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ABSTRACT 
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We derive a set of integral equations of the Faddeev tyPe for 

the N-particle scattering amplitude. This Faddeev theory for the 

N-body scattering problem then provides a closed theory for the cluster 

coefficients of an arbitrary quantum gas, which is free of convergence 

difficulties encountered in former series expansions. 
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I. INTRODUCTION 

'Fora dilute, imperfect gas the equations of state for the 

pressure P and the density p are given by the following expansions 
" , ,',,', 1 

in terms of the fugacity , z: 

Pt3 = 

p 

00 

k 

00 N L: N bN Z , 

N=l 
(1) 

In the limit V ~ 00 the 'coefficients bN(V'~) tend to the 

volUIIi.e-independent cluster coefficients" bJ.lj(t3): 

= lim bN(V,t3). 
V-KJ'J 

(2) 

The virial expansion of the equation of state is defined to be 

00 

Pt3 = L 
N=l 

where ~(t3) is called the Nth virial coefficient. We can find the 

relationship between the virial, coefficients ~ and the cluster 

coefficients bNby substituting (3) into (1) and requiring that the 

," 
J. :,~. 
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resulting equation be satisfied for every z. BY equating the coeffi-

cient of each power of z we obtain 

al = bl l~ 

a2 = -b2 ' 

a
3 

4b2 
2 2b

3
, 

a4 = -4b3 
2 + IOb2b

3 3b4' (4 ) 

Therefore, in order to know the virial coefficients ~,which are a 

measure of the dynamical and statistical correlations, we have to 

calculate the corresponding cluster coefficients. This calculation, 

however, requires the solution of the N-body problem. 
, , 

With the exception of the expression for the second vi rial 
, ." 2 

coefficient given by Beth and Uhlenbeck, for a long time no method 

for the actualcS,l,culation of cluster coefficients for a given inter

particle interaction was known. Then Lee and yang3 made a step 

forward in a systematic approximation of higher cluster coefficients. 

These authors assume that only-pair interactions are present in the 

N-body Hamiltonian I1f and expand the !th cluster coefficient in 

terms of the binary collision operator 

where H.. is the total Hamiltonian of the isolated pair (ij). This 
lJ 

theory was applied to a calculation of the third virial coefficient by 

4 Pais and Uhlenbeck. 

" , 
. ,'1,', ., .... 

."" 
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Later it was' recognized bYRei~er5 that, 'wit~ the "h'~IP of 

the Laplace transform' relation between . the:Green' s function.·" . 

G(N) (z) 
. :. 

and the statistical density operator 

WN(~) - exp(-~~), it is possible to translate the Lee-Yang series 

expansion in terms of the' bin~rycollision operators into Watson's 

multiple scattering expansion Of,G(N)(z) in 'terms of, the 'off-the" 

energy-shell two-particle scattering matrix. 

Both formulations, however, are only applicable if no two- or 

many-body boUnd states are present, since whenever the kernel 

aO(2)v.. has an eigenvalue outside' the unit circle;' both series 
l.J 

expansions fail to converge. This divergence can be cured with the 

quasiparticle-method of weinberg. 6 
. , 

But only since Faddeev7 proposed his three-particle scattering 

theory, has it become possible to circumvent the dubious series 

expansions and give a concise formulation of the third virial 

coefficient. 

The aim of this work is to derive the Faddeev equations for 

any number N of particles interacting by pairs only and thus to.give 

a completely consistent theory of the !thcluster coefficient for an 

arbi trary quantum gas. 

In Chapter II we review briefly the relation between the !th 

cluster coefficient and the Green's function G (N) (z.) for N 
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interacting particles. In Chapter III we derive the N-body Faddeev 

equations and in Chapter IV we give the general expression for the 

Nth cluster coefficient and write down explicitly the third cluster 

coefficient using the three-particle Faddeev equations. 

..... ,~ .. '';' , r .', 
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II. CLUSTER COEFFICIENTS. AND GREEN'S FUNCTIONS 

The cluster coefficients (2) are related to dynamics ,through 

the statistical density operator 

.~ is the Hamiltonian for N interacting particles of the form 

N N 

~ L 2 L Vij. (6) ::: p. + , 
~ 

i:::l i<j 

where 
~, 

p. 
~ 

is the mOIll;entum of the ,i th particl~ &nd V ij ::: V~ I S - ?j I} 

is the potential energy' of 'interaction between the ,ith and J.th 

particle. The urii ts -Ii = 2m '=, 1 are used throughout.·' 

The partition function of a system of . N interacting 

particles is 

= TrN exp( -f3~) 

The index N at the trace symbo;L indicates that the trace has to be 

taken only in the space of N particles. 

For low particle densities cluster expansions are useful 

perturbation approaches, since encounters of small numbers of particles 

dominate and account approximately for the thermodynamic properties of 

the N-particle system. Therefore, it is useful - in both classical 

and quantum statistical mechanics - to consider directly the expansion 
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of the partition function ~ in terms of the cluster coeffiCients (2): 

N 

L (8) 

.e=l 

where V is the volume occupied by the N-particle system. The 

combined sum and product in (8) has ,to be:perlormed i? the following 

way: The N particles are distributed according to some distribution 
, 
of m.e clusters of .e particles each. For this given partition one 

.. m 
forms the product j({Vb.e) .e/m.e~ and sums over all possible partitions 

of Nparticles satisfying ~.em.e = N. 

There exists a relation between the probability operator WN 

and the Green's function G(N)(z) = (z - ~)-l, which is given by 
, 8 

means of the 'inverse Laplace transform: 

1 
= 2n:i 

J dz e "f3z' G (N) (z) , 

'Y 

where the path of integration 'Y passes from 00 + i€ around the 

leftmo st ' singularity of the integrand to 00 - i € • 

The Green's function G(N)(z) is related to the scattering 

operator T(N)(z) for N interacting particles:' 

G(N) (z) = GO(N) (z) + GO(N) (z) T(N) (z) GO(N) (z) , . (10) 

'; . 
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. with 

., .. 

Bloch and De Dominicis9 have shown in their proof of the 

linked-cluster expansion that the partition fUnction ZN can be 

written in the form 

, 

(11) 

(12) 

where Z (c) ... is the parti tionfunction stemming from all connected 
£ 

£-particle diagrams. 

A comparison of (12) with (8) yieJ.ds the. cluster coefficients 

as the total contribution of all connected N~particle diagrams: 

= lim V-l ZN(c) 
V-4CD 

= lim V-l L-l 

V-Kr) 
( Tr G(N) (z) ) c 

(13) 

All connected diagrams appearing in (13) are understood to acq~ire 

their meaning through the different terms .in the respective representation 

of G(N)(z). 

In (13) the specific statistics enters through the symmetry of 

the states used in the trace calculation. ThereforE:', ~N (c) has the 

following form for Bos~-Einstein and Fermi-Dirac statistics, 

respectively: 



" ( 

.j 
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BE ~ (c) = ..1 IdP .• ·dp ~ JdZ 
N~ 1 N 211~ 

e-I3Z~ ,( pep ••• p ) La 1 N 

'Y 
p 

". : 

" " 

where P denotes the permutation operator and €pis +1 (~l) for 

an even (odd) permutation of (Pl···PN). 

We recognize from the relation (13 ) between the N, th cluster 

coefficient and the total Green's function G(N) on the one hand and 

the connection (10) between this total Green's function G(N) and 

the scattering operator T(N) on the other hand that we immediately 

have a consistenttheory for all cluster coefficients once we-can write 

down a ,coupled -set of integral equations for the scattering amplitudes 

for N interacting particles. 

For N = 2, T(2) satisfies the Lippmann-Schwinger equation 

(2) 
T (16) 
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and for 11 = ~ T(3) satisfies the three-particle Faddeev equations. 

Therefore, we have to find a generalization of these Faddeev equations 

to any number of particles interacting by pairs. 
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III. N-BODY FAODEEV EQUATIONS 

In this chapter we wiLl give a general procedure for writing 

down a set of integral equations for the N-particle scattering 

amplitude. This set turns out to be a generalization of the Faddeev 

equations for three-particle scattering. Like the Faddeev equations 

these equat~ons will be linear integral equations of the Fredholm type 

for the off-the-energy-shell scattering amplitude of N particles, 

whose kernels depend only upon the scattering amplitudes for a lesser 

number of particles. 

The procedure: is based on a fundamental theorem of Hugenholtz 

with the followingcontent: 10 

Let rA and r B be two disconnected graphs with NA and 

NB particle lines, respectively. The contribution of the graph rA 

alone is denoted by (p A / (z - HA) -l/PA' ) r' The same holds for 
. A 

r B. The theorem then states that the contribut.ion of all graphs 

L:r A+B •. that can be obtained by combining r A and f B in such a way 

that the vertices of fA and rB appear in all possible relative 

orders amounts to 

= 

1 
- 2n:i. J dS ( PA / GA (z - l;;) / PAl 

c 

. ~ ", 

(PB/GB(U/PB') r· 
B 

(17) 
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In operator lan~age (17) .tak~S the fQrm 

GA+B(Z) = GA (z) * GB(z)"' = ,'2!i f' dl;' GA (z - 1;) GB(I;), (18) 
c 

where 

The contour c' of integration encircles the spectrum of (I; - H
B

) -1" 

in a counterclockwise way (or the spectrwn cif (z - I; - H A) ";1' in a 

clockwise way). 

We want to formulate the above theorem for the scattering 

operator T. To this end we introduce on both sides of (18) for the 

different Green's function G(z) - according to ~10) - the respective 

'0 ° connected parts G (z)T(z) G (z). After some operator algebra we 

obtain 

TA+B(Z) - TA (z) * TB(Z) 

° -l() 1 J dt; ° ' , '0 = GA+B Z 2:rri G (z - I;) T (z - I;) G (z - I;) A A ' A 
c 

X GBO(I;) TB(I;) GBO(U G~~~l(z} , 

1 J ell; {GAO(' -I;) GBO(~ )} = 2:rri + 

c 
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where 

G O() (z _ ~ 2 ~ 2)-1 
A+B Z = ~~A - ~~B ' 

o ( 2)-1 
GA (z) - = Z - 2J>A ' 

o . 2)-1 
GB (z) = (z - 2J>B • 

If the NB particles are non interacting, we have to convolute 

o 0 . 0 
the nonconn~cted part GB - ins-:t;ead of GB TB GB - with the 

connected part 

1 J = 2:rd 
c 

O· 0 G
A 

TA GA for the NA particles. We find 

o -l() GA+B Z 

(20) 

If both the NA and the NB particles are noninteracting, 

we have to convolute the two nonconnected parts 

respectively. In this case we have 

GO and 
A 

, -
, , .. ' 
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o -1.,) 1 
=: GA+B,\Z; 2ni f dS G~(Z - S) G~(U G~+;l(Z) 

c 

o -1 = GA+B (z) (21) 

These relations (19), (20) and (2l),form thekeyipo±nt of our general 

procedure. 

Before we disc\lss.~]he,.derivation of"ther·.Faddeev: 

equations for arbitrary N, we first exhibit the general procedure with 

the example of N = 3. 

Let us consider the no~connected graph, in which the particles 

1 and 2 are interacting, whereas particle 3 is free: 

1 

2 

3 

I II ~ 
(22) 

Moreover we specify in this graph the leftmost, interaction, 

L e., V12 • Then we write down the contribution to the three-partiCle 

scattering amplitude in the following way: 

T (3) 
.12 '(23) 

We. now introduce what we call "reduced graphs'" (y) over which 

one must sum in order to obtain the contribution (23) from the 

non connected diagram (22). 
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We define as; "reduced graphs" all those graphs:, which,' when 

completed by the interaction V12,~,ssentially-give again the graph (22). 

"Essentially" means that we do not care how many interaction lines 

follow the first one in these "reduced graphs~"c' Therefore, there are 

two possible "reduced graphs" for the nonconnected diagram (22). The 

first "reduced graph" is connected, because several (at least one) 

interaction lines follow the first one and these are summed up by the 

Lippmann-Schwinger equation (16). The second one isnonconnected, 

because no interaction lines'follow the first one, i.e.,: particles 

1 and 2 move freely. Now we can give the prescription of how one 

finds 

Convolute the scattering amplitudes of all "reduced graphs" 

of (22) with the particle line 3 'and sum tip all these different 

contributions. In diagrammatical and algebraic form this reads as 

= == T (2) * T (1) 
12 3 

3 3 

+ T (i)*: T{l)* T' (1) 
1 2 - 3 (24) 

The "scattering amplitude" of the "reduced graphi~ where particles 

, '(1) (1) 
1 arid 2 are free, is formally denoted by Tl * T2 and is given 

by (21). 

.":. 
':.. .. i': . ~. ; • ,., .~' > .... ' :~. :.,; ••••• 
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The first term in (24) is easily evaluated with the help of: 

(20). We have 

1 
.. 2rci 

. ,(2)' '2· . i 
= 6(p,' - p,) ~ PI' P2' I T12 (z - p,) /P1 P2 }. 

(25 ) 

In operator form this reads 

T (2) * T (1) _. T (2)· 
12 3 -.' 12 • (26) 

For the second term in (24) we find from (21) 

Thus the total contribution of the two "reduced graphs" of the 

nonconnected diagram (22) to (2,) is 

T (,) = V GO(,) T (2) +V = T (2) 
12 12 12 12 12 , (28) 

where in the last step we used the Lippmann-Schwinger equation (16) 

for T12(2) with the argument (z - p~). 

/" 
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Now we formulate the general procedure for finding the contribu

tion of an: arbitrary nonconnected graph consisting of p subgraphs 

(5) to the scattering amplitude for N particles. 
p 

First we specify for any given nonc~nnected di.agram its lef~-

most interaction We assume that this leftmost' v .. 
~J 

lies in ' 

the subgraph (51) consisting of M < N particles. Then we draw 

all possible "reduced graphs" of (51) which are defined ih such a 

way as to ~ssentially' 'giv~ again the given diagram, when completed by 

the interaction V.. . These "reduced graphs" are either connected or 
'. ! .' ~J 

nonconnected diagrams. In ease they are' conne'ctedtheyhave again 

,aleftmo',st interaction Vik' land the' corresponding scattering amplitude 

is ,Tik(M) This scatt,ering amplitude can in pr,inciple be,obtained by 

summing up all interaction lines with the help of the Faddeev equations 

for M < N particles. If the "reduced graph" is non connected it may 

have a connected "redUced subgraph" with L < M particles and a left-

most interaction Vik • Then the corresponding scattering amplitude is 

M 

Tik (L) 11* Tv (1). If the "reduced graph" is totally nonconnected the 

v=L+l 

'scattering amplitude" is 
M it'* T (1). Finally we convolute the 

v=l ,v 

scattering amplitude of each "reduced graph" with the scattering 

amplitude of the subgraphs 5 ••• 5 and sum up all these contributions. 
2' 'p 

" 
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We can express this procedure as a theorem in the following 

way: 

Theorem 1: 

For any given nonconnected diagram consisting of p subgraphs 

(5 ) . with a leftmost, interaction Vij lying (supposedly) in (51)' 
, p 

its contribution to the scattering amplitude for N particles is 

T .. (N) 
lJ 

where the sum extends over all "reduced graphs" (y ) of ' (51). 

Next we formulate the generai procedure for finding the 

contribution of an 'arbitrary connected graph to the scattering amplitude 

for N particles as a theorem.' 

Theorem 2; 

Cut any given connected diagram into two disconnected sub diagrams 

such that one of them is the nonconnected diagram (51) with the left

most interaction ,V.. of Theorem 1. We denote the other subdiagram 
lJ 

by (5). Then apply Theorem 1, i.e., convolute the scattering amplitudes 

of all "reduced graphs" (y) of (51) with the scattering amplitude 

of (5). Goon to the right with a free propagation 'GO(N) and 

finally connect and (5) pairwise by T (N) 
£k 

k €(5). In an algebraic form this reads 

T .. (N) 
lJ 
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Relations (29) and (30)" summed up ,for all those different types 

of nonconnected and connected diagrams (with' the leftmost interaction 

V. j) which yield a different value for.E M~ 'Y ) , constitute the equations 
~, ' . ('Y)',. (N) 

which determine the N-particle scattering amplitude Tij Their 

kernels depend only upon the scattering amPlitudes 'for les~ than N 

particles. ' Since the square'S of these kernels have no o":'runctions, these 

equations are of the Fredholm type. 

, eWe proceed, with the example ' N = 3 and consider the; following 

connected graph: 

1 .' 

:~. 
According to Theorem 2 we cut the interaction line V23 and get back 

the nonconnected diagram (22). Then we apply Theorem 1 and use (30) 

to obtain the followi~g contribution to the three-particle scattering 

amplitude: 

With the help of the operator relations (26) and (27) we obtain 

T (3) 
12 

The total contribution of thenonconnected and the connected diagrams 

(22) and (31) with the leftmost interaction V12 yields the well-known 

three-particle Faddeev equations: 

, ,';, . ,', .. ~ . '.~ .-' ,:. , . . 
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Two similar equations can be derived for the diagrams with a different 

leftmost. interaction. 

As an illustration of the general procedure, in the Appendix, 

we use Theorems 1 and 2 to derive the four-body Faddeev equations. 

The total scattering amplitude for N interacting particles 

is the contribution of all nonconnected and connected diagrams with 

different leftmo.st '.' interactions v .. : 
~J 

N 
T(N) 

= L T .. (N) 
~J 

i<j 
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IV. CLUSTER COEFFICIENTS FOR A BOSON GAS 

The Faddeev theory for the N-body scattering problem thus 

provides a closed formulation of the dynamical correlation problem. 

We can now express the total Green's function G(N)(z),appeari~g'in 

the expression (13) for the !th cluster coefficient in terms of the 

scattering amplitudes T. '. (N) for N interacting particles, ·WhiCh 
lJ 

satisfy the N-body Faddeev equations. ConsequentlY, we have a completely 
,. 

consistent theory for the cluster coefficients, which is free of conver-

gence difficulties encountered in series expansions in terms of a two-

body scattering matrix or a binary collision matrix. 

We can write (13) in the general form 

= lim 
V-KJJ 

-1 -1 
V'L ( Tr f GO(N) (z) + GO(N) (z) t Ti}N) (ZlGO(N\Zl}' } c' 

L ',' i<j,,' 

, (36) 

is given by the remark after Theorem .. 2 •. The first term 

lim V-I L':'l ( 
V-m 

c ) 

leads to th~ cluster coefficient of an ideal boson gas, since GO(N) 

does not contain the interaction. We have to select only connected 

\iiagrams. This is achieved by introducing (n- 1) O-i'unctionsin 

This can be done inert - 1) ~ possible ways. By taking into 
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account the usual factorV/(8~)3 we 'obtain the well-known result for 
1 

a boson gas in terms of the thermal de Broglie wavelength ~ = (4n~)2: 

(0) , -3 / -5/2 .. 
bN (~) = ~ N • (38), 

With this result w~ can ,write our general expression (36) in 

the form 

blj(jl) " bN(O)(jl) + ~:"v-l L
C1 ( Tr {GoiN)(z) ~ Ti/N)(Z)GOCN)(z)} ) c. 

(39) 
N 

For N = 2 the sum L (N) Tij (z), is replaced by, the two-

i<j 

particle 'scattering amplitude T(2)(z) 'and the result for the second 

term in (39) is the well-known Uhlenbeck-Beth expression in terms of 

the bound-state energies €n.e and the phase shifts ".e' 

b (l)(~) 
2 = 

+ ~ l 
o 

(40) 

where the sum extends only over even values of .e in the case of a 
\ 

boson gas. 

The third cluster coefficient can be written with the help of 

the Faddeev equations (34) in the following form: 
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- 1 - V-l 1-1 
.... _1m , 

V-tQ) 

= b (O)(~) +b(l)(~) 
3 3 

where b
3

(O)([3) is given by (38). 

( TrfoO(3) (z) t 
L i<j 

+ b (2)(~) , 
3 

UCR1-18102 

c 

(41) 

The term b
3 
(l)(~) takes into account all correlations due to 

a single pair interaction and a third particle, being only statistically 

correlated to the pair. It is immaterial which term T .. (2) we take 
~J ' 

in the sum for b
3 

(1) (~) in (41) provided we include a factor 3-
-, 

to account for the three other equivalent choices. The connectedness 

of the diagram is insured by the introduction of a sum of two a-functions. 

Together with the usual factor V/(8n)3 we obtain 

(42) 

I 



.J ,'., 

-23- UCRL-18l02 

Dynamical and statistical three-particla correlations are contained in 

b
3 

(2). Taking into account (14) and again the factor V/(8n)3, we 

find 

1 

3 

,. (P(P1P~3:)' ~ Ti /
2

) (z)GO(3) (z) 0ik (3) + Tjk (3~ 
i<j 

kipi,j 

c 
. r: - f Pi 2)-2 

\.. l=1 

We note that the correlation term b3(1)(~) can be calculated without 

any approximation and is thus valid for any temperature. In order to 

know the correlation term b3(2)(~) we have to solve the three-particle 

Faddeev equations, which can be done only approximately with the present 

computers. 

We wish to outline briefly the necessary steps in an actual 

calculation of (43). Before solving the coupled set of integral 

equations, we have to choose first a reasonable representation of the 

two-particle scattering matrix associated with the interparticle 

potential. This choice is even more crucial here than in a description 

of nucleon-deuteron scattering, etc.., since one has to perform as a 



.'-, 
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final step an integration over all energy variables. Therefore the 

chosen representation for T 
(2) 

ij should be close to the exact one 

over a very large energy interval. Elsewhere we have discussed 

extensively the merits of 'the W~inberg .. quasiparticle-representation6 

of Tij (2) which we used in the Faddeev equations for deuteron

potentialll and deuteron-nucleon12 scattering. We believe that here 

also this representation giv.es a reasonable description for higher 

values of the energy parameters than the usual pole-approximation 

representation of T .. (2)',13 and that the calculations for 'b (2) 
~J., ' 3 

will b~ valid in a much wider temperature region. 

As was already pointed out in the introduction, Reiner5 

obtained a theory for the !th cluster coefficient - equivalent to. the 

binary collision 'expansion of Lee ~d Yang - by using Watson's multiple 

scattering expansion of G(N)(z) in (13): 

OO(N' )IJ. GO(N) (z) L , "~ Tij (2) (z) GO(N) (z) , 

IJ.=O l:<J 

(44) 

where the prime at the summation over pairs (±j) forbids the 

occurrence of two consecutive identic~L indices in the expansion. " 

In our formulation we get this multiple scattering expansion result 

for the Nth cluster coefficient directly from (41) by repeatedly 

iterating the Faddeev equations and replacing all indices 3 by N. 

'";'.' .J ,.I,'r,I" 
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APPENDIX 

In this appendix we derive the four-body Faddeev equations with 

the procedure outlined in Chapter III. For convenience we write all 

relations in operator form. 

First we consider all nonconnecteddiagr~s with the +eftmost 

interaction V12 

(4) 
T12'" ' 

and evaluate them according to Theorem 1: 

1 
I I I 2 

3 
4 

= V GO(4) {T (2)* T (1)* T (1) 
12 ,12' 3 ' 4 

With the help of 'relations ,(2q)~and~:(2J,l'wefind' 

T (4) = T (2) 
12 ,12· 

(Al) 

(A2) 

(A4) 
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+ T (2) * T (1) *T (I)} (A5) 
13 2 4 . 

The index after the semicolon in the three-particle scattering 

amplitudes r(3) denotes the spectator particle. All the three-

particle scattering anrpli tudes are given by the homogeneous Fa.ddeev 

equations (33). Using (34) and (20),we obtain for (A5) 

T (4) = V GO(4) {T (3) _ T . (2) + T (3) _ T (2) 
12 12 . . 12;4 12 13;4 13 

+ T (3) _ T (2) + T (2) + T (2)\ 
23;4 23 23 I} 1 

(A6) 

Using once more the Faddeev equations (34) for T12 ;4(3) and the 

Lippmann-Schwinger equation for T12 (2), we finally have 

T (4) = T (3) _ T (2) 
12 12;4 12· 



, I 

--
-28- UCRL-18102 

CA8) 

This diagram has the same structure as (A4) except that partic+e 3 is 

now the spectator particle. ' In analogy to CA7) we get the contribution 

T (4) _ T' (3) T (2) , 
12 - 12;3, - 12 • , (A9) 

1 
, 

I I I 2 

3 I I 4' • (AlO) 

T (4) = v, GO(4) {T - (2)* T (2) + T (1)* T (1)* T (2)}' (All) 
12 12 12 34 1 2 34 ~ 

For the evaluation of the first term in (All) we have to use relation 

(19): 

T (2) * T - (2) = 
12 34 

1 J "I' [( I' 0) -1 C' _ H
3

'4o) -1) , 2:rri "'"':> z - '" - H12 _ + s 
c 

x T
12

(2)(z - U T
34

(2)(S) [(z -t - H
12

0)-1 + (t':' H
34

o)-l], 

(Al2) 

" ~.J, 
, ,,' , 



,c 

, , 
~ . 

. ' 
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where 

= 

" (4) 
We define the following amplitudes U

ij 

" 

particle scattering amplitudes 

U •. (4) 
l.J 

,,' 

= T .. (2) 1 
l.J + 21(i 

(2)-
T. . • 

l.J 

UCRL-18l02 

in terms of the two-

. 0-1 
(z - ~ - 11c£ ) 

, ° -1 (2) , '} y. (z - ~, - 11c£) Tke (z ,- ~) • 

One can easily show that these amplitudes U .. (4) 
l.J 

set of equations: 

U (4) = 
ij T (2), T' (2) GO(4) U (4) 

ij + ij k£ 

'(Al3) 

obey the following 

(Al4) 

Using the definition (Al3) for uij (4) and the fact that therein the 

pairs of indices (ij) and (k£) are interchangeable, we find for 

(All) 



" 
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, ; 

, (4) 
T12 

= V GO(4) ,{~ (4) 
12 ' .12 

_ T (2) + U (4) _ T, (2) + T . (2)} 
12 34 ' 34 34 

(Al5) 

Using the above equations (Al4) for u12(4) and the Lippmann-Schwinger 

eq~ation for T12(2), we finally have 

Now we consider all connected diagrams. and make ", use of , ' 

Theorem 2. 
,~ 
t 

(Al7) 

We cut the interaction line V34 and then we havea~ainthe noncopnected 

diagram (A4). Applying Theorem 1, with the result (A7), andusing:the 

relation (30), we find 

T (4) = IT (3) _ T, "(2)\ 00(4) ~' (4) + T (4) + T (4»)" 
12 \: 12;4 12.J " ,14 24 34,' 

(Al8) 

1 

.~ 2 

3 
4 (Al9) 

, , 
"'; '. " '<," ,,;:,'.,,).,' , . ": "', ,'!;~ .:, ":'. 

. ; 
j .. , . ,,'-;; ~ 
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'Yne same procedure as for (A17) - except that we use the result (A9)-

leads to 

(,r (3) _ T (2)\ GO(4) t; (!~) (h) (4)) 
~12;3 12 J ,13 + T23 ~ T34 • 

1 

2 

3 

(A20) 

4 (A21) 

cutting the interaction line V23 and using the result (Al6),we get 

T ( 4) _. (U ( 4 ) - T ( 2)) GO ( 4 ) (T ( 4 ) + T ( 4) + T ( 4 ) + T ( 4 ) '\ 
12 - ~12 12 ~13· 14 23 24~' 

(A22) 

The total contribution of all non connected and connected 

diagrams yields the four-body Faddeev equations .. (see the remark after 

Theorem 2). In a general form, they read 

+ T. (4)) 
J.e • 

(A23) 

Th8 s~~e set of equations (A23) was also derived by Alessandrini,14 

usin;; complicated. operator algebra. 
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