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Abstract

The first part of this work is devoted to a review of the general
theory of level density calculations. In particular, some questions concerning
the angular momentum dependence of the level density and the significance of
the nuclear temperature are taken up. The actuél calculations are in two
parts. First, formulas are worked out for the level density with a periodie-
single-particle spectrum; this work is compared to that of Rosenzweig, partic-
ularly in the high-energy limit. Another formulation, more suitable at low
energies, is also developed. These are incorporated into a simple model,
based on the work of Myers and Swiatecki on nuclear masses, which includes in
the single-particle spectrum the main feature of the shell model, namely the -
presence of gaps at magic numbers of nucleons. Calculations are compared with
experimental neutron resonance spacings in the ﬁeighborhood of N = 50, 82 and
126; agreement is obtained within a factor of 2, on the average. The signifi-

cance of the model is discussed, and possible extensions are suggested.

* ' -
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1. Introduction

It has been more than thirty years since the first work on nuclear
level densities was done by Bethe l). Tt is interesting to note that a) although
much work has been done on the subject since then (see in particular the review
article by Ericson 2), the basic framework of the calculation has changed very
little, and b) many questions about level densities remain unresolved, not the
least of which ié the limit of applicability of Bethe's framework.

Bethe s.arted with the idea of replacing all the nucleon-nucleon inter-
actions by an average potential, which serves mainly to hold the nucleus
together. The nucleons occupy the single-particle states of this potential
as noninteracting particles (subject, of coursé, to the Pauli exclusion prin-
ciple); the total energy of a nuclear level is then just the sum of the energies
of the individual particles. This reduces the calculation of the nuclear level
density to a combinatorial problem; given a set of single-particle states and
a total energy, in how many ways can a given number of particles be distributed
among these states so that their energies add up to the given total?

By assuming that the nucleons are free particles in a spherical well
of radius R = rOAl/5 (A being the nucleon number), Bethe showed that the level

density p 1is essentially given by

2~Nal
p = Ce

where U is the excitation energy, a is a parameter proportional to A,

and C 1is a constant.
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This simple formula gave a good account of the gross features of
experimentally observed level densities, namely their rapid rise with both
energy and nucleon number. But as experimental data accumulated, particularly
on low-lying levels and neutron resonances, it became clear that actual level
densities behaved in a more Qomplicated way.' Especially large deviations from
the Bethe formula occur near closed shells; for instance, neutron resonance
spacings are U4 orders of magnitude larger for lead isotopes than for uranium
isotopes. The object of this paper is to see whether these deviations can be
accounted for without departing from the basic idea of Bethe.

In Bethe's formulation, the only way in which nuclear structure enters
the problem is through the spectrum of single-pérticle states of the average
potential. If the density of single-particle states is a slowly varying
function of energy, the level density will be given by a formula similar to
that of Bethe. On the other hand, consider the Mayer-Jensen 3) shell model,
which has had considerable success in explaining fhe properties of certain
low-1lying nuclear levels; the main feature of this model is the presence of
gaps in the single-particle spectrum at the closed shells. Myers and Swiatecki h)
have devised a simple scheme incorporating this feature in order to calculate the
effect of shell structure on nuclear masses. In the present work, a similar
scheme will be used in the evaluation of nuclear level densities.

The general outline of this paper is the following: in‘Sec. 2, the
general formalism of level density calculations is developed. Section 3 gives
a brief review of previous work. Section 4 deals with level densities for
periodic single-particle spectra; in particular, it relates their high-energy

13-15).

behavior with the results of Rosenzveig Section 5 presents a formulation
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suitable for low energies. The Myers-Swiatecki mass formula is discussed in
sec. 6; the following section gives an analogous scheme for level density

calculations. The variation of thé level density with energy is taken up in
sec. 8, and comparisons with neutron resonance are made in sec. 9. Finally,

sec. 10 is devoted to a summary of this work.

2. General Formalism of Level Density Calculations

2.1. DEPENDENCE ON ENERGY

The mathematical formulation of the level density problem has been
given before, in similar ways, by Bethe l), Van‘Lier and Uhlenbeck 5), Lang
and LeCouteur 6), and Ericson 2), among others. We shall just outline it
here.

Consider a system of N neutrons and Z protons, with total energy
E. The nucleons occupy the single-particle states of an average potential;
the total energy is the sum of the nucleon energies. The single-particle
states have energies’ens, eps and occupation numbers nns’ nPs for neutrons
and protons, respectively. By virtue of the Pauli exclusion principle the
occupation numbers can only be O or 1. |

A nuclear level is defined by the following constants

N=Zn Z =2 n
s 1S s T° ' (1)

E=2(n e€__+n_ce
s ps ns ps ps
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The total angular momentum is also a good quantum number; its effect
on level densities will be considered in the next subsection.

The grand partition function is defined as

& - Z exp B(u,N' +p2' - E') . | (2)

N'Z'E'

The sum over energies can be replaced by an integral if the proper weighting
function is inserted; this is none other than the level density p(NZE).

Strictly speaking p(NZE) is defined as

p(NZE) = Z B(E-E')
El

In practice the level density is considered to be a continuous function. Thus
eQ = ZE: _/-dE' p(N'Z'E') exp(a N' + ¢ Z' - BE') _ (3a)
lel ’ n p .
where we have written

a = Bu o = PBu . (3b)

The grand partition function is essentially a Leplace transform of the
level density; the latter can be obtained by inversion. Specifically p(NZE)
is the inverse ILaplace transform of the coefficient of exp(OhN+aiz) in the

grand partition function. This is
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1 P [ Ve i 7p+in 3
o (ENZ) =(§ﬂ—l) f - ‘ danf da e (La)
Y-de Yp AT Ypim :

where
= - - . )
S =Q anN apZ + BE ( )

The integrals in eq. (la) can be evaluated approximately by the method

of steepest descent. The exponent S has a saddle point at

N=%g— z=§% E=-%g- . (5)

Then the level density is approximately given by

S
e
p = (6&)
(2n)5/2 D1/2 .
] . 3% 3% 3%
in which Bo,'. ~ D W W
n n p n
820 BEQ 2
D = 9 Q
aohaa 3 2 ST B
P (6v)
3% 2% &
Sanéa Sapsa afs2

all evaluated at the saddle point.
The level density can thus be obtained if O 1is known as a function

of &, &, B. If egs. (1) and (2) are combined
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T~

exp B[Z n (W e ) +3 nps(u ~e_ )]

= n ns p DS
ns’ ps
so that (7
Blu -e ) Blu e )
0 =3logll+e 142 logll+e P PsH
s s

The sums over single-particle states are usually replaced by integrals:

a'5€ " a_ﬁe
b e [aale) ol s e )4 % e gfe) bellre? ] (®)
0 o . -

gh(e): Ep(€)

are, by definition, the densities of neutron and proton single-particle states,
respectively.

We now have a complete formulation of the level density problem.
Equation (8) shows that, in thé indépendent-particle model, the only way that
nuclear structure enters into the problem is through the densities of single-
particle states.

Although the essential points have ﬁeen covered, there are a few
subsidiary ones worth'exploring.

1). It is apparent from eq. (8) that neutron and proton contributions
to @ and its derivatives are additive, giving rise to some simplifications.

Designating the two integrals in (8) by f, 0
)
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aan BQP
V= 5 2 =% (9)
n b
E=E + Ep ' N (10)
on

n
h = -
wnere En g—B—

and Ep is obtained from En by a change of subscripts. Similarly

5 =85 + sp 5 =9, - anN + BEn. (11)
520n 3% ' '
D = D' + ———g D! (12a)
). P n
P
where
2 2 2
o o7 2 :
v 'n n o°Q
D, = 3o 2 552 " |da op (12v)
n

Until we get to the point of writing the level density as a function of N, Z,
and E, we can consider, with no loss of generality, a system with only one kind
of particle. In the rest of this section the subscripts n and p will be
left out; we will write @ for either ﬂn or Qp, with a similar notation for
the derivatives.

2). It is sometimes simpler to use as independent variables p and

t (=1/B). The equations for the derivatives of Q become
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V-t g-% (132)
E:pt%ﬁ+ teg% (13b)
5 = & () (13¢)
:_i% - 42 z;i% (134)

At this point is is worthwhile to note that the method used to derive
the level density formula is of general use in statistical mechanics. The
only difference between the problem considered here and the one ordinarily
encountered in statistical mechanics is the small number of particles in the
nucleus. In ordinary statistical mechanics, the number of particles is so
large that S (which is simply the entropy) is given by log p . In the present
situation, however, the term in the denominator of eq. (6a), although much
less important than the exponential, cannot be neglected.

This leads us to consider a point about which there has been some con-
fusion in the nuclear literature. The quantity t, defined as 1/6, is the
thermodynamic temperature. This is not identical to the nuclear temperature

T, defined by

1_9.,
T - JE 8P
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In ordinary statistical mechanics, t and T would be identical.
Hereafter we will refer to t simply as the temperature.

u is the same as the Fermi level of statistical mechanics.

%), If in egs. (13%a) and (13b) derivatives are taken inside the

integral in eq. (8) we end up with

N - f; ie —EEl (1ba)

1l+e

® € €
E=[ de (14v)
fo 1.Plek

Also

ON © eB(G'U)
t Sp fO de gle) [l+e5(€-u)]2 | (15)

From egs. (1ka) and (14b) it is apparent that the function

f(e-u)z L (16)
t €-|
l+e t

which is the Fermi-Dirac weighting function of ordinary statistical mechanics,
has, in nuclear physics as well, the interprétation of being the probability
of a state at energy € being occupied.

Figures 1 and 2 are plots of £(X) and its derivative. From fig. 1
it is clear that, except when € is in a small neighborhood of W , of order

t , t((e-u)/t) is close to 1 or O. This means that, except in the above men-

tioned neighborhood, the single-particle states are very probably filled if €
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is less than , or empty, if € 1is greater than u. In other words, the
_level density is determined by a small number of single-particle states,
within an energy range of order t about the Fermi level u.

L). There is one further modification of the equation for Q which

is sometimes worth making. We can write

H I _ ) )
2 = pf de gle)(u-e) + [ de gle) log [l+eB(€ u)} + [ de S(e)[log l+ef3(}'t e)]
The nuclear Fermi level u is, as it turns out, of the order of 30
MeV, whereas the temperature t is usually well under 3 MeV. Thus e-su << 1
and, with negligible error,

_BVJ

)
Q = Bfode g(e) (u-¢) + [ avlg(u+v) + g(p-v)] log(1+e (a7

0]
In the language of statistical mechanics, the nucleons are degenerate fermions.

2.2 DEPENDENCE ON ANGULAR MOMENTUM

In addition to the numbers of neutrons and protons and the total energy,
there is at least one other good quantum number for the nucleus, namely the
total angular momentum J . It is actually simpler to deal with the total
magnetic quantum number M; this is just the sum of the single-particle magnetic
quantum numbers, whereas the total angular momentum has no such simple additive
property. The J dependence of the level density can be obtained in a simple
way from its M dependence (see below).

There are 3 ways that have been used to discuss the angular momentum
dependence of thé level density. As will be seen later, the 3 methods are

closely related.
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1) The first procedure, which is also the most rigorous, goes as

follows: Define a nuclear level by 4 constants

; ns g PS
E = E (nnsenS + npseps) (18a)
M= 2 (nnsmns * npsmps)

where moos m.pS are the single-particle magnetic quantum numbers for neutrons
and protons, respectively, and the other symbols are the same as in eq. (1).
We can now define a grand partition function

aN' +aZ' + M - BE'
e " P (18b)

Q
e

i N'Z'M'E'

The calculation would then proceed just as in the previous subsection. The

level density has the form

s
e

p(E M)»‘:(W ' (18¢)

where
S =Q -oan-apZ-yM+f3E ‘ (184)

and D, is the 4 by 4 determinant of second derivatives of Q@ . This is all

evaluated at the saddle point of S.
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Once p is known as a function of M, the J dependence is obtained

as indicated by Bethe l):
p(B,J) = p(B,M=J) - p(E,M=J+1) (19)

In the absence of an external magnetic field there is a degeneracy in
the sign of the magnetic quantgm number ; there are pairs of single-particle
states with the same value of e_ (referring to either protons or neutrons) and
opposite signs of m . Making use of this fact, Bloch 7) showed that the

entropy is given by

2

s(g,M) = s(g,0) - M, O(Mu) (20a)
2(M2)
where
) mgs eB(ehS-un) mis eB(eps-up)
n

N LTS LT -
The denominator term is given by

D, = IKM?) + O(Me) (20¢)

where D is the value of the 3 by 3 determinant given by eq. (6b).

Neglecting terms of order Mh in. 8 and terms of order M? in IM gives

the approximate expression
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'S

2(%)

p(E,M) = o(E,0) j";——(—?)‘— (21a)
‘s

The J dependence follows from eg. (19)

J§J+1[

-~
ogel e HMD)

E,J) = p(E,0
p( )‘.p( )2“/?) W (21b)

2) The same result caﬁ be obtained in another way. ILet us limit our-
selves to systems with one kind of particle for the moment. Because of the
degeneracy in the sign of the magnetic quantum number, there is an equal
probability of getting +ms or -m_ at a given enérgy € - The average value
of the magnetic quantum number M is therefore O. However there will be a
nonzero value of the mean square magnetic quantum number (M?). The states of
a degenerate pair cannot contribute to (M?) if they are both filled, since
the magnetic quantum numbers would add up to O.. There can only be a contribu-
tion if just one of the pair of states is filled.

It has been shown previously (see eq. (16)) that the probability of

a state of energy € being filled is

1
= BZes-uj

l+e

The probability of one state of a degenerate pair being filled and

the other being empty is
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ple 1)
£(1-f) = AEEE
[l+e s ]
so that
, , ple-n)
(M) =2 m eB -
° [l+e (és H)]Q

In the case of a system with 2 kinds of particles, the contributions to
(M?) would simply be additive.

M is a sum of random variables ms- which assume the values +msl-m
with equal probability. Then the central limit theorem of statistics implies
that in the limit of a large number of particles the M distribution tends

-M?/E(M?)_

asymptotically toward a Gaussiah e This leads immediately to eq. (2la).
3)‘ Another method often encountered in the literature is the follow-

ing: let us associate a rotational energy

_ h2J§J+12

Erot S

with a given value of J, where I 1is a suitably defined moment of inertia.
If the total energy is E, and an amount Erot is tied up in rotation, then

the amount available for single-particle excitation is only E - Erot' Thus

p(E,3) = p(E-E, ;,0) (22a)
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Strictly speaking, this method is applicable only to the case where
the density of single-particle states is constant. However, the idea of a

moment of inertia is a useful one; a suitable definition would be

I-= Q%EL | (22v)
nt ‘

Bloch 7) showed that the semiclassical WKBJ approximation applied to
a gas of fermions in a spherical potential leadé to a value of I equal to
the rigid body moment of inertia. However, one would expect deviations from
this simple behavior at low energies, where the detailed properties of the
single-particle spectrum are important, not to méntion collective effects.

In the rest of this work eq. (21b) will be used to calculate the
angular momentum dependence of the level density.

The equation for (M?) is usually simplified by a) replacing the sum
over single-particle states by an integral b) taking m? out of the integration

by substituting for it an average value (m?)

5 o © B(G'u)
(M) = (m") IO ae gle) — B(e-u)]Q
1+e (23a)
- (m5)t %ﬁ—‘

from eq. (15).
From a consideration of the ordering of shell model states, Jensen and
Luttinger 8) concluded that (m2) was given approximately by

(mS) = 0.146 23 (23v)



-16- UCRL-18095

This formula will be used in the present work. N.B.: The quantity
(Mg) is usually referred to as 02 in the literature. The present notation

makes its nature more obvious.

3. Review of Previous Work
3.1 THE CONSTANT SPACING MODEL

In the previous section it was seen that nuclear structure enters into
the level density problem only through the single-particle states. We shall
nov consider various models for the single-particle spectrum.

The simplest possible model is one in which the densities of neutron
and proton states are constant. From eq. (17) the neutron contribution to &
is

gnpn2 2

T
Qn =2t "6 gnt

The proton contribution is given by a similar expression. Then, from egs.

(13a) - (13e)

N=gh Z = gh , (2k)

E =3 (gu+ g hy0) + %2 (8,%8,)%° (25)
2

5 =5 (g,te )t (26)
2

D = 3 gngp(gn+gp)t5 ‘ (27)
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The first term in the E equation is just the ground-state energy, Eo' The

excitation energy is then

(28a)

a
I
=]
|}
=1
1]
{f‘r

where

2
T (ge) | (28v)

[\
]

Making the approximation (gn+gp)2 = hgngp leads to the familiar formula:

J%-eQ'féU
o UE
What if the density of single-particle states is a slowly varying
9

function of energy? Chandrasekhar” showed that for low energies, i.é., small
values of t, the results of the constant-spacing model are still approximately
valid, if the densities of single-particle states are evaluated at the Fermi
level. More sbecifically, the correction term to S as given by eq. (26)
is of order t5. This is in accordance with what has been said in sec. II,
namely, that the level density only depends on the single-particle spectrum
in the neighborhood of the Fermi level.

With this in mind, Bethe l) introduced the so-called free gas model,
in which the nurleons are free fermions confined in a sphere of radius

1/3

, A being the nucleon number. In this case the single-particle

spectrum has the form g(e) @ €1/2.

R=rA
o)
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The Fermi level Hp is the same for neutrons and protons:

l5\2 3 9 .
= 12FP 1 (50)
To%o

in which m is the nucleon mass. The densities of neutron and proton states

at the Fermi level are

Z
g (ny) = 2 el - 2 ™ (31)

The parameter a i1s thus proportional to A.

It has been clear for some time that the free gas model, with its one
more or less adjustable parameter, ro, is inadequate in the region of closed
shells. Various attempts have been made to improve the situation, d ue mainly
to Newton lo), Cameron ll), Gilbert and Cameron 12), and Rosenzweig 13‘15).

We shall examine briefly the work of the first three authors; a consideration

of Rosenzweig's work will be postponed until later.

3.2 THE METHODS OF NEWTON AND CAMERON

The validity of the constant-spacing formula, eq. (29), depends on the
density of single-particle states being a sloﬁly varying function of energy.
In the Mayer-Jensen shell model 5), however, the outstanding feature of the
single-particle spectrum is the presence of gaps at the magic numbers, notably
at 28, 50, 82 and 126 particles. One would have every reason to expect actual
level densities to depart significantly from eq. (29).

Newton and Cameron both stayed within the framework of the constant-
spacing rormula, putting all their effort into obtaining effective values of

the parameter a.
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Newton began by observing that for a spherical well potential of
radius R the energy eigenvalues €' have an R dependence which is R-2.
Furthermore, in the shell model the single-particle states are characterized
by the angular momentum J , with 2Jj+1 degenerate magnetic substates. If

the nuclear radius varies as Al/5 the density of neutron or proton states

should have the form
2 .
g = a s’ (2501) (32)

As was pointed out in sec. 2, the level density depends mainly on a
few states in the neighborhood of the Fermi levei. 50 rather than calculate
the density of single-particle states ffom eq. (32) taken at the Fermi level,
Newton used an average value, obtained from eq. (32) with the weiéhting

function

K (33)

w(e) = log [1+e

This is suggested by eq. (17).

This approach would give average densities of neutron and proton
states as a function of , which in turn would be a function of the densities
of single-particle states for a given excitation energy. For the purpose of
calculating neutron resonance spacings, Newton obtained a set of average
values Eﬁ,éﬁ by considering the width of the distribution w(e). Newton used
the rough procedure of averaging over B'nucleon numbers'for N or Z below

50, and over 5 nucleon numbers elsewhere.
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To complete the picture, it should be pointed out that there are also
odd-even effects in nuclear level densities. Newton found that these could
be accounted for, at least in a relative way, by subtracting from the excita-
tion energy an appropriate pairing energy (as determined, for instance, from
a'semiempirical nuclear mass formula). |

TFigure 3, taken from the work of Malyshev 16), shows a comparison
between values of a calculated by Newton's method and those required to fit
measured ﬁeutron resonance spacings. The agreement is rather good; calculated
and experimental neutron resonance spacings agree within é factor of 3 on the
average.

There are, however, some serious defecté with Newton's method. It will.
be noted in fig. 3 that the minima of a do not occur right at the magic
numbers; this is particularly apparent near the doubly magic nucléus 208Pb.
Part of the trouble arises from the fact that Newton assumes that the Fermi
level p always has its ground-state value; we will see in secs. 4 and 5
that this is not the case except for constant densities of single-particle
states. A more serious flaw in Newton's treatment is that it leaves out the
main feature-of the shell model, namely the presence of gaps at closed shells.
Newton gets minima of éﬁ and Eé near closed shells only because there are
51/2 or Pl/2 shell-model states near most of them; in fact, Newton's scheme
would give a minimum of Eﬁ or §$ near N or Z = 40 rather than 50.

It was in order to remedy some the defects of Newton's method that
Cameron ll) undertook his work on level densities. Rather than get single-
particle spacings from the shell model, Cameron obtained them from second

differences of huclear binding energies (after removing the Coulomb and
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pairing terms). This procedure would be exact if the single-particle spacings
were constant as a function of N or Z; it provides adequate results if these
spacings are slowly varying. In practise, it was necessary to smooth out the
results in the transition regions between spherical and deformed nuclei.

Having obtained single-particle spacings as a function‘of N and Z,
Cameron proceeded to average them out, using the same weighting function as
Newton, eq. (33). Using these average spacings in eq. (29) to calculate
neutron resonance spacings, Cameron achieved a notable improvement over Newton;
the calculated resonance spacings are off by a factor of 1.8 on the average,
as compared to a factor of 3 for Newton's method. Most of this improvement
is due to the fact that the minima of §£,§5 occu¥ at closed shells.

On the negative side, the calculational scheme is quite complicated;
more so, in fact, than the rigorous procedure given in sec. 2. There is not
much advantage in clinging to the constant-spacing formula in regions where
the single-particle spacings vary quite rapidly as a function of energy.

| Nonetheless, the results obtained by Cameron indicate that shell effects
in level densities could perhaps be predicted by a proper calculation based on

the shell model.

3.3. THE METHOD OF GILBERT AND CAMERON
One oth ' method worth mentioning is due to Gilbert and Cameron 12).
Their procedure is frankly semiempirical; its main attraction is its simplicity.
In the free gas model one would expect the level density parameter a
to be proportional to the nucleon number A. Since relative pairing effects
in neutron resonance spacings are well accounted for by using odd-even mass
differences (see sec. 3.1), it is reasonable to try to relate shell effects

in resonance spacings to the shell correction to the puclear mass formula.
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There i; obviously no unique way to do this; one procedure which seems
to work is to plot a/A (as obtained from neutron resonances) vs. the shell
correction S (from Cameron's 17) work on nuclear masses). This plot is
shown in fig. 4; there appears to be a rather good correlation between a/A
aﬁd S, although the relations are different for deformed and undeformed nuclei.

Specifically

a/A = 0.00917 S + 0.142 (undefarmed)

(34)
0.00917 S + 0.120 (deformed)

Using eq. (34) to calculate neutron resénance spacings, one obtains
results about as accurate as those ffom Cameron's ll) method; the average
error is a factor of 1.8.

All the methods given so far try to stay within the confines of the
constant-spacing formula, eq. (29); as a result, these schemes are either
complicated or theoretically unjustified, if not both. We will therefore
turn our attention to a more general type of calculation, starting from the

formalism of sec. 2.
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L. Calculation of Level Densities for Periodic Single-Particle Spectra

L.1. GENERAL FORMULAS

In sec. 2 it was seen that the level density depends entirely on 0
given by eas. (7), (8) or (17), and its derivatives. Unless one wishes to
dovan entirely numerical calculation, there is one great diffiéulty; there
are not many functions g(e) which would permit the evaluation of @ in
closed form. TFortunately there is a rather general representation which is
tractable, and turns out to be particularly appropriate at high energy. All
that need be assumed is that g(e) is a periodic function of energy. We will
restrict ourselves for the momentvto systems with one kind of particle.

Any bounded periodic function with no mofe than a finite number of

discontinuities in any finite interval can be represented as a Fourier series

[oe]

gle) =G+ = g, cos(mwe-¢m) (35)
m=1

The equation for 1 can be separated into terms depending on G and

terms involving the various harmonics in the Fourier series. From eq. (17)

Q=2 Qm
0

m oo e
where Q, =BG [ de(p-¢) +2G [ log (l+e Bv)
0 0

M
and Qp =B & fo de (u-€) cos (nwe-cpm) (36)

(o]

+2 g cos (mmp-¢m)f dv cos mwv log (l+e
0
m#£0

Bv)

Qo was dealt with in sec. 3.1.
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0

-Bv
Consider I = [ dv cos wv log (1l+e P )
0

Expanding the logarithm:

=) -pBv oo
= 5 (P avcos ov Eo— = 3 ()P 5
p=1 0 r p= @ +p°B
(37)
e L _ __ 7T
2 a)2 wp sinh 2

p

The last step follows either from the Poisson sum formula or from a considera-

tion of the partial fraction expansion of cosech x (see Appendix A, eq. (A21)).

So
g sin o 1 8,°08 ¢ ﬂgmcos'(mwu-cpm)
q =& + = - - -
m t mw t m2w2 - mw sinh mmwt
Then from egs. (1%a) - (13e)
o g sin ¢ o sin(mop-¢ )
- _m m - m
N‘G“+§' mo +7rb§gm sinh mmwt (38)
2 2.2 «gcos¢. ‘o sin(mop-¢ )
G ™Gt m m - m"
E_—*i—,'2 + g - gttt 2 g T A——, (39)
1 m w 1
o]
+ W2t2 % g cos (nmp.-qu) cosh mmt
1 sinh mmot ‘
e 2. % cosh mmwt © &, cos (m“-q)m)
8 =36t +mt 3 geos(mm-g )5 — -mI = (L)
1" sinh mmot p MO sinh mme
Su = Ot 2 g, e (42)
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[ ©

DI - 'ﬁets g_].}[ [_BG_'_ + 2 % gm cos (m_(pm) &Sh_ém
- CH sinh mmuot
o cos(mmu-¢m) 5 (k2)

-t Emg e (1l
1 m sinh mmot sinh mmot ]
2 I sin(mo-¢, ) 2 . cosh mmt 1°
" TR g Toimn mwe C "t 2 Mey sin(mw-¢,) 70 mnwt]

It is apparent from eq. (38) that for a given value of N, u will vary as t

varies.

4.2. HIGH ENERGY LIMIT

The higher the energy, the easier it is to excite particles into states
far from the Fermi level. If there is any kind of shell structure in the
single-particle spectrum, there will be excited particles in more than one
shell at high energy. As the energy goes up, one would expect the level
density to depend less and less on the details of the single-particle spectrum;
it should approach a value corresponding to some average over shells and shell
gaps. An examination of egs. (38) - (42) shows that, for a periodic spectrum,
this is Jjust what happens.

We must now reintroduce subscripts n and p to distinguish neutrons

from protons. Concentrating for the moment of the neutron contribution, as

n 2 m=1 m%m 2 f 6 Gnt. | ' (h})
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Similar results hold for the proton contributions, so that at high
energy the formulas for N, E and S have essentially the same form as in
the constant-spacing model (see egs. (24) - (26)), with a density of single-
particle states.equal to the average density. The only difference is a shift

in the energy scale. As t - w, by tends to a limit Moo defined by

> 8 mSin Pum

_ H el
N=gp '+ I S (bha)
m=1 n
Also define
G u‘2 © g cos ¢
ro_.Bpn _ham _ nm
E' =53 2 5> (ko)

m=1 m
n

' is not‘the neutron contribution to the ground-state energy. The signifi-

En
cance of this shift in the energy level of reference will be discussed in
the next subsection. Let us first discuss the remaining terms in the periodic
model expressions. |

From egs. (38) - (42) we can see that aside from the energy shift it-
self, the nth- order harmonic in the Fourier series gives a contribution of
order e-nmnt; in this sense the ﬁth harmonic contributes only to nth order.
The periodic model is a particularly appropriate parametrization for large
values of t.

We shall investigate in a more quantitative way the first-order correc-

tion terms.
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Define

V =E -E°

n n n

VP =Ep -EP' ()'"5)
V= Vh + Vb

Also define t' by

”E(G + g ) ‘ 46
I A (46)

<
il

t approaches t' at high energy.

In order to get the first-order corrections to Mo up and t only the

first harmonic in the Fourier series is needed. Also, vwe can set K, = un',

BH_o=p 't =t'1in all terms of order e Tt

b p
Substituting eqs. (43) - (46) into (38) - (39) we get, to first order,

g 'ﬂmnt' "
- - o 4l L
By T Py et 5, e sin@gnun ¢nl) (&7)

with a similar expression for up, and

~mnnt' ;
t - ' = -6t g, _cos@mnuﬁ7-¢nl)

-ﬂwpt' (48)
+ g;e cosanu5-¢pl)]
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Then the first-order expression for S is

2 g -mw_t’
T v nto t_ n
5 =3 (Gn+Gp)t an 5_ cos(w b '-¢ ,)e
g 1 -mo_t!
@, pppl '

L.3. COMPARISON WITH ROSENZWEIG'S WORK

The one previous treatment of shell effects on level densities that
has not yet been discussed is that of Rosenzweig15-15); his treatment is
closely related to the present work.

Rosenzweig first considered 13) a model where the shells are equally
spaced m-fold degenerate states; he calculated a‘correction term to the
ordinary constant-spacing expression By the use of the Euler-Maclaurin sum
formula. He later extended his work llL) to a model in which the shells are
periodic in energy and the states are equally spaced within each shell. Final-
ly, the method was generalized 15) to include all types of periodic single-
particle spectra. 1In all these cases Rosenzweig found that, in the limit of
high energy, the level density expression has the same form as in the constant-
spacing model, except for a shift in the energy scale.

In this section we shall show that Rosenzweig's energy shift is identi-
cal to the one obtained in the previous subsection. This demonstration is
fairly lengthy, and can be broken up into three parts:

1) Rosenzweig's method will be given in some detail for an afbitrary

periodic spectrum.

2) The Fourier series expressions of sec. 4.1 will be rewritten in

such a way as to bring out the energy shift more clearly.
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3) A derivation of the Euler-Maclaurin sum formula will establish the

connection between the two methods.

1) Let us suppose that, in the framework of the independent-particle
model, we‘have a single-particle spectrum which is periodic in energy, with
period 4. We can restrict ourselves to systems of one kind of.particle for
the moment. Let v be the number of single-particle states per shell; in
the ground state there will be r filled shells and one partly filled shell
with n particles (0 < nls v). Let éo +md, m =0, 1, 2 .... be the centers -

of gravity of the shells. The single-particle states then have energies given

by
em,k =€+ d(mmk) . | v (508)
m=o’l,2--o k=l’l.o, v
By definition }
v
£ n= * (50D)
k=1

An example of such a single-particle scheme is shown in Fig. 5. From eq. (7)

the grand partition function is

1%
Q= 20
k=1 © |
oo [ -Bdm] | (51a)
where Qk = 2 logll+e
m_=0 ’
and o = B(u-ey-dn,) (51b)
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The sum over m can be approximated by an integral; the correction

terms are given by the Euler-Maclaurin sum formuls:

n : u+nd
2 f(ut+dm) = £(a) g £(u+nd) + % / £(w)aw
m=v u '
r 00 2
2 r - - P
= s (_)P+l!.f(2p l)(u+nd) _ f(QP 1) (u)] 5 (E(}E} (52)
p=1 k=1
u+nd ® :
2 r (er) d \2r 2k (u-w
+= () f dw f (w) (-—- cos
SO W) 2 (5i) i
Thus
. ) -66
1 Ky 1 % Pe
Q, =3 log (1+e ™) + 3 fo de log [1l+e ]
(04
k
Bd e 2
+ 33 a + 0(8%)
l+e-
-ak
Neglecting terms of order e
2
[0 (04
Q = S + + 7T2 + ed
k2 248 gd 12
and Q =y o S (TEOSS P T SR B A~ :
2t " 24 o N (53)
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bearing in mind eq. (50b). Then, from egs. (13a) - (13e)

H-€

N = v(%‘ + —d—o) (54)

.- (b-eg) 2 _vd_4a g 2 yret? (55)

=l - —5 ¥ 5 (h=sp) T o T e 25
2

SR (56)
2

=T (% (57)

S and D' have the same form as in the constant-spacing model (see egs. (26)
and (27)), since (v/d) is the average density of single-particle states, G.
The energy has the form E = E' + w2/6 Gt2; however, E' is not the ground-
state energy.

If there are r filled shells in the ground state and n particles

in the partially filled shell (see Fig. 5), then
N=rd+n : (58a)

The ground-state energy is

n
EO=eON+vdrg—§-—'—ll +ord + I oqy (58b)
k=
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We can define an effective excitation energy
v ="z0t (59)
Fr;m egs. (58a), (58b) and (55) V is relate@ to the excitatién energy U by

V=U+E -E
(¢]

(60)
g+t L (n - Z)2 +4d g N, + d ; 1 2
12 2y 2 k=1 k 2 k=1 k

This is the relation obtained by Rosenzweig 15);

2) Let us now go back to the Fourier series treatment, rewriting it
in a way that will facilitate comparison with Rosenzveig's result.

With a density of single-particle states given by eq. (36) the grand

partition function is, from (8):

Q= QO+Q
[ee]
where Q_ = /G log[L+€z-B€]
0

o .
and Q' =2Zg [ de cos (2mﬂ€ - ¢ )log[l+ea-5€]
n ™o d m : :

No more need be said about Qo’ which just gives the constant-spacing formula.
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Integrating Q' by parts 3 times:

g d
¢ _ | _m 2mme Q-Be
Q' = IZT'.I[ 5 sin( 3 q‘)m) log (1+e )

d 2 2mre
+ g (=) cos( - )
& \ 2y d m l+eB€ -
g (2 s (?EEE - %) 32__2?3:2___ |m
P8y \om/ ST (bm (l+e{3€-a)2 0

2(pe-a)_ pe-a
B€'a)3

2mrre 3e

-z gm<§3;>5f°; stn (B 5 )

de
(1+e

The last term of the above equation is less , in absolute value, than

w 2B(c-n)_ Ble-p)
d \3 e -e '
2 zlgm (Enrrr) 165),[.0 [l+ea(€-u)]3

de
= 57 g (55|68

So, neglecting terms of order e-a

This has the same form as eq. (53). The derivatives follow at once:

UCRL-18095

(61)
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a gmsinq)m
N =G, *p S (62)
2 2 sin ¢ 2 - gcos ¢
R R e L ()

neglecting terms of order l/t2 in eq. (61)
The value of p obtained from eq. (62) is not the ground-state Fermi

level Ho which is given by

B ’ sin ¢ 2m
0 ] 4 E % g 0
N = fO de gle) = Guo MR M sin( d ¢m) (6k)
The ground-state energy EO is then
i Gp pd 2mmp
0 0 0% _ En 0
EO = fo de eg(e) == + —EFZ o Sin( 3 - ¢m) (65)
2 2mm 2 g
d 0 d
+;§Z _Q'COS(T' qu) -~z Z-—rzn:cos ¢
m il m

N , :
Writing E=E' + 7 /6 Gt2 as before, there is once again an energy shift:
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3) In order to establish a connection between the two approaches
which we have just examined, it is necessary to give a (not completely rigorous)

derivation of the Euler-Maclaurin sum formula.

n
Consider the sum o = 2 flu+md)
m=0

This is equivalent to an integral of f(x) times a periodic & function:

fu+nd aw f(w) = &(utmd-w)

g = % [f(u) + f(utnd)] +
u m=-*

The first term is necessary beéause, if the limiﬁs of integration are taken
to be u and u+nd we are only integrating over 1/2 of the 8 <functions

centered at u and u+nd. The Fourier series representation of the periodic
8 function is

% 8(u+md-w) =

m=- o

[1+2

S L
~M™M8
Q
o
2]

Substituting this in the integral and integrating by parts 2r times gives

1 1 u+nd
o = E[f(u) + f(ud)] + a-f aw f(w)
u

. -g-[m) 2 g otn Zm(un)

+ £'(w) Z(-g‘)z cos B (w-u) _ ..;]]w=u+nd

d
w=u

2
+ g'f dw(-)rf(er)(w) = (5%;) r‘cos andw-u
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which leads immediately to the Euler-Maclaurin sum formula, eq. (52) N. B.
The Euler-Maclaurin sum formula is usually given in terms of Bernoulli
numbers; see Appendix A, particularly eq. (Al7). Thus the process of integrat-
ing by parts gives rise to the Euler-Macléurin sum formula. To make the
connection complete, it is only necessary to observe that gle) is a continuous
approximation for a distribution of discrete states which could be written as

v oW

gle) = 2 2 5(€-€m

)
k=1 m=0 ok

with the nk given by eq. (50a).

There is no additionalvdifficulty in having two kinds of particles
instead of one, since the contributions to the energy shift are simply additive.

We shall return to the enefgy shift in sec. VI, to discuss its relation
to the shell correction to the nuclear mass formula.

It would be nice if there were some straightforward way to compare
calculated level densities at high energies with experimental data. Some
knowledge of level densities can be gained from experiments on high-energy
nuclear reactions. Unfortunately, the analysis of these experiments is quite
complex, and depends on many factors other than level densifies7 First, there
is the question of reaction mechanism (compound nucleus vs. direct interaction).
The compound nucleus formulation itself becomes rather elaborate when several
particles can be emitted. There is also the problem of calculating nuclear
penetrabilities, particularly for charged particles.

In view of this situation, comparison with experiment will be limited
to low energies. Data from neuﬁron resonance experiments can be understood

almost entirely in terms of the level density itself.
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In order to perform calculations of level densities at low energies,
some further mathematical development is necessary. This is the object of

the next section.

5. Calculation of Level Densities at Low Energies

The work done in the last two sections is especially applicable to the
high energy region. At low energies many terms in a Fourier series expansion
would have to be kept. The resulting expressions become quite impractical,
and it is difficult to discern any of the physics. We shall now discuss a
method more suitable for low energies. ‘

Assume that the density of single-particle states g(e) has a certain
number of discontinuities at energies hr,f =1, 2, ... (corresponding, presumably,
to shell edges), but that it is constant between one such discontinuity and the
next. Such a scheme is shown in Fig. 6. g(e) has the value Gr for h.r <e < hr+l

(once again we only need consider systems with one kind of particle).

The calculation of the level density begins with Q (see eq. (8))

s h'r+l -
a= 26, [ de log (l+e t )
h

f log(l+e ) ax = zv(-)
1

(67)

e me ™ -x
=2 (-) — = Lig(—e )
m
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Li2(x) is the Buler dilogarithm, defined by

. log(l-y)d
Ligle) = -/ 2uld | (68)
giving
© Zn
Li,(z) = ? 55 lz| <1 (69)
n
2

. . T
In particular le(-l) =13
The Euler dilogarithm is treated more fully in Appendix A.
Assume that h.m <p < hm+l

and bear in mind that log(l+e™) = x + log(l+e %)

1]

Defining Fe(x) = -Lie(-e'x) (71)
we get
2 2
n-1 m-1 G (h 2y )
B _ _ 1 r\'r¥yl T
4 = t > Gr(hr+1 hr) t 2 2
1 1
u-hm 2 1T2 m , u-hr)
* Gm = | 77 Gmt -t § (Gf—Gf-l)F2’ B (72)
(-6 ) {hr'”)
+t 2 (G -G F
ntl r r-1 2 t

This formula is actually valid for all values of p if the proper
analytic continuation of the function Fe(x) is used. From eq. (A6) of

Appendix A:

2 2
X

Fo(-x) ==+ 5 - Fy(x) (73)
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The power series for Lie(-e-x) converges slowly when x 1is near O.
Appendix A gives some more suitable expressions for that region (see egs.
(A7), (A8) and (A13)).

To get N, E and S we must take derivatives of eq. (72). Set

Fo(x) = - 52 Fy(x) = Log(l+e™) (Tha)
: d 1
Folx) = - = F,(x) = (7o)
0 dx "1 l+ex
Then
m-1
N = ? ¢, (h r+l r) * Gm(u-hm)
+ 12 (6,-G,_; (75)
2. 2 2. 2
m-1 -h B -h 2
r+l r m 2
E = ? Gr ———2———- + Gm 5 + '3_ G'mt'
2 . 2 hr W
- 72 (6,G.,) F, ( ) +t mﬁl(e -G,_,) Fpl—=—) (76)
w h_-
+t2(6,-6,_ b F (|=5)
ﬂ2 m
5 =5 Gt -2 5 (G-G. 1) F, + 2t z(GG
3 m 1T ol -1

0o h..p.
r
* i(Gr-Gr-l)(hr-“)Fl(I_€—_l)
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ON k-n, ho-p
So =G z(G G,_ Fo(—5) + z (G,-G,_; )Fo () (78)
H n m+1
o = ¢t g—ﬂ{% S (¢ 21:;)] NN (79%)
where
ON n ho-w o p-by
ot - Z(Gf Fy( 2 (Gr Gr-l) t FO( t )
h -p h -p
r r
2 H-h
%% (" 82) B Es'" w " Z(G Gy )Fp ()
h -p p-h 0 h -p
+z<c 6, ) () 4 5 (0,00, ) (B2 (2
m1

For small values of t all the functions F2, Fl’ and F. give contributions

(0]
of order e-lhr'pl/t; neglecting such. terms would give

m-1
N~2Gr(r+l-h)+G(uh)
2 2 2. 2
m-1 -h no-h 2
E~ oo =T g m_ LI g2
1T 2 m 2 6 “m
2
~ T
8 ~5-Gt

The first term in the N and E equations above represent the number of particles

and the energy of all the shells below that which contains the Fermi level u.
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Tor small t the level density is essentially the same as in the constant spac-
ing model with a density of single-particle states given by Gm-

Tor finite values of t the various shell edges enter into terms of
order e-(hr-“)/t; this can be easily understood, since this is the order of the

deviation of the average occupation number

1

f =
€- t
1+e H

(see sec. II) from 1 or O. For small values of t , only those shell edges
nearest the Fermi level will give a contribution of any importance to N, E,
or S. So this representation is particularly aﬁpropriate for low energies.

It is clear from eq. (75) that, as in the Fourier series representation,
for a given valtie of N, p is not constant as a function 6f t.

At t = O the Fermi level has a value Hq given by

1

m- .
N= 2 Gr(hr+l-hr) f Gm(uo-hﬁ) (80)

1

The ground-state energy is

m-1 G G :
_ r 2 2 _m .2 2 , :
By = ? 2 (hr+l -h, ) + 2 (“o “hy ) (81)

Combining (75) and (80):

© h -p
r
0 =G (u-py) +t i(Gr'Gr-l)Fﬁ =<1 (82)
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Equations (76), (81) and (82) give for the excitation energy

ﬂQ 5 Gm o o M u-hr
U= E-EO =z Gmt -z (”"“'0) + % ? (Gr'Gr-l)Fg( t ) :
(83)
o hr-u © hr-u '
Tt ﬁil(Gr—Gr-l)FQC_qf—> te §(Gr-Gr-l)(hr-u)Fl( t )

At this point the question might arise, what would be the effect of G being
a slowly varying function of energy between two neighboring shell edges,
instead of being constant. This problem is taken up in Appendix B. There it
is shown that derivatives of G will enter into the N, E and S equations in

(n)tn. At low energy these terms will not be important (a

the combination G
numerical example is given in Appendix B).

In order to investigate in more detail the energy dependence of the
level density, it is necessary to specify a‘model for the single-particle

spectrum. The model to be used in this work is based on the Myers-Swiatecki

mass formulah), which forms the object of the next section.
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6. The Myers-Swiatecki Nuclear Mass Formula

There is obviously no unique way to calculate shell corrections to a
semiempirical nuclear mass formula. Myers and Swiateckiu) have developed a
particularly simple scheme to do this; they are able to provide for nuclear
deformation as well. In this section we shall give an outline éf their work.

Myers and Swiatecki started from the observation that there are gaps
in the single-particle spectrum at the magic numbers, and that these gaps
correspond to a degeneracy characteristic of the spherical shape. Any departure
from that shape would bring about a mixing of shell-model states, which would
reduce the size of the shell gaps. This effect can be seen clearly in a diagram
of energy levels in a deformed potential, such aé those prepared by Nilssonl8).

Specifically, Myers and Swiatecki assume that there is a term in the
mass formula which accounts for both shell and deformation effects, and which
has the form

-(5v)?/a°

s(N,z) e
where S(N,Z) is the shell correction, (5r)2 is the mean square deformation and
a2 is an adjustable parameter. Thus, the shell correction is reduced by
deformation. For most stable deformed nuclei, this reduction is about a factor
of L.

The calculation of the shell correction itself proceeds in the follow-
ing way. It is assumed that the single-particle spectrum appropriate for the
liquid-drop model is that of a Fermi gas. An effective shell-model spectrum

is obtained by taking the states of a Fermi spectrum between any 2 magic



e UCRL-18095

numbers and bunching them together, producing gaps at the magic numbers. The
shell correction is then the difference between the ground-state energies for
the bunched and Fermi gas spectra.

The bunching is done uniformly, so that it can be specified by just
one parameter, the "degree of bunching" b. Bunched and unbunched spectra are
shown in fig. 7. Myers and Swiateckl originally did the bunching in such a
way that the center of gravity of each shell was not displaced in the process.
But this would cause the shell corrections to be nonnegative (they would be
exactly zero for closed shells), whereas the differences between experimental
and liquid-drop masses are negative near closed shells. So Myers and Swiatecki
had to ingroduce into the shell correction an overall downward shift, which
took the form cAl/3 (c being an adjustable parameter).

With Jjust the three parameters a2, b and ¢, Myers and Swiatecki were
able to get satisfactory results for calcuiated masses and deformations over
most of the range of nuclei.

There is a relation between~the energy shift in the level density
formula (see sec. 4) and the shell correction. Let us go back to the formula-
tion of Rosenzweig. The single-particle spectrum has period d; there are v
particles per shell; the centers of gravity of the shells are located at
€. +md m=0,1,2... and the single-particle energies are given by eq. (50a):

0

€ak = €0t d(m+nk) m=0,1,2...

There are n particles in the last unfilled shell in the ground state k = 1...v.
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If the states were equally spaced we would have

s =y - LE] @

.

Equation (60) for the energy shift can be rewritten as

B - B sa 3 (neu) - e+ g 3 (20 ®) (85)
0 oM T Bk T2 2 M T 2

The first term represents the difference in ground-state energies between the
system in question and a system with equally spaced states. This corresponds
to the Myers-Swiatecki shell correction (aside from the downward shift). The
other terms do not depend on the number of particles in the last unfilled
shell; they are a slowly varying function of A.

Thus it is clear that the energy shift from the level density formula
differs from the Myers-Swiatecki shell corréction by at most a slowly varying
function of A. We will see examples of this later on, in some numerical

cases (see sec. 9).
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7. The Bunching Model

At this point we have developed the mathematical resources necessary
to obtain the level density for certain types of single-particle spectra. We
have also seen that shell corrections to the nuclear mass formula can be
calculated from a simple model. A similar model will now be u;ed to calculate
level densities. It will be referred to as the bunching model.

The density of single-particle states is represented shown in Fig. 8.
This is about the simplest scheme which is periodic and has gaps (corresponding,
presumably, to closed shells). If d is the period and & the size of the

shell gap, the degree of bunching b is defined by
® = db (86)

4
(this is the same definition as that of Myers and Swiatecki ).
G 1s the average density of single-particle states; G' is its "bunched
value." Let v be the number of particles in a shell; this is équal to Gd.

This must not be changed by the bunching process. Therefore

G' = G/(1-Db) (87)
The Fourier series representation of the bunching model spectrum is

alioesinm (1-b 2mrr(e-eq)
g(e) = G[l 2? W.é-r—z cos ———d-.-——Q] (88)

€ being the center of a shell gap.
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We can now calculate the energy shift for the level density. This is
given by eq. (66). The Fourier series in this equation can be summed explicitly,

yielding
BE' = 2 .l.).. (E .lf.) 1 e '
Ey-E' = Gd | 5 (& - v2 - EE(Qb-b ) (89)

ﬁhere n 1is the number of particles in the last unfilled shell in the ground
state. This is the same as Rosenzweig'slh) result, except that certain sums
over single-particle energies are replaced by integrals.

The neutron and proton spectra are each specified by 3 parameters: G,
d and b. If we adopt the viewpoint of Myers ana Swiateckiu) that the average
single-particle spectrum should resemble that of a Fermi gas, there are some
approximate relations between these 6 parameters.

It was seen in sec. 3.A. that for a Fermi gas of radius R = rOAl/5 the
density of single-particle states at the Fermi level is proportional to A.
Myers and Swiateckiu) showed that it was not necessary to assume that the
degrees of bunching for neutrons and protons were different in order to get a
reasonable fit to experimental nuclear masses.

It is also reasonable to set the periods for neutrons and protons equal.
We shall show this in some detail for the case Z ~ 82, N ~ 126.

Shell model studies indicate that there are major closed shells at 28,
50, 82 and 126 neutrons, and at 28, 50 and 82 protons. Various theoretical
considerationéu%ave led people to assume that there are also closed shells at

Z =114 and N = 18L; this is not yet confirmed by experiment.
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These considerations show that for heavy nuclei there are about 32
protons per shell (82 - 50 = 32; 114 - 82 = 32) and about 50 neutrons per
" shell (126 - 82 = hb; 184 - 126 = 58). In the present bunching model the

number of particles per shell is simply G d (referring to either kind of

particle),
6y 50
Gd — 32
jY

If Gn and GP are in the ratio N/Z, this leads to dn ~ dp. Similar considerations
apply to other shell regions.

Based on the above, we shall set

Gn N
- == G=G +G_=-cA
G Z n ho)
D
dn = dp =d (90)
b =b =0b
n P

There are only 3 independent parameters.

Pairing effects have not been explicitly included in our theory. We
will follow the method of Newtonlo) (see sec. 3.B), which is simply to subtract
from the excitation energy a pairing eﬁergy taken from a nuclear mass formula.
(For odd-A nuclei we will subtract the pairing energy; for even-even nuclei we
will subtract twice the pairing energy). The pairihg energy is taken from the

L
work of Myers and Swiatecki ), to be ll/Al/2
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We are now in a position to calculate the level density as a function
of energy. This cannot be done directly, of course, but one can obtain U, S,
"D and (Me) as functions of t . For a given value of t , up and “n are given
by the transcendental eas. (38) or (75), which can be solved by the Newton-
Raphson method. '
It was pointed out in sec. 5 that at low energies only the shell gap
nearest to the Fermi level is of any importance. 1In this region we can use a
"one-gap" model, in which only the shell gap closest to the Fermi level is
included in the low-energy formulas. At high energies the Fourier series

method is more appropriate.

8. Energy Variation of the Level Density

Before going into comparisons with experiment, it is appropriate to
get some idea of how the level density and associated quantities vary with
energy, in an actual numerical case. Such calculations have been carried out,
with parameters designed to represent the region of nuclei near Pb208.

In order not to have to specify all of the parameters numerically, the
quantities to be plotted were reduced to dimensionless forms. TFirst, we observe
that U/Gd2 is dimensionless. Actually, it is better to use as independent
variable 1000 U/Gd2, because this quantity is of the order of 1 MeV. As for
S, D and (MQ), they will be compared to the values they would have in the

Fermi gas model, with G equal to the average density of single-particle states.

In the Fermi gas model, for a given value of U:
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il
_
S=5_ = ™ st = 2vau
" Pav . 3 Tav
2
D=D_ =1Ggat °

av 3 np av

) = 0f)_ = (n°) as_

from egs. (23a) and (26) - (28). An effective value of a, a can be defined

eff
by

S szdaeffu (91)

We will plot aeff/a, (M,2>/<M2‘>av and D/D__ .
as functions of 1000 U/Gd2
The only parameters which need to be specified are the degree of bunch-
ing, b, and the fraction of the last partly filled shell which is occupied
in the ground state, n/v. |

The choice of parameters is as follows:

G, |
T =1.5 b = 0.20
P

lz-82|’ 0o 2 ‘IN-126I 0o 1 2 3 4 5 6

n/v ‘ 0 0.06. | n/y |0 0.2 0.0k 0.06 0.08 0.10 0.12
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2 2 ' 2

- . .
The plots of aeff/a, (M7) /(M >av and D/Dav vs. 1000 U/Gd" are shown in figs.
9a, 9b, 9c for Z magic (Z=82) and in figs. 10a, 10b and 10c for Z nonmagic
(z=80 or 84).

At high energies, it was pointed out in sec. L.B. that for a periodic

5 .
spectrumn S, D and (M ) approach their Fermi gas values. Figures 9-10 show that
2 2

indeed a ../a, (M)/(M")__ and D/D__ all tend toward 1 asymptotically, but they

eff av av
do this rather slowly. This is not surprising; one would not expect shell
effects to die out until t is at least of the order of the shell gap d ,
so that there are excited particles in more than one shell and some averaging
over shells and gaps takes place.

The low energy behavior is a bit more complicated. It was seen in

sec. 5 that for small values of +:

2

%— Got2

c
12

2

i
S~ 3 Got

() ~ (%) Gt

2
D~ ?T GnOGOt

5

where GPO, GnO are the densities of proton and neutron states at the ground-

state Fermi level, and GO=GPO + Gno' If the number of neutrons or protons is

magic, G

ho = 0 or GpO = 0; otherwise
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|-

(92)

’UO
o

I

(]

Lo}

|
*fl»d"
o'

(see eq. (78)).

As U goes to 0, we get,asymptotically,

0B 4% b Cno%o (_c_;_) 3/2

0
a G (M2> VG Dav GnGp GO

It follows that aeff/a and (MQ)/(M?)av have low-energy asymptotes equal to O
only in the doubly-magic case; for D/Drav this asymptote is O if either N or
Z is magic.

We can summarize the situation on low-energy asymptotes in the follow-

ing table:
a 2
eff (M) D
a 2 D
(M >av av
Z and N 0 0 0
both magic
Z magic, 3 /L (5 0
N nonmagic
N megic 1/2 3 0
2

Z nonmagic

7 and N 5/%4 J5/k J5/b

both nonmagic
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Tn sec. U it was seen that at high energies only the Rosenzweig shift
remains. The effect of keeping the first harmonic in the Fourier series was
also examined (see eq. (49)). It was also seen in sec. 5 that only the shell
gap nearest the Fermi level is important at low gnergies. Figure lla, giving
aeff/a vs. 1000 U/Gd2 for the doubly magic case, shows a) the exact result
b) the value with the Rosenzweig shift c) the value with the Rosenzwelg shift
and the first harmonic, and d) the "one-gap" value. Figure 1lb does the same
thing for the case Z=82, N=120 or 132.

In both cases it is clear that the Rosenzweig result is wvalid only at
very high energies, and that keeping one harmonic term does not really extend
the range of validity much. On the other hand, the "one-gap" model gives
good results up to 20 MeV or so.

In all fairness, it should be pointed out that the situation regarding
the Rosenzweig approximation may not be as bad as it looks. In most calcula-
tions of reaction rates et al., all that is needed is a relative value of the
level density. In this case, one may be able to get away with subtracting off
an energy shift near magic numbers, particularly if a) one does not insist on
~using a predetermined energy shift, but leaves it as an adjustable parameter,
and b) if the nucleus in question is not near a double magic number, so that
the energy shift is not too large (for energies below the energy shift value,
this approximation cannot be used at all).

Finally, fig. 12 is a plot of the absolute level density vs. energy
for nuclei-with z=82, N=126 and Z=82, N=120 or 132, as well as for the Fermi
gas with the same average parameters G and d were taken to be 1k MeV-l
and 7 MeV, respectively. This plot shows that there are significant shell

N

effects even at high energies.
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9. Comparison with Experiment

Experimental data on nuclear level densities are most readily obtained
.from neutron resonance studies. An s-wave neutron interacting with a target
nucleus of spin I will enter into resonance with states of the compound nucleus of
spin I*% (or spin 1/2 if the target nucleus has spin 0) and with the same
parity as the target. As long as the experimental resolution is good enough
so that neighboring resonances are not smeared over, one can obtain the density
of the above-mentioned nuclear levels by counting the number of neutron'reso-
nances up to a given neutron energy. This procedure is valid as long as the
number of these resonances increases linearly with neutron energy.

A list of experimentally determined neutfon resonances is given by the
Sigma Center at Brookhaven National Laboratory (BNL 525)20). Neutron resonance
densities were deduced from this compilation.

When this work was undertaken, the initial plan was to compare experi-
mental and calculated neutron resonances over the whole periodic table, in
analogy to the work of Myers and Swiateckiu) on nuclear masses. It soon
became apparent that this would not be possible with any single set of param-
eters. In the case of nuclear masses, fairly good agreement between theory
and experiment was obtained using the bunched Fermi gas spectrum, with the
same degree of bunching throughout. But nuclear masses are much less sensitive
to the details of the single-particle spectrum than are level densities.
Calculated nuclear shell corrections involve sums over the last partly filled
shell; level densities depend on just a few states near the Fermi level, par-
ticularly at low energies. It will be seen later that there is a good deal

of variation of parameters from one shell region to another.



-55- UCRL-18095

In addition, to present data over the whole periodic table would give
a false impression of the validity of the present work. Most nuclei are far
ffom closed shells, so that their level density should resemble that of a
Fermi gas. This effect is reproduced in the bunching model, but this would
nardly justify the elaborate mathematics. Therefore, it was deéided to con-
centrate on nuclei near closed shells.

Experimental information on neutron resonances is quite variable in
quality. The experimental work has been done by many groups. Present techniques
are better in some neutron energy regions than in others; in particular, time-
of-flight techniques are most accurate for neutron energies of a few hundred eV
or less. In some regions of the periodicvtable the p-wave strength function is
large, so that the problem of distinguishing between s- and p-wave resonances
is especially acute. Thus it is clear that there is no straightforward way
determine the goodness-of-fit of calculations to the data.

In view of these considerations, it was felt that a full-fledged parameter
study would not be appropriate. But some investigations were undertaken, so as
to obtain sets of parameters suitable for the various shell regions.

For medium and heavy nuclei, there are 4 closed-shell regions to consider:
N~ 50; Z~50; N~ 82; Z ~ 82, N~ 126

Tt was found that the most convenient choice of parameters was &, c' and 4'

(see fig. 8)
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8 = size of shell gap
d'= distance between shell edges (d'+d=d)

c' is given by G'=c'A

i.e., c' determines the density of single-particle states betweén shells. For
a given nucleus we must also determine n/v, the fraction of the last partly
filled shell which is occupied in the ground state.

.At low energies, the level density is not sensitive to the period d.
So 4' and n/v simply determine the location of the zero-energy Fermi level
relative to the shell edge.

Once these parameters are fixed, approxiﬁate values of ¢' and & can

be found by a simple search. Consider for instance the region near Pb208.

198

For a nucleus far from magic, such as Au , the level density at low energies
is not affected much by shell gaps, and depends mainly on c'. The data on
such nuclei will determine c¢' within a narrow range. Once this has been done,

8 will follow from a consideration of nuclei close to magic (such as Pb208

and Biglo).

Table 1 gives appropriate sets of parameters for each of the 4 shell
regions. More elaborate comparisons between experimental and calculated
densities of neutron resonances are given in Tables 2, 3, and 4.

It is clear that there are significant variations in these parameters
from one shell region to another. It is quite possible that one could get
away with using the same value of c' for the first three shell regions,

particularly if only relative level densities were needed. But it is out of

Tthe question to use such a value in the Pb region. Also, the shell gap © 1is
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much smaller in the Sn region (Z ~ 50) than in any of the others. Indeed, the
data do not allow one to exclude the notion that there may be no shell effect
.at all, as far as neutron resonances are concerned.

Tables 2, 3, and 4 show that there are also local variations which
cannot be eliminated, at least in this simple model. For instance, in the Pb
region, the calculated resonance densities of HgEOO + n and T1205 + n are
systematically high, when all others are fairly close. The values shown in
these tables represent abouﬁ as good a fit to the data as one can hope to get.
In secs. 4 and 6 it was established that the shell correction to the Myers-
Swiatecki mass formula and the Rosenzweig energy shift are the same, to within
a slowly varying function of A. Table 5 gives‘some values of shell correc-
tions and energy shifts for nuclei near and far from closed shells; these are
sufficient to show the general trend, since the variation in shell corrections
is much less drastic than that of level densities. (The "experimental" shell
cofrection is the difference between the experimental nuclear mass and the
liquid-drop part of the mass formula.

It can be seen that the energy shifts are consistently 2 - 3 MeV lower
than the shell corrections. The absolute values of the shell carrections for
Celul and Pb208 are perhaps a little large; this could be remedied by adjustihg

the parameter d'. Consider for instance the case of a doubly magic nucleus.

From eqgs.(89) and (86) the energy shifts is

o Gd° ) gf o ggfg _G(da'+5)8
By~ = (o ) 12 12

0 12 2’ =

since b is small (~.20)
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. 208
Clearly, one can decrease the value of the energy shift for Pb to
some extent with a decrease in d' without drastically changing the values of

calculated resonance densities.

10. Summary and Conclusions

The work presented in this paper falls into three main areas: the
general formalism of Bethe, the periodic model and its high-energy behavior,
and the bunching model and compariscn to neutron resonance data.

1. With regard to the general formalism, there is nothing very new
in the present work. But it is hoped that the séction energy on angular
momentum dependence of level densities (sec. 2) will be helpful in avoiding
certain confusions which have arisen in the past, particularly on the subjects
of nuclear temperature and moments of inertia.

2. No comparisons with experiment have been made for high-energy level
densities. But is was established that a) the energy shift found in the high-
energy limit is identical to the one from Rosenzweig's treatment b) the energy
shift differs from the nuclear mass shell correction by at most a slowly very-
ing function of A.

3. It was shown that with a suitable choice of parameters, neutron
resonance densities can be calculated in the simple bunching model to within
a factor of 2 or so. But a number of questions remain unanswered.

The main problem is in the significance of the parameters. In view
of the large differences which can be found from one shell region to another,

we have to go beyond the Myers-Swiatecki formulation to understand them, let
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alone to extrapolate to regions which may have shell gaps (e.g., Z=11k and/or
N=184) but for which no experimental data are available & priori. The logical
way to proceed would be to go directly to a single-particle spectrum given by
the shell or Nilsson model, and to calculate Q and its derivatives as sums
over single-particle states, as in eq. (7), without making use of the approxi-
mate densities of neutron and proton states, gn(e) and gp(e). Before doing

| this, however, the treatment of pairing will have to be greatly improved.

Our present prescription of subtracting an appropriate pairing energy from

the excitation energy t§ get U is clearly inadequate at the low energy end.

It appears that the superconductor theory of the nucleus may be developed to
the point where it can be used for such a calculation. Although some questions
remain unresolved, such as the deformation of an excited nucleus, it is hoped

that work along the lines just suggested can be carried out in the near future.
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Table 1

Level density parameters

Shell a' (Mev) e ! (Mev™1) 5 (MeV)
region
N ~ 50 : 9 0.91+0.002 ’ 1.6%0.2
7 ~ 50 8 0.090+0.003 < 0.8
N~ 82 8 0.085+0.002 1.6%0.2
Z ~ 82

7 0.067+0.002 1.9%0.3
N~ 126

a)For N or Z near 50 or 82, n/v changes by 0.035 for a unit change of N or Z.

b)For N ~ 126, a unit change of N means a change in n/v or 0.02
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Table 2

-1
Densities of s-wave neutron resonances (in MeV ~) for N ~ 50

Target Experimental Calculated
nucleus d'=9 MeV c'=0.091
B5=1.k 1.6 1.8 MeV
89\
Y 600+£200 1150 950 850
90y 200+80 280 2l 220
9er L000+1000 3200 2900 2700
922r 300£100 530 510 ‘hgo
M 500150 740 730 720
95Nb , 16000£2500 14500 13500 12500
95Mo 10000+3000 15500 14500 14000
97Mo 8000+3000 16000 15500 15000
103

Rh 2800+4000 22500 22000 21500
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Table 3

Densities of s-wave neutron resonances (in MeV-l) for N ~ 82

Target Experimental Calculated
nucleus d'=8 MeV c'=0.085
8=1.L 1.6 1.8 MeV
127 75000£50000 66000 66000 59000
129; 35000+ 10000 44000 40000 38000
133 49000£5000 57000 51000 47000
1558, 30000£8000 53000 45000 39000
lb'OCe 300£100 290 . 260 230
1h2g, 1000250 1350 11300 1250
1y, 15000+3000 9500 8000 7000
Wyq 4000012000 37000 34000 31000
145

Nd 5500020000 84000 82000 81000




_EL-

Table 5

Shell corrections and energy shifts

UCRL-18095

Compound Myers-Swiatecki Energy shifts from high-energy
nucleus shell corrections level density formula
Expt. - Calc.
c'=0.091 d'=9 MeV .
5=1.k 1.6 1.8 MeV
Mo -1.23 -0.22 -2.45 -2.71 2.9k
98Mo 2.6 2.85 0.69 0.88 1.09
¢'=0.085 d'=8 MeV
d=1.L 1.6 1.8 MeV
128, 0.66 0.2k -1.41 -1.51 -1.59
lthe -1.13 -1.32 o s A A -L.65 -5.10
1”6Nd 1.65 1.83 -0.4o -0.33 -0.25
c'=0.067 d'=7 MeV
5=1.6 1.8 2.0 MeV
196Pt -2.32 -0.78 -2.08 -2.21 -2.32
208Pb -9.96 -8.94 -11.80 -13.14 -14.45
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Appendix A
The Euler Dilogarithm
In dealing with the level density at low energies, there arises the
problem of inteérating log(l+e-x) between finite limits. This is facilitated
by introducing a transcendental function known as the Euler dilogarithm.
When x is nonnegative log(l+e ) can be expanded as

-nx

1og(l+e ™) = Z(-—)n+l S
1 n

This series can be integrated term by term:

[log(1+e ®)dx = %(_)n e-zx = Liz(—e_x) (A1)
n

The function Lie(z) is the Euler dilogarithm, defined by

Lie(z)

-fz }QESL;KEX - (a2)
0

which gives

=]

Liz(z) =

I
M8
=

L e < (a3)

In particular (see eq. (A20))

2

Liy(-1) = - 5 (Ak)

For all values of x we can write
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o
Lig(-e™) = - [ log(i+e™)ay (a5)
X
Then -Lig(-ex) = f log(l+e-y)dy
-x
0 _ © _
= | log(l+e Nay + [ log(l+e Nay
-X 0

Changing the variable of integration from y to -y in the first integral:

X 0o
-Lie(—ex) = [ log(1+e¥/ay + f log(1+e ¥)ay
0 0

X _ 2
=‘fo [y + log(i+e y)]dy + %5
X x2 WE -X
or - Lie(-e ) = '—é— + z‘ + Lie(-e ) (A6)

This formula gives the analytic continuation of the dilogarithm.
The series (Al) converges rather slowly when x is close to 0. In
this case it is better to use a Taylor series in x.

Let us begin by writing

log(l+e-x) = log[Ee 2 E__iEE_Ji]
= log 2 X X
= 10g = - 5 + log cosh 5
X . - 2 -X
Then [ log(ire™)ay = Tz + Li (-e™) (A7)
0

2
X X
=xlog2--2—+202(2)
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where
Z

C2(Z) = [ log cosh w dw (a8)
0

To get a power series for Cz(z) the Bernoulli numbers are needed.

The Bernoulli numbers are defined by

X . .%.3 (-1)*" 0 (19)
X1 - 2 7 n (2n)?! 9

The first few Bernoulli numbers are

_1 _ 1 Co_ 1 L _ 2
Bj=% B=35 B =13 B =35 B=¢s

From the relations

2
e2y+l

and tanh x =1 -

follows the power series for tanh x:

o B
+1 2n, 2n 2n-1
() 22 TE%YI x (A10)

1

tanh x = -1)

(the radius of convergence of this series is 7/2 since tanh x has a

singularity at x = im/2).
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The first few terms of the series are

3
2
);' EX5-%X7+"' ‘ (A11)

Then
x x2 xh x6 17x8
logcoshx:fdyta.nhy:—e--Ié-+n—5---2—,j—2—o-+... (A12)
0
and
X x3 5 7 9
- - _X x . 17x
CQ(X) = fody log cosh y = 7= - Z= + 315 " 32680 * ¢ (A13)
There is one other point worth bringing up. ~ - can be written
e -1
as
X X X
X = E[COth ) - l]
e -1
coth % has simple poles at x = 2 mri for all integer values of m; the residues

are all equal to 2. So there must be a partial fraction expansions:

0
X bid 1l .
==[-1+2 3 -]
ex-l 2 n=mco X-2mri
x 0 2)(2
=l-35+ 2 5. oo (A1k)

m=l x +Um“p



-69- UCRL-18095

For x < 27 this can be written as

x x [e¢] X2 2 )4-
=l-_+22 l" X + Xuoao

e*-1 2 m=1 Hmane hmzne (2mr) ]
or X1 fi2 3 ()P ¢ (2x) (A15)
e -1 r=1
where t(2r) = = = (A16)
m= m r

is the Riemann zeta function. Comparing egs. (A9) and (Al3)

2r
N (em)“'B

= 1
2T 2(2r)!

= (A17)

m=1
Other sums can be similarly evaluated, since

oo}

z ?2;};)_2? - Q- ;%—;) ¢ (er) (a28)
and
°>§l<-)m*1 S5 = (- ) gle) (a19)

These sums have been used at various stages in this work. In particular

2 0 2
._]:__ﬂ_. _m+1_l_._ﬂ_. : '
276 z (-) 2 =12 (A20)
m m=1 m .

™M 8

m=1
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In sec. 4 the partial fraction expansion of cosech X was required. This is
obtained in the same manner as eq. (Allk). cosech x has simple poles at

x = mmi, with residues of (-1)". So the partial fraction expansion is

[y ’ m oo )
cosech x = 2 ;{%m% = % + Z (-)m —2—?—2}5—5 ‘ (A21)
m=-w m=1 X +m T
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Appendix B

Calculation of Level Densities with Slowly Varying Densities of Single-Particle
States

The treatment of sec. 6 can be generalized to the case where the
density of single-particle states is an analytic function between any two dis-
continuities (shell edges). The grand partition function is given, as usual,
by eq. (8). The simplest way to do the integral is to integrate by parts. To
do this some new transcendental functions must be introduced.

The polylogarithm is given by

X Lim(y)
Li . (x) = fo dy - (1)
or
Lim+l(te'x) = foim(ie-y)dy (B2)
X

This enables the polylogarithms of various orders to be calculated starting

with the Euler dilogarithm. We have

= k< (5)

Li (x) =
n 1l n

5 me

The values of Lim(l) and Lim(-l) are related to the Bernoulli numbers (see
eq. (Al7) and eq. (A19)).
Analytic continuation formulas can be derived for the polylogarithms,
as well as formulas for Lim(-e-x) suitable when x 1is near O.. The derivations

are analogous to those for the dilogarithm.
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Consider the integral
-Bv
I =/ dve(v) log (1+e ")

We can always integrate by parts:

I= %— £(v) Lie(-e-av) + 51_2 £'(v) Li3(-e-av) o ouu
(B4)
+ ;15 (1) () Lin+l(-e'BV) - éff av £ (v) Lin+l(e'5v)dv

We can let n -« and write this as an infinite series, with the under standing
that it may be an asymptotic one.

Assume hm-<- B <h

e1r et G =G () for b, < e < h,

1
Then

m-1 h TR
1 r+l 1

@=F 2 J de (u-e)Gr(e) + 5/ de (p-¢) Gr(e)

r=1 h h

m
m-1 o P 1 (p) : _ il r+1
"2 PEO(-) et e () T (e T (85)
't

) B Gr(P)(hr) Lip+2 '(e',
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2 0 - Enl
+T=Gt+ 3 P l( e (p)(h )i \e °©
m p=0 L m
( ) - m+l-p
, P . ) t
+ G (hm+l)Llp+2 e
o w e
R |G, (p)(hr+l Lo e ©
r=m+l p=0
(») e
P . } t
G, (hr) L1p+2 e

At this point is is apparent that derivatives of the density of single-particle

states enter mainly in combinations like G(P)(h)tp. This would be even more

clear if one were to calculate U and S. At low energies (and it is mainly

in this domain that this scheme is of interest) one would expect the contribu-
tion from such terms to be small compared to that of terms which depend on G

Let us consider as an example the Fermi gas spectrum. If there are N

particles the density of single-particle states if

SR

5)1/2

i (B6)

so that
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The nuclear Fermi level is of the order of 30 MeV; in the region of neutron
resonances the temperature is less than 1 MeV, except for very light nuclei.
This indicates that there should not be a sizable contribution from the

derivative terms at low energies.
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Figure Captions
. ) x
Fig. 1. The Fermi-Dirac weighting function p(x) = 1/(1+e”)

Fig. 2. The negative derivative of the Fermi-Dirac weighting function

X
e

-f! (X) - ——
(1+e™)°

Fig. 3. A comparison between values of the level density parameter a
obtained from neutron resonance work and values calculated by Newton's
method.

Fig. L. a/A vs. S, the shell correction to the Cameron-Elkin nuclear mass
formula. Crosses correspond to undeformed nuclei, dots to deformed nuclei.

Fig. 5. A periodic single-particle spectrum with r filled shells and one
partly filled shell in the ground state. The centers of gravity of the
shells are located at eo+md , m=0,1,2...

Fig. 6. The spectrum for the calculation of level densities at low energies.
The density of single-particle states is given by
gle) = G, b < e<h ..

Fig. 7. Schematic diagram of a Fermi gas spectrum (on the left), cut up into
bands at the magic numbers and bunched. The spectrum in the center is
partially bunched; the one on the right is completely bunched (degenerate).

Fig. 8. Periodic spectrum for the bunching model. The density of single-
particle is G' between two shell gaps; its average value is G. 4 is the

period, & the size of the shell -gap, € the center of a gap.

0
_ 2,2 . .
Fig. 9. a-c . aeff/a, (M7y /(M Yoy 2nd D/Dav as functions of energy (in

dimensionless form) for nuclei with Z magic.
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. 2 2 : .
Fig. 10. a-c . aeff/a’ (M7) /(M ) gy 204 D/Dav as functions of energy (in
dimensionless form) for nuclei with Z nonmagic.
Fig. 11. a-b. aeff/a, along with various approximations, as functions of
energy, for magic and nonmagic nuclei.

208
Fig. 12. Log p vs. U for nuclei in the region of .° Pb.
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