT (08,0)

on ' : (61)
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With the help of these localized operators, the caléulations now
become exactly the same as the calculations for cavity problems with t
replaced by zel/é/c'as one would expect from the classical wave descrip:“
tion. We can also imagine a thin slab as a cavity, in which the bhoton
flelds are quantized, propageting in a medium, The flelds in the slab
interact with the medium for a time t,'while the slab travels for a
distance z = ct/f;. The statistlcal properties of the fields in the
glab at Z canltherefore be obtained from the resulfs of caleculation
for a cavity in which the fields interact with the medium for a time
t o= zel/2/c‘ In the above discussion, we have deliberately avolded
the question of reflectlon and transmission at the boundaries of the
medium, To describe the:propagation problems fully, a quantum statis-
tical treatment of reflection and ﬁransmission would be important. A
more rigorous treatment of the travelling wave problems is to treat
each photon as a wave packet and construct creation and annihilation
opérators for wave packetsy The technique has been developed in quantum
theory of transport in solid state phy'sics,25 but the calculation in

practice becomes much more diffilcult,
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