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ABSTRACT 

UCRL-18ll5 

The kinematic constraints on helicity amplitudes are derived 

directly from basic analyticity properties, without the use of crossing 

or partial-wave decomposition. The constraints are manifest in a 

representation of helicity amplitudes used earlier to study their 

", kinematic branch points. That work is completed by extracting from 

that representation the powers of the kinematic poles. 
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1. INTRODUCTION 

The relationships among helicity amplitudes imposed at thresh-

olds and: pseudothresholds by kin.ematic requirements are important 

in Regge analysis. They have been studied by extensively, 1 and 

recently have been derived by a general procedure based on crOSSing 

2 properties, and also by an alternative method based on a partial-wave 

decomposition. 3 However, the use of crossing or partial-wave decomposi-

tions to derive these constraints is roundapout: One should be able 

to derive them directly from basic analyticity properties. This is 

indeed the case, for they are manifest in a representation of the 

helicity amplitudes used earlier4 to derive their analyticity properties. 

That representation is discussed here in more detail, and the powers 

of the kinematic poles at thresho+ds and pseudothresholds are derived 

from it. This completes the earlier work, which dealt only with 

branch point singularities. Only the general unequal-mass case is 

considered here. 
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2. A REPRESENTATIONOFHELICITY AMPLITUDES 

This work is a continuation of Ref. 4. Equation numbers With 

asterisks refer to that work. 

Let A be a unit 3-vector. 1 According to (2.5*) the spin2' ' 

boost in the direction h can be written . ,.,. 

"0 1 [0 1 0 1] 
B(V , €) :: V2 (v + l)~ + 2€ A. • A (v, - 1)2 , (2.1) 

whe~e the sign of € = ± ~ determines the Sign (sense) of the boost, 

and vO is the time component of the covariant velocity of a boosted 

particle that was originally at rest: 

" . (2.2) 

.' 1 

Here " is the Lorentz contraction factor (1 _~2)~ associated 

.0 " with the boost. 

According to (2.15*) the helicity amplitudes for the scattering 

of a spin ~ particle on a spin-zero particle are matrix elements of 

the operator 

o d-O Here v an v are the time components of the covariant velocities·' 

of the initial and final fermion, respectively, 'and 

'0. 

. . 

(; 



,', 

J " 

it .... ] 

,,:,3~ ,',' UCRL-18115 

(2.4) 

Here the ,aCe, €; s, t) are a set of four invariant amplitudes 

(parity conservation is not assumed)tllat are free of kinematic 

singularities, except possibly on the 'surface ¢ = 0, which is where 

at most two of the four energy-momentum vectors p' ,: are linearly 
, , 0: 

1 

independent; W is the center-of-mas~ energy S2; and, 

is the rotation by Q about the ax;i.s' A, which is the unit normal to 

the c.m. plane of scattering. 
-k.' 

The helici ty amplitude is yh~" matrix element of H in the 
,A '~ 

frame, where A· A == O'h = 0'3 'and' ,j!. • p. - O'n = 0'2° In this 

, 0' :, 0 
frame the boost factors B(v, e) and B(v , €) become simply 

numerical f'unctions of the helicit,i~sA. ,and ~ of initial and 

final particles, respectively, an4 th,e helicity amplitudes are 

where 

o 1 [ 0 ' ,,:\:,' 0 
B(v ,e, A.) = ;;:r; (v, ~,l); ,+4e A (v 

.,', 

A.) " 

(2.6) 
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Isolating - R(9) J one obtains 

(2.8a.) - -

where 

x) a(e, q s, A.) • --

(2.&» 

. 1 ... 
This form of the helicity amplitude for a single spin:2 particle 

was the basis of the analysis of - Ref. 4. The key point is that the 

depend~nce of FX A. on A. and X occurs only through the factors 

o . 1 -(-0 1 - . 
A.(v - 1)2 and A. v - 1)2; respectively, whereas RX ~(9) is 

known. 

If one chooses the frame where on = 03 andoh = -02' 

then the matrix elements of H are the "transversity amplitudes" of 

5 Kotanski. Then the rotation matrix R(9) is diagonal, instead of 

o B(v , e) ( -0 -) and B v , e • This representation of H is denoted by 

H- • 
't''t' 

factor 

of H 

Note that 

B(VO' t) 

on A. or 

if 0 
(v - l) [or _-(vo _ 1)] is zero then the boost 

[or B(VO' E)] becomes unity. Then the dependence -

't' [or on A. or -:r J is determined by the matrix 

• 
. ...,1 

." 
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elements of the known rotat:i,on operator R(Q). This trnmediately gives 

the kinematic constraints, as we shall se~ in the next secticn. 

Processes with higher spins are dealt with by constructing 

their amplitudes from tensor products of spin ~ am(,li tudes. For the 

purpose of this (purely mathematical) construction one can consider a 

particle of spin J and velocity v to be a composite system (in a 

purely mathematical sense) of,M..·~ 2J spin-~ particles of velocity v. 
L. 

Let the labels on the particles of a + b ~c + d, be chosen so that 

J = J (mod 1) a c N = max(2J , 2J ) ac a c 

Then imagine a process with N + Nbd= N ac 

and 

sPin~ partj.cles, such that first N particles come in with velocity 
~ ac , 

and leave with velocity v , and last c 

velocity vb and leave with velocity vd • 

Nbd particles come in with 

I,et e 
a 

represent the 

set of Clebsch-Gordan operators that combine the last 2Ja of the 

particles constituting particle a into a particle with spin 
A'l1 .l 

,And let eb, ~'" ~ be similarly defined~ Let ~ be the 

operator that pro,iects each of the first (~N -.r) :pairs of ,_ ac a 

particles from the set of N particles constituting particle a ac 

onto a spin-zero system. That is, ~ a is a tensor product of 

IN -J 
2 ac a 

1 Singlet proje~tion operators, acting on these 0' N - J ,_ 'ac a 

pairs of particles. And let _~, ~ ,and"'&d be similarly defined. 

Then H for the composite system is written as 
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)t [c..{ 0~) ®(l.!b}C C;»). 
(2.9a) 

This equation is schematic; for it does not make explicit the 

particular way that the· N variables for the operator in the center. 
. '.' . 

are separated. into the four spaces of the outer operat'ors. But this 

separation has already been explained. [See also the Appendi~J 'Also, 

(2.9a) does not convey the information that in'forming the tensor 

product [rr~Hi]' each of the four terms corresponding to the four 

different possible values of (€i' €i) in H. is to be combined 
J. 

independently with each of the four terms of each of the. other Hi' 

to giv,e altogether 4N terms, which have independent coefficients . 

a(El'" 'EN; El ," • EN' s, t).· This fact is exhibited in the explicit 
... 

, . 
"~ , 

' .. ,' 

'", ; 

", .. 

N 

it 
i=l 

.. fi 

",,'. 

. ~; 

.J', 
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, 'N 
The summation on the right is over the 4 combinations of signs of 

the various € ., where 0: = a, b, c, or d. 
o:~ 

It was shown in Ref. 4 

that the coefficients a(€a:i; s, t) can be made functions of the 

invariants s and t that are free of kinematic singularities at 

One can write the equation analagous to (2.9a) for either the 

M function or the S .. matrix by simply replacing the H and ~, 

either by M and M. 
~ 

or by S and S., respectively. The conver-
, ~ 

sions between the three forms go through because both the boosts and 

the rotations are converted in passage through the xlo: ® ~ to 

the form appropriate to the space on the other side. 6 

Going to the helicity representation and regrouping ,factors, 

one obtains from (2.9) the analogue of (2.8): 

= , (2.l0a) 

where the sum over y is a sum arising from the linear combinations 

implied by the factors ."Jo: ® Ca-. The factor R~ ~ A.. ~ (9) 
d C""b a 

is a 

linear combination of products of N elementary rotation operator 

matrix elements R A. (9) 
Adj "bj 

= 

imd ~ >... ~e), which must satisfy 
ci al. 

(2.l0b) 
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" 

. The f'wlctionFr ,.' , . is a linear combination of products of N 
, Ad~c~'t/"a 

factors 1ikeF and F - of (2.&) which also must 
Adj~j AciAai 

", satisf'y (2.10b). In particula; we have 

(2.1dc) .. 

where the \xi on the right satisfY (2.10b) • 

. The representation (2.10) is discus,sed in detai-l in the 

Appendix. The main pertinent features are that the dependence of 
, . O~' 

Fr , . upon ,A e,nters only through the factors A~i(vN - 1)2, 
AdAc~Aa . tl . tl ..... 

and tha.t R~ A A.. A (9) 
d C"o a 

is a linear combination of products of matrix 

elements of N elementary rotations (2.5) having the correct total . 

helicities \X, as specified by (2.l0b). 

The arguments that follow hold for each term of the sum in 

(2.l0a). Thus the index r will be omitted • 

~' , 

. ;,...' 
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3. KINEMATIC CONSTRAINTS 

Equations (2.10b) and (2.10c) show that F is independent of 

ru at 
o (Va - 1)= O. Thus the depende~ce on . ru is given eomp1ete1y 

by the rotation operator R(9). This gives kinematic constraints. .. 
These constraints take a neat form in the transversity 

representation. For at V 0 - 1 ~ 0 the boost factors associated a 
wi th particle a all become unity. Thus the transversi ty index 

Ta applies directly to ~(9). There are several cases, which are 

discussed separately. 

At w = ma + ~ both 
o 

(va - 1). and vanish, 

[See (3.1*) .. ]. Therefore the boost factors for the particles that 

constitute. particles a and b all become unity, and the tran:sversity 

indices T and T apply directly to R(9). Thus the behavior a b 

near W = rna + ~ is dominated by the factor ei9 (Ta+Tb) co~ing from 

(W '" m + m.) • - a 0 

Similarly, we obtain 

The factor ei9 = cos 9 + i sin 9 behaves like 

near W = ma + ~. [See (2.10*).]" 
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At W = ma - -~ >-0 the factors (VaO- 1)·· and . (Vb 0 
+ 1) 

vanish.- Thus the boosts for the particles that constitute particle 

a all become unity, whereas the boosts for the particles that 

constitute b all become (in the transversity representation) 

proportional to i0'2' The boost factors for particle. b will there

fore be screw-diagonal. Thus we have 

iQ(T -T
b

) 
'" e a 

and similarly for the other mass cases. The constraints (3.1) and 

(3.2) were derived in Ref. 2 from crossing ]?roperties, and were shown 

- to give all the known kinematic constraints. 

- \., 

-, . ~ 
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~. THRESHOLD AND PSEUDO THRESHOLD BRANCH POINTS 

-A continuation of H around a small circle centered at 

reverses the sign of (v 0 _ l)~ and (v 0 - l)! 
c ,d 

[see (3.1*)] and carries e to e ±'n. [See (2.10*),]. Reversal of 

the signs of 
o 1-

(v - 1)2 and c 
o 1 

(Vd - 1)2 is equivalent to reversal 

of the signs of the Aci and Adj in the boost factors 

o 0 
B(v , € , A i) and B(Vd , €dj' Adi)' and it leads to a reversal c ci c 

= 

(4.1) 

[The identity Ad = -lid is used here. It is assumed in (4.1) that 

R(e) transforms on the left according to the J c ~ J d representation. 

This is justified in the Appendix.] 

,The effect of the continuation on H= FR(e) is therefore 



;. 

c· 
H . --.-,.~. H f 
AdAc~Aa.· . AdAc~Aa 
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-A -A A.. A d c' -0 a 

Now the continuation 9 -79 t 11: . effects also the change 

UCRL-18l15 

(4.2) 

Thus setting A equal to. \i - \,: and J..I. equal to AC - Ad" and 

defining 

(4:.4) 
. gIJ..l.-AI gIJ..l.~T 

s~n - cos -
2 2 

we find that 

(4.5a) 

where 

1'If = 
J +Jd+A 

(-1) c ~ ~f(A.) 

2J +2Jd 2 2 
Thus the factor (tl) C = (tl) A. = (tl) J..I. drops out when H,· 

rather than H, is considered. 

.. 

'_I 
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[The Signs of ').. and Il in (4.5b) and (4.5d) correspond to the case 

where the initial particles have lower dotted indices and the ~inal 

particles have lower undottedindices. According to the conventions 

of Ref. 6, which are adopted here, rota.tions act by multiplication 

from the right or left on lower dotted'and undotted indices 

, , 'respectively.] 

" At w = mc - m~ > 0 it is vc
O ~ 1 'and vd

O 
+ 1 that 

vanish. The argument is just the same, except that the N d = 2Jd (mod 2) 
c " , 

boost factors associated with d all get ,an additional overall sign 

change. Thus one obtains, instead of (4.5), rather 

(4.6a), 

, For continuation around W = ma - ~ > 0: one gets 

;> (4.6b) 
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Equations (4.5) and (4.6) were derived in Ref. 2 from an 

analysis of Williams' representation of M functions in terms of 

'. invariant functions. They are the basic equations for the analysis 

of threshold and pseudothreshold kinematic branchpoints given there. 

[Certain sign differences are due to the unorthodox definition of 

helicity states used in Ref. 2.] 

..... { 
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5· THRESHOLD .AND PSEUDO THRESHOLD POLES 

Define 

{[S r 2 2 2" 
- ma +~) ] [s - (ma -~) ] = Sab 

and 

.. {[S 

And define 

-I .. .',J:' . 

2 
(mc + md) ] 

max (Jrv , J ) ..... '1 

}l 2 2" 
[S - (mc - md) ] = Scd 

. , 

l,TCRL-18115 

= S1 (5.1a) 

= Sf • (5 .lb) 

The rotations :a'(9) in; H:: FR(9). are constructed as'linear 

'combinations of terms of the form 

where 

Thus near S. Sf = 0 each of these te~ms has a singularity of the 
. l. 

form .(See (2.10*)] , 

(S S ) -N/2 (S S )-j 
i f = i f 
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J " singlet projection . a, 

It is shown in the Apllendixthat the, action 6fiJa ' upon the boost' ,'. 

,factors in . F produces an effective'factor 

j -J 
(8 ) ex ex, 

CXf3 

, where 13 is the mate of a" in the pairing, (a,b.) ,or (c~d), and 

(i,f)., is i or f according to whether, ex is in1tialorfina.l. 

"" The four factors (5.5), for ex = a, b,c,and d, reduce (5.4) ,to the 

form 

.. , .... 

-J -J 
8 i, 8 ' f = 
, i t, .... 

' .. 

-J -J. ' -J ,-J 
8 a b S c d 
ab' cd 

I 

" 

,; ',," 

where J i ;: Ja + Jb 'and J f = J c + Jdo This is the worst possible 

singularity in Hi cancellations conceivably 'could 'reduce the magnitude, 

, of the exponents ° 

, Define 

. with , A. = A.a - ~ and Il = A. c 

" 

The matrix elements of R(Q)' 

are polynomials in cos Q of order at most j- M,wh~re j == N/2, 

'as before, and ME 'Max (IA.I, 11l1)." This fol;Lows from the fact that 

," Ii 

'-1-" 

,I..' 

- ~.' 

, ' 

";-.' 
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R(9) is a linear combination of factors (sin e/2)P (cos e/2)N-p, 

where p - I~ - ~I = (even integer) ~ 0 and 

(N - p) - I~ + ~I = (even integer) ~O. These conditions on p 

:follow easily from an examination o:f the :form of [n ® Ri J. 

In terms of R, H becomes 

H = F R(e) , 

where the indices are now suppressed. The worst possible singularity 

of R(e) at 8i 8f = 0 is evidently· (8i 8:f)-(j-iiI). Thus, in 

view o:f (5.5), the worst possible singularity in H is 

-(J -iiI) -(J -iiI) 
8 i 8 f 

i :f 

-(J +J. ~M)-(J +J -iii) 
= 8 a b 8 c d 

ab . cd ' 

as :follows also directly from (5.6). 

" 
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6. COMBINED RESULTS 

The various results given above are the ingredients from which 

regularized helicity amplitudes are constructed in Ref. 2. One can 

therefore follow their procedure. Alternatively one c~~ use the 

procedUre of Ref. 4. 

Invariance under space reflection was assumed,in Ref. 4, but 

this is unnecessary. In the general case one uses in place of (3.9*) 

the definition 

(6.1) 

where N~ and N; are the operators that give the number of factors 

0 1 ' 
. (Va - 1)2 associated with the initial and final particles, respec-

, SIJ~ o~ ("n " ' 
tively. The twoTsigns on the right~are identified with thetwoisigns 

on the left, in the same order, so that N; is even or odd according' 

to whether the sign on the left in F± ± is plus or minus, and N~ 

is related in the same way to the sign on the right •. Then (3.10*) 

shows that the function 

(6.2) 

is free of kinematic branch points at sums and difference of masses. 

Here Gi(O'i) is the function on the right of (3.11*) corresponding 



, .. 
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to the sign O'ion,the left, for the case' BB, FF,or FE. at hand, 

and Gr(O'F), is the corresponding function for the final particles. 

The same argument works if F is replaced by H. The 

, - + '( 0 )~ operator Na ~ Na +Na is the total number of factors va - 1 ? 

and (va
O + l)~ •. This number includes a term 2ja [see ( 5.2)] 

coming from the 2ja boost factors associated with particle a. It 

also includes contributions from the powers of cos 9 in R 'of 

Each power of cos 9 has one factor of Sa~ in the denominator. 

Now 

o 1. 0 1. 
(v - 1)2 (v + 1)2 a a 

o J.. 0 1. 
( V - 1)2 (v + 1)2 
~ ~" 

where ~ means equal up to factors regular at sums and differences 

of masses. Thus each power of cos 9 can be considered to subtract 

two from either Na or N~. Since only the evenness and oddness of ' 

Na and N~ are relevant to the arguments, these contributions from 

R can be ignored. 

Thus if one defines, in analogy to (6.1), the function 

-+ +-H- , (6.4) 

then (3.10*) shows that 
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is free of kinematic branch points at sums and differences of the 

(unequal) masses. And the arguments leading to (5.2*) show that -

(6.6) 

is free of all kinematic branch points .• ' : [The variable is'W for 

the FB caseJ. 
No. 

The operator (-1) f acting on H changes the sign of each 
·0 1.. '0 1.. 

factor (v c - 1)2 and (v d - 1)2 •. This is equivalent to a continua- .-

tion of H around W = m + md• Thus (4.5) gives , c 

N- _c:f 
(-1) f HAI-i = H = flf H_ArA. , 

AfAi 
' ~ 

. ' and similarly 

N~ _ _c
i 

11· HA -A (-1) H - = 'HA~i = .. 
" ArAi ~ f i 

(]f(Ji 
These identities allow HArAi to be expressed as linear combinations 

of the H 
+A +A ' .. f- i 

with the appropriate coefficients 

'(6~8) . 
• 

!,:,-

• -,1. 

. l' . 

, , 

., , 

' .. ". 

, . \.. 
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The :f'unctions 1t± t defined in (6.6) have no kinematic branch 

points, but they may have k!nematic poles •. According to (5.9) the 
, _ J +Jb-M 

functions Ht t (Sab) a will be bounded at Sab = O. Thus if 

i\+ Ja +Jb -M • 
Ja + Jb - M is even then H- Sab must free of kinematic branch 

points and poles at Sab = 0, since it is .. free of branch pOints, and 

thedeno~nator ~ction Gi(cri ) cannot lead to poles.' If 

Ja + Jb - M is odd, then 

J +J -M-l. 
S a b G2 
ab i 

must be free of kinematic branch points and poles at Sab = O. For 

" -t ± if the, factor Gi is regular at any point of Sab = 0, then H 

can have no branch 'point at that point, since ~± ± has none, hence 
J +J -M-l 

the factor (S ) a b is sufficient to ensure boundedness. If ab 

the factor Gi is singular at a point of Sab = 0, ,then 

would not necessarily be bounded at that point, both because of the 

singularity of Gi in the denominator, and because of the one 

missing power of Sab' which is needed to ensure the boundedness of 

H. The factor di supplies the two needed powers. 
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. ; .. :" 

The same arguments apply to ,the final particles. Thus we may. 

conclude that, 

",OfOi (tf Oi Jf~M-ef J -M-e 
S' i i H =, Sf i " , 

2ei 
' 2e 
G f (6.9) Gi f, 

is free of kinematic singularities. Here is 'zerO or one 

depending on whether J i ' ;':i M = J a + Jb , -Mis even or odd, and, et, 

is related to J f M = J c + J d M in the same way., This is the 

result obtained in Ref. 2. 

: ' 
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" 
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APPENDIX 

DISCUSSION OF THE REPRESENTATION (2.10) 

From a set ofn 1 spin:2 states one can form, by Clebsch-

Gordan composition, states of various spin J~ n/2.Let the original 
1 . . . 

spin-2 states be numbered in a particular way, and let a sequence of 

states be formed by first combining the first and second spin ~ 

states to get a state of spin zero or one; then combining this with 

the third spin ~ state in the various ways consistent with the vector 

sum rules; and so on. The particular mode of composition is described 

by a: set 8'= (J1'J2,· ° °In_l,Jti) of n spins J i , where J i is 

the total spin of the system consisting of the first i particles. 

(Thus J l is 1/2) and can be suppressed if desired; or J
O

:: 0 

: can be included.) 

Let the generalized Clebsch-Gordan coefficient that connects 

the set of n spin ~. indices to the single spin-Jn index a via 

the sequence. Q, be denoted bye( tV a' a ···a ) =' «(),a Ict •• oct ) Q l!~ , 1 . n ., 1 n 

They are defined inductively in terms of Clebsch-Gordan coefficients 

by the f9rmula 

(Jl .... ·Jn,alctl···an ) = I (Jl···Jn_1'13I~···ctn_l) CJ 1 1 (In,a;t?pn)' 
13 n- "2 

.• . ,0]- (A.l) 
. "'. , .... : 
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They are real and obey the orthogonality relations. 
.'1 . 

. . ,.,:)'" 

(A.2a) 

and 

(a ···a I~a) ·ta la' •• • a,) ="""'8 , 1 n n I I a.a. . .. i 1 1 

(A.2b) 

( By means of these coefficients quantities in any space of n 

variables a i = ± ~ can be transformed to the ra representation. 

To compactify the 'formulas we define, for 

and similarly 

(A.4) 

The coefficients a(€ai; s, t) of (2.9b) are also represented in 

this bracket form: 

··i· 



. , 

," . 

, 
~ .'>< \ ,,",' 

,.J. 
,-;-

.J 

'. . ~. 
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'a( e' ••• e' '. •••. e .••• €..' ••• '~; s' t) 
.cl dl"', al 01' """ 

(A.5) 

Then (2.9b) becoIlles 

, , , 

00 ' ", . 0 0 
B (v ' ) Bd(vd >a(S,t;W)R(e) B (v ) R (Vb ), .c C " a a 0 

(A.6) 

where the bracket identity Ii) (i I == 1 is used to recover (2.9b) .. 

The variable W in e{(s,t; W) indic,atesthatthe explicit powers of 

. W appearing' in (2.9b) are incorporated j,.nto it • 

ThC? Clebsch-Gordan decomposi t~on iflnot specifically associated 

with spins; it is basically a decompo~ition according to symmetries. 
C41o\ 

In any case, the formal identities (A.l) and (~.2)i\be applied just as 

well to the e: variables as to spin variab,les., Thus we may write 

.. 

(~aE, EaIBa(va
O

) ® (~be,~Il\,(VbO)' 



~." • I 

-26 .. UCRL-18115 

fJ, rv e where the superscripts on the ~ ~ signifY indices of the Clebsch-

Gordan decomposition of € space, as opposed to spin space'. 

Applying the Clebsch-Gor~ decomposition also to the spin 

variables, one obtains 

= , (~c' AcIBc(Vc)1 c' o ~' ;..' . 
c' ' c ' €c> ~€ 

~ 0 I ( d' AdlBd(vd ) 19' d' 
I 

Ad; fide, €d) 

(~/c" ~' I g' I 
I . ~; ~b' ~) AC' d' AdIR(e) I 'a' 

The C1ebsch-Gordan coefficient e(~, a; a1 " -an) has the, 

follOwing symmetry property: It is anti symmetric under interchange 

of a 1 and a i +1 if, and only if, 
, \ 

J i +l = J i _l ; and it is symmetric' 

, :,;;,' 

. ,,'). 



-. 
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.' 

under interchange of .01 and 0i+l if, and only if, 

IJi +l - Ji_ll = 1. This property is used continually in what 

follows. 

By definition 

The factor 11 ® Bi is completely symmetric under interchanges of" 
i 

labels i. Thus the product of the three factors e, :l,.n (A.9) must 

also be s.ymmetric under the simultaneous interchange of labels 

i ~ i + 1, if the sum on the right is to be nonzero. Thus if any 
~I . 

two of the three sets ~?! ' ~ € are given, the, other is uniquely 

determined. The relationship between the three J'sis visualized by 
, € 

drawing plots of J i , J
i 

and J i versu~ i, with straight line 

segments in the intervals between integral i. The plot Jiis 

said to have a "break" at position i if and only if J J , , i-l = i+l' 
, € 

and similarly for J i and J i " If one of the three curves has a 



"'1. 
,,·f 

~, ' 

-: , ' .. -
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,- . \ 

. ~ '; .' (~, ~~. > t '.' '. ~" ,":" £".' ~'.-. """ 
"'/ 

, ~":." .. ' , ,'~. ~ , , ., . 
~ , ' . 

I', ' 

",,\.. ' . .',-' ... 
~ ... :" /.: 

, " 
, ,,'''' 

. ~:, 

'. ; 

, . ~ : .- ,'.' -
f .. '. - ' 

.' ". 

c' 

,.', 'r 

! --- ... 

and the Jacobi pblyn~mialS have th~symm.etry 7 
i 
!-. .' ~' 

•. , .. p~!~-~I, IA~/) (cos 9) = (_I)J-M p~!~+~I, :IA-~/).{ .. ~OS9). t .. " 
"'.' ; ., 

; .. ; " 

.' . 

The explicit formula for the boost factor in (A.8) is· 

. , . . . 

v /p(ll' A'. ~ .. . )../) /l} «), "'e' e ..... e.)· .•. " '-"'. t! J.. .' I . n t..:.. Q.I': l·n 
. , - . 

In the,helicity frame, where ~h = ~3' this reduces to 

, . 
(A~'14)' .•.. 

'; , 

.:,. 

" ':,.' , 

I ~: '" 

. . 

(A.15)·· . 

"".; 

' .... ,' -

. " .. / ,:.' .. ''\ ... 

, "< . : .' 
.' ~. ,. " 

, l' j'-

(A· '1,6) . '.-'(" :'." 
" .' . . 
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1 
~ 

fli. 
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! 
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. :" 

-".,. , 
, '. ~,~' ,± ,':$igrl "is ,plus ' tor" partic.~es ~ :an~" ,c, whose A'S ,are plus 

the '~ .. compohent o·fspin, and llP-nus :for' 'p~ticles·ba.nd d, whose 
"", .1 ". • • 

" A.' s ::, "a.remi~u.s the z: ,component. ',:1 

. ..... ·· .. iions~iile~ thE cas •. n: 21' ~.~n .. ~~.~ ... ~,' ,:,r __ • 0, I' [t'l'hhee' fC1iXebedSCh_ 

Jf ==1 is sl;lppr~ssed in 9',~ (J{"J2 ),J" ,for Q' 
" , 

,); "Gofdan coefficient € ;'"€l' , e:;J 1~;the synnnetrizer: 
. ".; I ...... 

',' 
'. ,1'-

'e 

: (!, (1;€; = ' e (1,€; 
""" 

: ~ ;-. 

',. . ~.; '>":: 

.<,f. ' 

.. , 
.... '" r'.;-

, .' 
" '" 

'" ' 

" . ~ 

. "i" ,," : ~ 

1 ,roi', '€i : + € '~ -
.' ; 2 .. 

::: 
, 

1 'for 
" 

= :;n'" "i~ '~1 -+ ~2 ., 

, >, 
" 

',' " 

1 fo;r t = ~+'+ "€ ,~ 2 

= 

° 

These same ' torm~a.sho1d With , €"f~p~aced:byA.. 

, .. " , 

" " 

" " , ' 

'1' .. _ ," 

. ,.~ 

,", . 
'. " 

= 1 

= () 

= -1 . (A.17) , 

(A.18) 

Direct computatio~ 
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, 1 [0 1 0 2' (V + l)? ± '€A(V 
, 1] 2 1)2 "tor 

for / A./ + / € I = 0 

and 

_~ 0 ],. 0' ],. 
± V 2 (v + 1)2 (v _1)2 for A = 0 

o for A. = 0 • 

The factors 5JJ1 and 5J +J ',1 are in accord with the general 

n,d' connection between 1 g and ~ E: discussed above. 

The maximum possible value of JI is jrv [see (5.2)]. ex ' u. 

J~ 1s jex' then the plot J~i has no breaks, and 

(A.19) 

(A.20) 

If 
-. " 

In 

, ,this case the product of the three factors ~ in (A.16) will be 

ant1symmetric under interchange of any two variables Ai with 

': 1 ~ 1 ~ 2(jex - Jex ) + 1, and symmetric under interchange of any two, , ' 

'. 
i 
I 

I' 

f' 

f 

"., : 

~'. 
, 
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" 
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variables', '~, with '2(ja Ja ) + I ~ 1. ~ 2ja'" This same ,symmetry 

.' holds B.lso for the€i' In particular, ~heproduct of the e, I s 

will',be B.lltisymmetrlc in both ')...- and €~ ,~aceunder interchange of 

th~two variables of, ea~h of the, firstja - Ja pairs of variables. 

The' factors e will therefore' convert the two boost factors of each 

of theSe ja - Ja pairs into factors (A. 20 ) . This gives (5.5). 

IfJ' a is less than 'ja' then there can be fewer of the 

boost factors (A.20)~ 
, ' -, " -

On the other hand, if Ja is less than Ja , 

th~n the' ja in (5.4) can be ,reducedtOJ~, as is seen from (A.li).' 

[RJ (9):' can be constructed as a linear compin~tion of 2J elementary 

.. rota~ion operators.] These changes co~~nsate each other, yielding 

;',; (5.6) and (5.9) in all cases. In particU1.ar, it is shown below that 
~;' , 

; <",'-

the number of boost factors (A.20) aS,sociated with particle a is 

(A.21) 

where I is a positive integer, or zero., This equation ensures that 

the'boost factors (A.20) combine with the singularities of R(9), 

to give. (5.6) and (5.9). 

By combining R(9} 
€ ' 

with the na: boost factors (A.20) we 

have, effectively repla.ced the variable inde~ J~ by the fixed index 

Ja,:in the exponent of the singular factor. Similarly, the exponent 



:,1 

I •• ~:' ;::.."t: 

.. " , , 

" " 

.' ' 

" r 

UCRL-18llB ' , • 
'. ' . 
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Ja " in (4.1), which in general should be J~,' will be changed to .' Ja 
€' . 

if the, nO. boost'factors are combined with R(9).It ·is. shown 
" . ' € 

below that if the no: boost factors are removed from: F, then the , 

effect of reversing the signs of all 
o .!. 

(va - 1)2 is equivalent to 

,',-reversing the signs of all the indices \x.' Thus (4.1) leads· to (4.2). 

The general relationship betweenfJ-a' ra. and ~ a € 

€ entails that if there is a,break in Jai at i, there must be a 

break at i in ei ther J~i or J~i' but not both. For such a point 

i the symmetries under i ~i + l' in the indices of the three 

e 's in (A.IO) are just those that lead to (A.20). That is, these 

symmetries are such that the two elementary boost factors Biand 

'Bi +l of (A.16) combine into a factor (A.20), which' conserves 

and 

also 

Eaj , in the jump from j = i - 1 to j = i + 1; conserves 

orJ~j; and gives a one unit change to . Jaj + J~j. 

The symmetry property. of is such that it is 

' .. symmetric or anti symmetric under' the interchange a j ~ Ok (k > j) " . 

'. . -

according to whether there is an even or odd number of breaks in J i " 

. 
in the range j ~ i < k. This means that if there 1s a break in J j .... ~"', 

, .. ' ,: . 

at· j = i then the symmetries in the indices a j with 

j + (i or i + 1) can be obtained by simply eliminating from the. 

, .. : .;.: 

-,', . 

,:,;- ~. \ 

.. 
.' ~. . .' 

, 
,,' . 
~. - . 
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curve J
j 

.the two segments incident on.the break at j =1-, and 

considering the plot of the reduced curve J
j
r , which has these 

segments taken out. That is, the symmetries in the indices 

or i + 1) r are given as well by J. as by J .• 
J J 

This 

permits one to proceed stepwise, first eliminating, in favor of 

factors (A.20), the pair of boosts incident on any break in 

then. the pair incident on any break in the reduced J. €r, and so . 
~ 

on. Finally one arrives at a curve J. Ef that has no breaks. 
J. 

The 

number of boost factors (A.20) introduced during the reduction of 

to J Ef is 
ai 

TO derive (A.2l), note that 

downward slanted segments of the curve 

= 
€ 

+ n a = 

is just the number of 

Thus 

= (A.22) 

where is defined in (5.2), and are the number of 

, 
downward slanted segments of Jai and J., respectively. 

O:J. 
The 

relationship between the curves Jai , J~i ,and Sexi E demands that 

the total number of downward sl~ted segments in each interval 

i to i + 1 be even. Thus one obtains)by summation) 

= (A.23) 

which in view of (A.22) :i.s equivalent to (A.2l). 
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Once the no. e ,boost factors (A-.20) have been' f~ctored out 

of F, the remaining function F' is 8uchthat a change of sign of 

all fa~tors (Va 0 - l)~ is equivalent to a change of the signs of _' 

all indices \x on F'. An ,equivalent statement Is, 

'In e 
a 

= (-1) F ' 
-A -A ->.... -A d ,C"D a 

(A.24) 

Wh,at must be shown to prove (A.24) is that the product of the three 

(! IS in (A.16) goes into itself times (";l),n
e 

if the signs of all 

are reversed. The reversal ofthesigris of 

M,' m andm 
I 

takes into itself times the factor " 

., 2(J - j) =±l~ Thus there will, -be a net factor of -1 whenever 
I. 

Jai changes by a unit. 

The distinction between 

Thus (A.24) follows from (A.2l). 

J' ,andJ is not indicated 
aa 

in (A.4*) , and the Ja's in the expression for the sign in (3.8*)" 

.... " . 

',<: 

..... 

,- ' 

.-

" 

0, 

f , 
• 
,.-
,f 

l' 
~." , 
j 

\01' ,~ 

!.: 
;; , 

i 
/', 
/. 

r , 
" 

',: '- ,:': 

should be primed. Consequently (3.6*) should read 

, 
, I 

ifretlection'invariance is maintained.' The equation Pz 2 = mj 2 " " 

near the end of Ref. 4 should read pz2 = -mj 
2 • 

. " ,-

~ '. '. 

i" 

1-- .. ' .-;' - - I;, 
, t· 

.,' .,' !~ 
~··.F 

, , 
-" ' ;:1'-' 

1 . 



. 
. j 

" 

I . 

, 
i . 
. ~ 

. , , 
) 

j 
1 

., 

!' •. ,j 
l , .. ": 

. 

-37- UCRL-1Bl15 

FOOTNOTES. AND REFERENCES. 

* This work was supported in part by the U.S. Atomic Energy 

Commission. ' 

1. G. F. Chew', M. L. Goldberger, F. E. Low I and Y. Nambu, Phys. Rev. 

106, 1345(1957); Y. Hara, Phys. Rev. 136, B507 (1964); L. L. Wang, 

Phys. Rev. 142, 11B7 (1965); S. Frautschi and L. Jones, Phys. Rev. 

(to be published); K. Y. Liu, Phys. Rev. 122, 1515 (1967); 

H. F. Jones, Nuovo Cimento 50A, B14 (1967); B. Diu and M. LeBe11ac, 

Nuovo Cimento ~, 158 (1967);, G. c. Fox, Phys. Rev. ~, 1493 

(1967); A. McKerre11, Cambridge Prepririt ,(1968) • 

2. G. Cohen, A. Morel and H. Nave1et, Ann. Phys. (N.Y.) (to be 

published) . 

3. J. D. Jackson and G. E. Hite, Lawrence Radiation Laboratory Report 

UCRL-17959 and Phys. Rev. (to be published). 

4. H. P. stapp, Phys. Rev. 160, 1251 (1967). Numbers of equations 

from this paper are indicated by asterisks. 

5. A. Kotanski, Acta Phys. Po1on. 29, 699 (1966) and 2Q, 629 (1966). 

6. H. P. stapp in "High-Energy PhYSics and Elementary Particles", ' 

(1965 Trieste Conference). [IAEA, Vienna] Eq. (2.29). 

7. G. Szego, Orthogonal Polynomials (American Mathematical Society, 
, 

New York,1939). 



'", 

• 

9' 

This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
m1SS10n, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 



I 
I 

I 

o 1111111111 

111111 

H 
I!, 

.. 


