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 ABSTRACT

A method is presented for calculating range and stopping-power

data for any heavy ion with 0,01 < & < 500 MeV/amu incident upon any

/
nongaseous stopping medium. - The method is incorporated into a

2
FORTRAN IV computer program. Results for H, 4He, ! C, 20Ne,

84: 131 222 v
40Ar, 8 Kr, Xe, and Rn ions each incident upon HZO’ Al, Cu,

Ag, Pb, and U are presented.

For ions at low energy with Z = 10, the program uses experi-
mental data. For ions with Z > 10, the nuclear and electronic stopping-
power theory developed by Lindhard et al. is adjusted to fission-product
range data at low energy; for intermediate-enefgies, charge-state data
developed from experimental Ar range-energy data in Al is extended to
other ions and stopping media. Bethe!s theory is used for all ions at
high energy.

Bloch's theory is discussed, although it is not used in the method.

The particle rén_-ges calculated by the method are pathlength
ran‘g.es .énd do not include the effecfs of multiple scattering. A method

for calculating projected range at low energies is presented as an

. appendix,
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NOTATION

Page of
Symbol - First Appearance
€ 1
Z1 6
Z2 6
B 6
A1 6
v 6
E 6
by 10
m 10
dE ‘
-Eﬁ 12
B 12
A, 12
Re 12
e 12
m 12

Description of Symbol

The specific energy of the ion in
units of MeV per atomic mass unit
of the ion

The atomic number of the ion
(projectile).

The atomic number of the stopping
medium (target).

The ratio of the velocity of the ion
to that of light in a vacuum.,

Atomic weight of the ion,
The velocity of the ion
Energy of the ion in units of MeV,

The ratio of the root mean square

of the ion Z1 to that of its nucleus,

The mass of the ion,

Stopping power in units of MeV/
(g/cm?),

The stopping number (dimensionless).,
Atomié weight of the stopping medium
Real part of a complex number.

The charge on an electron,

The rest mass of an electron



Page of
Symbol First Appearance

c ' 12
I 12
4 13
€ 14
k 14
S 22
f 22

dE
(ﬁ) 28
&

Description of Symbol

The velocity of light.

Average atomic excitation

potential of the stopping medium.

The dimensionless unit cor-
responding to range due to
Lindhard et al.

The dimensionless unit cor-
responding to energy due to
Lindhard et al.

Electronic stopping- power
constant from Lindhard et al,
(see Eq.(16) and Ref. (18).

- Identical to dE/dR above. This

symbol is used where a less
cumbersome notation is
desirable.

The ratio of the stopping power
of an ion Z1s at a particular
velocity, in a given medium
Z_, to the stopping power of
the same ion Z. at the same.

“velocity in Al, Z = 13. This

is called "'relative stopping
power'! in the text,

2
Stopping power {MeV/(g/cm))
for protons, '

Proton range (g/crnz) .

Mass of a proton in atomic
mass units, '



rs

Symbol

W ' I .
oy - adj

Page of
First Appearance

28

28

32

- 35

37

38

- 40

40

. Description of Symbol

‘Average atomic excitation

energy of the stopping medium
adjusted so that the shell
corrections can go to zero in
the relativistic limit,

Density of the stopping
medium.,

» 2
Ion range (g/cm ).

Electronic sEopping power
(MeV/{(g/cm")).

Nuclear coulomb stopping
power (MeV/(g/cm®)).

er

The ratio of the velocity of
an.electron in an ion's
electron cloud to the velocity
of the ion at which this
electron's capture and loss

. cross sections are equal, -



1. INTRODUCTION

A. Purpose for the Research

The purpose for:the research repofted here'is'to provide
estimates of the stopping power and ranges of all charged particles
which will be accelerated by the Omnitron. The Omni‘cron1 is a
proposed synchrotron which will accelerate any nucleus from hydrogen
through uranium to any specific energy up to four to five hundred
MeV/amu.

Throughout this paper we refer to MeV/amu, represented by
the symbovl €, as a unit of specific energy. It is a unit intermediate

between velocity and energy. - The relationship to velocity is given by:

2 - .
e=931[(1-p5 207, or
£ "a l/a
931~<T9_31 +2>
B = ;
£
53T + 1

and the relatioﬁs‘hip to.energy is given by:

vezv
S

The slowing-down mechanism of a charged particle in matter is similar

throughout any plane of constant velocity in (V, Z ZZ) space. Since

1,
€ is a function of velocity only, the same statement can be made -

" regarding any plane‘ of"ﬂconlstant’speciﬁc energy in ( €, Zl’

This statement cannot be made for a plane of constant energy in

ZZ) space.

(E, 2 ZZ) space. In this paper, we use specific energy as the

1’
independent variable rather than velocity or energy. Thus we use a

unit which is a natural variable of the stopping-power process in the
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same sense that velocity is, while at the same time we have a simple
relatlonshlp between this unit and a common unit of energy.
We will find it convenlent in this report to discuss information

in terms of { €, Z ) space. For instance in Fig. 1 the slabs

1:
covering the bottom apd part of Lhe back of the box represent the

volume of thls space for Wthh present accelerators can prov1de heaVy
partlclesa Alpha particles, as indicated in the figure, can be accel-
erated by the 184-Inch S.ynchrocyclotron to 230 MeV/amu. Protons,
represented by the bottom slab, can be accelerated above 500 MeV/_amu:; .

The AGS at Brookhaven and the compérable accelerator at CERN can

accelerate protons to about 30 000 MeV/amu. . The accelerator at

" . Serpukhov can accelerate protons to 70 000 MeV/amu. The computa-

tional method incorporated'into the computer program of Appendix A

can supply stoppmg power and range data for Z_ and L greater than

1

92 and for € up to 1200 MeV/arnu. In this paper, however, the
boundaries.of the space we consider are given by: O,.Ol = & = 500,
1 < Z1 =92, 1 < Z2 < 92, because it i's this region of ( £, Zl’ ZZ)
space which describes the capabilities of the Omnitron. The slab along

the back of the box describes the capabilit-iesb of the Hilac at Berkeley.

" and the comparable accelerator at Kharkov. These two accelerators

can give ions with Z % 20 a specific energ.y of up to 10.4 MeV/amu.

~Using this ( &, Z ZZ)‘ space as a device for restating the

1,
purpose of this research, we may say that it is our aim in this report,
to provide a computatiorialb method for filling the box in Fig. 1 with
range and stopping-power data.

~We wish to state here at the outset that the range we calculate

1s the total path-length mean range and does not take into considerationv_'_

the shortening of the projected range due to coulomb rnultiple scattering, °: -

‘This is discussed further in section IIIB1,

A second purpose of this research is to provide the basic

stopping-power data which are needed to calculate the beam properties

T .




v Fission
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Fig. 1. A geometric view of that part of (e, Zl’ Z ) space for which

0.,01<e=<2500, 1<z 1'<92 and 1=z, = 92, The regions of
this subspace for which experimental stopplng power is available
are indicated by the slabs covering the bottom and part of the back
of the box (accelerated particle data) and the two 11nes on the back

of the box (fission product range data)
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of the Omnitron particles. For example, relative dose, particle energy
sp'ectrum, LET spectrum, and beam width all as a function of depth

’ 3by means of introducing the effects of

have been calculated by Litton
straggling, removal of particles due to nuclear collisions, and multiple
coulomb scattering. Litton's calculations have been carried out in such
a way that the characteriétic_:s of the Bragg peak are carefully
determined. '

A third purpose of this research is to provide the radiobiologist
with early information about the energy deposition or LET distribution
of the Omnitron particles. This information is useful in anticipating

radiobiological effects, suggesting expei‘iments, and designing the

facilities associated with the Omnitron,

"B« Guidelines for the Research

_The apvprox}"im':at.:hé- limits of the only useful experimental stdp—
ping-power or range data available are illustrated in Fig. 1. The
three slabs of ( ¢, ZI’ ZZ) space in which experimental stopping
power has' been accumulated by means of presently accelerated par-
ticles are shown. The two lines on the back of the box in Fig, 1
represent experimental fission product range values in aluminum and
uranium respectively. Since the experimental daté. from these small
regions must be extraéolated thréughout the entire volume of the box,
it is clear that the first guideline must be to include enough physical
theory in order to make this extrapolation éffective. '

The theory that we normalize to the experimental data must be
general enough to allow extrapolation to remote regions of ( ¢, Zl'
ZZ) spé.ce, Were we to have limited our study to a smaller region of
this space, we could have considered, in more detail specific inad-
equacies inthe present theories such as those found by Aras, et al,
and Fastrup, et al. > ~We could have used, more directly, isolated

experimental data and empirical range formulas. However, for our
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purposes here, we are willing to sacrifice some accuracy in specific
cases in order to retain the generality of our theory.

The final guideline is that our method of computing range and
stopping power must be conveniently programmed requiring a min-

imum of computer time and core space,

C. Historical Background

1. Theory
The interactions of energetic heavy charged particles with
matter has been of great interest for over half a century, Bohr devel-

oped the semi-classical stopping-power theory using impact param-

6, 7
eters in 1913, ' Bethe published his purely quantum mechanical
theory in 1930.8’ ?
Each of those theories is valid in only part of the ( €, Zl’ ZZ)

space. Bohr's theory is valid only when the following inequalities are
satisfied.

7. <<137p, | | (1)

2
‘(Zgrzl),-l/3<<137ﬁ, (2)
—— << screening distance of scattering
mV :

atom, and _ (3)
r'Zl >> 1378, o : - (4

where t is Plank’s constant divided by 2%, m is the mass of the ion,
V is its velocity, and the screening distance of an atom is the distance
from its nucleus to the radius where the screening by its electron cloud
has reduced the effective ﬁuélear charge to 1l/ev of its true value.

Thé expression 1373 appears many times throughout this paper.
This expréSsion is the ion veloci‘ty'in ﬁnits.of the Bohr orbital K shell
velocity of the hydrogen atom. When discussing the interactions of
chaxged particles with matter, this is a very convenient unit of velocity.-
Since the K shell electron velocity of the one-electron atom is propbr-

tional to the charge of the nucleus, inequality (1) can be restated:
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"In order for Bohr's theory to be valid, the velocity of the ion must be
greater than the K shell electron velocity of the s.topping medium, "
Similarly, inequality (4) limits the ion velocity toless than its own K
shell electron velocity, Therefore Bohr's theory is limited to that

regionof ( €, Z ZZ)' space where the ion carries along with it its

1’
own electron cloud. This limits the usefulness of Bohr's theory to the
few cases for which adequate charge-state data is available,

Bethe's theory, because use was made of the Born approxima- |
tion, is limited to the region where ‘

rZ << 1378. (5)

1

. 11 : .
However, it was shown later by Mott  that the less restrictive of
inequality (5) or

z_-zl<<ZZ (6)

is sufficient. Thus, since the K shell velocity of the ion is approx-
imately B = lel37 the use of Bethe's theory is essentially restricted

to the region of (&, Z ZZ) space where the ion is completely ionized;

s
although for very low inergy when r ~0 the theory is again valid.
Bethe originally also require& inequality (1), However, he later
showed with I_,ivingston12 how the inclusion of shell corrections could
eliminate the need for this ineéﬁality, These shell corrections, in
effect, subtract from Bethe's formula the contribution to the stopping
power of those most tightly bound electrons in the stopping medium
which at low ion velocities, are rarely excited. Walsk_e13 made a
detailed derivation of the K shell correction. He later made an estimate
for the L shell. 14 Recently Bichsel15 has estimated corrections for
all higher shells of the stopping atom.

| In 1933 Bloch16 de\.reloped his theory which, in addition to

inequality (1), is restricted by

/2

1
(Z,r7Z,)  “<<137p (7
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Bloch'!s theory proQides a bridge between Bethe's and Bohr's theories
in the sense that Bloch's theory agrees with Bohr's theory in the limit
of inequality (4) and with Bethe's theory in the limit of inequality (5).

Each of these theories gives the stopping power in the form

) : 2
g@{ MeV\_ g 3072 {r21)° B, (8)
dR»g/cn@ BZA2~_
Bohr found
1.123 sV 2.2
B=2Z,|In__ S 1a(l-PB)-p (9
er ez.w .

where w may be regarded as an effective oscillation frequency of the
electrons in the scattering atom. For Bethe's theory, including shell

‘corrections,

2 2
2 =G
Bez, lm et P oY -t - I8 o)
N ..Z.é, - R

Here I is the averagé éxcita-tion.potential of the stopping medium, and
21? C; are the shell corrections summed over the electronic shells of

the stopping medium (i. e. i=K, L, M,....), and & is the correction
due to polarization of the stopping medium. For our purposes we may
neglect § since it makes a sighificant contribution only for ion specific

energies above 500 MeV/amu. For Bloch's theory

2 2 :
Zmec ‘3 ) er 2 2‘{
B=2,|In -] +y 1] —Re}b 1+i T8 - ln (1-p7)-p"

where { is the logarithmic derivative of the gamma function,

(11

P
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The usefulness of any of these theories is limited for 1378 = Z1
because for these low velocities the ion carries along its own electron
cloud, implying that r is less than one and usually unknown. As stated
above this makes Bohr's theory not generally useful because his theory
is valid only when this inequality holds. It also mades Bloch's theory
not very useful except in the regionof { €, Z

].,
. 17,1
theory is also valid, Lindhard, et al. »18 have recently developed

ZZ) space where Bethe's

the only generally useful theory valid at low ion velocities, Lindhard
has made use of the Thomas-Fermi description of the electron clouds
of the ion and stopping atom to give a formula for the stopping power
due not only to excitation and ionization of the stopping atoms, but also
to the elastic coulomb collisions of ion and nucleus of the stopping atom.
- The contribution of the former to the.stopping power (i.e. the
excitation and ionization of atoms in the stopping medium) is the only
effect included by Bohr, Bethe, and Bloch in their three theories
discussed above. For specific energies abov_é '1:;:.'.0K"'Me..\[rﬁamu.:we_','may
neglect all other contributiohs to the slowing down of the ion because !/ .-
this electronic stopping power is usually more than two orders of mag-
nitude greater than any other contribution. However, as discussed by

1
Bohr O, in that region of ( &, Z ZZ) space defined by small & and

i?
especially'for large Z1 and large ZZ’ the slowing down of the ion due
to elastic coulomb collisions between the ion and the nuclei of the
stopping medium (i.e. nuclear coulomb stopping power*) will afford
the major contribution to the stop.pring power,

- Lindhard has found it convenient to express his theory in dimen-
sionless units. His unit corresponding to distance is
: N

, |
t=4amna®nN _1 R (12)
A+ A .

e

" This is usually called nuclear stopping power in the literature.
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where Na is Avogardro's number and

2/3 2/3

' -1/2 :
a = 0.8853 2, (Z1 +Z2 ) (13)

where a, is 0.529 10-8 cm, the first Bohr radius for hydrogen. The

unit corresponding to energy is

A1 AZ

-6 a. €

e =1,602X10" " —= (14)
2 A tA, Z,Z,

: . . . . -10 .

where a is given by Eq. (13) and e is 4.803 10 , the electronic

charge in esu., Now Lindhard's expression for the electronic stopping

power is

de /2 '
(az) ke (15)

where k is a constant given by
12 _ 1/2 ' 3
o Z.l_//"-z' / (A, + A )3/2
k=£0.0793 _ 2 1 "2
S 5213 2/33/4 3/2 1/2

Az vz ) A A2

(16)

- 1/6

where £ is of the order of _Zi

for which Eq. (15} is valid is given by

.. The volume of ( ¢, Zl’ ZZ) space

z, and z, >> 1 and | (17)

1/3

z, = 1378. (18)
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2
(Lindhard suggests Z ) /

7= 137 B instead of inequality (18), but we find
this to be an inadequate restriction.) '

The stopping power due to nuclear coulomb collisions is not
expressed in closed form by Lindhard because the Thomas-Fermi |
scattering cross section cannot be expressed in closed form, It is
graphically presented in Fig, 2 in the dimensionless units of Eqgs. (12)
and (14). The validity of this formulation is restricted by inequality (17).
The contribution of this elastic component of the total stopping power is
significant only in the region identified by inequality (18).

In Fig. 3 we illustrate the volume of ( £, Z ZZ) space in

)
‘which each of the above.four theories is valid, Thelboundaries separa-
ting each of the regions are somewhat arbitrarily placed., Lindhards
theory is valid over a plane across most of the back of the box, (It is
actually a slab of thickness given by 0,01 e R0.5 MéV/amu.,) Bethe's
theory with shell corrections is valid throughout perhaps a third of the
box. It is valid over essentially all of thé box for which r is unity.,
There is a small region in which Bloch's or Bohr'!s theory is valid and
Bethe's theory is not valid. However, in this region r is less than one
and uncertain. Thus. the advantage of Bloch's or Bohr's theory over
Bethe's in any region of the box is questionable, It is clear, at any rate,
that over a large portion of the box there is no valid theory (see Fig. 3)
. and no experimental data (see Fig. lb)°
We refer the reader to the literature for other surveys of stopping=

power theory. For a development from first principles of the form of
Bethe'"s theory used today, see Fano, 19 _E_:O”fa brief overvie‘w of the
development of Bohr!s é.hd Bethe's theories see Turner. 20 Fb‘r more
comprehen’sive reviews of the same nature as is presented here, see
Bethe and _Ashkin21 and Northcliffe. 2z For a general theoretical
treatise on the interactions between heavy energetic charged particles
-and matter, including charge exchange and the relationship between the

classical and quantum mechanical ap?roac_hes, see Bohrlo. For a
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0.6

0.4 <

0.2 H f‘*&\\-§-~

d€ /dg

XBL684-2524

Fig. 2. The nuclear coulomb stopping power for heavy ions at"
low velocities. The { - ¢ units used in this figure (see text)
allow one curve to provide this stopping power for any ion in

any medium.
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(d)

XBL684-2529

Fig. 3. In these four views of (g, Zl’ ZZ) space we depict the

regions of validity of four different theories. The theories are:

(a) Lindhard et al. 18; (b) Bohr6’ 7; (c) Blochlé; and (d) Betheg’ 9.
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a recent and useful tabulation using Bethe's theory of stopping power
and range of protons and mesons, see Barkas and Berger. 23 For an
bup—to-date discussion of several topics on the penetration of charged
particles in matter, see NAS-NRC publication 1133, 24
2, Experiment

The availability of experimental stopping power or range values

is limited to that portion of ( &, Z , ZZ) space illustrated in Fig. 1,

Northcliffezz has produced the molst useful summary of the experimen-
tal data in the slab against the back of the box (see Fig. 1), WhalingZS
has summarized experimental data in this slab extensively for protons
and alpha particles dnd also for heavier ions in gases., The researchers
who originally obtained this data are referenced in either of these
two sources., |

The fission product range data repfesented by the two lines on
the back of the box (see Fig. 1) is summarized by Hyde,26 Since the
printing éf this reference, Aras4 has publislhed a summary of his
Ph. D. research with fission product range values in aluminum and
uranium and some éomments on the use of Lindhard's theory for
predicting those ranges.:

Extensive experimental data filling the slab dn the bottom of
the box in Fig. 1l is not available. A few isolated experimental points
in this slab have been obtained in a variety of stopping media for the
purpose of finding empirical values of I, the average excitation energy
of the medium, for use in Bethe’s theory. Bethe's theory is consid-

ered very accurate in this region of ( &, Z ZZ) space so that

1!

extensive experimental data is neither necessary nor useful, Both

tables of and formulas for range and stopping power in this region are .
. ' ' : 2

given by Barkas and Berger.

D. Scope and Structure

The unique aspect of the research reported here is that nowhere

else has stopping power and range been generated for such a large
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continuous volume of ( &, Zl, ZZ) space where active charge exchange
between ion and stopping medium occur. We have generated stopping
power and ranges for all ions from hydrogen through uranium in any
nongaseous stopping medium over the velocity interval from 0,01 to
"500 MeV/amu continuously, Over this velocity interval the charge on
the ion varies from less than 10% to 100% of its nuclear charge. The
dE/dR maximum is contained in this interval for all ions, The genera-
tion of accurate stopping power for the very heavy ions in the region of
dE/dR maximum is at this time a difficult undertaking. The techniques
developed here is a first order attempt to supply this data. We expect
‘and solicit critical appraisal. It is expected that the Omnitron, upon
completion, will allow experimental evaluation of our techniques.,

There have been several efforts to produce stopping power tables-
for use by researchers, but these tables usually do not give values
which are valid for that difficult and large region of ( ¢, Zl’ ZZ) space
in which active charge exchange occurs (see eg. Refs. (23) and (27)
through (30)]). Bichsel3l, however, has developed a procedure for

obtaining good stopping power in the regionl = Z =12, 1= Z2 =92,

1
and 0.5 < & = 1000. Bichsel uses Bethe's theory paying careful
attention to the shell corrections. He estimates charge-state correc-
tions for the ions at low velocity, Benton32 is working towards a
method which will provide stopping power for at least some of this

regionof ( & Z ZZ) spéce which is so difficult to treat. He is

1’
generalizing experimental data obtained from track segments of
heavy ions in polymers by fitting these data with polynorhials of the
type suggested by Barkas and Berger (see Eqs. (22) and (23) for
examples).

The availaBility of experimental stopping power and the validity
of the various theories are each restricted to its own region of ( £,
- Z

1’ ZZ) space as discussed in the previous section. Thus in developing

our method for generating stopping power, it is convenient for us to
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~

divide (g, Z ZZ) space into corresponding regions. We develop for

1’
each region its own technique and strive for continuity in stopping

power at the boundaries. The first boundary is the plane Z1 = 10,

For Zl = 10 experimental data are generally available where active
charge exchange occurs. It is important to utilize these data, because
it is not possible to treat this region well theoretically. Experimental
data for Z1 > 10 is very incomplete. /

We subdivide the region defined by Zl = 10 into two subregions.,
For £ < 10 MeV/amu and Zl = 10 we make maximum use of experi-
mental data from the Hilac and similar accelerators. We devise a
technique in this subregion for generating stopping power which is not
theoretically rigorous, but which does accurately duplicate available
experimental data. For 8>_ 10 MeV/amu and Zl = 10, the ion is
completely stripped of electrohs and the application of Bethe's theory
is straighfforward.

> 10 into four subregions.
1/3
1

stopping power using Lindhard's theories which are very slightly modi-~

We subdivide the region de.’fined by Zl

In the low-specific-energy region defined by 137§ = Z_' 7, we generate

fied to conform to experimental fission product range data. Into the

narrow medium-low-specific-energy region defined by Z} /3< 137 8= 9
we merelyexténd the data generated in the adjacent regions by means
of a polynomial function. In the medium-higibspecific -'energy region

~ defined by 9< 137 B =3 Z we develop a technique for estimating the charge

state of the heavy ions a:]; a function of velocity, r(B). We then obtain the
stopping éOWer using this charge state with Bethé's theory. In the high-
speciﬁc-evnergy region, defined by 1378 > 3 Zl’ the ion is a_tgain
completely stripped of its electrons and Bethe's theory is used.

The division of (g, Z ZZ) space is roughly illustrated in Fig. 4.

1’
The depths of the low- and medium-low-specific-energy regions have

been exaggerated in order to make them visible. The depth of the

region for which ZI = 10 and ¢ <10 has also been exaggerated.
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Fig. 4. In this view of (¢, Z,, Z,) space we illustrate the regions

into which we divide this

space.

In the high-specific-energy region

(H) and the region for which Z. < 10 and ¢ = 10 we use Bethe's

theory directly.

In the medium-high-specific-energy region (MH)

we use Bethe's theory with charge-state data. In the medium-low-

specific-energy region (ML) we use a cubic polynomial (see text).
In the low-specific-energy region (L) we use Lindhard*s theories.
In the region for which Z1 = 10 and & < 10 we use experimental

data.
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I. METHOD

A. Method for Z7 Less Than Eleven

1. Specific Energy Less Than 10 MeV/amu

In this region of (¢, Zy, ZZ)'spaL;e some experimental data
are available. Active charge exchange occurs 1rna.king theoretical
treatment difficult. Thus we make maximum use of the experi-
mental data. To do this we have modified a method proposed by
Northcliffezz for generating smooth stopping-pOWer curves through
experimental points.

We wish to summarize the method in order to orient the
reader before beginning on the detailed description of the method.
First we calculate the relative stopping power of the ion in two
differenf stopping media. One medium is the medium in which we
want the stopping power, the other medium is Al. That is to say,

we calculate

z
S 1
£ () - 22 (19)
2o v er‘ . :
- P13

where f is the relative stopping power, S is stopping power (i.e. an
alternative symbol for _dE/dR used to make the notation less

cumbersome), the super_script represents the ion, Z_ , and the

1

~ subscript represents the stopping medium, Z This relative

2‘
stopping power is obtained for € > 2 MeV/amu by assuming that
Z o
1 - : . .
fZ (e) = fZ (), i.e. this relative stopping power for protons is the
2 2 ‘ '

same as that for any other ion for which Z1 = 10, This is consist-

_ent with Bethe's theory if we assume that the charge state of the ion
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is independent of the stopping medium. This is probably a fairly
good assumption since, for & ~ 2, the ion velocity is comparable
to the velocity of its K shell electron for Ne and F ions; and the ion
velocity is greater than the K shell electron velocity for all the
other possible ions, implying that r ~ 1 for most of the ions most
of the time. For & < 2 MeV/amu the relative stopping power is
taken from purely e:&perimental data for éer’tain ions, certain
s'topping media, and certain velocities. For any specific casé,
the relative stoppiﬁg power is then found essentially by inter{)olatioh.
Finally, we obté,in the de sired_ﬂstopping‘ power by multiplying
this relative stdpping power by the aécurately measured experi-

mental stopping power of the ion in Al, that is

We divide our more detailed description of this method into
two main steps. In the first step we obtain and store for later use
the relative stopping power for certain ions in certain stopping
media fdr e <2 MeV/am.u.v In the second step we use this stored
information to obtain '_che relative stopping p6Wer of our specifié ion
in our specific stopping medium, and then use this to get the actual
stopping power. |

a. First step. For £<2 we fit cubic polynomials of the form

P

In f(e) =9 C_ (lne)" (20)

n
n=0

for each possible combination of H, He, C, and Ne ions in the

stopping media H,, C, Al, Ni, Ag, and Au. That is to say we have

2’
4 ions in 6 stopping media or 24 polynomials of the form of Eq. (20).
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As wé will discuss in the second step, we let the relative stopping
power for ¢ > 2 be of the form f( €)= psq where the constants

p and q will also be discussed later. We now determine two of the
constants of Eq (20) by requiring that Eq. (20) give the same
slope and magnitﬁde of the relative stopping power at € = 2 as

f(_S) = p ed.

Nl

In[ f(é)] =

n

{Cn[lns -1nz]2 [2 1n2 lns]n} + In[ pe]. (21)

0

The remaining two constants are determined by a least squares fit
to.experimental data at 0.01, 0.04, 0.1, 0.4, and 1.0 MeV/amu.

Therefore by storing only 48 constants we have available 24 cubic
polynomials of the form of Eq. (21). When new and better experi-

mental data become available in this region of (&, Z ZZ) épace,

1’
we can up-date our method by merely changing the two constants
éorresponding to the ion and stopping medium for which the experi-
- mental data are ava?ilable;

The experimental data which we have used for the numerator
of the relative stopping power (see Eq. (19)) are tabulated in
. Table I. The denominators are taken from Table v (to be discussed

later). The data for stopping media other than I—I2 come from

Northcliffe. The data for H_ as stopping medium are inferréd

233

frorh the data of Teplova et al., Wevyl, 34 and Allison and

L;ttlejohn. 35

‘b. Second step. Figufe 5 shows a plane of (¢, Z -'ZZI)‘space

‘taken for any constant spec.ificvenergy, ‘say & Illustrated in the -

| 0
figure-are 24 points for which we have stored (see paragraph (a)
above) the relative stopping power. When &€ < 2 we obtain the

relative stopping power.at any desired point (Z), Z2) by a double



Table IA., Stopping Power for H Ions (Z; = 1) in Various Stopping Media

MeV/(g/cm?)
£ H,(Z, = 1) c(zZ., = 6) AL(Z, = 13) Ni(Zy = 28) Ag(Z, = 47) Au(Z, = 79)
0.01 2170 260 190 103 80 - 40
0.04 3790 510 370 200 160 79
0.1 3380 610 430 250 ' 200 110
0.4 1310 404 300 | 195 150 91
1.0 - 655 ‘ 235 175 125 ' 98 . 62.5
5
.
Table IB. Stepping Power for He Ions (Z] = 2) in Various Stopping Media
| -'I\I/IIeV/(g/cmZ) | |
e H,(Z,=1)  C(Z,=6) ALZ, = 13) Ni(Z, = 28) Ag(ZZ = 47) Au(zZ, = 79)
0.01 2660 640 480 252 200 100
0.04 5340 1260 940 520 396 200
0.1 7310 1720 1240 740 560 308
0.4 5140 1480 1080 720 560 336

1.0 2620 920 680 500 ' 388 246




Table IC. Stopping Power for C Ions (Z = 6) in Various Stbpping Media

MeV/(g/em®) |
e HyZ, =1)  O(Z,=6)  AUZ,=13)  Ni(z,=28) Ag(Z,=47)  Au(Z,= 79)
0.01 7200 1870 1400 715 .'595 o 296
0.04 14400 © 3960 2780 1480 1150 596
0.1 22300 5760 4320 - 2270 1820 990
0.4 27200 6480 4860 7 3200 . 2480 | 1480
1.0 18300 |

6120 4500 . 3170 2450 ' ' 1550

Table ID. . Stopping Power for Ne Ions (Z1 = 10) in Various Stopping Media

_ | MeV/(g‘/cmz)' . _

e M, (Z,=1)  C(Z, =6)  AlZ, =13) Ni(Z, = 28] Ag(Z, = 4T)  Au(Z, = T9)
0.01 4380 2600 1950 1060 810 400
0.04. - 8730 5150 3900 2100 1650 820
0.1 113850 8200 16000 3300 2700 = 1450

0.4 26500 - 10500 9200 6100 4900 2900 -
1.0 29300 10000 9100 6800 . 5150 3300
C . ) -
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(Z1 , Z 2)

IO ¢ o o ® . °
F-O-—4

'Z1 6&0 ° ° ® °

2 0 ° ° Y ®
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| 6 13 28 47 79
Lo

XBL684-2527

Fig. 5. A plane from (g, Z, Zj) space taken for any constant
specific energy, sajr g,. Illustrated are the 24 points for
which we can calculate the relative stopping power, each with
one of 24 polyhomials. We do a double linear interpolation in
| Z, and Z, to get the relative stopping power at the desired

pAoint (Zy, ZZ) (see text).
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linear interpolation in Z1 and Z_ between the four relative stopping

powers at the four points of the 2grid which bracket (Zl’ Z2)°

To obtain the relative stopping power when € > 2 we first
calculate the relative stopping power for a proton in the stopping -
medium at the two specific energies € = 2 and &= 10 MeV/amu.
We then assume that the relative stopping power has a functional
form -

q
f(e) = pe

where the constants p and q are determined by the two points,
one at 2 and the other at 10 MeV/amu. (Actually the relative
stopping power at 2 MeV/amu is multiplied by 0. 97 before deter-
mining p and q. This is done only because it has been found that
this slightly modified slope gives results which more closely
duplicate eipe rimental data..) Finaliy we as"sume, as discussed
above, th.at for € > 2 this proton relative stoppiﬁg power in a given
stopping medium is the same for all ions for which'Z, = 10.

We obtain the 2 MeV/amu stopping power for protons in thé

given stopping medium and also in Al from Barkas and Berger's

'polynvomial fit to experiment data

V2 2 - , | |
e |, ' : -1
dE} _ P ;‘ 5‘ : S m . .n-1 '
(———dg p_— X {n—/ | ___/(;1 amn (log Iadj) (10g .Sp) | (22A)

' m n
1 - 10, (22B
amn( og Iadj) (log sp)A 3 log 10. ( )
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" Similarly at 10 MeV/amu we use Barkas and Berger's polynomial

fit to Bethe's theory

3 . '
. ‘ -1
dE a __p_ Z Z m n-1 23A
t na (log Iadj) (log sp) : ( )

n=l m=0
for 7 < ep < 1200 where

3
AZ m n '
log \ = log — Z + z a (log Iadj) (log ‘sp) . (23B)
b =L _

Several comments shoﬁld be made explaining Eqs. (22) and (23)_.
The symbol & represents specific energy in units of MeV per
number of protzn masses. Thatis ’Sp = A € where Ap is the
mass of a proton in amu. The coefficients C and a ,are
tabulated in Tables II and III respectively. . Shell corrections are
included in Eq. (23) by means of a polynomial expression which
Barkas and Berger23 fit to data by Wal»skel3’ 14 and Bichsel. 36
These shell correction data approach zero in the limit of re1at1v-
istic ion velocity. Slnce this is theoretlcally 1ncorrect (see Fano ),
an average excitation energy, I adj’ mustbe used whlch is adJusted
for heavy stopping atoms to compensate for this error. The Iadj

which we use for ZZ = 10 are inferred from data presented by

7 :
Turner3 and given in Table IV. For Z_ > 10 we use the formula

' communicated to Bérkas and Berger23' by Sternheimer,

L -1.19 24
—"3‘233 (eV) = 9.76 +58.8 7, . (24)
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Table II. Coefficients a__ for Eq. 22.
mn

m n=0 n=1 n=2
0 -7.5265% 107! 2.5398 -2.4598X 107"
] 7.3736X 102  _3.12x107t 1.1548% 10"}
2 4.0556% 1072 1.8664X 1072 29.9661X 1072
Table III. Coefficients a.  for Eq. 23. .
- m n=0_ n=1" n=2 ‘n=3
' | -2 -3
0 -8.0155 1.8371 4.5233X 10 -5.9898X 10
1 3.6916X 10',1 -1.45.2><1o'2 -9.5873X 10'4 -5.2315><'1o'4
2 -1.04307X 1072 -'3.0'142‘><10'2_ 7.1303% 10°°  -3.3802x 10" %
' ' ' ' 3 -5

3 3.4718X107° 2.3603X10° -6.8538X10°% 13,9405 10
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- Table IV. Adjusted Average Excitation Energies for
~ Z_ =< 10 from Turner. 37

2
E& . L (eV)
1 | 18.7

2 42
3 18
4 - . 60
5 | 70
6 78
7 84.5
8 - - 88.5
9 - 108

10 . 131
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Now that we have the relative stopp'ing power defined by

q. (19) for any & < 10 MeV/amu, we obtain the desired stopping
power by multiplying the relative stopping p.ower by the accurately‘
measured experimental stoppmg powers of ions in Al. Through
this stopping-power data 1n_A1 Northcliffe Z.has placed smooth
. curves which are presented in Fig. 6. The-speoific values we use
are given in Table V, _

o When there is»mor.e than one atomic component to the stopping

in’edium a's in'fnixtures end eompounds, we as sume that the stopping
power of each’ cornponent acts 1ndependent1y and is thus addltlve to

the others_. This. is Bragg s rule which can be expressed
e 1~ faEY A
R pE s (de)i” S (25)

where (dE/dR) is the stoppmg power of the 1th component in dens1ty
_1ndependent units - such as MeV/(g/cm ),. Py and p are the part1a1
g dens1ty of the ith component and the overa.ll den51ty of the medlum '
respectlvely (p = Z) P ) | ‘ : _
v The vahdlty of Bragg 4 rule is dlSCU.S sed in sectlon IIIAl

2. ‘Sp’ecit_’j.c Energy Greater’_Than l.Ov MeV/aﬁmu-. o
In this region of (é:. Z1
the 1ons are completely strlpped of orb1ta1 electrons so that we may

Z3) space (Z < 10, ¢ =10 MeV/amu),

extend to all ions the proton stOppmg power of Eq (23) by the

fo rmula

dE . 2 {dE o S
ar = %1 (dR)p S i (Zé).

where dE/dR is the ‘stopping power of the ion of charge Z at the
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| ! 1 l [l | |
0.01 0.02 0.05 0.l 0.2 @ 05 1.0 2.0 5.0 10
£ (MeV/amu)

X8LEB4-2526

Fig. 6. Smoothed stopping-power curves for various ions in Al.
" These data from Northcliffe, 22 which are tabulated in
Table IV, are the basis of the stopping -power calculation

for Z| = 10 and € < 10 MeV/amu.



Table V. Stopping Power of Ions in Al for Which Z} = 10 from Northcliffe. 22

=z & Meviglem®)
zZ. . b

MeV/amu) _H He  Li Be B C©¢. N O F Ne
.010 183 118 95 71 48 39 9 34 28 23 19
.015 230. - 141 114 - 86 58 47 40 33 27 23
. 020 265 164 132 99 66 54 47 38 32 27
. 030 320 205 164 122 80 65 56 47 39 32
. 040 360 235 187 140 93 75922 64 54 46 - 38
.050 390 260 208 155 103 83 71 60 51 43
.070 430 '285 230 175 120 97. 82 69 59 50
. 100 440 315 254 193 132 111 129 94 80 69 60
. 150 410 325 264 203 142 123 108 92 80 70
.200 380 320 263 206 149 130 112 100 87 77
. 300 330 290 243 196 150 133 121 109 96 87
_.400 290 270 230 189 149 133 )35 122 110 100 91
.500 265 250 216 181 147 131 122 111 101 93
.700 220 215 193 166 140 128 120 110 101 94
1.000 172 170 156 142 129 120125 111 107 98 90
1.500 131 131 124 117 111 - 107 100 95 90 84
2.000 109. 109 105 101 98 94 90 86 81 76
3.000 83. 83 81 80 79 78 75 73 70 67
4,000 69 69 68 67 67 66 64 62 60 58
5.000 58 - 58 58 57 57 57 56 55 54 52
7.000 45 45 45 45 45 45 44 43 42 42
34 34 34 34 34 34 34 34 34 34

10. 000

—?E-
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same velocity and in the same- stopping material as that of the
proton whose stopping power is (dE /dR)p. This transformation is
consistent with Bethe's theory.

When the stopping medium is a mixture or a compound, we
use Bragg's rule as before. This implies that in Eq. (23) we make
the two substitutions

-1

(27)

and

| A | %
AR «
= =N 3V L o oma ) |, 28)
Lagj = e*P Z pzi A, Py Il g5, . (
i !

nge Zzi, Azi: pi; ahd (Iadj)i are the atomic number, atomic
weight, partial density, and ave rage adjusted excitation potential

respectively of the ith component of the stopping medium.

3. Ion Mean Ranges i'or"'Zl =10

The mean range of't_hese ions in units of g/crn2 is obtained

for £ =10 MeV/amu from the expression
&

0.01A; g - |
R(e) = 2 S—ml) + Al/ ,'S.,—(:;') (29)

0.01

where S(g)is the ~sto‘ppirigvpowér- of the ion at specific energy ¢. The
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first term of this expression is an estimate of the range of a 0. 01
MeV/amu ion. This assumes that the s‘topping‘power is propor-
| tional to 81/2 below 0.01 MeV/arnu The effect of this assumption
is discussed in sectloncIIIA3. . The integration indicated in the
second term is performed by means of the trapezoidal rule where
in each energy interval the integrand is hére assumed to map a
straight line on a log-log scale rather than a straight line on a
linear sca‘le which is nbi‘mally the case. The energy intervals are
those indicated in Table V.

The mean range for the case when & > 10 MeV/amu is

obtained from

. 0.01 A 1o.ods| AT - '
R(s) m) + A f S(s ) ;—-—-—Z—é _l)\'(Aps)-)\(lo Ap), | (30)
0.01 : p 1 '

where the above comments on 'the first and second terms, of Eq' (29)
also apply to the first and second terms here. In the third term % is

the atomlc weight of a proton, and )\ is taken from Eq.. (23B).

B. Method for Z Gr_eater'Than Ten

» 173
Z, ")

1. Low- Spec1f1c -Energy Region (137 B =

In this region the ions are rapidly capturing electrons, thus
losing effective charge. The stopping power of_liinear energy
tra'nsfelr (LET) is décrea_éing with decreasing velocity. In unifs of
' MeV/amu, the lower limit in this specific-.energy‘region is 0.01 and "
the upper limit varies from 0.1 to 0. 5as Z) varies from 10 ‘to.92.v
The LET of the ions is not large compared with that in the other
regions. The average velocity of the ions at the Bragg peak of a
‘beam of ions is normally well above this region. Thus the stopping -

power of these ions is of relatively minor important to the radio-
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[

biologist, ¢

There are sevei‘al reasons, deever, to expend considerable
effort to provide valid sto.pping power in this region. To the
nuclear chemist or physicist, ‘this is the region of the recoil nucleus
or nuclear reaction products. Stopping power in this region
determines the range of these particles. Stopping power in this
region may also be used to determine the energy of pafticles
causing nuclear coulomb excitation. Charged particles in this
region may be of more concern to the radiobiologist than indicated
above because the radiation damage is qualitati\}ely different from
the damage for higher energy particles (see for example
Kistemaker et al, 38 and Jung39). A final reason for deveioping
good stopping-power data in this region is that we rely heavily on
this data for the generation of stopping power in the medium-low-
and medium-high-specific-energy regions as discussed in sections
IIB2 and IIB3.

Lindhard et al. 17,18 have developed a theory for this
velocity region (see section IC1). Their theory for the electronic
stopping power is given in Eq. (15). By modifying the constant k
(Eq. (16)) very slightly we obtained better agreement with éxperi-

mental fission product range data in Al and U and stopping-power

data for Ne and Ar ions in Al. We increased the contant by 1.5%
1/6  _0.207

and changed § from ZV1 to Zl . Making these modifications,
along with a éhange of units, we obtain for the electronic stopping
power |
dE MeV 1/2
ex - 31
'(dR) =G, 8 - (30
e g/ecm
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where

- 32)
C =7.39X 10 T3 (
e 2/3 + 72/3) ,

The theory developed by Lindhard et al. for the nuclear coulomb
stopping power is represented by the curve in Fig. 2. By fittihg' _

a function to this curve and changing units again we get

‘ ro ' - v0.277 ‘
(gg) MeV = = C_ ¢ /2 exp[-45.2(cn g) % ] (33)
dR n g/sz
where
, 6 A1 3/2. lez 1/2v2/3 2/3 -3/4
Cn = 4,14 X 1L0 _ m T v Z]. +Z2 oy (34)
- 12 ) 2 |
and
' _'51Az 1 (22/3+ 22/3)—1/2 35)
n Z Z, AtA, i 2 |

"Thus, for the 1ow-speciﬁc-_ener'gy- region, the total stopping power

is given by , :
dE _ [dE dE ) -
dR ~ (dR)e * (dR)n ’ (36)
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where (dE/dR) and (dE/dR) are given in Egs. (31) and (33)
respectively. .

When the stoppmg medium is either a compound or a mixture,
we use Bragg's rule (Eq (25)) to calculate the stopping power. Sece
section IIIAl for a dlscuss1on of the validity of this rule for these

low velocities.

. . ' 1/3
2. Medium-Low-Specific-Energy Region (Zl/ <137 B = 9)

This is a narrow region connecting the variable upper
boundary of the low-specific-energy region with the fixed 1bWer
boundary of the medium-high—specific ~energy region. There are no
experimental data nor theories available for this region which are
satisfactory for estimating the stopping power. However, since
this région is so nafrow, a simple cubic polynomial, matching the
- slope and magnitude of the stopping power at both boundaries,
provides the stopping power relation Withinl the region very
adequately. |

We know that the stopping power tends to depend upon energy
'in a logarithmic fashion. Thus it is to be expected that a polynomiél
fit of the stopping power should contain Ins as the variable. Thus

we choose ‘a cubic of the.form
37
(dR) Z G (Inef? | (37)

which is completelvy defermihed .by the magnitude and first de‘rivativ.e
of the stopping power atthe upper and lower boundaries of this
region, ‘ |

When the stopping medium is a mixture or compound, we

again make use of Eq (25).
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3. Medium-High-Specific-Energy Region (9 < 137 B = 3 Z,)

'This region is bounded on the high side by the velocity at
which the ion can be considered to be completely stripped of
electrons., It is bounded on the low side by velocities for which we
believe the method descrlbed below cannot adequately provide
stopping power.

Our method uses charge-state data derived from range-energy
data available for Ar ions incident upon Al. These charge-state
data are generalized to all ions for which Z; > 10 and all stopping
media as follows. ' |

Knipp and Teller, 40 on the basis of the Thomaé -Fermi picture
of .the atom, derived a. relatlonshlp betWeen Z1 ff/zl and
(vo /V3)N(137 6/22/3), where Zleff/zl‘ls the mean fractional ioniza=-
tion of the ion,. and* Ve/vi is the ratio of the velocity of an electron
in the ion's electron cloud to the veldci‘ty of the ion at which this |
electron's capture and loss cross sections are equal. For complete—
ness we point out that Z l'éff.is a function of ion Velocity and it is
the root mean square of the charge of a large number of randomly
sa'mpled idns all at the same vélocity. The fact that Knipp and
Teller used the mean chérge instead of the root mean .squ-a're charge
is of little concern for two reasohs. First, these two values have
experimentally been found by Neufeld and Snyde r41 to be ne.arly
identical for nitrogen and oxygen ions. This is due to the fact that
the charge distribution at any velocity is §ery narrow. Second, the
- method by which we drive the value of r automatically giw;es the
root mean square fractional ionization of the ion, which is exactly
what we desire. | :

' The factor (v /V ) varies somewhat as a functmn of Z_ and

1

Z but here we assume it'is constant (See section IIIB3 for a

2’
discussion of this assumption.) Then Z leff/zl should be a function
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of only 137p/Zi/3 when the electron cloud of the ion is populated

to such an extent that the statistical nature of the Thomas-Fermi
picture is apé‘ropriate.. As the electron cloud is depleted,
137p/Z 213 vwi'll no longer be the appropriate variable. In fact the
seml—classical Bohr picture of the atom leads us to expect that

the charge ratio Zleff/zl varies according to the variable 137 Q/Z1

for the limiting case of the one-electron atom. Thus we look for a

functio'n
l.¢ .
e ), (38)
Z .
1
where
'ii37
x = 28 N (39)
Z
1
with
2 .
g = 3 for 1378 = 22/3, )
1
.1376+4Zl—3212/ 2/3
g = 2/3 for Zl <137[3<ZZl, (40)
= 1 : = =< ‘
g ‘ forZZ1 1378 321')

We required that the function r(X) satisfy five criteria.
1. r(0) =0,

2. r(X) approaches 1 asymptotically.

3. For all'Z and ZZ’ ? r2(3) (dE/dR) and its first

derivative are approx1mately continuous with the stopping power and
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its first derivative respectively at the low-velocity boundary of the
high-specific-energy region. (Note thatX = 3 for 1378 =3 Zl.)

2 .
4. For all Z; and Z;, Z2 r (9/Zg) (dE/dR)p and its first

derivative are approximately clontinuous with the stopping power
and its first derivative respectively at the high-velocity boundary
of the low-specific-energy region. That is to say, the cubic poly-
nomial of the previous section (Eq. (37)) must smoothly connect
the low- to the medium-high-~specific-energy regions without any

unlikely curvature.

5. . The function r(X) must be such that
1A

’ de
2
1

0 rZ(X) (dE/dR)p

>

|

R(e) =

N

fits closely the known range-energy data for Ar in Al. These range
data are taken frofn estimates made by Northcliffe42 which agree
well with some experimental data of Sikkeland.

There is some question about what formulation of the proton
stopping power to use in steps 3, 4, and 5 above. Some of this
medium-high-specific-energy regio'n is outside the limits of validity
for the Born approximation (see section IC1 for a discussion of these
limits), so Bethe's théory is not rigorously valid. The velocity is
too high to use Bohr's theory. When we ﬁse Blochts theory the
resulting stopping power for this region differs from the stopping -
power when using Bethe's theory by much less than the total
uncertainty of our method (see section IIIB3 for a discussion of this |
comparison). Bethe's theory is the most commonly used and the
most convenient to use. We therefore choose Bethe's theory
realizing that the resulting r(X) which satisfies the above criteria
may not physically repreéént Zleff/Z1 at the low-velocity end of

this region. However, due to the nature of the above criteria, the
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error in r(X) will compliment to so‘,rné extent the error in Bethe's
theory for this low -v.élocity end of the region, so that the final
stopping power may be fairly accurate.

A function which satisfies criteria one and two, and which caﬁ

be adjusted to satisfy the other three as well is

1
. 1 - —
1 ~f1(X) a

where -a is a positive constant and 'fl(X)‘ and fZ(X) are functions

which éatisfy

fl(X) and fZ(X) = 0 for X = 0,
1im .
X =0 £ (X)and £,(X) =0, (42)
lim
X ~p fl(X) and fz(X) = o,

and X is given by Eq. (39). By trial and error and the use of a
minimization computer program called VARMIT‘Mr we have

satisfied all 5 criteria with the combination

a=1.848
£,(x) = 0.413x 2%
£(X) = 10. 48 x 2+ 216

which yields
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exp(-0. 413x 2+ °7) 0,848 (43)

1. 848 " 1. 848(10. 48 X2: 216 | 1)’

rX)=1-

where X is given by Eq. (39). A graph of Eq. (43) appears in Fig. 7.
The stopping power in this medium-high-specific-energy region

now becomes

dE 2 dE |
iR () = z| r <———~(s) ; . (44)

where the proton stopp1ng pOWeI‘ (dE /dR) is given by Eq. (22) for
g = 7 MeV/amu and by Eq. (23) for & > 7 MeV /amu.
Agam,, when the stoppmg medium is a compound or a mixture,

we obtain its stopping power by using Bragg's rule; Eq. (25).
Bragg's rule is implemented through the use of Eqs. (27) and (28).

4. High-Specific-Energy Region (1378 > 3Z)

In this region the ion is assumed to be completely strippéd of
its orbital electrons and the conditions for the validity of the Born
approximation are met. Thus Bethe's theory gives the stopping

power
- dE, . _ .2 [dE :
: _dR(e)—Zl(dR(s)>p . | (45)

where (dE/dR_)p is glven by Eq (23).
When the stopping medium is a compound or a mixture,
Bragg's rule, through the use of Eqs. (27) and (28), again yields the

stopping power.
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illustrated in Fig. 10,
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5. Ibn Mean Range. for 27> 10

- The mean range of ions with a specific energy of ¢ in the

_ high—speciﬁc—enérgy ré’gion is given by

o
81 ,
_de

R(e) = A E_ A | dz
(e) =4, (AE/dR);, T 1 (dE/dR)

ML ,
. ’ ,
1. L (40)
€3 A ’ '

{ de : 1 . | BRI
+ A f e + - MA g)- MA_e )],
’l/(dE/dR)I\/LH ‘72 A [ P M p 3
. - »'J.l . p N

€2 S
‘where {dE/dR)L’,(dL/dR)ML’ M P
“Eqgs. (36), (37), (44), and (23B) respectively, £, and g, are

(dE/dR) nd M are given by
respectively the lower éndupper boundaries of the medium -low -
specific-energy fegion, and €4 is the lower boundary .of the high—
specific-energy region. For & in the 1'nedi'ul.n—high—speci.fic—energy

region, the last term of Eq. (46) is deleted and &, is replaced

3
by €. If ‘& is in the medium-low-specific-energy region, the last

two terms are deleted and £, is replaced by €. If & is in the

2

v lqu{—specific-energ§f region, 6n1y the fitrst termi-is used and gy isi
replaced by €. |

| The integrals of Eq. (46) are evaluated ite.ra‘cively by Sinipson’s

rule.” The number of points at whi.chvtvhe integfand is evaluated =

doubles for each iteration. Thebivn_tegration process is terminated

" for each integ}'al at the ith iteration when the result of the

iteration, I-l', differs from the preceding iteration, Ii 1 by less

- than 0.05%. That is the integral is given the value I, when
A _ A | '

< 0.0005.
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III. DISCUSSION OF METHOD

A, _17:1 Less Than Eleven

1. Specific Energy Less Than 10 MeV/amu.

in this region of ( €, Z ZZ) space considerable experimental

1’
: 22
stopping-power data are available. Northcliffe has summarized the

‘availability of these data and he has plotted them for the cases of H,

He, B, C, N, O, ¥, and Ne ions each incident upon C, Al, Ni, Ag,
and Au. Where there are data points from more than oneinvestigator,

a spread isvgreatest for the cases of Ne ions in the various stopping
' 45, 46 .

. media, Here the two principle investigators, Porat et al. , and

Teplova et al. 33, often disagree by 50%. The total spread in uncer-
tainty (i. é. twice the absolute uncertainty) for the data points quoted
by the investigators commonly varies from 5 to.30%.

Northcliffezz has developed a graphical technique for generating
smooth curves which first of all follow closely the data points he
believes to be the most reliable, and second they show a uniform
variation from ion to ion and stopping material to stopping material.
We are reluctant to estimate errox; limits for these smoofh curves by
Northcliffe, but we have more confidence in them than we do in much
of the raw experimental points, We expect the error limits are
greatest for £< 0.1 MeV/amu, smaller for 0.1< ¢< 5 MeV/amu and
quite small for 5< &< 10 MeV/amﬁ. Also we expect the error lifnit

to increase with increasing Z It is values taken from these smooth

curves that appear in Table Ilfor the stopping media C, Al, Ni, Ag,
and Au. '

As stated in section IIA 1, the stopping power of HZ which 1a
appears in Table I is inferred from data replotted from Teplova et al. ,
Weyl34, and Allison and Littlejohn. 35 We plotted the data points on
a scale of (I/ZZ) (dE/dR) in MeV/(g/cmZ) as a function of specific

energy in units of MeV/amu. We drew smooth curves through the
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points requiring a consistent variation from ion to ion. We made no

attempt, however, to force a consistent variation from HZ to the other

stopping media because we' expect the variation to be very rapid as we ‘
go from Z2 = b6 to ZZ = 1, It is points taken from these curves that
appear in Table I.

Again, we arc reluctant to assign error limits to the stopping

power in H_ which appears in Table I. As before, the error limit will

2
decrease with increasing ion velocity, We have more reason than
before, however, to expect that the ecrror limit will increase with
increasing Zl° Our method is designed to calculate stopping power of
nongaseous media, but the data for HZ in Table I was collected from
experiments in gaseous hydrogen, This introduces an error due to
the following effect. In condensed stopping media, the time inte.rval
between ion-electron collisions is sh.orte'r than in gases. Thus the
electronic levels of the ion excited by one collision will have less
opportunity to relax before the next collivsion., The probability of
removing an electron from the ion is greater for these condensed
media because the electrons are maintained in more highly excited
states, Thus an ion which is not completely stripped of its electrons
will have a larger mean charge and thus a greater stopping power in
condensed media than in gaseous media. The error introduced by this
effect should be small for protons and alpha particles because they are
completely ionized much of the time over most of this region of

(e, Z ZZ) space. However in the low-velocity part of this region,

1’
carbon and particularly N\e ions should have a larger stopping power
in condensed hydrogen than we Qsti'maf.‘e by‘our method, FWe suspect
therefore that for Zl = 10 and €< 1 MeV/amu ou.r method may uﬁdcr— . .
estimate somewhat the stopping power in condensed hydrogenous media . .
such as water and tissue, |

' We have described our sources of the experimental data tab-

ulated in Table I and we have expressed some rescrvation about their
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applicability. Now we discuss how closely our method of section II A1l
reproduces these data. In Table VI we have tabulated the percentage
deviation of stopping power calculated by our ‘method from the values in
Table I. The experimental stopping powers at €= 4 MeV/amu were
not listed in Tablé I because they were not used in determining the
constants of Eq. (21), but the percentage deviation of the experimental
stopping power from that calculated by our method is given in Table VI

at & = 4 in order for the reader to be able to evaluate our method at

‘this velocity., Our method overestimates the experimental data for

positive values in Table VI and underestimates for negative values,
Table VI shows that our method usually reproduces Northcliffe's
stopping power to within 5%. The glaring exception is the case of Ne
ions in carbon. However, if we examine Northcliffe's estimate of
this stopping power we see that it diverges from the experimental
points by 20 to 30%, (see Fig. 7 of Ref. (22). We conclude that our
method duplicates Northcliffe's stopping power to within the uncértainty
of the magnitude of these values. Our method has some aifficulfy in
reproducing our estimate of the stopping power of H2 for heiium and
particularly carbon ions. But as we have just stated, the degree of
épplicability of these values to condensed stopping material is uncer-
tain. We could obtain better reproduction of basic data by com-
plicating the form of Eq. (21), but this seems hardly worthwhile until
better basic data is available.

We use Bragg!s rule in order to.calculate the stopping power
of compounds and mixtures throughout ( &, Z'l, ZZ) space‘, In the
low-velocity portion of this space, e. g. € < 1 MeV/amu, Braggts
rule is less valid than for the higher velocity regions. The main
reason for this is that as the velocity of the ion decreases, the more
tightly bound inner electronic shells of the stopping medium play a
smaller role in the stopping process. Thus the most loosely bound
shells, for example the valence shell, contribute a larger fraction of

the stopping. Since it is primarily the valence shell whose energy



Table VI. Percentage Deviation of the Method of SectionIIA 1 From The Stopping-Power Values Of
Table 1. '

" Table VIA., Hydrogen lons (Z] = 1) in Various Stopping Media

e HyZ,=1)  G(Z,=6)  AUZ,=13)  Ni(Z,=28) AgZ,=47)  Au(Z, =79)
0.01 0.8 0.5 . 0.05 0.05 -0.5 0.3
0.04 2.6 1.0 1.2 0.9 1.0 1.1
0.1 0.9 1.4 3.0 2.0 1.8 -1.2
004 ./ 409 . "309 "3-2 ) . "2'1 ’ >-4(.,]- -0'4
1.0 -3.5 5.4 1.7 -1.0 -6.8 1.6
A
o
[

4.0 0.5 0.4 1.5 1.9 0.6 2.0

Table VIB. Helium Ions (Z] = 2) in Various Stopping Media

€ HZ;ZZ = 1) C(Z, = 6) Al(Zé = 13) ~ Ni(Z, = 28) Ag(zz = 47) Au(Z, = 79)
0. 0% 2.6 -0.8 @ 0.05 0.9 0.3
0,04 9.4 2.3 -0.5 0.04 2.5 1.2
0.1 3.3 -0.2 0.8 0.3 1.0 -1.3
0.4 -10.5 3.4 -0.5 - -0.2 -5.5 0.4
1.0 -6.7 4.7 0.1 -1.9 -1.2 1.9
4,0 0.5  -0.2 0. 3.8 1.8 2.0




Table VI, (cont.)‘ v
Table VIC. Carbon lons (Z, = 6) in Various Stopping Media

e HyZ,=1) C(Z,=6  ANZ,=13) Ni(Z,=28) AglZ; =47  AuZ,=79)
0.01 4.6 -0.04 0.5  -0.02 -1.0 o1
0.04 14,2 ©-0.3 2.4 -0.5 3.0 -0.2
0.1 1.0 0.8 -2.5 1.5 0.02 -0.6
0.4 -24.4 0.8 1.0 -1.6 . -4.8 1.2
1.0 -14,9 -8.4 -3.4 -2.0 -6.5 3.0

’ 0.8

4.0 ~ -0.3 0.7 4.7 3.0 1.0

Table VID. Neon Ions (Z, = 10) in Various Stopping Media

£ Hz(z2 =1)  Clz,=6) ANZ, =13)  Ni(Z,=28) Ag(Z,=4T)  Au(Z, = 79)
0,01 1.5 1.4 0,1 0.2 - -1,0 -0.2
0.04  -5.7 2.4 -0.8 2.0 2.3 0.4
0.1 4.2 4.4 1,2 3.8 2.4 0.6
0.4 3.7 12.3 0.7 2.4 7.9 2.4
1.0 2.4 15.4 C1.0 4.9 7.2 0.6

1.6

4,0- 0.5 -0.3 -1.7 -1,6 -4.0

_'[g—
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levels are modified by molecular binding, it is primarily the low
vélocity'ions whose stopping rate will be affected by the chemical
state of the atomic components of the stopping medium., As a
corollary to this liné of reasoning, we wish to point out that for all
jon velocities one expects that compounds of the lightef atoms, such
as H, C, N, and O will not follow Bragg's rule as well as compounds
of heavier atoms. This is because a larger fraction of the total
electron cloud of the lighter atoms are valence electrons, Thus, for
£ << 1 MeV/amu, our calculation of stopping power in compounds
may suffer from the use of Bragg's rule, particularly when the
stopping medium is tissue, a hydrocarbon, water, or other
hYdrogérious compounds, |

The error introduced by using Bragg's rule is not large in
most cases. Thompson‘47-ha§ found tha.f the us-e of Brégg's rule for
calculating the s-’:copping' power of hydrocarbons for high-en.ergy
protons (200 to 340-MeV) introduces an error on the order of 1 to 2%
or less. Aniansson‘l_8 makes similar findings for 5.3 MeV alpha
parficles. Reynolds et al, 49 have found that Bragg's rule introduces
an error in the calculation of stopping power of gaseous ‘H, C, N, and
O compounds which increases to more than a couple percent as the

proton energy decreases below 0. 15 Mév. '

2. Specific Energy Greater Than 10 MeV/amu

In this region the ipn is'compietely ionized and Bethe's theory,
Eqgs. (8) and (10), is valid. Therefore the stopping power calculated
by ouf rn_ethod should be as accurate as the polynomial df Barkas and
Berger{(Eq. (23)).

Bethe's theory with the shéll corrections used by Barkas and
Berger should be accurate to within about 1%. Barkas and Bergera3
have determined that the root-mean-square percentage deviation of
Eq. (23) from 600 points calculated by this theory is 0,6% for \ and
1.3% for the stopping power. The maximum error for N\ is 2.8%.

Therefore the overall accuracy of our method in this region (i.e. of
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Eq. (23)) should be about 1 to 3%.

3. The Mean lon Range for z, = 10

The range given by Eq. (30) should ha;ve an accuracy approxi-
mately comparable to the corresponding stopping-poWer calculation,
There are two assumptions made in the evaluation of this equation
which should introduce only a small uncertainty, First, the first
term of Eq. (30) is correct only if the stopping power varies as 81/2
below 0,01 MeV/amu. This may introduce an error in the range for
sayi1e< 0,03, but as the ion velocity increases, a smaller and smaller
part of the total range is contributed by that specific—ene_rgy region
below 0.01 MeV/amu. Thus the error introduced by this first assump-
tion quickly becomes negligible as the initial ion specific-energy
increases above 0,01 MeV/amu,

- It is assumed in eValuating the second term of Eq. (30) that,
between the specific enérgies indicated in Table V, the stopping power
maps a straight line on a log-log scale, This is a very good assump-
tion, but even if it were not good the error would be quickly lost as
the initié.l specific energy increases above 10 MeV/amu, as discussed

above.

B. Z., Greater Than Ten

-1
: s - . — . 1/3
1. Low-Specific-Energy Region (1378 = Z.1 )

In this region our method used the two theories developéd by
Lindhard et al. 17, 18 which are based upon the Thémas—Fermi model
of the étom. These theories are described in Section IC (see Egs. (12)
through. (16)). In develbping their theories, Lindhard, et al, treat |
separately the effect of elastic collisions between the ion and the
coulomb field of the nuclei vin the stopping material, and the effect of

inelastic collisions between the ion and the atomic electrons in the‘

stopping material. The assumption that these two effects are
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uncorrelated may result in systematic overestimation of the stopping
power, according to Lindhard. Lindhard also warns that the validity .
of this theory is uncertain for & < 10”2 MeV/amu, since the Thomas-
Fermi treatment of the atom is a crude approximation when the ion
and atom do not come close to each other,

Others have been critical of these theories too, particularly
of the theory for the stopping due to inelastic collisions (see Eqs. (15)

and (16)). The variation of k(Eq. (16))with Z_ and Z, has been found

1
to be imperfect, and the variation of stopping power with velocity has
been found to diffef somewhat from € 1/2 (Eq. (15))°

Ormrod and DuckworthSo and Ormrod, MacDonald and
DuckworthSl have subjected this theory to an experimental test for
ions of Z1 =:18 in carbon and aluminum films for specific ene'rgies
of $0.01 MeV/amu. There was generally fairly good agreement.
However, for a constant velocity of € = 0,0004 they found that as

‘they varied Z. the experimental stopping power oscillated about the

theoretical prledictions of Lindhard. Gilat and Alexandersz have
studied the ranges of recoil Dy ions of specific energies 0,04 < € <
0.14 in various gases and Al., They find for Dy ions in Al that the
dependence of the stﬁpping power upon velocity is more pronounced

than & 1/2. They suggest that a velocity dependence of 80°67

would
provide a better fit of their experimental data, Kaplan and Ewart
have studied the ranges of recoil C134m nuclei in Al for 0.2< & < 0.9
MeV/amu. They found that k was predicted by Lindhard's theory
to be 10 to 15% too small, They also found that for this case the
stopping power should be a weaker function of velocity than that
predicted by Lindhard. Gilat and Alexander had found the opposite,

These findings have recently been put into perspective by -

Fastrup et al, > They have studied the stopping by carbon of ions v&-rith

6= Zl = 20 and 0.003< €< 0.03, Ormrod and Duckworth studied

: . 45, 46
the region below these velocities, Porat and Ramavataram '
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studied the. region above these velocities. Fastrum et al. have
combined the results of these researchers with their own to provide a
systematic test of Lindhard's theory. They verified the findings of

Ormrod and Duckworth that the value of k oscillates about the value

- predicted by Lindhard as ZI is varied. This oscillation exists when

the specific energy is held constant at each of the four values e =
0,0004, 0.01, 0.02, and 0.03. As the velocity increases, however,
the amplitude of oscillation decreases and becomes less regular,
This may imply that at low energies, where the electron clouds do
not overlap to a great extent, atomic shell effects are important,
The Thomas-Fermi atomic model is of course inadequate to deal
with such effects. _

Fastrum et al. also tested the energy dependence of Lindhard's
theory. They modified Eq. (15) by letting (de/d é)e = ke? be of the
form where p was found from the experimental data and compared -
with the theoretically predicted value of 1/2, They found that, when |
plotted as a function of Zl’ p tended to oscillate about the value of
1/2. However, the behavior of the variation of p with Z1 was
dependent on the velocity interval over which p was determined.

It is clear that there are some inelastic interactions between
low-velocity heavy ions and matter which are more complex than can
be dealt with by a statistical afonpic modell such as the Thomas-Fermi
modél. However, ﬁntil these interactions are better understood, we
use the Thomas-Fermi model and Lindhard's theory (slightly

modified as described below) expecting for certain cases 10 to 20%

errors (perhaps more) in the stopping power.

Wherever we have direct comparison with e#perimental data
available, the ranges calculated by our method are usually very close
to the experimental values, We calculate ranges which are within 5
to 10% of the ranges measured for Cl ions in ‘Al by Kaplan and

53 . . .. . .
Ewart, This comparison is discussed in the next section because
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we believe the velocities of the Cl ions measured are above the region
of validity for Lindhard's theories, The fact that the ranges of these
Cl ions were measured at such high velocities 0.2 = &= 0.9 MeV/
arﬁu) may have contributed to the finding that the variation of stopping .
power with energy was less pronounced than 81/2,

We also calculate ranges which are usually within 5 to 10% of
the ranges measured for Dy ions in Al by Gilat and Alexander:5
This comparison is made in Fig. 8. Our value of k (see Eq. (32)) is
clearly slightly large. Had we not increased § from lel'§ to 210.207
we would have closer agreement with the experimental points, but
then we would have poorér agreerhent with the ﬁssion-—product data
discussed below. We do not attempt tb compare ranges calculated
by our method with those measured by Gilat and Alexander for Dy
ions in various gases. For reasons stated in Sec, III Al, stopping
power can be more than a factor of two lower in gases than in
condensed media. This can be seen from Fig. 12 of Lassen54 where
the charge state of fission products in gases and solids is illustrated.
Alexander and Gilat have found errors of this magnitude in Lindhard's
theory when comparing with the raﬁge data obtained in gases; ‘

We have collected»U235 fission-product ranges from several
sburces (Refs. (55) through (59)). The velocities of each of the
fission products chosen were taken from Ref. (60). (These references
are é.ll summarized in Hyde (26).) By making the very slight modifica-
- tions in k (ée-e Section.II B 1) which consist .only of inéreasing k by a
/6 0.207

1 o Z1 , wWe have

obtained the good agreement shown in Tables VII and VIII,

constant 1.5% and increasing £ from Z

Since the experimental ranges are a measure of the distance
the ion travels projectéd onto the initial direction of flight, we should
compare the experimental ranges with a calculation of the mean .
projected range. The path-length range, obtained from Eq. (46), is

the total mean distance the ion travels no matter how twisted its path
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Fig. 8. The theory used in the low-specific-energy region (line)
is compared with experimental range data (circules) obtained -
by Gilat and Alexander52 for Dy149 ions in Al. The dimensiofl-
less range and velocity used by Lindhard, Scharff, and Schiott
. (designated LSS) are given at the r‘ight and upper axes
respectively. The value of the constant k (see Eq. (16))

: i is also given.
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Ranges In Al Calculated By The Program Compared With .
The Experimental Fission-product Ranges.

Ion

89
38

115
48Cd

140
56

144
s8¢

Rar_ige (mg/cmz)

‘Calculated

Estimated
specific energy ' _ :
(MeV/amu) Experimental Projected Path-length

1.,12& 4.09 4,12 . 4,15
0,613 3.32 ~3.14 | 3,18
0.489 2,98 . 3.03 3.07
0.437 2,76 2.84 . 2.87
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Table VIII., Experimental Fission-product Ranges in U Compared
With Ranges Calculated By The Program

Range (mg/cmz)

. ' , ‘ Calculated
Estimated
specific energy . .

Ion (MeV/amu) Experimental Projected Path-length’
89¢.." |
3881' 1.12 11.55 11.76 _ 12,82
1ZZPd 0.816 10.14 - 79,91 10.87
11 - | |

5Cd 0.613 9.52 8.35 9.27 .

48 _

1‘51213:11 0. 489 8.74 7,64 8.48
1440 . 0.437  8.37 7.04 7.85

58
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may be, The difference between the projected and path-length ranges
is due to multiple scattering. of the ion by nuclei in the stopping
material. As one would expect, this difference is the more significant
the lighter the ion and the heavier the nuclei of the stopping medium,
In order to calculate the projected rang‘e for these experimental
comparisons, two computer programs were written. One calculates
the mean projected range of the ions and the dthler calculates the
difference between the mean project;ed range and the mean path—length
range., The computer programs and the method used in each are
discussed in Appendix B, '
- Table VII shows that there is good agreement between theory

and experiment for fission products incident upon Al.' The depevndence

upon Z_ is approximately correct for this case. However, Table VIII

1
shows that the agreement is not so good for the case of fission

. : 4 : .
products incident upon uranium. Aras et al, have also made this
observation. The theory predicts in this case that the stopping power

increases with increasing Z. faster than it does in reality (i.e. the

1
range decreases too fast). We thought at first that, since the multiple

scattering of the ion in uranium would be greater than in aluminum,
a computation of the projected range might remove the discrepancy.

But Table VIII shows that the discrepancy became worse., Another
i . . 1 .2
possibility is that, although increasing £ from Zl/6 to Z.(l) _07 i

proper for Al as the stopping medium, we should decrease the depend-

S

ency of £ on Z_ for uranium as the stopping medium. However, we

1
choose not to make further changes in Lindhard!s theory for three
reasons, First, as mentioned above, the iﬁelastic processes by
which an ion in this low-velocity region can lose energy are numerous
and not well.unc’l‘erstood. For example, the éorrelati_ovn between the
elastic nuclear coulomb collisions and inelastic collisions are not

known, so we here assume that they do not exist, Therefore, perhaps

at this time we should not expect consistently good agreement here
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between theory and experiment. Second, we are more anxious to
have an accurate calculation for light stopping material than for very
heavy stopping material, since the light stopping material are of
greater radiobiological importance. Therefore the modification
which gives good agreement.in Al takes precedence over the cor-
responding modification in uranium. Finally, we cannot make mod-
ifications indiscriminatély and still retain a sufficient amount of
physics in the theory to give us confidence that our calculations are

valid in regions of ( &, Z ZZ) space where no experimental data

are available. 1

When the stopping medium is either a compound or a‘mixture
we always use Bragg's rule, Eq. (25), to calculate the stopping power.
Thé limitations of this rule for low ion velocities were discussed at
the end of.Sec'tionIIIA 1. The use of Bragg's rule in the prese.nt

region is subject to the same limitations. We refer the reader to the

earlier discussion.

2. Medium-Low-Specific-Energy Region (Z,l/3 <1378 =9)

The upper limit of this region is 2 MeV/amu. The lower limit

ranges from 0.1 to 0.5 MeV/amu as Z, ranges from 10 to 92 respec-

1
tively. Thus the region is very narrow. By using Eq. (37) and
matching the slope and magnitude of the stopping power at both

boundaries we cannot expect the error within the region to differ

. significantly from that at the boundaries,

This observation is born out in Fig., 9 where we compare our
method (range values calculated by Eq. (46)) with the measured values
for C134 ions in Al obtai_ned by Kaplan and Ewar..t53 which were
discussed in the previous section. The lower limit of this medium-
low-specific-energy region for Z1 =17 (i, e..for Cl ions) is 0,2
MeV/amu. Note that the velocity dependence of the range calculated

. . 1/2
by our method is approximately correct. Also note that the & /
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dependence which is predicted by Lindhard's theory would not be
correct as this would produce a curve which would pass from the
point R = 0,97 mg/cm2 and € = 0.2 MeV/amuto R =1.94 and &=
0.8. We believe that this is evidence for our view that the application
of Liindhard's theory here constitutes a misuse <an the theory to the
extent that it is generally no longer valid at velocities which are this
large.

The ranges calculated by our method which are illustrated in
Fig. 9 are about 5 to 10% large. Since we calculate the approximately
correct velocity dependence, this implies that the magnitude of the
stopping péwers at the boundaries is of the order of 5 to 10% small,
Other than this, it is difficult to say anything about the agreement of
our. method with this experiment at the upper boundary of this region
( £ =2) since K.aplan and Ewart give no experimental range values

above & =1,

3. Medium-High-Specific-Energy Region (9< 1378 = 3 Zl—)-

There are two major assumptions ifnplicit in Eq. (44) which
prevent our generating stopping power with theoretical rigor using
this equation., One'assumption is that Bethe'!s theory is valid in this

regionof ( &, Z ZZ) space. This is not true since neither

s
inequality (5) norl(_6),_ one of which is required for use of the Born
approximation, is always fulfilled, We will discuss this in more
detail later in this section,

The second assumfion is that r, which is a function of X = 1378/

g

Z1 and which satisfies the five criteria of section II B 3, can success-

fully give the charge state of all ions in all stopping media throughout

this regionof ( &, Z ZZ) space. We conclude from the work of

1’
o .

Knipp and Teller ~ that the Thomas-Fermi model of the atom is

compatible with this assumption for g = 2/3 if vo/V; is a constant,

As in section IIB 3, v, /V; is the ratio of the velocity of an electron

in the ion's electron cloud to the velocity of the ion at which this
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electron’s capture and loss cross sections are equal, Bfﬁnnings,
Knipp, and Teller61 investigated this ratio. Using the Thomas-Fermi
model they empirically found this ratio under two extreme assumptions.
First, it is the energetically least tightly bound electron on the ion
whose capture and loss cross sections are equal when the ion velocity
is Vi° Second, it is the outermost electron on the ion whose capture
and loss cross sections are equal when the ion velocity is 'Vie Under

the first assumption, the empirically indicated values of ve/Vi are:

10 1,2
55 1.8

Using the second assumption:

Z1 ve/Vi
6 0.6
10 0. 45
37 0. 37
55 0.35

These results show that the ratio of Ve/Vi is probably not constant.
However, since the two extreme assumptions of Brunnings, Knipp,
and Teller indicate opposite behaviors of this ratio with respect to
Zl' the aséumption that ve/Vi ié constant may be as appropriate as
any other,

We now look into the high-velocity end of this region of ( ¢ ,
Zl’ ZZ) épace where the Thomas-Fermi model is not valid since
the electron cloud of the ion becomes depleted. For high velocities
we apply a correction to vthe Thomas-Fermi model by allowing g to
approach 1.0 at 1378 = 2 Z1 (see Eq. (40)). Even if this éorrection

does not describe the true deviation from reality of this statistical

model, the error introduced into the stopping power, through
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Eq. (44), is small because r approaches 1.0. Thus we conclude that
we have corrected for some of the error introduced by using the
Thomas-Fermi model near the high-velocity boundary of this region,
but, since r is nearly 1.0 here, the stopping power is not very
sensitive to the model used anyway.

In our development of the charge state of the ion, r(X), we
have ignored any dependence upon the stopping medium., The charge

exchange process between the ion and the medium is to some extent

. a function of the electron capture and loss properties of the medium,

Also, the electron density of the medium may slightly affect the charge
of the ion by the same mechanism discussed in section II1 Al where
the ionic charge in gases was compared with that in condensed media.

We here assume that the dependence of r upon Z in negligible

2
compared with its dependence upon £ and Zl°

As mentioned above, the first major assumption implicit in
Eq. (44) is that Bethe's theory is valid in the medium-high-specific-
energy region. For the validity of the Born approximation, and thus
also for the validity of Bethe's theory, either one or both of inequalities

(5) and (6) must be fulfilled. For convenience to the reader we repeat

these inequalities here:

r Zl' << 1378, and (5)

r Z1 << ZZ° , (6)

Inequality (5) is nowhere well satisfied since the high-velocity

boundary of this region is 3 Z, = 1378, Therefore we cannot be

1
certain that Bethe's theory will generate correct stopping power

unless inequality (6) is satisfied, that is to say unless the nuclei of

the stopping medium ’are heavier than the ion. It is clear then that

we cannot use Bethe's theory here with certainty whenever the stopping

material is water, tissue, or any hydrocarbon,

Because these are very important stopping materials and
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because inequality (7) for Bloch's theory is less restrictive than
inequality {5) for Bethe's, we have investigated the use of Bloch's
theory in that part of the med{um—high-speciﬁc—energy region for
whiéh inequalities (5) or (6) are not satisfied. (The mechanics of the
use of Bloch's theory, Eqs. (8) and (11) are discussed in Appendix C.)
We found two functions for r(X), of the form indicated in Eq. (41), for
use with Bloch's theory. Both of these functions Satisfiéd all five
criteria of section II B 3, where Bloch's theory was now used in
criteria 3, 4, and 5. For eac‘h value of X, these functions differed
from one another by less than the uncertainty of the magnitude of
either one for that value of X. Our aim was to calculate the stopping
powers of a variety of light stopping materials for a variety of ions
using Bloch's theory with first one of these functions and then with the
other. Thé difference in these two stopping powefs would give an
estimate of the minimum uncertainty of the méthod overall. If this
difference was comparable to or greater than the difference between
the stopping power calculated using Bloch's theory and that using
Bethe's theory through Eq. (44), then we would conclude ’c_ﬁat the
advantage of Bloch's theory over Bethe's was dwarfed by the uncertainty
in the function r(X). |
We found generally good agreement Between Eq. (44) and our
use of Bl(;ch‘s theory for several ions in water and Al. Rarely did
the two methods differ by more thén'S%. When the disagreement was .
greatest, Bloch!s theo‘ry,v using r(X), calculated stopping powers 6 to
8% less than that calculated using Eq,b (44). However, using Bloch's
theory with tﬁe alternative function r(X) mentioned above, we cal- -
culated in these cases stopping poweré Which were only 1 to 3% less .
than that calculated by Eq. (44). In these cases of greatest disagree- e
‘ment, inequality (7) was satisfied; so Bloch's theory was valid, »
We 'éonclude that Eq. (44), using Bethe's theory with the r(X) .
function whicbh was derived especially for use with Bethe'!s theory,

gives sto'pping-power'values which are within the accuracy of the
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function r(X) throughout any part of this medium-high-specific-
energy region in which Bloch's theory is valid.

To compare the method used in this velocity region with
experimental data, we plot in Fig. 10 some range data points for Ar
ions in Al obtained by Sikkela.nd43 with the range calculated by Eq. (46).
Note that this is primarily a measure of the success with which we
executed criterion five of section II B3, It is not a measure of the
correctness of our method of extrapolating charge-state data, nor is
it a measure of the correctness of the use of Bethe's theory where
the Born approximation is not rigorously valid. For experimental

data which would satisfactorily test this, we must await the completion

" of the Omnitron. The greatest deviation of the data points from our

theory is about 5% and it occurs at the lower velocities,

4. High-Specific-Energy Region (1378 > 3 Z )

For ions in this region, the stopping power is given in Eq., (45).

' The Barkas and Berger polynomial, Eq. (23), which is based upon

Bethe'!s theory, is used to calculate the proton stopping. power (dE/dR)é
Bethe's theory should be perfectly valid in this velocity region since
inequality (5) is satisfied and the shell corrections used by Barkas and
Berger remove the necessity for inequality (1) being satisfied. The
only feature of Eq. (45) left to be discﬁssedvis the accuracy of the
polynomial fit to Bethe's fheory, and this discussion is given in

section IITA 2,

5.. Ion Mean Range for Z > 10

The range is given by Eq. (46). The integrals are solved
numerically by Simpson's rule., The number of intervals into which
the domain of integration is divided is doubled for each successive
trial, and the convergence criterion is set such that the value of the
integral is given by the second of two consecutive trials that differ
by less than 0.05%. Thus the range calculation is consistent with

the stopping-power calculation discussed above., The accuracy of the
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range calculation is essentially the same as that of the stopping-
power calculation.

The range calculated by Eq. (46) is the mean total pathlength
that the ion btravels., The range which is often measured experimeh-
tally is the mean distance the ion travels in the initial direction of
flight, These two ranges differ because of multiple scattering of the
ion in the stopping material; For specific energies above a few MeV/
amu, this projected range is usually less than 1% shorter than the |
pathlength range. As one would expect, the percentage difference
increases with decreasing €, increases with decreasing Zl’ and

increases with increasing Z The ranges for various fission

2° :
products in Al and U are tabulated in Tables VII and VIII. A method
of estimating the projected range at low velocity is given _by Lindhard
et al. 18 A computer program which calculates the projected range
is described in Appendix B. The method for calculating the projected

: 62 2,
range of high-velocity ions is given by Rossi ~ and by Litton,"’ 3
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1Iv, RESULTS

The computer program described in Appendix A has generated

a sampling of ranges and stopping .powers to be displayed in this |
section. The ions chosen are hydrogen, helium-4, carbon-12, neon-
20, argoﬁ-40_, krypton-84, xenon-131, and radon-222, Data are
prevsent.ed for each of these ions in_cideﬁt upo'n water, aluminum,
copper, siiver, lead, and ﬁranium. |

| In Figs. 11 through 16, stopping power is plotted as a function
of specific enefgyo One of the conspicious features of these curves is
the difference in behaviof in the 16W—specific-energy region between
‘ = 10. This reflects the fact that a

the ions for Z, > 10 and Z

1 1
cofnpietely different method is used to calculate the stopping_pbwer .
in these two cases. For Z, > 10, Eq. (36) is used., The increasing
contributions of the nuclear coulomb stopping-power term as Z1
increases and & decreases causes the slope of the curves to decrease
under these conditioﬁs.,_ According to-Lindhard et al, 18, the assump-
tion that the nuclear and electronic stopping powers are separable |
may lead to a systematic overestimation of the stopping power in this
low-specific-energy region. The smoothed experimental stopping
power which we try to duplicate‘ with our method for Z1 = 10 does
not usually show a decreasing slope for decreasing velocity because
the scatter of the experimental points is usually too great to permit
the resolution of such fine detail. Thus the decreasing slope for
decreasing velocity may be ’overestimated for Ar ions and underestima-
ted for Ne ions, leading to a discontinuity in the systematic change
of behavior across the Z1 = 10 boundary.

It may be useful to examine this discontinuity in more detail
in order to obtain a measure of the. accuré.éy of 6ur method for Zl
~ 10, In Fig. 17 the lower pair of curves are plots of the stopping

power of Ne ions in Al by both methods. The agreement between

&t

-
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Fig. 11. Stopping-power curves as a function of specific energy for
various ions in water as calculated by the computer.program. At the
top of the figure, values of B =V/c are displayed. The Ne and C
curves touch at about 0.04 MeV/amu due to an inaccuracy in the
program which is apparent from Table VIC and D. Our method over -
estimates the experimental stopping power for carbon ions in hydro-
gen at 0.04 MeV/amu by 14% and underestimates it for Ne ions by 6%.
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At the top of the figure, values of B = V/c are
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each pair of curves is calculated by the method used for Z; = 10.
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this pair of curves is. very good. The percentage difference in mag-
nitude between these two curves is shown by the lower curve in Fig,
18. A negative percentage difference implies that the method for
Z;> 10 gives a stopping power which is less than fhat for Zl-“~'§’. 10,
For specific energies greater than 10 MeV/amu, Fig, 18 gives a
magnified view of r% of Eq. (43). For Ne ions at 10 MeV/amu r =
0.952 implying that the ion carries an electron nearly half the time,
This inay be an underestimate of r in this case, The upper pair of
curves in Fig. 17 compares the two methods for Ne ions in water,
The agreement, which is again displayed in detail in Fig. 18, is not
so good in water. There are two main reasons for this; and both
have to do with the difficulty of treating hydrogenous stopping media,
First and probably most important, the experimental stopping po.v»;er

of hydrogen which is used by the method for Z. = 10 is the stopping

1
power of gaseous hydrogen. The ions at low velocities therefore
have a lower charge than they would in condensed hydrogen as
discussed in section IITA 1. Secbnd, the Thomas-Fermi atomic

model, which is used in the low-specific-energy region for Z,k > 10,

1
cannot be applied with rigor to hydrogenous stopping media since

the statistical model cannot properly be applied to hydrogen. The

method for Zl > 10 is more properly applied to stopping media heavier

than hydrogen.
In Figs. 19 through 24 the stopping power is plotted as a
_function of ion residual pathlength range. Points of constant specific

energy are indicated by symbols at 0.01, 0.1, and 1.0 MeV/amu-

and by curves at 5, 10, 50, 100, 200, 300, and 500 MeV/amu. From

. - 20 .
Fig. 19, for instance, we see that a 5 MeV/amu Ne in water has
a LET of 7500 MeV/(g/cmZ) and a range of 100 microns, The

discontinuity in behavior across the Z. = 10 boundary discussed

1
above is apparent here also.

The H-He, C-Ne, and Xe-Rn crossovers of Flg 19 are not

b
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as bizarre as they probably appear, because veloci-ty and not residual
range is the natural variable of stopping power, Let us discuss
thesé crossovers one at a time. Since He has 4 times the mass but
only twice the charge of H, the two ions have the same range for
- constant velocity when r = 1 because range is proi)ortional to
Al[(r Zl)z., This makes it easier for the He and H curves to cross-
over at some low velocity where r~ 1 for H ions but r < 1 for He ions.,

The error we introduced into Fig., 19 at low velocity for Z1 =
10 by using the experimental stopping power in gaseous hydrogen -
instead of condensed hydrogen has the effect of int.roduci'n.g a value
of r which is too small. Since stopping power is prop'ortio‘nal to
(r Zl)z, the error has the effect of moving a curve plotted on the
coordinates of Fig, 19 vdo“;'ri aﬁdlto the tight of where it:should bé. Neon
ions would be affected by th;s error at higher yelocities than carbon
ions, so the magnitude of the C-Ne crossover may be accentuated
by this error.

All three of these crossovers dcc.ur in regions where we have
relatively low confidence in our method. Thus they may not exist
in reality and may be an artifact of the method. This is certainfy the
case for the Xe-Rn crossovers of Fig, 19, These two curves cross
over only slightly in theAmedium—low—specific—e'nergy region. It is -
this region that we.eﬁtend the stopping power from the boundaries into
the region by means of a cubic polynomial détermined by the slope
and magnitude of the stopping Ip'ower at the boundaries. In Fig. 19,
where two curves approach one another near this medium-low-specific
energy region, the curvature provided by the cubic can easily be
sufficiently ‘erroneou‘s to allow crossovers such as this Xe-Rn
crossover, 7

In Figs. 25 through 30 the velocity is plotted as a function of
residual range. The discontinuity in the systematic change of behavior
across the Z, = 10 boundary, as discussed above, is apparent in these

1
curves below 0.1 MeV/amu.
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APPENDICES

A. Thé Computer Program For Calculating Stopping Power

and Mean Pathlength Rangéo

This computer program utilizes the method described in
sections II and III. ' It is this I;rogram which has calculated the results
which are presented in section IV, In section A1 we describe the
program, in. section A 2 the input té the program is presented, section

-A 3 is the listing, sbection A 4 contains four sample problems.

1. Devscription' of the Program.

On page 102 of the li'stiﬁg (section A 3), TabjlevaI, IH, IV, and
V are stored by DATA .statéments. Also the forty-eight constants,
Cn of Eq. (21), are stored by a DATA statement. The numbers in
this statement are in the order given by (({ C(I, J, K), 1=1, 2), J= 1, 4),
"K=1, 6) where I corresponds Ito n of Eq. (21), J= 1lto 4 corlresponds
toZ, =1, 2, 6, and 10 respectively, and K=1 to 6 corresponds to

1
Z_=1,6,13,28, 47, and 79 respectively.

: Pages 103and 104 of the listing cont'roAl the input Whiclr} is pre-

sented in section A2, N |
Pages 105 through 108 perforfn the stopping-power and range

calculation if Z1 = 10, The stopping-power calculation for the
'velocities indicated in Table V is performed on pages 105,106, and
- 107. A variety of calculations are performed on page 108. First o
several specific energies for which 10 = £ < 500 are chosen. Egs.,
(26).and {30) are then sblved for these specific energies yielding the
range and stopping power, _A Equation (29) is.also solved for the specific
ehergies, for which € < 10 MeV/amu. Finé,lly, the constant k of
Eq. (16) is calculated along with the rangés, velocities, and‘stopping
power for low velocities in fhe dimensionless units vof Lindhard et al.

(see Eqgs. (12) and (14)).
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11 Zl > 10, the range and stopping-power calculation is perform-
ed on pages '109 through: 112 . The specific energies at which the
calculation will be made, and the boundafies between the four specific-
energy. regions are found on pagesl09and 11Q. For the low specific-
energy region, the inelastic (electronic) stopping power, Eq. (31), and
the elastic nuclear coulomb stopping powef, Eq. (33), and the total
stopping power, Eq. (36), are calculated on pag.e 110 of 'the"rl'lifsti,ng.

The range (i. e. the first term of Eq. (46)‘). is calculated on page 111,
The stopping-power calculation for the medium-low-specific-energy
region, Eq. (37), and the range calculation ('first two terms of Eq. (46))
is begun on pagelllandcompleted on page 112 The stopping-power

and range calculation for the medium—high—specific-energy region

(Eq. (44) and the firs.t terﬁ of Eq. (46) respectively) is also performed
on page 112, Also on page: 112the stopping power and range in the high-
specific-energy region (Eqs. (45) and (46)) are calculated. On page

113 the velocity, range, and stopping power are calculated in the dimen-
sionless units of Lindhard et al. for the low-and medium-low-specific-

‘energy regions, The constant k (see Eq. (16) is calculated here too.

In the center of page 113'we calculate the firs} derivative of the
stopping power with respect to energy at each specific energy except
at the largest and the smallestf The value bf‘this derivative at & is
assumed to be 1/Al times the slope at € i of a parabola which passes
through the points (Si—l’ Si-i)’ '(Si, si), and (Si+.1’

is the stopping pbwer at specific energy S'i. The value of this deriv-

£ i+1), where Si

ative is useful in certain applications and we include in the program
this simple calculation for the few it will benefit, |
vFina.lly, at the end of page 113 are the control statements for the
plotting subroutines, and the final output statements v.for the results,
On page 114.0fthelisting some diagnostic statements, which are

normally not executed, appear. Just before terminating the job,



-96 -

the DATA statements are printed.

The subroutines on pages 115 through 134 are called by the

main program described above and by each other, A one or two

line description of each subroutine appears as comment statements

at the beginning of that subroutine, We now list these subroutines

with a few comments about gach.

RATIO:

BRAKET:
DEDX:
LAMBDA:

DEDX1s

SPIML:
GLSQ: |
XINTG:

- YINTERP:

STOPL: -

SIMPS:

This subroutine solves Eq. (43).

" This subroutine aids in the interpolation

illustrated in Fig. 5.

' This subroutine solves Eqgs. (22 A) and

(23 A).

This’ subroutine solves Eqs. (22 B) and
(23 B).
This subroutine solves Eq. (36). -

This subroutine solves for the inverse
of the stopping power given by Eq. (37).

This subroutine is called by the main
program to solve for the coefficients in
Eqgs. (21) and (37).

' This subroutine is called by SIMPS

(see below) to calculate the value of the

integrands appearing in Eq. (46).

This subroutine is called when an
ENERGY card appears in the input (see
section A2 below), It linearly inter-
polates in order to find the stopping
powers and ranges at the specific
energies read from this card.

This subroutine solves Eqgs. (31) and
(33).

"This subroutine solves the integral

appearing in Eq. (46) as described in the
text following this equation., '
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CCLOGTC: This subroutine is called by the plotting
subroutines in order to construct a
logarithmic grid.

GRAPHI: This subroutine plots stopping power as
a function of specific energy using the
plotting subroutines for the Cal Comp

. which are available at the Lawrence
Radiation Laboratory computing facil-
ities in Berkeley, California,

GRAPH2Z: This subroutine plots stopping power
as a function of range using the system
subroutines mentioned under GRAPHI.

GRAPH3: This subroutine plots specific energy
~ as a function of range using the system
‘'subroutines mentioned under GRAPHI,

2, Input

There are ten types'of input car.ds. Only the first four types
discussed below are nori'né.lly used. The type of input card is
designated by a code word punched in columns 1 through 6. Each type
is discussed below under the heading of its code word. The first two
types of input cards may be read in any order. The letter b indicates

blank columns where no punch appears.

IONbbb: This card is read with A6, 4X, 2E 10,0
format. In columns 11 through 20 the atomic .number Zl’ of the ion
appears. The atomic weight of the ion, A, is punched in columns 21
through 30. If several jobs are to be run,; this card needs to be read

in only initially or whenever Z1 and A1 are changed.,

TARGET: This card is read with an A6, 4X,
2E 10.0 format, It also.needs to be read only initially or when the
stopping medium is changed. Columns 11 through 20 contain the
number of elements, NO, in the stopping medium, If these columns

are left blank (blanks are read as zero), NO is assumed to be 1.0,
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The first NO cards following the TARGET card are read by the forrnat
4E10,0. Each of tlrese cards contains the necessary information
about one element of the stopéiﬁg medium. Columns.1l through 10
contain the atomic rlumber.Zzi, and columns 11 through 20 contain
the atomic weight Azi; If l\_IO > 1, the relative abundance of this
éelement RELA;, is read from columns 21 through 30. The average
adjusted excitation potentiai for this element, DIADJ;, is read from
' columns 31 to 40 (see the discussion follow1ng Eq. (23) for the . -
| meaning of ”adJusted”) '

The average adJusted exc1tat10n potent1a1 for the stopp1ng

~medium is determined in one of four ways, For NO = 1.0:

1. Ifa card with the code word IADJ is encountered (see below) the
number from this card is taken as IADJ until the next GO card (see

below) is encountered.

2. If no IADJ card appears then IADJ is given the value of the number
_ in columns 21 through b30‘of_th'e TARGET card if this number is

greater than 1.0,

3. 1f this number is not greater than 1.0 then IADJ is glven the

value of DIADJ if thls number is greater than 1.0,
4, 1If DIADJ is not greater than 1,0 then IADJ is taken from Table v

or calculated from Eq. (24) dependlng on whether ZZ = 10 or ZZ > 10.

respectively.

For NO > 1.0:

1. 1If a card with the code word IADJ is encountered (see below) the
number from this card is taken as IADJ until the next GO card (see
below) is encountered. If no IADJ card is encountered-fhen IADJ is
found as indicated below. |

2, If the number in columns 21 through 30 of the TARGET card is

greater than 1. 0, then this nur_nber is taken as TADJ. -
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3. If this number is equal to 1.0, then IADJ is calculated from the
NO values of DIADJ; using Eq. (28]). When Eq (28) is used, the

value of p;/p,RELDEN;j, is calculated by
- NO
2./ ZRELAj AZ, 5
L \;;1 j

R ELDEN;RELAi A

where RELA; is the relative abundance of the 1_t_£1_ element in the

stopping medium.

4, If this number is less than 1.0 (or blank), then IADJ is calculated
from Table IV and Eqs. (24) and (28).

GObbbb: This card is read with an A6 format,
Whenever it is encountered a complete calculation as described above
in section Al is performed unless a RENORM card has been encoun-

tered since the last GO card.

STOPDbb: Whenever this card is encountered,
the data statements on page 102 of the listing are printed and the

problem is terminated,

IADJbb: This card is read with an A6, 4X,
E 10.0 format. The number in columns 11 through 20 is taken as
IADJ until the next GO card is ericountered. This vcard‘ivs intended
for use when the stopping medium has not changed since the last GO

card, but a different IADJ is desired.

‘ RENORM; This card is read with an A6, 4X,
5E10.0 format. When this card is encountered, a calculation as
described in section Al above is not performed upon encountering

the next GO card, but rather a new C, and C_ for Eq. (21} axe

1 2
calculated for the ion (Z1 =< 10) specified on the last ION card and

the stopping medium (single element} specified in the last Target cards.

The numbers in columns 11 to 20,' 21 to 30, 31 to 40, 4l to 50, and
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51 and 60 are the experimentall stopping powers at the specific energies
0.01, 0.04, 0. 1, 0.4, and 1.0 MeV/amu respectively, of this Stopping
medium for the last ion in ,bunitsv ‘of MeV/(g/crnz)° If there is a high
confidence in these n'ewvexpér-irnental stopping power, then the appro-
priate numbers in the fburth DATA statement on page '1'02.'..0"f;lt-h'é'1li's.ti_ng
.mé.y be ‘_repla‘c'ed, (See the discussion on C(I, J, K) in section Al abqve,)
ENERGY: . This card is read with an A6, 4X, E 10,0
format. The number in columns 11 through 20 which must be < 50,
is the number of specific energies, in units of MeV/amu, to be read
in on the next NEN/8 cards (round off the fractions to the n.ext higiqer
integer) read with an 8 Evl_.0.0 format, After the complete calculation
is performed, which is triggeréd by the next GO card, stopping power
and range values at each of the NEN speAciﬁc épergies is‘fo\'lnd by.
linear interpolation bin between the clo.éest members of the table set
vup by the program. This 4'céx_'d- essentially allows the user to add
energies with dafa cards to the tabl‘e calculated by the program.

' SEGRAP:  This card is read with an A6, 4X, E 10,0
format. Whenever it is én'countered, CRAPHI is called at the e’-r.ld'of
the calculation triggerea by the next‘GO card, A plot of the stopping
power as a function of sp.ecvi_ﬁ‘cb energy is then made. Examples of .
these plots appear in Fig, 11-16.

A new plotting grid is generated if the number in columns 11-20
is greater‘ than zero or if the iast plot was not generated By a SEGRAP
card. v v _ | v ‘ ‘

This card immediately fo].lowing the SEGRAP card is read with
a Ab, 4X, -3A6 format; The symbols in c'o.lum.ns 1-6 are used by the
plotting subroutine to labei the particular éuryé generated by this

SEGRAP card. The symbols in columns 11-29 are used by the plotting
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~subroutine to label the _gridehenever a new plotting grid is generated.
Either one or both of these fields may be blank; in this case the labeling

controlled by this field is not performed.

SRGRAP: . The description of the use of this card
is exactly the same as that for SEGRAP with a graph of stopping
power as a function of rangé being plotted by GRAPHZ2, Examples of
these plots appear in Figs. 19-24 and Fig. 31.

REGRAP: ' The description of the use of this card
is exactly the same as that for SEGRAP with a graph of specific energy
as a function of residual range being plotted by GRAPH3,

Examples of those plots appear in Figs., 25-30,
Note that only one of the above three graph cards can appear

in any one problem, i.e. between any two consecutive GO cards.
3. Listing,

This is a listing of the program in FORTRAN IV language.
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PROGRAM DEDXR(INPUf sOUTPUTs TAPE2=INPUT» TAPE3=QUTPUT»TAPE9B,
1TAPE99s PUNCH)

C MAIN PROGRAM

C

C

no

COMMON EV(200)sZEX(200)9sR(200) sXLOG(200})sYLOG(200)9¢DZEX(200)
COMMON/GEN/IADJs LI s LAZsNOs Zs NN’IIQIEV’ANLOJGRAPHOTEST,
COMMON7ABLOK/AMN(393) s ALPLA{494) /BBLOK/CE(10)sCN(10)9sCNL{10)»
1RELDEN(10)/CBLOK/B(5) /GRAF/LTRCoLTRG(3)

DIMENSION DR(22+5)sTABLE(22910)sAT(10)s2ZT(10)+sBETA(3}9EL(3)
1D0{695)sIL(5)sEQ(22)sCIADJ(10)sDIADJII10)9sZEE(30)sZEN(30)sEPSN(30}s
ZZETA(BO)’GZEX(BO)9EN(50)0ZEXN(50)oRN(SO)oALE(6l¢C(2o4,6)OF(A)’
3TEX(17910)9sRELA(10)9CODE(10) sWHAT(T)

REAL IADJSsLIWLAZSsLESsLLYLAMB29LAMBDA

EXPERIMENTAL STOPPING POWER FOR Z LESS THAN 11 IN ALUMINUM

DATA EQ/40196015540290039¢049605+0607901941590200350490550791409145
192609369443569769104/+TABLE/1834023009265493204936069390694304 9440
20141009380093300929009265692200917269131091094983¢365¢95803454934¢
327991180914169164¢320549235092606928503315¢932509320¢92900927009
4250492150917045131¢291090983696%94958034563340279995091144913209164
5918762208492306925449264492263¢92430923049216691930315609124091050
6816616Be95809456934627997149860999491226914009155¢917569193492034s
720609196091896918109166¢9142091174351010380e9674957094569344279
B484958696609806993691034912063132¢9142e91496915009145091470514069
9129¢911163984979¢9670357094509340279939¢94749544965097509834997091
#1169123¢2130¢9133¢913369131¢91284912009107499449786+66095Tes4509
134062799344 940094769560364069716982¢99%469108091120912109122491224
2120091110,100‘ 990, 0750 9644 9560 (X3 934.2799280 33348380847 '5“0 9600!
369¢+804992¢9100691094911069111¢+12063107694954986437301620955094309
4344279923492709326939¢94603514959¢969¢9800987¢9960910069101491010»
598¢9904381a970496005546942493402799519639234927693269386943495001606
6970097 Ta9870991099369940990098403T766967095869524594249344279/

COEFFICIENTS FOR BARKAS POLYNOMIAL FIT TO BETHES THEORY

DATA AMN/ ~e752659e73736E~19e¢40556E~19425398E1

6 =~e3129018664E~19=02459854115489~¢99661E=2/9ALPHA/

7 ~eB80155E154369169=¢14307E-19634718E~29018371E19-el1452E~1s

8 ~e30142E=~15423603E-29¢45233E~19=e95873E~39¢71303E~29-¢68538E-3»
9 —~e59898E~29~¢52315E~39~433802E~3+439405E-4/+D/30%04/+JGRAPH/Q/

IONIZATION POTENTIALS FOR ELEMENTS WITH Z LESS THAN 11

DATA CIADJ/18e7342093809600970¢978098445488455108691310 /

COEFFICIENTS FOR NORMALIZING THE PROGRAM TO EXPERIMENTAL STOPPING POW

FOR Hs HEs C» AND NE IONS IN Hs Cs ALs NIs AGs AND AU

DATA C/ 848811002199177E-025
8 147138690365610E=02s 4+9497133143262E=025 1e3540201949725E~02
9 541855586277785E~029 145541522412133E-025-7+0320508947949E=02
%#-104255700147520E~029 345590198639876E~03y 1e5967910228485E~03
1~548195120035795E~04s B844C52292539332E~04s 9e686873561T298E~03
2 441480250614850E=039~7+6582561384904E~039~146385237951375E~03
3 540138986374204E=049-246552415376993E~04~125773041482136E-03,
4~648461912460993E~04s 843666352668449E-03s 2.6876280235695E~03
5 145035074028 7T4E=03s 1467370943T0482E~049~141241521737316E~02
6-441837248715580E=035~7e9827735119005E~03+~2e5753724979494E=03
T-16¢1763486564892E=02+~441226660625563E~039~103449692056030E-02
8~447899763404858E~03s 143976941603226E~02y 948137632029485E~04+
9 947438614446294E-03s 546591608351 300E~05s 1e¢2115290632189E-02»
# 749626549835530E-04s 143788090175256E~02y 1.2567130675785E=03
1-143176586838630E~029-547053662633375E~03s~146323907448869E~02
2-643370050198126E~03+-143188677117176E-024~543555019602713E-03
3-145092254582325E-029-548882305836342E-03/»TEST/04/

DATA CODE/ ,

1 6HION »6HTARGET s6HENERGY +6HRENORM s6HIADJ  s6HSEGRAP

ER
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2 6HSRGRAP 3s6HREGRAP 3 6HGO s6HSTOP 7
100 CONTINUE
.t WRITE (39370)
. 370 FORMAT (20H1DATA CARDS PRINTED«/)
IGRAPH=0
_ NEN=0
. NEWB=0
o KA=1 SE%%#%:::ffEZ%F?’
- NN=—1 pmn
NDR=
NIADJ 0
L C PROCESS DATA CARDS
103 READ {2s1) CODEWs{WHAT(I1)s1=197)
1 FORMAT (A634X3TEL1D040)
N WRITE (35371) CODEVs (WHAT(I1)sI=1s7)
371 FORMAT (TH *¥2x&¥3A697E1505)
DO 101 I=1s10 .
IF (CODEW.EQeCODE(1)) GO TO 102
101 CONTINUE
WRITE (33372) CODEWs{WHAT(I)s1=1s7)
| 372 FORMAT (31H1ILLEGAL DATA CARDs JOB ABORTED s/1XsA6+7E1506)
: ‘CALL EXIT
| 102 GO TO (1000511005120051300+14004150051600517005180091900)1
; C 2 1S THE ATOMIC NUMBER OF THE ION
! C A 1S THE ATOMIC WEIGHT OF THE ION
P 1000 Z=WHAT(1)
! A=WHAT (2}
! GO TO 103
! C NO IS THE NUMBER OF ELEMENTS IN THE STOPPING MEDIUM
i 1100 NO=INT{WHAT(1))
\ IF (NOCJLEQ.0) NO=1
: 1101 DO 1102 I=1sNO
: ¢  ZT(I) IS THE ATOMIC NUMBER OF THE ITH ELEMENT IN THE STOPPING MEDIUM
1 C  AT(1) 1S THE ATOMIC WEIGHT OF THE ITH ELEMENT IN THE STOPPING MEDIUM
C  RELA(I) IS THE RELATIVE ABUNDANCE OF THE ITH ELEMENT IN THE STOPPING
C MEDTUM
READ (292) ZT(I})sAT{I)sRELALI)sDIADJI(I)
: 2 FORMAT (4E10.0)
: WRITE (33373) ZT(I).AT(I)’RELA(I):DIADJ(I)
; 373 FORMAT (TH #%%xx¥38E1546)
: 1102 CONTINUE
! IF {NOeNEa1l) GO TO 1103
| RELDEN(1)=1.
| RELA(1)=1, _
; IF (NIADJ.EQ4l) GO TO 103
: TIADJ=WHAT(2)
i IF (IADJeGTale) GO TO 103
l TADJ=DIADJ(1}
j IF (IADJsLEels) GO TO 20
= GO TO 103
i 1103 IF (NIADJJEQe.l) GO TO 103
l IF {WHAT(21=~1e) 2094551104
\ 1104 TADJ=WHAT(2)
“la GO TO 103
1200 NEN=INT(WHAT(1))
IF (NEN.LE«50) GO TO 1201
’ WRITE (3+358)
|« 358 FORMAT JOB ABORT}

(7/77+494 NUMBER OF ENERGIES 1S GREATER THAN 509



1201

1300

1400

1500

1600

1700

1800
1900

.~104-

CALL EXIT

READ (293) (EN(I)9sI=1sNEN]
FORMAT (BE104,0})°

WRITE (3+373) (EN(I)sI=1sNEN)
GO TO 103 :
SP1=WHATI(1)

SP2=WHAT(2)

SP3=wHAT(3)

SP4=WHAT(4)

SP5=WHATI(5)

NEWB=1

GO TO 103

IADJ=WHAT(1)

NIADJ=1

GO TO 103

IGRAPH=1

TEST=0,

1F (WHAT(1)eNEeQe) TEST=1le
READ (2+4) LTRCo(LTRG(I)s1=143)
FORMAT (A694X33A6)

GO TO 103

IGRAPH=2

TEST=0,

IF (WHAT(1)eNEeOs) TEST le
READ (2+46) LTRCs{LTRG(1)19si=193}
GO TO 103

IGRAPH=3

TEST=0,

IF (WHAT(1)eNEeOe) TEST=1e
READ (2s4) LTRCs{LTRG(I)el=193)
GO 10 103

GO TO 50

GO TO 999

C CALCULATE IONIZATION POTENTIAL

20
422

40

'3

42
43

45

46

N

50

IF (NOeNEs1) GO TO 41

CONTINUE )

IF (ZT(KA}4GT6el0e) GO TO 40
KZ=ZT(KA)+0al

1ADJ=CIADJ(KZ)

GO TO 50

IADJ=9 ¢ T6#ZT (KA} +5848/2ZT(KA}%#%0419
GO TO 50

DO 43 I=1sNO

IF (ZT(1)4GTe10e) GO TO 42
IND=ZT{1)4C.1

DIADJ(I)=CIADJ{IND}

GO TO 43
DIADJ(I)=9.TE*ZT(L1)1+5848/2ZT(1)%*%0419
CONTINUE

GO TO 45

SUM1=0,

DO 46 I=1sNO

SUM1l= SUM1+RELA(!l*ZT(I)*ALOG(DIADJ(l))
SUM2=0.

DO 47 I=1sNO

SUM2=SUMZ+RELA(T)I*#Z2T (1)
IADJ=EXP{SUM1/SUM2)
IF (CODEW4EQs6HTARGET) GO TO 103
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IF (NNeEQesO) GO TO 54
IF(NO«NE41)GO TO 200
WRITE(35300) IADJsAsZsAT(1)92T(1)
300 FORMAT(//7//23H TARGET IS PURE ELEMENT//6H 1ADJ=F10.5/

1 6H A =F1045/
2 6H 2  =F1045/
3 6H AT =F1045/
4 6H ZT =F1045)
GO TO 56

200 WRITE(35301) IADJeAsZs(AT(I}a1=19NO)
301 FORMAT (/777 '
* '21H TARGET IS A COMPOUND//6H IADJ=F10e5/6H A =F10e5/76H 2
1 =F1065/5H AT1=2F10e595H AT23F104595H AT33F104545H AT4=F10459¢5H AT
25= F10e595H AT6=F1045+5H ATT=F1045¢5H AT8=F1045)
WRITE(39302)(2ZT(1)s1=19NO)
302 FORMAT(5H ZT1=F104595H 2T2=F10e595H ZT3=F10e595H ZT4=F104595H ZT5=
1F10e595H ZT6=F10e5¢5H 2ZT7=F10e595H ZT8=F1045)
WRITE (3+303) (RELA(1)}sI=1sNO)

303 FORMAT (5H NT1=F10e5¢5H NT2=F10e595H NT32F104595H
1 NT4=F10e595H NT5=F104595H NT6=F10e595H NT7=F104525H NT8=F10e5)
SAT=0,.

DO 51 I=1sNO

51 SAT=SAT+RELA(II®AT(I)
DO 52 I=1»NO :

RELDEN(1) 1S THE RELATIVE DENSITY OF THE ITH ELEMENT IN THE STOPPING
MEDIUM

52 RELDEN(I)=RELA(I)®*AT(I)/SAT
SUM=0.

DO 53 1=1sNO

53 SUM=SUM+RELA(I)*#2T(1)
ZAF=SUM/SAT
GO TO 55

54 ZAF=ZT(KAY/AT(KA)

55 LI=ALOG(IADJ)
LAZ=ALOG(1e/ZAF)
IF(Z4GTe1l0s) GO TO 500

CALCULATION FOR Z LESS THAN 11
LOW ENERGY STOPPING POWER
NN=0
Z2SQ=2%%2
JZ=2+%.1
KZ=ZT(KA)+0s1
IF (NDReGTel) GO TO 429
OLDZAF=ZAF
oLDLI=LI
OLDLAZ=LAZ
OLDIADJ=1ADJY
DO 420 I=1421
420 EV(I)=EQ(])

429 CONTINUE

IF ((ZT(KA)eNEe1343eORe((NOsNE«1)sANDo {NDReEQel1))} GO TO 416
DO 415 I=1 21
415 DR{IIsNDR)=1s
GO TO 417
416 CONTINUE
R2=DEDX(24)/11243138
R2=20497%*R2
R10=DEDX{10s) /344279
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Q=ALOG(R1O/R2)/ALOG(5.)
- P=R2/(2.%2Q)
DO 406 I=1 +21 .
406 DR(IsNDR)=PREV(]I)#%q
417 CONTINUE
IF (NEWBeNEesl) GO TO 423
C CALCULATION OF COEFF[CIENTS FOR NORMALIZING THE PROGRAM TO EXPERIMENTAL
C STOPPING POWER
AL2=ALOG (24)
ALE(1)=ALOG(,401)
ALE(2)3ALOG (0404)
ALE(3)=ALOG( 1)
ALE(4)=ALOG (044}
ALE({5) =0,
DO 421 J=1s5
TEMP={ALE{J)~AL2)%%2
TEMP2=2#AL2+ALEL J)
DO 421 1=192
421 D{Jol)=TEMPRTEMP2%%(1~1}
D(193)=ALOG(SPL1/(DR{1s1)%ZSQ*TABLE(LsJZ)}))
D(2923)=ALOG{SP2/(DR(591)#ZSQ*TABLE(50JZ)) )
D{3s3)=ALOG(SP3/(DR{ 81} #ZSQRTABLE(89JZ)})))
D(4s3)=ALOGISP4/(DR{12s1)%ZSQ*TABLE(129J2)))
D(593)=ALOG(SP5/(DR(1591)*Z$Q*TABLE(15’JZ’))
CALL GLSQ (D9BsIlL9592955Q90es0e]}
WRITE (39305) (B({I)sI=192)sSP1lsSP2sSP395P4+5P5
305 FORMAT (/7/77934H COEFe FOR RELATIVE Se Ps AREe o o 93HC1=E1548)
110X93HC2=E1548 //7/911H EXPs Se Pa /51E2066/))
PUNCH 3069 (B(L)sI=182)9292T(1)
306 FORMAT (2E2011302F1001)
G0 TO 100 _
423 CONTINUE
o INTERPOLATION OF THE RELATIVE STOPPING POWER BETWEEN THE IONS AND
C STOPPING MEDIA FOR WHICH COEFFICIENTS ARE PROVIDED
IF (NDRJEQe5) GO TO 439
NDR=NDR+1 )
- IF (NDR-NE»Z) GO TO 431
445 CALL BRAKET (JZQKZ,JZIOJZZ.KZIOKZZOJIOJZQKIOKZOATloATZ)
Z0LD=Z
ZTOLD=2T(KA)
ATOLD=AT{KA)
431 IF (NDR=3) 42544264424
424 IF (NDR+EQeS} GO TO 427
2=FLOAT (J22)
22=2
ZT(KA)=FLOAT (KZ1)
AT(KA)}=AT1
GO TO 428
425 Z=FLOAT (J4Z1)
1 21=2
ZT(KAY=FLOAT (K21}
ZT1=22T{(KA)
AT(KA}=AT1
GO TO 428
426 ZaFLOAT (JZ1)
" ZT(KAY=FLOAT (KZ2)
2T2=2ZT(KA)
AT(KAY=AT2
"GO TO 428 -
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427 2=FLOAT (J22)
ZT{KA)aFLOAT (KZ2)
AT(KA)=AT2

428 CONTINUE
IF (NDRsLEe5) GO TO 422

439 AL2=ALOG(24)

DO 419 I=1417
ALEV=ALOG (EV(I))
DO 432 K=1s4

NDR=K+1

IF (K=2) 43494359433

433 IF (KeEQe4) GO TO 436
M1=J2
N1=K1
GO TO 437

434 M1=J1
N1=K1
GO TO 437

435 M1=J1
N1=K2
GO TO 437

436 M1=J2
N1=K2

437 CONTINUE
ALDR=ALOG(DR(IsNDR})
TEMP={ALEV-AL2)##2
TEMP2=2%AL2+ALEV
SUM=0.

DO 418 J=1s2 _

418 SUM=SUM+C(JsM1sN1)#TEMPHTEMP2%% (J=1)

432 F(K)=EXP{SUM+ALDR)

IF ((J1eEQeJ2) eAND4 (K14EQeK2)) GO TO 441
IF (J1eEQeJ2) GO TO 442

IF (K1sEQeK2) GO TO 443

C2=F(3)=F(1)

C1=(Z0LD-21)/(Z2~Z1)

FF 1S THE INTERPOLATED RELATIVE STOPPING POWER
CFF=F(1)4C1#C2+(2TOLD=ZT1)/(ZT2=2T1)*(F(2)+C1*(Ft4)=F(2))=F(1)~C1l*C
12) :

GO TO 430
441 FF=F(1)
GO TO 430

442 FF=F(1)+(ZTOLD-ZT1)*(F(2)-F(1))/(ZT2-ZT1)
GO TO 430

443 FFaF(1)+(ZOLD=Z1)*(F(3)=F(1))/(22-21)

430 CONTINUE
JZ=ZOLD+041
25Q=20LD*#2

TEX(1+J) IS THE STOPPING POWER FOR THE JTH ELEMENT IN THE STOPPING MEDIUM
AT THE ITH ENERGY

TEX{I+KA)=FF#2SQ*TABLE(14J2)

419 CONTINUE
2=20LD
ZT(KA)=ZTOLD
AT(KA)=ATOLD
KA=KA+1
IF (KA+GTuNO) GO TO 444
NDR=2
KZ=ZT(KA)+0e1
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-JZ2=22+40,1 -
GO TO 445 ’
44 CONTINUE .
ZAF=0LDZAF
LI=0LODL]
LAZ=0LDLAZ .
JADJ=OLDIADJ
" DO 407 I=17s21
ZEX(I) 1S THE FINAL STOPPING POWER AT THE ITH ENERGY
407 ZEX{I1)=DR(I+1)#TABLE(I+sJZ)#25Q
DO 440 l=1917
SUM=04e
M=1=} i :
IF (1.EQel} M=17
- DO 438 K=1¢NO
438 SUM= SUM+RELDEN(K)*TEX(M9K!
: IF (14EQel} GO TO 446
ZEX(M):CONST*SUM .
GO - TO 440
446 CONST=ZEX{M)/SUM
440 CONTINUE
WRITE (3s361) CONST C
361 FORMAT (/ 22H NORMALIZING CONSTANT= F10.6}
SET UP TABLE
EV(22)=10,
EV{23)a10, 38
1523
DO 408 J=1295092
1 E3E Y
408 EV(I)=J .
DO 409 J=55»20095
. I={+1
409 EV{ij=J
DO. 410 J=2109500910
I=}+]
410 EV(li=y
IEV=]
CALCULATION OF THE HIGH ENERGY STOPP ING POWER
DO 411 I=22-,1EV
ZEX{I)=ZSQ#DEDX{EVY(1})
411 CONTINUE
CALCULATION OF TdE RANGE
R(1)=2.*EV(1)*A/ZEX(1)
A2=A/2e
DO 412 1=2922
EOE=EV(I)/EV(I-1)
EX1l= ALOG(EOE*ZEX(I-I)/ZEX(l))/ALOG(EOE)
R{T)=R{I=1)+A¥EV(I=1)/ZEX(I=1) /EX1#{EOERREX]1~1)
412 CONTINUE
ALAMDT=LLAMBDA(104)
DO 413 .1=2341EV
R(li'R(ZZ)o(LAMBDA(EV(Il)‘ALAMDT)*A/(ZSQ*I.OOB)
413 CONTINUE
IF (NO.GTel) GO TO 201 -
CALCULATION Of THE STOPPING POWERs RANGE>s AND ENERGY IN THE DIMENSIGNLESS
UNITS OF LINDHARD ETs Ale
223=2#8(26/3¢)
2523=7234+ZT{1)%%(24/3¢)
252312=SQRT(2523) '

A A S e

Y
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ATOZT=AT(1)/2T(1)
AS=A#AT(1)
AOAS=A/AS
FEPSN= 3.253E4*AOAS*ATOZT/(1*152312)
FZETA=146618E8%A0AS/{Z2523*%AS)
FGZEX=1e95TE=4%2S52312%ATOLT/{Z*AOAS)
XK20,0793%223/(SQART(ATOZT#(2S2312#A0AS)*%*3))
DO 414 1=1925
EPSN(I)=FEPSN*EV(I)
ZETA(1)=FZETA®R(I)
GZEX{I)=FGZEX*ZEX(1)
414 CONTINUE
WRITE (39354) XK’(EV(l)oEPSN(I)oZEX(I)nGZEx(l)oR(l)oZETA(l).l:lo
125)
354 FORMAT (/777 26H LSS ELECTe SePe CONSTANT=

F8459//7 8Xs1HEs12Xs 6HE(LSS)e1l4Xs SHDE/DXs 12X»
110HDE/DX(LSS)9 12Xs 1HR916Xs 6HR(LSS)s/#1XsIH(MEV/AMU) »7X915H(DIME

2NSIONLESS) 96X9 13H(MEV/GM/SQCM)s6Xs 1S5H(DIMENSIONLESS) »8Xs

3 9HIGM/SQCM) »8Xs 15H(DIMENSIONLESS)#// 30(1XsF1l04395E2046/))

GO TO 201

CALCULATION FOR Z GREATER THAN 10

DEFINE ENERGY REGION BOUNDARIES AND SET UP TABLE
500 BETA(1)=(Z#%(1e/3e)/13T4)%%2

BETA(2)=24/465e5

BETA(3)=(3s #2/137)%%2

DO 503 I=1s3

IF(BETA(1)eGTes0l) GO TO 501

EL(11=465,5%BETA(I)

GO TO 503 :
501 IF(BETA(1)eGT449999) GO TO 502

GAMMA=1+4/SQRT{14~BETA(IN)

EL(I)=931¢*(GAMMA~14)

GO TO 503
502 EL{I1=14E10
503 CONTINUE

IF (EL(3)eEQeleE10) GO TO 541

WRITE (39355) (EL(I)sI=193)

355 FORMAT (// 47H BOUNDARIES BETWEEN THE FOUR ENERGY REGIONS ARE /10X

19 3F2043)
GO TO 542
541 CONTINUE
WRITE (39330) {(EL(I)s1=1y2)
330 FORMAT (// 47H BOUNDARIES BETWEEN THE FOUR ENERGY REGIONS ARE /
110Xs2F2043913X98HINFINITE)
542 CONTINUE
EV(1)=401
EV(2)=4015
DO 519 12249
519 EV(I+1)=a01%#FLOAT(I)
EVI(11)=
EVI12)=415
J=12
DO 524 1=22+9
J=J+1
524 EV{J)=0e1#FLOAT(I)
J=20
DO 525 I=2520
J=J+1
525 EV(J)=0e5%FLOAT(1)



© 517
&

.  _.41'10'_'

- EV(40)=10.38

1=40 -

- DO 504" J= 12950’2‘
S IsI+Y 2

504

505

EVITY=FLOAT(J)
‘DO 505 .J= 55920095

Izl

EVII=FLOAT(J)

. DO 506 J= 210’500910

506

507

508
'509

1510
511

512

513

514
515

1=1+1

EV(1)=FLOAT(J)

1EV=1
DO 507 "I=1s1EV

JK=1

IF(EVII)+GE<EL(1)) GO TO 509
CONTINUE -

GO TO 900

IEL12JK

'D0 510 I=JKOIEV

~JL=I
lF(EV(lIoGEoEL(ZH GO To.512
CONTINUE
GO TO 901
IEL2=JL
‘IF(EL(3)QGECEV‘IEV)) ‘GO TO 516
DO 513 1I= JLO!EV
JK=1
IF(EV(I).GEaEL(3)) GO TO 515
CONTINUE -
GO TO 902
IEL3=JK~1"

- 60 TO 517

516

IEL3=]EV -
CONTINUE

CALCULATION OF STOPPING POWER AND RANGE IN THE LON ENERGY REGION

223=2%%(24/30)
ZB76=7.39E4*Z**1-207
ADZ=A7Z

DO 518 I=1sNO.~ - -
YZSZB—223+ZT(I)**(201303
'ZTOAT=ZT(I)/AT(I)
AS=A$AT(I) -

CE(I)= 2876*ZT0AT/ZSZ3**105

CCCN(1)=4. leBlEb*(A/AS)**1-5*SQRT(Z*ZTOAT)/1523**-75

518

CNl(I)34501671*(AOZ/(ZTOAT*AS)l**o27719/l$23**‘138595
CONTINUE
UL=EV(1)%#%427719

U ORN=1

: 326
S 17H EV(11=F9e394H Rx=515.8)

327

CALL SIMPS(O.»ULo0.00l.lO’RKoINDEX)
IF (INDEXeLE.10) GO TO 327
WRITE (3+326) NNsINDEXsEV(1)sRI

FORMAT (//77/ 23H SIMPS DID NOT CONVERGE / 4H NN=12sTH INDEX=13,

R{1)=RI*A -
ZEX(1)=DEDXLIEV(1))

CALL STOPL (EV(1)sXZEE»XZEN)
ZEN(1)=XZEN

ZEE(1)=XZEE

DO 520 I=2s1ELL



328
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XLL=EV(I=1)%#427719
UL=EV (1) ##427719

ZEX{1)=DEDXL(EV(E))

CALL STOPL (EV{I)sXZEEsXZEN)
ZEN(1)=XZEN

ZEE(1)=XZEE _

CALL SIMPS(XLLsUL$0e001910+RI»INDEX)
IF (INDEXeLEe¢10) GO TO 328

WRITE (35326) NNsINDEXsEV(I)eRI"
R(I)=R(I-1)+RI%*A

CONTINUE

C  CALCULATION IN THE MEDIUM-LOW ENERGY REGION

521

522
523

526

527
535

536

- 537

SPL=DEOXL{EV({IELL})
SQREL=SQRT{EV(IELL1})
SQRREL=EV(IEL1)#%,22281
CL=ALOG{SPL)

SUM=0e

DO 521 I=1eNO
EXPN=EXP{CNL{IIREV(IEL1)®#%,27719)
SUM= SUM+(.5*(CE(I)+CN(l)/EXPN)/SQREL*.21719*CN(l)*CNl(Il/SQRREL/EX
1PN)*RELDENI(1)

CONTINUE

DSPL=SUM

DCL=DSPL/SPL

22nZ#¥%2

RAT=RATIO(EV(IEL2})

RATSG=RATR®2

DEX=DEDX{EV(IEL2)}
SPH=Z2%#RATSQ#*DEX

CH=ALOG(SPH)
BEL=SQRT(EV(IEL2)/46545)

IF (BELeLEeZ223/137¢) GO TO 522 _
DRAT=ANL/EV(IEL2)#(1s—45.T2BEL* ALOG(Z)/(24%2-223))
GO TO 523

DRAT=ANL/EV(IEL2)

CONTINUE

IF(EVIIEL2)eLTe7e) GO TO 535
SUM1x=0,

DO 526 M=1le4
SUM1=aSUM1+ALPHA (Me3 ) ML [ %% (M=]1)
CONTINUE

SUM=0, :

DO 527 M=ls4s .
SUMz=SUM+ALPHA (M4 ) #LI#R(M=1)
CONTINUE

DPDE=2 4 /EVI1EL2) ¥{SUM1434®ALOG(EV(IEL2) ) #SUM)
GO TO 537

SUM=0¢ )

DO 536 M=1+3

. SUM=SUM+AMN (M e 3 ) L [ #% (M~1)
CONTINUE

DPDE=24/EV{IEL2) %*SUM

CONTINVE .

XLAM=LAMBDA(EV(1EL2))
DXLAM=DEX%#XLAM '
DCH=DRAT /RAT +1e/EV(IEL2)=14/DXLAM=DXLAM/EV(IEL2)*DPDE
DO 540 I=146

DO 540 J=195

D(19J)=0,



C
C

540

528

529

530

:531

329
532
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CONTINUE

ALE1=ALOGLEV(IELL))
IF(ALEL1¢EQaQs) ALE130001

DO 528 I=194
D{lsl)=ALEL1®%( =1}

CONTINUE

ALE2=ALOGIEV({IEL2))
IF{ALE26EQeOs) ALE2=4001

DO 529 [=1s4
D(2sI)2ALE2%#(=~1)

CONTINUE

DO 530 I=2194

D(3sI)=FLOAT(I~ 1)*ALEI'*(I—2’
CONT INUE

DO 531 I=194

D{4s1)=FLOAT(I~- 1)*ALE2**(I—2’
CONTINUE

D(1s5)aCL

D(2+5)=CH

D(3+5)=DCL*EV(IELL)
D(4+5)=DCH*EV( IEL2)

CALL GLSQ(D.B’IL»Q.#.SSSQ.O..O.)
K=I1ELl+l

NN=2

DO 532 1=K!IEL2
ZEX(1)=1le/SPIML (EV(I))-
ZEE(1)=2EX(1)
- ZEN(1)=0e

CALL SIMPSIEV(I~ 1)oEV(I)toOOOSolOoRIoINDEX)

IF (INDEXsLEs10) GO TO 329
WRITE -(39326) NN’INDEX'EV‘I)ORI

R{I}=R(1- 1)+R1*A
CONTINUE -

CALCULATION IN THE MEDIUM-HIGH ENERGY REGION
K=IEL2+1

- NN=3

545
546

CALCULATION IN THE HIGH ENERGY REGION

533

CALCULATION OF - THE STOPPING POWER»

DO 546 I=KsIEL3
Il=]

ZEX(!)‘ZZ*RATIO(EV(Ii)**Z*DEDX(EV(l)’

CALL SIMPS (EV{I-1)+EV(I})940005+109R1»INDEX)

If {INDEXeLEe10) GO TO 545
WRITE(39326) NNs» INDEXsEV(I}sRI
R{IN=R({I=1)+RI*A

CONTINUE

IF (IEL34EQeIEV) GO TO 533

K=IEL3+1
XLAM=LAMBODA(EV(IEL3})
DO 534 I=KeIlEV
ZEX(1)=Z2 #DEOX(EV(I))

RII)=R(IEL3)+A/ZZ*(LAMBDA(EV(I))-XLAM)/I.OOB
534 CONTINUE

IF (NO+GTel) GO TO 539

UNITS OF LINDHARD ETe AL
-AOAS=A/AS

FEPSN=3-253€4*AOAS/!ZTOAT'Z*SQRT(2523))

FLETA=146618E8%A0AS/(1523%AS)

FGZEx=1.957E-h*SQRT(2523)/(Z*ZTOAT*AOA51

RANGE »

AND ENERGY

IN THE OIMENSIONLESS

©



-
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XK=040793#Z23%SQRT (ZTOAT/AQAS#*3) /2523%%0,4T5
DO 538 I=1sI1EL2
EPSN(1)=FEPSN*EV(I)
ZETA(I)=FZETA*R( 1)
GZEX{1)=FGZEX*ZEX(1)
538 CONTINUE
WRITE (39356) XKe(EV(I)sEPSN(I)sZEN(I)oZEE(I) 9ZEX{I)9GZEXIT)sR{L)
12ETA(I) sI=191EL2)
356 FORMAT (///s 26H LSS ELECTs SePs CONSTANT=
F8e5s///s 8Xs LHE»10Xs 6HE(LSS)»9Xs IHNUCe SePs
8Xs 10HELECe SePes10Xs SHDE/DXs 9Xs 1OHDE/DX(LSS)»1ilXs 1HR»14Xs
6HR(LSS)s /elXs 9H(MEV/AMU)94Xs 15H(DIMENSIONLESS) s3X»
13H(MEV/GM/SQCM) s4Xs 13H(MEV/GM/SQCM) s4Xs 13H(MEV/GM/SQCM) #3X»
15H(DIMENSIONLESS) 95Xs 9H(GM/SQCM)s5Xs 15H(DIMENSIONLESS) s/ /s
30(1XsF1063+7E1766/))
GO TO 201 ,
539 WRITE (393571 (EV(I)sZEN(I)e2ZEE(T)»s2EX{T)sR(IVsI=1sIELL)
357 FORMAT (/7/+8Xs 1HE»11Xs SANUCeSePesllXs LOHELECe SePesl2Xs
1 SHDE/DX»18Xs 1HRs/»1Xs 9H(MEV/AMU)sBXs 13H(MEV/GM/SQCM}sT7Xs
2 13H(MEV/GM/SQCM)»7Xs 13H(MEV/GM/SQCM)s 9Xs SHIGM/SQCM)e//e
3 30(1XsF10e344E2066/))
201 CONTINUE
IEND=IEV-1
DZEX{1)==0e
DZEX(IEV)==0,
DO 204 I1=2sIEND
X1=EV(1)=EV(I+1)
X2=EV(1+1)=EV(I~1}
X3=EV(I~-1)=EV(I)
E1SQ=EV(I~1)##2
E25Q=EV(1)#%2
E3SQ=EV{I+1)#%2
X15Q=X1##2
X3SQ=X3%%2
XNUMSZEX( I=1) #X1SQ=ZEX( 141)#X3SQ+ZEX (1) #X2% (X1~X3)
DNOM=E 1SQ#X1+E25Q%X2+E35Q*X3
DZEX (1) =XNUM/ ( DNOM*A) :
204 CONTINUE ‘
IF ((IGRAPHeGT 404 ) «ANDo { JGRAPHoNEs IGRAPH)) TEST=1le
IF ((JGRAPHeNE+2)¢ORe (TEST4EQeOs)) GO TO 600
NN=100
CALL GRAPH2
600 IF(IGRAPH4EQel) CALL GRAPH1
NN=1
IF(IGRAPHsEQe2) CALL GRAPH2
IF(IGRAPHeEQe3) CALL GRAPH3
IF (1GRAPHeNE+O) JGRAPH=IGRAPH
C OUTPUT AND GO TO THE-NEXT-PROBLEM
WRITE(3+350)(EVI119ZEX(1)PR(1)sDZEX(1)e1=1IEV)
350 FORMAT(/// »8X+1THE»T4XsSHDE/DX 215X s4HR(E) » 11X »14HSLOPE OF DE/DXs/
#1XsOH(MEV/AMU) »8X s 13H(MEV/GM/SQCM) 39X 9 9H{ GM/SQCM) » 1 1X0 FH(SQCM/GM) »
1 /7 200(1XsF10e393E2066/)) -
IF (NEN+EQGsO) GO TO 203
DO 202 I=1sNEN
ZEXN(I)=YINTERP (1sIEVsEVsZEXsEN(I))
RN{I)SYINTERP (1sIEVSEVIRsIN(I))
DZEX{1)=-04
202 CONTINUE
WRITE (39350) (EN{I)sZEXNUI)#RN{I)SDZEXLI) o I=1pNEN)

P()/JC/, 357&( ‘%3»:—%:'){ A 2T VD, ATO) 270
LU,? )'T 0)?,?);}7 5 AND A S O\AQ érﬁ 0) /\7(2)
- powes 389 Z—‘WI) 2LN(T)T 4 103)
3 |
T Bormg (L/(/’w E)3, é))

WP W N
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203 CONTINUE
CALL SECOND (TIME)
WRITE (3s374) TIME
374 FORMAT (///6H TIME=F843)
GO TO 100 .
DIAGNOSTICS==J0B ABORTED
900 NSTATE=508
_ WRITE. {3¢351) NSTATE
351 FORMAT (////+25H PROGRAM ERROR-~STATEMENT»I4930H WAS ENCOUNTERED
1J08 ABORTEDe )
CALL EXIT
901 NSTATE=511
WRITE (3s351) NSTATE
CALL EXIT
902 NSTATE=514
WRITE (39351) NSTATE
CALL EXIT
999 CONTINUE
OUTPUT AT JOB COMPLETION-~DATA STATEMENTS PRINTED
NN=100
IF (JGRAPHeEQe2) CALL GRAPH2
IF (JGRAPHeNEeO) CALL CCEND.
_ WRITE (3+322)
322 FORMAT (1H1s50X»23HDATA STATEMENTS PRINTED/////)
WRITE(3+320) (EQIIVs(TABLE(I#J)sJ=1910)9s121922)-
320 FORMAT(23H DEDX TABLE AS COMPILED  /22(11F1043/))
WRITE(3+324) ({AMN(MsN)sN=193)sM21s3) s ( (ALPHA(MsN) oN=1s64) sM=104)
324 FORMAT(/ 17TH CONSTANTS A(MsN1/3(3E2048/) Z1HOCONSTANTS ALPHA(Ms
IN)74(4E2048/)) R
 WRITE (3+325) (Is1=1s101s(ZIADJ(I)si=1s10)
325 FORMAT (/ 4H Z= #10110 / 6H IADJ= 10F1041)
. WRITE (39321) (((C(IsJsK)sK=106)s12102)9Jmls4)
321 FORMAT (/ 19H CONSTANTS ClIsJsK) o/ 94l6E22413/6E22413//))
sToP
END
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FUNCTION RATIO(E)

THIS SUBROUTINE CALCULATES THE RATIO OF THE IONS CHARGE TO ITS NUCLEAR

CHARGE

COMMON/GEN/IADJs LI sLAZsNOsZ o NN» 119 IEVsANL » JGRAPH
DIMENSION AN(5)

DATA AN/.41325301.63475010.478292.2162600847578/
223=2%%#(24/34)

XI=E/931416

BETA=SQRT(XI®{XI+2e) )/ (XI+1ls)

IF (BETAeLE«Z23/1374) GO TO 202

IF (BETA«GE«2e¢%*Z/137e) GO TO 204

GC={137 s ¥BETA+Ge#Z=23eR223)/(6e#Z=34%223)

GO TO 203

G=2e/34

GO TO 203

G=1le

X=13T«*BETA/Z%%G

AL=AN{1)®#X®E{AN{2) H¥%2)

A2=AN(3) #X#%#aAN(4)

A3=AN(5)+1.

RATIO=1e~EXP{~A1}/A3~AN(5)/A3/(A2+1e)

IF(NNeEQe1)ANL= Al*AN(Z)**Z*EXP('AI)/A3+AZ*AN(4)*AN(5)/A3/(A2+10)**
12

IF((EelTele5)e0Re(BETAGGT0345%2/1376)})G0 TO 205
RETURN

WRITE(3s1) E

FORMAT{37H ENERGY IN RATIC IS OUT OF RANGE EazEl1548}
RETURN

END
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451
452

453
454

455

456

458

459
460
461
462
463

464

466
467

468

469

471

SUBROUTINE BRAKET (JZOKZ'JZI.JZZ’KZI’KlZOJl'JZ.Kl’KZOATl’ATZ’ : =
THIS SUBROUTINE RETURNS TO MAIN PROGRAM THE PARAMETERS NEEDED TO : v
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INTERPOLATE BETWEEN THE RELATIVE STOPPING POWERS FOR THE CASE Z LESS THAN
OR EQUAL TO 10

IF (JZ.LEe2) GO TO 453
IF (J2~6) 45534520451

IF (JZ4LTe10) GO TO 456

J1=4
GO TO 454
J1=3 -

GO TO 454
Ji=J2
J2=J1 .
J21=42
Jz2=J2.
GO TO 458
J1=2

J2=3
Jz1=2
Jz2=6

GO TO 458
J1=3
J2=4"
JZ1=6
J22=10

1F (KZsEQel) GO TO 463
IF (KZ=6) 47194641459

IF (KZ=13)
IF (KZ=-28)
IF (KZ=47)
IF (KZ=79)
K1=1
AT1=1.008
GO TO 469
K1=2
AT1=12,011
GO TO 469
K1=3
AT1=26,98
GO TO 469
Kl=4
AT1=58471
GO TO 469
K1=5

AT1=107.88

GO TO
K1=6
AT1=197.
K2=K1 '
KZ1=KZ
KZ2=KZ
AT2=AT}
GO TO 476
Kl=2
KZ1=6
KZ2=13

469

" AT1=12.011

AT2=26.98
GO TO 475

4714659460
47294669461
47394679462
47494689474



472

473

474

475
476

K1=3
KZ1=13
KZ2=28
AT1=26498
AT2=58671
GO TO 475
Kl=4
KZ1=28
KZ2=247
AT1=58,71
AT2=107.88
GO TO 475
K1=5
KZ1=47
KZ2=79
AT1=107.88
AT2=197.
K2=K1+1
RETURN

END

-117-
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FUNCTION DEDX(E) . _
THIS SUBROUTINE CALCULATES THE STOPPING POWER USING BARKAS POLYNOMIAL
APPROXIMATION TO BETHES THEORY

REAL IADJsLIsLE»LAMBDA o :
COMMON/GEN/TADJs LI 9 LAZ9sNOsZs NN 1T IEVsANL» JGRAPH
COMMON/ABLOK/AMN(3+3) s ALPHA (494)

LE=ALOG(E#1,008)

IF{LE+EQeQs) LE=4001

IF(EeLTe7e) GO TO 221

IF((E.EQ.?.)‘ANO.txl‘EQ.az)) GO TO 221

SUM=00

DO 220 N=2s4

DO 220 M=1s4 . : . .
SUM=SUM+FLOAT (N=1} ®ALPHA(MsN) % (LI%%{M=1) ) * (LE*%¥(N-2))
CONTINUVE ' : ‘ '
DEDX=E#14008/( SUMELAMBDA(E))

RETURN

SUM=0,

DO 223 N=2y3 o

DO 223 M=1s3 .

SUM= SUM+FLOAT(N-l)*AMN(M-N)*(LI**(M-l)l*(LE**(N-Z))
CONT INUE

DEDX=E#14008/{ SUM*LAMBDA(E ) )

IF (EeLTele) GO TO 224

RETURN

WRITE(3s1) E ' .
FORMAT{37H ENERGY IN DEDX 1S OUT oF RANGE E=E1548)
RETURN

END :

©
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REAL FUNCTION LAMBDA(E)

THIS SUBROUTINE CALCULATES THE RANGE USING BARKAS POLYNOMIAL APPROXIMATION

TO BETHES THEORY
REAL TADJsLAZsLIsLESLL

COMMON/GEN/IADJsL1sLAZsNOsZ NNs 119 IEVsANL s JGRAPH

COMMON/ABLOK/AMN(303))ALPHA(4’4)
LE=ALOG(E*1.008)

IF{LE«EQeQe) LE=,001

IF{EelLTa7e} GO TO 221
IFI(EeEQeTe) s ANDa(116EQe32)) GO TO 221
SUM=0,

DO 210 N=194

DO 210 M=114
SUM=SUM+ALPHA (Mo N) ¥ (L I*¥(M=1) ) % (LE*¥(N-1))
CONTINUE

LL=LAZ+SUM

LAMBDA=EXP (LL)

RETURN )

SUM=0,

DO 222 N=113

DO 222 M=]193

SUMsSUM+AMN(MoN) #LI#%(M~]) *{LE¥R(N=1))
CONTINVE

LL=LAZ+SUM

LAMBDA=EXP(LL) %4001

IF (EelLTele)GO TO 211

RETURN

WRITE(3s1) E

FORMAT ({39H ENERGY IN LAMBDA IS OUT OF RANGE
RETURN

END

E=E1548)
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FUNCTION DEDXL(E)
‘THIS SUBROUTINE CALCULATES THE STOPPING POWER FOR THE CASE OF 4 GREATER
THAN 10 IN THE LOW ENERGY REGION .

COMMON/GEN/IADJsLIsLAZ9NOs 2 NNolItlEVoANLoJGRAPH
COMMON/BBLOK/CE(10)0CN(10)oCNl(lO)oRELDEN(lO)
SUM=04

SQRE=SQRT(E}

. SQRRE=E*%*,27719

230

232

DO 230 I=1sNO

SUM= SUM+(CE(I)+CN(I)/EXP(CNI(I)*SQRRE))*SQRE*RELDEN(I)
CONTINUE

DEDXL=5UM

BETA=Z/1374%%2

XI=E/931e16

BEL=XI®#(XI+24)/iXI+10e)n%2

IF (BEL#GT«BETA) GO TO 232

RETURN

WRITE(3s1) E

FORMAT (38H ENERGY IN DEDXL IS OUT OF RANGE E=E1548)
RETURN

END
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FUNCTION SPIML(E)

THIS SUBROUTINE CALCULATES THE INVERSE OF THE STOPPING POWER IN THE

MEDIUM~LOW ENERGY REGION FOR THE CASE OF Z GREATER THAN 10
COMMON/GEN/1ADJsLIsLAZ2NOs 2 NNs 119+ IEVeANL o JGRAPH
COMMON /CBLOK/B(5)

BETA1=Z%%(1e/34)/137¢%%2

BETA2=2e5/46545

IF (EeEQele} GO TO 251

XLE=ALOG(E}

SUM=0,

DO 250 I=1+4

SUM=SUM+B( I ) #XLE®*(]~1)

CONTINUVE

SPIML=1+/EXP(SUM)

X1=E£/931e16

BEL= XI*!XI+2.)/(XI+1-)'*2

IF ((BELeGT«BETA2)«ORe(BELSLTeBETAL)) GO TO 252
RETURN

SPIML=1+/EXP{B(1)}}

IF ((.OOZIQB.GToBETAZ)QORo(oOOZlﬁBoLT.BETAl)l GO TO 252
RETURN

WRITE(391) € :
FORMAT(37H ENERGY IN SPIML IS OUT OF RANGE E=E1548)
RETURN

END
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SUBROUTINE GLSQ(AsX» ILsNsMsALPHAIELSE2)
THIS SUBROUTINE CALCULATES THE LEAST SQUARE COEFFICIENTS FOR EACH OF M
"FUNCTIONS WHICH ALLOW THEIR SUM TO APPROXIMATE THE N DATA POINTS

e

60

35

31

32
30
51
. 50
52

DIMENSION A{6#5)s X{5)s IL(5)
MM=M+1

LL=1

DO 60J=19MM

ILtJy)=0

I=1

DO 3K=1»MM

I1=1+1 .

DO 44=11sN
IF(ABS(A(J9K)I=E1) 49496
T1=SQRT ((A(JnK)"*2+(A(liK)!**2)
S=AlJeK)/T1

C=A(1sK)/T1

DO SL=K MM )
T22aCRA(IsLI+S*A (L)
A(J'L)‘-S*A(IOL)+C*A(J.L3
AlTosL}=T2

LL=LL+1

CONTINUE

IF (ABS (A(IQK)’-EZ)303;8
IL{K)=]

I=1+1

CONTINUE

X(MM)==140

I1=M

DO 35i=1sM

X(11=0,

DO 30J=1eM

IF (lL(ll))30030’31

$=0s

LL=11+1

I=1L{I])

DO 32K=LL MM
S=S+A( I oK) %X (K)
X(11)==S/A(1e11)

I1=11-1

IF (IL(MM))50051’50
ALPHA=0,

GO TO 52

I=IL(MM)

ALPHA=A (T sMM)

RETURN

END

©
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FUNCTION XINTG(X)

THIS SUBROUTINE CALCULATES THE INTEGRAND FOR SIMPS
COMMON/GEN/IADJs LI sLAZ9sNOsZy NNo 119 IEVsANL » JGRAPH
COMMON /BBLOK/CE(10)»CN(10)»CN1{10) sRELDEN(10)

GO TO (15293 )sNN

SUM=04

DO 260 I=1sNO
SUM=SUM+RELDEN(T)}*(CE(I)+CN(1)/EXPICNI(I)#X))
CONTINUE

XINTG=346076% X¥%#%480399/SUM
RETURN

XINTG=SPIML(X}

RETURN

XINTG=1e/((Z%RATIO(X) )##2%¥DEDX (X))
RETURN i :

END
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FUNCTION YINTERP(IMINs IMAXoXTABLEsYTABLEsX )
THIS SUBROUTINE LINEARLY INTERPOLATES BETWEEN VALUES OF THE ARRAY YTABLE
DIMENSION XTABLE(1)sYTABLE(1)
N=IMIN
M=IMAX
L1=N
L2=M
K=N - ’ '
IF(x-xTAaLEtN)z1.15.3
3 K=M
IF (XTABLE(M)=X)1s1509
9 K=M/2
'xF(x-xTAaLE(Ka3zoo15.29
20 L2=K
60 To 23
29 L1=K
23 IF(L2-L1-1)1914+25
25 M=L1+L2
GO TO 9
14 YINTERP= YTABLE(L1)+(X-XTABLE(L1)’*(YTABLE(LZ)—YTABLE(LI))/
1(XTABLE(L2)=XTABLE(L1))
RETURN
15 YINTERP=YTABLE(K)
RETURN
1 YINTERP=0,0
WRITE(39300)1L1sL20KsMs IMAX S IMINX
300 FORMAT(41H = ERROR IN 'FUNCTION YINTERPs«eJOB ABORTED/1Xs6180E20+8)
CALL EXIT : _
END

b e o - .
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SUBROUTINE STOPL (E#XELECSXNUC)
C IN THE CASE FOR Z GREATER THAN 10 THIS suaaourzue CALCULATES THE ELECTRONI
- C AND NUCLEAR STOPPING POWER IN THE LOW ENERGY REGION
: COMMON /BBLOK/CE(10)»CN{10) sCN1(10) yRELDEN{10)

. COMMON /GEN/TADJs LI oLAZsNOsZ s NNs 119 IEVsANL ¢ JGRAPH
SQRE=SQRT(E)
SUM=z0e
;o DO 230 I1=1sNO
i . SUM=SUM+CE (1) #*RELDENI(I)
1 © 230 CONTINUE
! XELEC=SUM®SQRE
SQRRE=E#*#0,27719
SUM=04
DO 231 I=1»NO
; SUM=SUN+CN(I)/EXP(CN1(I)*SQRRE)*RELDEN(X)
i 231 CONTINUE
: XNUC=SUM#*SQRE
BETA=Z/137.%%2
XI1=E/931416
BEL=XI#{XI+24)/({XI4+10 ) %22
v ' IF (BEL«GTeBETA) GO TO 233
§ RETURN
233 WRITE (391) E

FORMAT (38H ENERGY IN STOPL Is our OF RANGE E=E1548)

RETURN _

END

2R

SR,
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SUBROUTINE SIMPS (A’BOE’MAXI.XIP’INDEX)
THIS SUBROUTINE NUMERICALLY INTEGRATES USING SIMPSONS RULE
FAFB= XINTG(A)+XINTG(B)

XH=B=A

XIR=XH¥*e5

XJ=XIR#FAFB © -

XNEW=A+XIR

-XHA=XIR/ 34 .

INDEX=0

FNEWX=XINTG(XNEW) .

IF {(INDEX «GTe 0). GO TO 1003

INDEX=1 -

XI=XHA%* (FAFB+FNEWX %44 )

XJ= (XJ‘C'XI*B.’*. 25

INDEX=INDEX+1

IF (INDEX QGT. MAXI) - GO 710 1009
XH=XH%45

XNEW=A+XH% 45

5=0, .

IF (XNEW o.LTe B) GO TO 1006
XIP={XJ+XH®24%S) /3

IF (ABS (XIP=XI} sLEs ABS (E*XIP,) GO TO. 1009
X1=X1P

GO TO 1004

S=S+FNEWX

XNEW=XNEW+XH

GO TO 1005

RETURN

END
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SUBROUTINE CCLOGTC(KAXISoNCoTICLL»TICLLl)

"THIS SUBROUTINE PLOTS LOG SPACED TIC MARKS USING THE CAL COMP ROUTINES

100

110

120

130

KAXIS OF 1=LOWER AXISs 2=RIGHT HAND AXISs 3=UPPER AXiSs 4=LEFT HAND AX1s
NC=NUMBER OF CYCLES . .
TICLL=LENGTH OF SECONDARY TIC MARKS IN INCHES
TICLL1=LENGTH OF PRIMARY TIC MARKS IN INCHES .
COMnON/CCPOOL/XMINoXMAxoYMINoYMAXoCCXMlNcCCXMAXoCCYMIN.CCYMAX
COMMON /CCFACT /FACTOR - : _ .

DIMENSION XTIC(30)sYTIC(30)

X1SAVE=XMIN § X2SAVE=XMAX $ Y1SAVE=YMIN $ YZSAVE YMAX

GO TO (100911091209230} sKAKIS -

XMIN=0, $ XMAX=FLOATINC) $ YMIN=0s $ YMAX=1.

B= IOO.I(FACTOR*(CCYMAX—CCYMIN))

GO TO 200

XMIN3le $ XMAX=0e $ YMIN=O4 $- YMAXBFLOAT(NC) :

B=1004 / (FACTOR¥ { CCXMAX=CCXMIN) ) : o

GO TO 200 o S

XMIN=0s 5 XMAX=FLOAT{NC) $ YMIN=1. $ YMAX=04

B=100e/ {FACTOR®{ CCYMAX=~CCYMIN)) - _

GO T0O 200 -

XMIN=0s $ XMAX=le $ YMIN=O..$ YMAX=FLOAT(NC1

. B= 100./(FACTOR*(CCXMAX-CCXMIN))

200

201

202

203

204

206

207
205

TICL=TICLL*B
TICL1=TICLL1#B

DO 205 K=1sNC

L=1

DO 204 J=199

AdaJ

XTlCC=ALOGIO(AJ)+K-1o

DO 203 [=133

XTIC(L)=XTICC

GO TO (201s202+201)s1

YTIC(LY=0y -

GO 'TO 203

YTIC(L)=TICL. ‘
IF ((J.Eo.ln.AND.(K.NE.ln) YTIC(L)=TICL1
L=L+1l . .

CONTINUE

XTICIL)=K

YTIC(L) =04 :

GO TO (206+20752069207) sKAXLS

CALL CCPLOT(XTICSYTICsL24HJOIN)

GO TO 205

CALL CCPLOT (lec.xrrc.L.4HJoxN)
CONTINUE .

XMIN=X1SAVE $ XMAX=XZSAVE s YMIN=Y1$AVE s YMAX:YZSAVE
RETURN

END



-128-

SUBROUTINE GRAPHL
C THIS SUBROUTINE PLOTS STOPPING POMER VS ENERGY

REAL IADJ
COMMON EV(ZOO)-ZEX(ZOO)oR(ZOO).XLOG(ZOOP.YLOG(ZOO)
COMMON/GEN/IADJLI s LAZsNO+Z, NNy L1y IEV'ANL'JGRAPHyTEST-

COMMON/GRAF/LTRC,LTRG( 3} )
COMMON/CCPOOL/ XMINXMAXy YMIN, YMAX,CCXMENyCCXMAX,CCYMIN, CCYMAX
DIMENSION XTC(47),YTC(47),BETA(15)
‘DATA BETA/0.00530.0130.0290.0540e1306290¢340.4¢0.5,0.6,0.7,0.8/
XMIN=0. '
XMAX=5.
YMIN=0.
YMAX=6. .
CCXMIN= 80.
CCXMAX=580.
CCYMIN=280.
CCYMAX=880.
DO 290 I=1,IEV
XLIG(!) ALDGIO(EV(I)*! E2)
YLOG{I)=ALOGL1O(ZEX{I)}
290 CONTINUE ’

'IF {TEST.EQ.O0.) - GO TO 311
CALL CCNEXT. :

" WRITE(98+1) IADJ

I FORMAT{SHIADJ=F5.1}
CALL CCLOGTC{145¢.05,+.1)
CALL CCLOGTL(2465.05,.1)
CALL CCLOGTC{446,.05,.1)
CALL CCLOGTC(3:55,.05,5.1) -
CALL CTLTR (35.9870.404+2,2H10)
CALL CCLTR {63.,885.4041,1H6)
CALL CCLTR (35.9770.,0¢2,2H10)
CALL CCLTR (6345785.409191H5)
CALL CCLTR {35.9670.40+2,2H10)
CALL CLLTR (3549570.404924+2H10)
CALL CCLTR {63.45B85.40:1,1H3)
CALL CCLTR (35.4470.,0,2,2H10)
CALL CULTR (63.+485.5045141H2)
CALL CCLTR {354¢37009042,2H10)
CALL CCLTR (63.4385.4091,1H1}
CALL CCLTR (42.92804509291H1)
CALL CCLTR (15.,38849192,25HSTOPPING POWER (MEV/IG/CM )
CALL CCLTR (-1.4738B.919141H2} '
CALL CCLTR (15.5745+9142,2H)))
CALL CCLTR ( 59.4240.,0,2,2H10)
CALL CCLTR ( 874325549091,2H-2)
CALL CCLTR (159.,240.,0,2,2H10)

 CALL CCLTR (187.,255.404152H-1)
CALL CCLTR (28045240.+092,1H1)
CALL CCLTR (362.49240.5042,2H10)
CALL CCLTR (39049255.9001,51H1)
CALL CCLTR (4624,240.40,2,2H10)
CALL CCLTR (490.4255.4041,1H2)
CALL CCLTR (5624924049092+2H10)
CALL CCLTR (59049255.9041,41H3)
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CALL CCLTR (155.,205.40,2¢25HSPECIFIC ENERGY {(MEV/AMU)}

CALL CCLTR (90045300.451,2)
Y1=ALOG10(5.)+5.

¥2=Y1-0.05

YTC(1)=Y1

XTZ(1)=XMIN

L=2 _

CALL CCLTR (302.5285.+100.%Y1,0,2,4HBETA)
DO 100 1=1,12
FACT1=1./SQRT(1.-BETA(I)*%2)-1.
FACT2=ALOG10(931.16%FACTL) +2.
DO 101 J=1,3

XTC(L)=FACT2

GO TO (102,103,102),J

YTC(L) =Yl

GO TO 101

YTC(L)=Y2

L=L+1

WRITE (98,4) BETA(I)

FORMAT (F4.3)

CALL CCLTR (88.+100.%FACT2,242.4100.%Y1,1,1)
CONTINUE

XTC (L) =XMAX

YIo(L)=Y1
CALL CCPLOT (XTC,YTC, L14HJOIN)
IF (LTRG{1)J.EQ.6H } GO TO 311

FORMAT (3A6) . :
WRITE (9842) (LTRG(I)s1I=1,3)
CALL CCLTR (180.138044+0,2)

CONTINUE
CALL CCPLOT(XLOG,YLOGsIEV,4HJOIN)
IF (LTRC.EQ.6H } RETURN

FORMAT (A6)

WRITE (98,3) LTRC
I=73

IF (Z.GT.10.) I=90

CALL CCLTR (B80.+100. tXLUG(l):285.*100.*YLOG(!) 0,2)

RETURN
END
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SUBROUTINE GRAPH2
THIS SUBROUTINE PLOTS STOPPING POWER VS RANGE

REAL

IADJ

COMMON EV(200) ,ZEX(200),R(200)},XLOG(200),YLOG(200}
COMMON/GEN/IADJ,LILAZ4ND,Z, NNy Il oI EV,ANL ; JGRAPH,TEST
COVMMON/GRAF/LTRC,LTRG(3)
COMMON/CCPOOL/XMINy XMAX, YMIN, YMAX CCXMIN,CCXMAX, CCYMIN,CCYMAX
DIMENSION XEL(20),XE2(20),XE3(20)2XE4(20) ,XES(20)+XE6(20)4XET(20),
2XEB(20) +XE9(20) yXE10(20),YEL(20),YEZ(20),YE3(20),YE4(20),YES(20),
3YES(20),YET(20),YEB(20),YE9(20),YELD(20)

IF{NN.EQ.100) GO YO 327

XMIN=
XMAX=
YMIN=
YMAX=

O. R )

8.

0.
6‘

CCXMIN=80.

CCXMAX=880.

CCYMIN=280.

CCYMAX=880.

DO 290 I=1,1EV
XLOG{I)=ALOGLIO(R{I)*1.ES)
YLIG(I)Y=ALOGLO(ZEX(I))
CONTINUE

IF (TEST.EQ.0.) GO TO 311

CALL

CINEXT

WRITE(98s1) IADJ .
FORMAT(SHIADJ=F5.1)

NS=1
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CaLL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CCLOGTC(1,84.05,0.1)

CCLOGTC(246y.05,0.1)

CCLOGTC(446,.05,0.1)

CCLOGTC(3,48,+.05,0.1)

CCLTR (35.,870.,0,2,2H10)
CCLTR (63.9885.,091,1H6)
CCLYR (35.,770.50,2,2H10)
CCLTR (63.,785450451,1H5)
CILTR (35.,670.90492,2H10)
COLTR (63.,4685.409141H4)

CCLTR (35. gS?O.)OQZ'ZHlO,

CCLTR (63.,585.4001,1H3)
COLTR (35,.,470.5092,2H10)
CCLTR (63.9485.9091,1H2)
CCLTR (35.5370.905242H10)
COLTR (63.5385.9091,1H1)
CCLTR {42.,280.4504291H1)
CCLTR (15.43884351¢2,25HSTOPPING POWER (MEV/(G/CHM )
CILTR { 04573849l el,1H2)
COLTR {(1549745.519242H)))
COCLTR ( 59.4240.,0,2,2H10)
CCLTR ( B7.4255%.9051,2H-5)
CCLTR {15949240.,0,52,2H10)
CCLTR (187.4255.3045192H~4)
CCLTR (259.,240.,04242H10)
CCLTR (287.5255.,0,1,42H-3)
CCLTR (359.9240.,0,2,2H10)
CCLTR (38744255.4091,2H-2)



-131-

CALL CCLTR (4594,240.,0,2,2H10)

CALL CCLTR (4B744255.,0,152H-1)

CALL CCLTR (580.+240.,05241H1)

CALL CCLTR {662.,240.,0,2,2H10)

CALL CCLTR (69044255450, 1451H1)

CALL CCLTR (762.4240440,2,2H10)

CALL CCLTR (790.,255.+0,1,1H2)

CALL CCLTR (862442640440,242H10)

CALL CCLTR (890.,255.,0,1,1H3)

CALL CCLTR (393.,205.,092,11HRANGE (G/CM )

CALL CCLTR (546472204704141H2)

CALL CCLTR (553.,205.,042,1H))

CALL CILTR(1100.4300441,2)

IF (LTRG{(1).EQ.6H ) GO TO 311

3 FORMAT (3A6) _

WRITE (98,3) (LTRG(I),I=1,3) /

CALL CCLTR {180.+350.,0,2)
311 CONTINUE

SEND=.01

K=1

DO 324 J=1,10

DO 312 I=K,IEV.

L=1

IF{EV(I).EQ.SEND)GOTO(313,314,315,316,317,318,319,320,321,322),J
312 CONTINUE
323 WRITE(3,2). :

2 FORIMAT(52H STATEMENT 323 OF SUBROUTINE GRAPH2 WAS ENCOUNTERED.)

6o TO 325 :
313 XEL(NS)=XLOG(L)

YE1(NS)=YLOG(L)

K=L
SEND=.1
GO TO 324

314 XE2(NS)=XLOG(L)
YE2(NS)=YLOG(L)

K=L
SEND=1.
GO TO 324

315 XE3(NS)=XLOG(L)
YE3(NS)=YLOG(L)

K=L
SEND=5.
GO TO 324

316 XE&{NS)=XLOG(L)
YEG(NS)=YLOG(L)

K=L
SEND=10.
GO TO 324

317 XES5{NS)=XLOG(L)
YES(NS)=YLOG(L)

K=L
SEND=50.
GO TO 324

318 XE6(NS)=XLOG(L)
YES(NS)=YLOG(L)
K=L '



319

320

321

322

324
325

327

-132-

SEND=100. .
GO TO 324

XET(NS)=XLOG(L)

YETINS)=YLOG(L) ‘ .
K=t : :
SEND=200.
GO TO 326
XEB(NS)=XLOG (L) .
YEB(NS)=YLOG(L)
K=L _ : -t
SEND=300.

GO TU 324

XE9(NS)=XLOG(L) -
YEI(NS)=YLOG(L) .

K=L
SEND=500.
GO Y0 324

XELO(NS)=XLOG(L)
YETO(NS)=YLOG(L)

G0 TO 325

CONTINUE

NS=NS+1 .

CALL CCPLOT(XLOG,YLOGrIEV'4HJOIN)
IF (LTRC.EQ.6H ) RETURN

FORIMAT (A6) : é

WRITE (9854) LTRC

I=28 _

IF (2.6T.10.) 1=45

CALL CCLTR (81.+100.%#XL0G(I),285.+100. *YLOG(I),OyZ)
RETURN

N=NS-1

CALL CCLTR (26.+100.%XE1 (1) 32554 +100.#YEL(1)+0,212H0.01 MEV/AMU)
CALL CCPLOT(XELlsYELsNy6HNOJOIN,6,1)

CALL CCLTR {62.+100.%XE2{1),255.+100.8YE2{1);052,3H0.1)
CALL CCPLOT(XEZ2,YE2,Ny6HNDJOIN,T51)

CALL CCLTR (61.+100.%#XE3(1),253.+100.#YE3{1)},042,3H1.0)
CALL CCPLOT(XE3,YE34N,6HNOJOIN,8,1)

CALL CCLTR (73.+100.%XE4(1),258.+100. #YE4(1)10y211H5)
CALL CCPLOT(XE4,YE4oNy4HJOIN)

CALL CCLTR (61.+100.%XES5(1),258.+100.%YES(1),0,2,2H10)
CALL CCPLOT(XES,YES,N,4HJOIN)

CALL CCLTR (6L.+100.%XE6(1),258.+100.5YE6(L),0y2,2H50)
CALL CCPLOT(XEG6,YE64Ny4HJOIN)

CALL CCLTR (45.+100.%XET(1),258.4100.8YET (1) ,042,3H100)
CALL CCPLOT(XET,YET 4Ny 4HJUIN)

CALL CCLTR (45.+4100.%XEB(1),258.+100.%YEB(1),0,2,3H200)

. CALL CCPLOT(XE8,YEB¢N,y4HJOIN)

CALL CULTR (68.+100.%#XE9(1)+288.+100.%YE9(1),0,2,3H300) .

CALL CCPLOT(XEQ,YEQ,Ns4HJOIN) -

CALL CCLTR (82.+100.%XE10(1),273.+4100.%YELO(1),0, 2.3H500) : :
CALL CCPLOT(XE10, YElO:NoéHJUIN) ¢
RETURN ‘

END _ .
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THIS SUBROUTINE PLOTS ENERGY VS RANGE

REAL IADJ

COMMON EV(200),ZEX(200),R{200),XL0G(200),YLOG(200)
COMMON/GEN/TADJSLI,LAZyNO+Z, NNy I15 1EV ) ANL  JGRAPH, TEST
COMMON/GRAF/LTRC,LTRG(3)

COMMON/CCPODL/ XMINyXMAXy YMINy YMAX s CCXMIN,CCXMAX,CCYMIN,CCYMAX
DIMENSION XTL(47),YTC(4T)4BETA(15)

DATA BETA/0.00550.0140.02y0.05,0.1:204290¢3,0.440.5,0.640.7,0.8/

XMIN=0.
XMAX=8.
YMIN=0.
YMAX=5,
CCXMIN=80.
CCXMAX=880.
CCYMIN=280.
CCYMAX=780.

DG 290 I=1,I1EV

XLIG(1)=ALOG1O(R(I))+5.
YLOG{I ) =ALOGLO(EVII))+2,

CONTINUE

IF (TEST.EQ.O0.) GO TO 311

CALL CCNEXT
WRITE(98,1) IADJ
FORMAT(5HIADJ=F5.1)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CCLOGTC(1,485.05,0.1}
CCLOGTC(2+59405450.1)
CCLOGTC{4+59.054041)
CCLOGTC(3,484.05,0.1)

CCLTR
CCLTR
CCLTR

CLTR
CCLTR
CCLTR
CCLTR
CLLTR
CCLTR
CILTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR
CCLTR

(35.3770.4305292H10)
{63.9785.4304141H3)
(35.9670.,5042,2H10)
(63.’685. 'O'lllHZ‘ :
(35¢9570.4042,2H10)
{63.4585.404141H1)
(42.9470.40,4291H1)
(30.4370.40,242H10)
(58+9385.909192H-1)
(30.9280.904242H10)
(58¢9295.903192H-2)

(15, 935545 192925HSPECIFIC ENERGY (MEV/AMU))

{ 59.9240.90,2,2H10)
( 87.¢255.909142H-5)
(159. '240. '0'2’2“10)
(1874925549091 ,2H~%)
(259.4240.,90492+2H10)
(287¢92554+0491,2H-3)
(359.4240.,50,2,2H10)
(3874925549041 92H-2)
(459.9240.4042,2H10)
(487-]255-.0]1'2“'1,
(580.9240.20,2,41H1)

(662.924043092,2H10)
(690.39255.9041,1H1)

(762.4240.90,2,2H10)
(790.2255.405141H2)
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CALL 'CCLTR (862.4240.,0,2,2H10)

CALL CCLTR (890.¢255.,0,1,1H3)

CALL CCLTR (393.,205.9092+s11HRANGE (G/CM )
CALL CCLTR (54644220.90,151H2)}

CALL CCLTR (553.5205.,0,5241H))}

CALL CCLTR(1100.+300.s1,2)

X1=AL0DG10(1.4)

X2=X1+0.05

XT2(1)=X1

YTC (1) =YMIN

CALL CCLTR (100 *Xl+l43.y502.:1 2,4HBETA)
L=2

DO 100 I=1,12

FACT1=1. ISQRT(I.-BETA(I)**Z) 1.
FAZT2=ALOG10(931.16%FACTL)+2.
DO 101 J=1,3

YTC(L)=FACT2

GO TO (102,103,102),J

XTZ(L)=X1

G0 TO 101

XTCL)=X2

L=L+l

WRITE (9845) BETA(I)

FORMAT {F4.3)

CALL CCLTR (90.+100.%X1,280.+100.*%FACT2,0,1)
CONTINUE v
XTC(L)=X1.

YTC(L) =YMAX _

CALL CCPLOT (XTCoYTC,L,4HJOIN)
IF (LTRG(1).EQ.6H ) 60 TO 311
FORMAT (3A6)

WRITE (98,2) (LTRG(I),I=14+3)
CALL CCLTR {580.,380.,0,2)

CONTINUE
CALL CCPLOT(XLOG,YLOG,»IEV,4HJOIN)
IF (LTRC.EQ.6H ) RETURN

FORIMAT (A6}

WRITE (98,3) LTRC

CALL CCLTR (80. +100.*XLOG(IEV’;283.+100.*YLDG(IEV).O.l)
RETURN

END

PO .
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4, Sample Problems

The 20 data cards which appear on the following page instructs
the program which is listed on the previous pages to perform stopping
power and range calculations for the following combinations of ions

and stopping media:

1. Carbon ions in water.
2, Argon ions in water,

3. Neon ions in aluminum.
4,

Uranium ions in uranium,

The output for these 4 problems are respectively representative of

the output for 4 types of problems defined by:

1. Z1 = 10 and the stopping medium is a ,cofnpound or a mixture,
2. ’Zl > 10 and the stopping medium is a compound or a mixture.

3. Z1 = 10 and the stopping medium is a pure element.

4, Z1 > 10 and the stopping mediuﬁ is a pure element.

The first 2 problems each contain a SRGRAP card (the final H is not
read since it is outside the field defined by the A6 format) which is
the instruction that causes the graph to be plotted which appears as
Fig. 3l1. The output for the 4 problems appears on pages 138 through
150 . Note that for the second and fourth types of problems, the
nuclear coulomb stopping power (elastic) and the electronic stopping v
power (inelastic) are listed separately in the low-specific-energy
region.. For the third and fourth types, the output at low specific
energies is also given in the dimensionless units of Lindhard et al.
(LSS}, The electronic stopping power conétant k (see Eq. (16}) is

also given for the last two types of problems.



ION
TARGEY
1.
8.
SRGRAPH
c
GO
SRGRAPH
AR
ION
GO

13.
10N

GO
ION
TARGET
92,
GO0

- sTOP

TARGET
. ',269 9815
10,
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be
2.
1.
16.

IN WATER

18,

92.

| 238.

12.

2

1.

40’."

. 20.

238,

XBL 686-910
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Fig. 31. This figure is a part of the sample problems. It was
generated in response to the SRGRAP cards which appear in
the first two problems (see page 101 ).
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DAYA CARDS PRINTED.

ke ex]ON 6.000000E+00 1.200000E401 -0.

*xx 03T ARGET 2.000000E+00 =-0. -0+ |

srxok 1.000000E+00 1.000000E+00 2.000000E+00 -0,
bl b b i 8.000000E+00 1.600000£+401 - 1.000000E+0C -0.
sex 2 #aSRGRAP ~0. -0, ~-0.

L2 3 3 11 1e%s) -0. ~0. -0.

TARGEY IS A COMPOUND

IADJ= 64.85193
A = 12.00000

Z = 6.00000 o
ATl= . 1.00000-AT2= 16.00000 AT3=
= 1.00000 272=  8.00000 Z¥3=

NT1=  2.00000 NT2=  1.00000 NT3=
NORMALTZING CONSTANT= 1.032052 .

£ DE/DX RE)
(MEVZAMU} {MEV/GM/SQCM) (GM/SQCM)

+G10 2.368944E+03 1.013110E-04
. 015 3.050073E+03 1.235016E-04,
- 020 3.619536E+03 1.415077€-04
030 4.474398E+03 1.711692E-04
» 040 5.197878E+03 1.959861E-04
. 050 5.747505E+03 2.179091€-04
«070 6.650455E403 2.566042E~04
« 100 7.460166E+03 3.07567T9E~04
- 150 8.011728E+03 3.8500728-04
« 200 8.250420E+03 4,587569E~-04
«300 8.114792E+03 6.054981E-04
<400 7.887613E+03 © T+555977€-04
« 500 7.603541E+03 9.106652E-04
« 700 T.205754E+03 1.235430E-03
1.000 6.565723E+03 1.760449E-03
1.500 5.707563E+03 2.746015E-03
2.000 4.952936E+403 3.879278E-03
3.C00 4.044742E+03 6.583256E-03
4,000 3.383897E+03 9.845034E-03
5.000 2.896873€+03 1.369270E-02
7. 000 2.256883E+03 2.316911E-02
10.000 1.695200€+03 4.179387E-02
10.380 - 1.644054E+03 4.452569E-02
12.000 1.458803£+403 5.710344E-02
14.000 1.283994E+03 T467944E-02
16.000 1.149249€+03 9.447070E-02
18.000 1.042076E+03 1.164313E-01
20. 000 9.547123E+02 1.405192£-01
22.000 8.B20735€+02 . 1.666957E-01
24.000 8.206870E+02 . 1.949248E£-01
26.000 7.680979£402 2.251723E-01
28. 000 7.225205E+02 2.574064E-01
30.000 6.826244E+02 2.915966E-01
32.000 6.473972E+02 3.277138E-01

-0.
-0.

0. -
-0.

SLOPE OF DE/DX

(SQCM/GM)

-0.
1.042160E+04
8.701976E+03
6.576427€+403
5.304613E+403
4.307580E+03
3.157053E+03
1.750475E403
6.585454£+402
2.275391E+02

~1.511697E+02

-2.130211€+02

~2.130658E+02

~1.705613E+02

-1.647515E+02

~1.343989E+02

~1.090751E+402
~6.537663€+01
~4.782788E+01

-3.594563E401

-2.224066E+01

-1.170942E+01

-1.089579€E+01

-8.524393E+00

~6.449044E+00
-5.039963E400
-4.052856E+00
~3.333388E£+00
—2.792192E+00
-2.374492E+00
-2.045135E+00
-1.780699E+00

=1.565069E+00

~1.386859E+00

~0.
~0.
-0.
-0.

-0.

~0.

0.’

-0.

=0
=-0.

-0.
-0.

XBL 686-897

-g8¢li-



*®

34.000
36.000
38.000
40. 000
42.000
44.000
46.000
48.000
50. 000
55. 000
60.000
65.000
70. 000
75.000
80.000
85.000
90. 000
95. 000
100. 000
105.000
110.000
115.000
120.000
125.000
130.000
135.000
140. 000
145.000
150. 000
155. 000
160.000
165.000
170.000
175.000
180.000
185.000
190. 000
195.000
200. 000
210.000
220. 000
230.000
240.000

250. 000

260.000
270.000
280.000
290. 000
300. 000
310.000
320.000
330. 000
340. 000
350. 000
360.000
370.000

.380.000

390.000
400. 000
410.000
420.000
430.000

6.160551E+02
5.879813E£+02
5.626835E+02
5.397643E+02
5.188990E+02
4.998199E+02
4.823039E+02
4.661640E402
4.512419E402
4.184274E+02
3.907935E+02
3.67188TE+02
3.467806E+02
3.289529E+02
3.132387E402
2.992781E+02
2.867892€+02
2.755474€402
2.653724E402
2.561168E+02
2.476596E+02
2.399003E+402
2.327546E€+02
2.261514E+02
2.200303E+02
2.143396E+402
2.09034TE+02
2.040771E+02
1.994332E+02
1.950739€402
1.909732€+02
1.871086E+02
1.834599€+02
1.800093E+02
1.767409E+02
1.736404E+02
1.706950E+02
1.678932E+02
1.652247E+02
1.602506E+02
1.557074E+02
1.515410€+02
1.477058E402
1.441637E+02
1.408819E+02
1.378327€+02
1.349920E+02
1.323391E+02

1.298559E+02"

1.275266E+02
1.253373€+02
1.232758E+02
1.213312E+02
l.194940E+02
1.177555E+402
1.161081€E+02
1.145447€402
1.130594E+402
1.116463E+02
1.103005E+02
1.090173€+02
1.077926E+02

-139-

3.657306E-01
4.056203E-01
4.473575€~01
4.909178E-01
5.362775€-01
5.834139€-01
6.323049E-01
6.829292€-01
7.352662E-01
8.7347126-01
1.021958£+00
1.180449E+00
1.34B681E+00
1.526409E+00
1. 713400E+00
1.909432E+00
2.114296E+00
2.327793E+00
2.549731E+00
2.779928E+00
3.018210€+00
3.264409E+00
3.5183656£400
3.779923E+00
4.048935E+00
44325256E400
4.608T49E+00
4.899280E+00
5.196720E+00
5.500944E+00
5.811832E+00
6.129266E400
6.453133E+00
6.783323E400
7.119730E+00
7.462249E+00
7.810781E+00
8.165226E+00
8.525489E+00
9.263104E+00
1.002291E+01

1.080424E+01

1.160643E+01

.1.242889E+01

1.327102€&+01
1.413226E+01

1.501208E+01 -

1.590998E+01
1.682545E+01
1.775803E+01
1.870726E+01
1.967272E+01
2.065398E+01
2.165064€E+01
2.266232E+01
2.368864E+01
2.4T72924E+01
2.578378€E+01
2.685191E+01
2.793332€+01
2.902768E+01
3.013470£+01

~1.237833E+00
~1.111909E+00
-1.004520E+00
-9.121762E-01
~8.321754E-01
~7.623986E-01
~7.011644€-01
~6.4T1243E-01
-6.003684E-01
-5.037364E-01
-4.269895€~01
-3.667744E-01
-3.186318E-01
-2.795163E-01
-2.472893E-01
-2.204125€-01
~1.977557E-01
-1.784733E-01
-1.619223E-01
-1.476063E-01
-1.351373€-01
~1.242083E-01
~1.145739€-01
-1.060356E-01
~9.843210E-02
-9.163053E-02
~8.552105E6-02
-8,001206E-02
-7.502670E~02
-7.050007E-02
~6.637708E-02
-6.261069E-02
-5.916056E-02
-5.599192€-02

~5.307469E-02 .

-5.038269€E-02
-4.789311€-02
~4.558596E-02
-4.346734E-02

. —3.965516E-02

~3.628999E-02
-3.333994€-02
-3.073876€-02
-2.843301€-02
~2.637912E-02
-2.454132€6-02
-2.289002€-02
-2.140055E-02
-2.005219€-02
~1.882748E-02
-1.771159€-02
-1.669183E-02
~1.575737€-02
~1.489883E-02
~1.410811E-02
-1.337817E-02
~1.270286E-02
~1.207680€E-02
~1.1495256-02
~1.095404E-02
-1.044948E-02
-9.978291E-03

XBL 686-898



440.000
450.000
460.000
470.00C0
480.000
490.000
500.000

TIME= 1.123

-140-

1.066226E+02
1.055036E+02
1.044326€E+02
1.034067E+02
1.024230E+02
1.014792E+02
1.005730E+02

3.125408E+01
3.238554E+01
3.352880E+01
3.468358E+01
3.584964E+01
3.702672E+01
3.821458E+401

-9.,537557E-03
-9.124675E-03
-8.737318E-03
-8.373396E-03
-8.031032E-03
-7.708534E-03

‘00

XBL 686-899



DATA CARDS PRINTED.

*xs244SRGRAP -0. -0. -0.
*eaese] ON 1.800000E+01 4.000000E+01 -0.
2 E0G0 ~0. -0. -0.

TARGET IS A COMPOUND

[ADJ= 64.85193
A = 40.00000

= 18.00000
AT1l= 1.00000 ATZ2= 16.00000 AT3=
IT1= 1.00000 272= 8.00000 273=
NT1= 2.00000 NT2= 1.00000 NT3=

BOUNDARTES BETWEEN THE FOUR ENERGY REGIONS ARE

«170 2.000

€ NUC.S.Pay ELEC. S.P.
(MEV/AMU} (MEV/GM/SQCM) {MEV/GM/SQCM)
010 1.844193E+03 4.219608BE+03
+015 1.338278E+03 5.167943E+03
« 020 1.027047E+403 5.967426E403
030 6.674182E+02 7.308575€+03
« 040 4.699450€+02 8.439215£+03
+050 3.481253E+02 9.435329E+03
«060 . 2.672254E+02 1.033589€+04
-070 2.106568E+02 1.116403E+04
. 080 1.695529E+02 1.193485E+04
«090 1.387798BE+02 1.265882E+04
. 100 1.151812E+02 1.334357E+04
«150 5.255081E+01 1.634247E+04
- 200 2.808268E+01 1.887066E+04

E DE/DX R{E)
(MEV/AMU) [MEV/GM/SQCM} {GM/SQCM)

<010 6.063801E+03 6.852845€E-05
«015 6.506221E+403 1.003913€E-04
.020 64994474E403 1.300332€~04
» 030 7.975993E+03 1.835205E-04
- 040 8.909160E+03 "2.309122€-04
« 050 9.783455E+403 2.737123€-04
. 060 1.060311E+04 3.129527€-04
. 070 1.137469E+04 3.493505£~04
. 080 1.210441E+04 3.834204E-04
.090 1.279760E+04 4.155431E-04
. 100 1.345875E+04 4.460089E-04
+ 150 1.639502E+04 5.800083E-04
+200 1.889874E+04 6.933386E-04
» 300 2.252964E+04 8.854855E~04
« 400 2.476349E+404 1.054166€E-03

~0. -0.

~0. ~0.

82.012

DE/DX
{MEV/GM/SQCM)

6.063801E+03
6.506221E+03
6.9944T4E+03

 7.975993E+03
8.909160E+03
9.783455€403
1.060311E+04
1.137469E404
1.210441E404
1.279760E404
1.345B75E404
1.639502E+04
1-889874E+04

SLOPE OF DE/DX
(SQCM/GM)

-0.
2.326682E+03
2.445441E+03
2.393358E+03
2.259327€+03
2.117438E+03
1.989043€403
1.876618E+03
1.778642€+03
1.692933E+03
1.622084E+03
1.359997E+403
1.137148E+03
7.330933E+02
4.592215E+02

~0.

-0.

R
{GM/SQCM)

6.852845€6-05
1.003913E-04
1.300332E-04
1.8352056-04
2.309122E-04
2.737123E-04
3.129527€-04
3.493505E-04
3.834204E-04
4.155431E-04
4.460089E-04
5.800083€E-04
6.933386E-04

-0.

~0.

XBI, 686-900
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500
-« 600
. 700
© « 800
«900

1. 000"

1.500
2.000

2. S00.

3.000
3.500
4.000
4.500
5. 000
5.500
6.000
6.500
7.000
7.500
8. 000

8.500"

9.000
9.500
10. 000
10. 380
12.000
14.000
16. 000

18. 000.

204000
22.000
24.000
26. 000
28. 000
30. 000

32.000

34.000
36.000
38. 000
40.000
42.000
44.000
46.000
48.000
50. 000
55. 000
60.000
65,000

70. 000

75.000
80.000
85.000
90.000
95. 000

100.000
105. 000

110,000

115.000
120,000
125.000
130. 000
135.000

-142-

" 2.620341€E+04

2.714993E+04
2.777096E+04
2.816795E+04
2.840584E+04

2+852804E+04

2.820430E+04
2.725210E+04
2.603566E+04
2.4T6611E+04
2.350617E+04
2.229127€+04
2.113982E+04

2.005984E+04

1.905320E+04

1.811825E+404

1.725143E+04
1.665315E+04
1.598084E+04
1.535580E+04
1.477423E+04
1.423248E+04
1.372716E+04
1.325514E+04
1.291690E+04

-1la 16465TE+04

1.038434E+04
9.370812E+03

8.540267E+03

T7.84T7554E+03
7.260915E+03
6.757480E+03
62320424E+03
5.937121E+03
5.597930E+03
5.295368E+03
$5.027907€+03
4.874107E+03
4.724896E+403
4.580986£+403
4.442836E+403
4.310699E+03
4.1846T1E+03
4.064728E+03
3.950754E+03

' 3.690666E+03

3.46296TE+03
3.263449E+03
3.088053E£403
2.933153£+03
2.795632E+403
2.693503E+03
2.581102€+03
2.479927€+03
2.388351E+03

2.305051E403,

2.228936E+03
2.159103€403
2.094791£+03
2.035363E+03
1.980273E+03

1.929056€+03

1.210859E-03
1.360635€E-03
1.506188E-03
1.649124E£-03
1.790477E-03
1.930950E~-03
2.633735E-03
3.354473E-03
4.105019€-03
4.892517€~-03
5.721428E-03
6.595224E-03
7.516683E-03
8.488076E-03
9.511296E-03
1.058796E-02
1.171945E-02
1.290667E-02
1.413287€~-02
1.540981E-02
1.673786E~02
1.811731€E-02
1.954840€-02
2.103130E-02
2.219303E-02
2.748317€-02
3.476966E-02
4.289040E-02
5.184295E-02
6.162405€E-02

" 7.223038E~-02

8.365891E-02
9.590712E~02
1.089732€~01
1.228560E-01
1.375552€-01
1.530702E-01
1.692310E-01
1.859022E-01
2.030987E-01

2.208328E-01

2.391147€-01
2.579521E-01
2.773512€-01
2.973164E~-01
3.497222€E-01
4.056963E-01
4.652193E-01
5.282492E-01
5.947304E-01
6.645992E-01
7:372037E-01
8.130794E~01
8.921522€-01
9.743515E-01

1.059610E+00

1.147862E+00
1.239047€+00
1.333105E+00
1.429978E+00
1.529612E+00
1.631953E400

2.983058€+02
1.959437€E+02
1.272525€+02
7.936043E+01

4.501047E+01 -

2.275915€+01
~3.189856E+01
-5.421587E+01
-6.214956E+01
-6.323734E+01
-6.187112E+01
-5.915870E+01
~5.578565E+01
-5.216539€+01
-4.853974E+01
-4.504423E+401
-3.662759E+01
~3.176494E+01
-3.243373E+01
-3.016530E+01
-2.808308E+01
~2.617668E+01
~2.443350E+01
-2.283482€E+01
-2.174924E401
-1.789167E+01
~1.422349E+01
-1.152545E+01
-9.520360E+00
~T7+995949E+00
~6.812964E+00
~5.878067E+00
-5.127241E+00
~4.515589E400
-4.010961E+00
~3.562642E+00

-2.632880E+400

~1.893821E+400
~1.832005E+00
-1.762876E+00

'~1.689297E+00

-1.613530E+00
~1.537319E+00
-1.461978E+00
~1.389172E+00
~1.219469E+400
~1.068042E+00
-9.372833€-01
~-8.257408€E-01
-7.310534E-01
~5.991238E-01
-5.363241E-01
-54339404E-01
-4.818780E-01
-4.371902€-01
-3.985370€E-01
~3.648707E-01
~3.353625€E-01
~3.093494E-01
~2.862962€-01
-2+657667€~01
-2.474024E-01

XBL 686-901
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140. 000
145. 000
150.000
155.000
160. 000
165.000
170. 000
175.000
180.000
185. 000
190. 000
195. C00
200.000
210.000
2204000
230. 000
240.000
250. 000
260.000
270.000
280.000
290. 000
300,000
310.000
320.000
330.000
340.000
350. 000
360.000
370. 000
380.000
390. 000
400. 000
410. 000
420.000
430.000
440, 000
450. 000
460.000
470.000
480.000
490. 000
500.000

TIME= 2.071

1.881312E+03
1.836693E+03
1.794899E+03
1.755665E+03
1.718759E+03
1.683977E+03
1.651139€+03
1.620084E+03
1.590668E+03
1.562763E+03
1.536255E+03
1.511039E+03
1.487022E+03
1.442255€+03
1.401367E+03
1.363869E+03
1.329353€+03
1.297473E+03
1.267937E+03
1.240494E+03
1.214928€+03
1.191052€+03
1.168703€+03
1.147739E+403
1.128035E+03
1.109482€+03
1.091981E+03
1.075446E+03
1.059800E+03
1.044973E+03
1.030903€+03
1.017534E+03
1.004817E+03
9.927046E+02
9.811561E+02
9.701337E+02
9.596030E+02
9.495326E+02
9.398937E+02

9.306600E+02

9.218072E+02
9.133130E+02
9.051567€E+02

-143-

1.736951E+00
1.844555E+00
1.954718E+00
2.067393E+00
2.182537E+00
2.300105E+00
2.420056E+00
2.542349E+00
2.666944E+00
2.793803E+00
2.922888E+00
3.054164E+00
3.187595E400
3.460786E+00
3.742197E+00
4.031576E+00
4.328686E+00
4.633299E+00
4.945198E+00
5.26417TTE+00
5.590038E+00
5.922591E+00
6.261654E+00
6.607053E+00
6.958622E+00
7.316199E+00
7.679629E+00
8.048763E+00
8.423459E+00
8.803578E+00
9.188986E+00
9.579554E+00
9.975159E+00
1.037568E+01
1.078100E+01
1.119101E+01
1.160559E+01
1.202465E+01
1.244808E+01
1.287578E+01
1.330765E+01
1.374361E+01
1.418356E+01

~2.309068E-01
-2.160326E-01
~2.025721€-01
-1.903502€E-01
~1.792181€-01
-1.690489€-01
-1.597335£-01
-1.511782€e-01
-1.433017€E-01
~-1.360333E-01
-1+293114E-01
-1.230821E-01
-1.173618E~-01
~1.070689E~-01
-9.798297E-02
-9.001783E-02
-8.299466E-02
~7.676912€-02
-7.122361€-02
-6.626157E~02
~6.180307E-02
~5.778148€E-02
-5.414092E-02
-5.083421E-02
-4,782128E-02
~4,506795€-02
-4.254490E-02
-4.,022684E~02
-3.809190E-02
-3.612106E-02
~3.42977T2E-02
-3.260735E-02
-3.103717E-02
-2.957591E-02
-2.821360E-02
~2.694139E-02
-2.575140€-02
—2+.463662E-02
-2.359076E-02
~2.260817€-02
-2.168379E-02
-2.081304E-02
-0.

XBL 686-902



DATA CARDS PRINTED.

axax#*TARGET -0, . =0, -0.
*sxaee  1.300000E+01  2.698150E+01 ~0.
*exx2+]ON 1:000000€4¢01  2.000000E401 -0,
28260 -0. - -0. -0.
TARGET 1S PURE ELEMENT
IADJ= 162.99837
A = 20.00000
z = 10.00000
AT = 26.58150
2T = 13.00000
NORMALIZING CONSTANT= 1.000000
LSS ELECT. S.P. CONSTANT= .16152
E E(LSS) DE/DX
(MEV/AMU) (DIMENSIONLESS) (MEV/GM/SQCM}
.010 9.012425E+00 1.952161E+03
.015 1.351B64E+01° 2.357567E+03
.020 1.802485E+01 2.762600E+03
.030 2.703728E+01 3.265490€+03
+ 040 3.604970E+01 3.870240€+03
.050 4.506213E+01 4.372824E+403
. 070 64308698E+01 5.073043E+03
. 100 9.012425E+01 6.073143E403
. 150 1.351864€+402, 7.066917€+03
. 200 1.802485E+402 7.760089E+03
<300 2.70372BE+02 8.748166E+03
. 400 3.604970E+02 9.,137371E+403
«500 4.506213E+02 9.328991E+03
. 700 6.308698E+02 9.417378E+03
1.000 9.012425E+402 9.007508E+03
1.500 1.351864E+03 8.401254E+03
2.000 1.802485E+403 7.600000E+03
3. 000 2.703728E+03 6. 700000E+03
4.000 3.604970E+03 $.800000E+03
5.000 4.506213E+03 5.250000E+03
7.000 6.308698€+03 4.200000£+03
10.000 9.012425€403 3.409098E+03
10. 380 9.354897€+03 3.311431E+03
12. 000 1.081491E404 2.955592E+03
14. 000 1.261740E+04 2.616660E403
E - DE/DX REE)
(MEV/AMU) {MEV/GM/SQCM) {GM/5QCM)
. 010 1.952161E403 2.049012€-04
2.357567E403 2.512B74E-04

« 015

-0, -0.

-0. -0.

0. -0.
BE/DXILSS)
(DIMENSIONLESS)

'5.940107€-01
T.173692E-01
8.406142€-01
9.936355€-01
1.1T7651E+00
1.330579E+00
1.543644E+00
1.84795BE+00
2.150348E+400
2.361268E+00
2.661924E+00
2.780353E+00
2.838660E+00
2.865555E400
2.740838E+00
2.556365E+00
2.312556E+00
2.038701E+00
1.764845E+00
1.597489E+400
1.277992€+00
1.037333E+00
1.007614E+00
8.993385€-01
7.962069E-01

SLOPE OF DE/DX
{SQCM/GM)

-0.
4.052198E+03

~0.

-0,
-o.

R
(GM/SQCM)

2.049012E-04
2.512874E~04
2.903638E-04
3.566544E-04
4.127516E-04
4.612877E-04
5.459396E-04
6.536049E-04
8.056154E~04
9.403989E-04
1.182303E-03
1.405784€-03
1.622327€-03
2.048970E-03
2.701338E-03
3.853815E-03
5.108816E-03
7.925350E-03
1.114755E-02
1.478017E-02
2.336953E~02
3.935314E-02
4.161538E-02
5.199088E-02
6.6404T72E-02

-0.

-0,
-0.

R(LSS)
{DIMENSIONLESS}

3.033632E+01
3.720397E+01
4.298936E4+01
5.280392E+01
6.110930E+01
6.829523E+01
8.082824E+01
9.676846E+01
1.192741E+02
1.392293E+02
1.750440E+02
2.081312E+02
2.401910E+02
3.033570E+02
3.999423E+02
5.705706E+02
7.563778E+02
1.173375€E+03
1.650433€+03
2.188254E+03
3.459940E+03
5.826369E+03
6.161300€+03
T.697429E+03
9.831448E+03
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Al S

-

. 020

s . 030

. 040
« 050
« 070
. 100
«150
« 200
+ 300
+ 400
« 500
- 700
1. 000
1.500
2.000
3.000
4. 000
5.000
7.000
10.000
10. 380
12.000
14. Q00
16.000
18. 000
20. 000
22.000
24.000
26. 000
28.000
30.000
32.000
34.000
36. 000
38.000
40.000
42.000
44.000
46.000
48.000

50. 000

55. 000
60.000
65.000
170. 000
75. 000
80. 000
85.000
90. 000
95. 000
100. 000
105. 000
110.000
115. 000
120. 000
125.000
130.000
135.000
140.000
145.000
150. 000
155.000

2.762600E+03
3.265490E+03
3.870240E+03
4.372824E+03
5.073043E+03
6.073143E+03
7.066917E+03
7.760089E+03
8.748166E+03
9.137371E+03
9.328991€+03
9.417378E+03
9.007508E+03
8.401254E+03
7.600000E+03
6.700000E+03
5.800000E+03
5.250000E+03
4.200000E+03
3.409098E+03
3.311431E+03
2.955592E+403
2.616660E+03
2.353190E+03
2.142173€+03
1.969155E+03
1.824580E+03
1.701873E+03
1.596352E+403
1.504593E+03
1.424030E+03
1.352703€+03
1.289086E+03
1.231976E+03
1.180408E+03
1.133600E+03
1.090913€+03
1.051817€+03
1.015871E+03
9.827023E+02
9.519963E+402
8.843340E+402
8.272031E+02
7.782896E+02
7.359151E+02
6.988321E+02
6+660935€402
6.369668E+02
6.108767E+02
5.873648E+02
5.660610E+02
5.466636E+02
5.289236E+02
5.126341E+02
4.976214E+02
4.837389E+02
4.708615€+02
4.588822E+02
4.477089E+02
4.37261TE+02
44274709E+402
4.18275TE+02

-145-

2.903638E~-04
3.566544E-04
4.127516E-04
4.612877€E-04
5.459396E-04
64536049E-04
8.056154E-04
9.403989E~-04
1.182303€E-03
1.405784E-03
1.622327€-03
2.048970E-03
2.701338E-03
3.853815€E-03
5.108816E-03
7.925350€-03
1.114755€-02
1.478017€E-02
2.336953E-02
3.935314E-02
4.161538E-02
5.199088E-02
6.64047T2E-02
B8.255041E~02
1.003888E-01
1.198844E-01
1.410050E-01
1.637205€-01
1.880030€-01
2.138262€E-01
2.4116556-01
2.699972E-01
3.002991€E-01
3.320497€~01
3.652287€-01
3.998165€-01
44357942E-01
4.731436E-01
5.118473E-01
5.518882E-01
5.932501€E-01
T.023306£-01
8.193333€~-01
9.440385€E-01
1.076241E+00
1.215746E+00
1.362373E+00
1.515949E+00
1.676308E+00
1.843296E+00
2.016764E+00
2.196569E+400
2.382575£+00
2.574652E+00
2.7T2676E+00
2.976525E+00
3.186084E+00
3.401242E+00
3.621891E+00
3.847927E+00
4.079250E+00
4.315763E+00

3.538372€+403

2.769100€E+03

2.768333E+403

2.258794E+03

1.717062€403

1.414436E+03

8.434729€+02

6.267942E+02

3.443206E+02

1.452061E+02

7.123880E+01
-1.406659E+01
~64542931E+01
-7.037539€+01
-6.841692E+01
-4.500000£+01
-3.625000E401
-2.708333E401
-2.102268E+01
-1.288809E+01
-1.249593E401
-9.859698E+400
~7.530028E+00
-5.931087€+00
~4.800440E+00
~3.969906E+00
~3.341016E+00
~2.852851E+00
~2.466003E400
~2.154030€+00
-1.898630E+00
-1.686799E+00
-1.509086E+00
-1.358482E+400
-1.229698E+00
-1.118681E+00
-1.022283€+00
-9.380263E-01
-8.639379€-01
-7.984329€-01
~7.416419E-01

- =6+239664E-01

-5.302220E-01
~4.564398E-01
-3.972870E~01
-3.491081E~-01
-3.093266E-01
-2.760837E-01
~2.480101E-01
-2.240786E-01
-2.035061E-01
-1.8568T72E~01
-1.701474E-01
~1.565107€-01
-1.444761E-01
=-1.337999E-01
-1.242833E-01
~1.157627E~-01
-1.081027E-01
-1.011901€-01
-9.492988E-02
-8.924162E-02
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160. 000
165. 600
170.000
175. 000
180.000
185. 000
190. 000
195.000
200. 000
210. 000
220.000
230.000
240.000
250.000
260.000
270.000
280.000
290. 000
300. 000
310.000
320.000
330. 000
340.C00
350.000
360. 000
370. 000
380.000
390.000
400.000
410. 000
420.000
430.000
440. 000
450.000
460.000
470.000
480. 000
490. 000
500. 000

TIME= 2.487

4.096226E+02
4.014643E+02
3.937590£+02
3.864694E402
3.795625E+02
3.730084E+02

3.667804E+02 .

3.608545E+02
3.552090E+02

3.446823E+4+02

3.350637E+02
3.262394E402
3.181142E+02

3.106077€+02°

3.036515E+02
2.971868E402
2.911632E402
2.855371E402
2.802702E402
2.753294E+02

2.706854E+02

2.663122€+02
2.621871E+02
2.582897TE+02
2.546018E+02

2.511073E+02 .
2.4T7T914E+0Q2 -

2.446410E+02

2.416444E+02 .

2.387907E+02
2.360701E+0Q2
2.334739€+02
2.309939E+02
2.286227€402
2.263535E+02
2.241801€E+02
2.220969E+02

2.200985E+02"

2.181800E+02

-146-

4,557373E+400
4.803988BE+00
5.055520E+00
5.311885£+00
5.572998E+00
5.838781€+00
6.109154E+00
6.384041E+00

© 6.663369E+00

7.235062E+00
7.8236T9E+00
8.428694E+00
9.049610E+00
9.685949E+00
1.033726E+01
1.100311E+01
1.168308E+01
1.237678E+01
1.308382E+01
1.380385E+01
1.453652E+01
1.528147E+01
1.603841E+01
1.680700E+01

1.758696E+01

1.837799E+01
1.917981E+01
1.999216E+01

2.08147TE+0O1

2.164740E+01
2.248980E+01
2.334174E+01
2.420298E+01
2.507331E+01
2.595252E+01
2.684039E+01
2.773673E+01
2.864134E+01
2.955404E+401

~8.405708E~02
-7.931795€-02
-7.497413E-02
~7.098243E-02
-6.730540E-02
~6.391051€E-02
-6.076931E-02
~5.785690E-02
-5.518109E-02
-5.036330€6-02
-4.610735E-02

 ~4.237361E-02

~3.907915€E-02
-3.615695E-02
<3.355240E-02
-3,122057E-02
~2.912427€-02
-2.723247E-02
-2.551911€-02
-2.396219E-02
~2.254302€-02
~2.124561E-02
-2.005628E-02
-1.896319E~-02
-1.795612E-02
-1.702616E-02
~1.616555€E-02
-1.536746E-02
-1.462592E-02
~1.393563E-02

-1.329192E-02

-1.269064E-02
-1.212810&-02
-1.160098E-02
-1.110635E-02
-1.064154E-02
-1.020418€-02
~9.792124E-03
-0.
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DATA CARDS PRINTED.

*esses|ON 9.200000E+01  2.3B80000E+02 -0. -0.
«x* 42T ARGET -0, -0 -0. -0.
-#skses  9,.200000E+01  2.380000E+02 0. -0.
w56 ¥sGQ -0. -0. -0. -0.
TARGEY IS PURE ELEMENT
1ADJ= 922.82334
A = 238.00000
7 = $§2.00000
AT = 238.00000
IT = §2.00000
BOUNDARIES BETWEEN THE FOUR ENERGY REGIONS ARE
«505 2.000 INFINITE
LSS ELECT. S.P. CONSTANT= .17618
E E(LSS) NUC. S.P. ELEC. S.P. DE/ DX
(MEV/AMU) (DIMENSIONLESS) (MEV/GM/SQCM) [MEV/GP/SQCM) {MEV/GM/ SQCM)
.010 7.163816E-01 5.366298E+03 2.575220E+03 7.941519E+03
. 015 1.074572E+00 4.992354E4+03 3.153988E+03 8.146342E403
.020 1.432763E+00 4.650822E+03 3.641912E+03 8.292733E403
.030 2.1649145E+00 4.081919E+403 4.460412E403 8.542331E£403
« 040 2.865526E+00 3.633593E+03 5.150441E403 8.784034E+03
. 050 3.581908E+00 3.271323E+03 5.758368E+03 9.029691E+03
. 060 4.298290E+00 2.97L779€+03 6.307976E+03 9.279755E+03
.070 5.014671E+00 2.719410E+03 6.813393E+03 9.532803E+03
.080 5.731053E+00 2.503525E+03 7.283823E+03 9.787348E+03
. 090 6.447435E400 2.316525€+03 7.725661E403 1.004219E+04
. 100 7.163816E+00 2.152844E+03 8.143562E403 1.029641E+04
. 150 1.074572€+01 1.566697E+03 9.973786E+03 1.154068E+04
. 200 1.432763E+01 1.204829€+03 1.151674E406 1.272156E+04
«300 2.169145E+01 7.852506E+02 1.410506E404 1.489031E404
<400 2.865526E+01 5.540566E+02 1.628712E+04 1.686118E404
.500 3.581908E+01 4.110763E+402 1.820956E+04 1.862063E+04
+ 600 4.298290E401 3.159388E+02 1.994757E+04 2.026351E404
. 700 5.014671E+01 0. 2.177510E+404 2.177510E+04
. 800 5.731053E401 o. 2.316491E+404 2.316491E404
.900 6.447435E401 0. 2.445837E4064 2.6445837E404
1.000 7.163816E401 0. 2.567351E+04 2.567351E+404
1.500 - 1.074572E402 0. 3.094420E+404 3.094420E+04
2.000 1.432763E402 0. 3.538222E404 3.538222€404
. E DE/DX RIE) SLOPE OF DE/DX
(MEV/AMY) {MEV/GM/SQCM) (GM/SQCM) (SQCM/GM)
.010 7:941519E+03 3.473605€-04 -0.
.015 84146342E403 4.951227€~04 1.475692E+02

-0.
-0e

-0.

DE/DX{LSS)
(DIMENSIONLESS)

5.580031E-01
5.723949€~-01
5.826809€-01
6.002186E~-01
6.172016€-01
6.344625E-01
6.520330E-01
6.698131€~-01
6.876985E-01
7.056045E~01
7.234669E-01
8.108808E-01
8.938684E-01
1.046253E+00
1.183329E+00
1.308361E+00
1.423796E+00
1.530006E+00
1.627660E+00
1.718544E+00
1.803924E+00
2.174264E+00
2.486097E+00

-0.
-0.

-0.

‘R
1GM/SQCM)

3.473605E-04
4.951227E-04
6.398297E-04
9.2264732E-04
1.197175E-03
1.464372E-03
1.724333£-03
1.977340€-03
2.223698E-03
2.463727€E-03
2.697746E-03
3.788252E-03
4.769438E~03
6.494214E-03
7.994585E-03
9.336978E-03
1.056117€-02
1.169333E-02
1.275243€-02
1.375189€~02
1.470135€~02
1.890330€E-02
2.249146€E-02

o
-

R(LSS)
(DIMENS IONLESS)

1.487648E400
2.120473E+00
2.740213E+00
3.950697E+00
5.127169€+00
6.271498E400
T7.384841E+00
8.468400E+00
9.523483E+00
1.055146E+01
1.155370£+01
1.622403E+01
2.042618E401
2.781292E+01
3.423859E+401
3.998769E+401
4.523055€+01
5.007928E+01
5.461514E+01
5.889553€+01
©.296179E+01
8.095760£+01
9.632468E+01
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.020
. 030
- 040
. 050
. 060
.+ 070
. 080
. 090
. 100
. 150
.200
.300
<400
500
. 600
700
. 800
. 900
1.000
1.500
2.000
2.500
3.000

3. 500

4.000
42500
5.000
5.500
6. 000
6.500
7.000
7.500
8. 000
8.500
9.000
9.500
10. 000
10. 380
12.000
14.000
16.000
18.000
20. 000
22.000
244000
26.000
28.000
30. 000
32.000
34.000
36.000
38. 000
40. 000
42.000
44,000

46. 000

48. 000
50. 000
55. 000
60.000
65. 000
70. 000

8.292733E+03
8.542331€+403
8.784034E+03
9.029691E+03
9.279755E+03
9.532803E+03
9.787348E+03
1.004219E+04
1.029641E+04
1.154048E+04
1.272156E+04
1.489031E+04
1.684118E+04
1.862063E+04
2.026351E+04
2.177510E+404
2.316491E+04
2.44583TE+04
2.567351E+04
3.094420E+04
3.538222€+04
3.865648E+04
4.081342E+04
4,22T789E+04

"4+330356E+04

4.404484E+04
4.4597TSE+04
4.502323E404

44536062E+04

4.563569E+04
4.644920E+04
4.679942E+04
4, T12575E+04
4,743310E+04
4.772464E404
4.800243E+04
4,.8267TT1E+04
4.846142E404
4.820662E+04

4. T73391E+04

4.719305E+04
4.659781E+04
4,596011E+04
4.529057E+04
4.459857TE+404
4.389219E+04
4.317826E+04
4,246246E4+404

4.1T4944E4+04

4.104291E404
4.034584E404
3.966052E+04
3.898869£+04
3.833167E+04
3.769036E+04
3.706539E+04
3.645712E4+04
3.586573E+04
3.446086E+04
3.315849E+04
3.195317€+04
3.083819E+404

-148-

6.398297€E-04
9.2247T32E-04
1.197175€E-03
1.4643T72E~03
1.724333E-03
1.977340E-03
2.223698E-03
2.463727€-03
2.697746E-03
3.788252E~03

4,769438E-03

6.494214E-03
7.994585€E-03
9.336978E-03
1.056117E-02
1.169333E-02
1.275243€-02

" 1.375189€-02

1.470135E-02

1.890330€-02

2.249146€-02
2.5697926-02
2.8688086-02
3.154958E-02
3.432880E-02
3.705240E-02
3.973660E-02
4.239174E-02
4.502461E-02
4.763985E-02
5.024006E-02
5.279226E-02
5.532611E-02
5,784299E-02
6.034405E-02
6.2B3023E-02
64530240€-02
6.717234E-02
7.514399E-02
8.506557E-02
9.509337€-02
1.052429E-01
1.155278E-01
1.259603E-01
1.365510E-01
1.473092€-01
1.582430£~01
1.693595E-01
1.806647€-01
1.921638E-01
2.038613E-01
2.157609E-01
2.278660E~01
2.401791E-01
2.527025€-01
2.654381E-01

2.783873E-01

2.915513€-01
3.254063E-01
3.606164E-01
3.971819E-01
4.350979€-01

1.169693E+02
"1.032144E+02
1.023865E+02
1.041431E+02
1.056958E+402
1.066373E+02
1.070133£+402
1.069448E+402
1.064364E402
1.018974E+02
9.654169E+401
8.654655E+01
7.836808E+01
T.189768E+01
6.627024E+01
6.095371E+401
5.637133€401
5.270171E+01
4.992868E+01
4.079290€E+01
3.240456E+01
2.282019E+01
1.521600E+01
1.04627TE+01
T7.42414TE+00
5.437743E+00
4.110879E+00
3.205372E+00
2.573386E400 -
4.573833E+400
4.889606E400
2.842683E+00
2.662522E+00
2.516344E+00
2.392140E+00
2.28177TE+00
2.179599E+00
1.609356E+00

'~8.095354E-01

~1.064673E+00
-1.193378E+00
-1.295102€+00
-1.373153E+00
-1.430192E+00
~1.468894E+00
-1.491922€+00
-1.501809E+00
~1.500863E+00
~1.491127E+00
-1.474369E+00
-1.452095E+00

" ~1.425570E+00

-1.395847E+00
-1.363795€+400
-1.330127€E+00
~1.295422E+400
-1.260148E+00
-1.224747€+400
-1.137497E+00
~1.053652E+00
-9.749119€-01
-9.019910E-01
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75.000
80. 000
85. 000
90.000
95. 000
100.000
105.000
110. 000
115.000
120. 000
125.000
130.000
135.000
140. 000
145.000
150.000
155. 000
160. 000
165.000
170.000
175. 000
180. 000
185. 000
190. 000
195. 000
200. 000
210.000
220.000
230.000
240.000
250. 000
260.000
270.000
280. 000
290. 000
300. 000
310. 000
320. 000
330. 000
340. 000
350. 000
360. 000
370. 000
380.000
390.000
400.000
410. 000
420,000
430. 000
440. 000
450. 000
460.000
470. 000
480. 000
490.000
500.000

TIME= 3.857

-149-

2.980643E+04
2.885080E+04
2.796459E+04
2.714152E+04
2.637584E+04
2.566234E+04
2.499631E+04
2.437349€+04
2.379007E+04
2.324264E+04
2.272813E+04
2.224376E404
2.178708E+04
2.135584E+04
2.094805€+04
2.056188E+04
2.019571E+04
1.984805E+04
1.951756E+04
1.920302E+04
1.890332E+04
1.861744E4+04
1.834447E+04
1.808355E+04
1.783392E+04
1.759486E+04
1.714592E+04
1.673210E+04
1.634946E+04
1.599463E+04
1.566470E+04
1.535716E+04
1.506982E+04
1.480077E+04
1.454833E+404
1.431102E+04
1.408754E+04

1.387673E+04

1.367756E+04
1.348910€E+04
1.331052E+04
1.314109€+04
1.298013E+04
1.282704€E+04
1.268126E+04
1.254231E+04
1.240973E+04
1.228310E+04
1.216204E+04
1.204621E+04
1.193530E+04
1.182900E+04
1.172706E+04
1.162921E+04
1.153523€404
1.144492E+04

4.743553E-01
5.149420€-01
5.568436E-01
6.000441E~01
6.445263E-01
6.902721£-01
7.372629E-01
7.854798E-01
8.349036E-01
8.855151£-01
9.372952€E-01
9.902248E-01
1.044285E+00
1.099458€E+400
1.155724E+00
1.213066E+00
1.271466E+00
1.330907E+00
1.391372E+00
1.452843E+00
1.515305E+400
1.578742E+00
1.643137E+00
1.7084T6E+00
1.774744E+00
1.841925€E+00
1.978972E+00
2.119506E+00
2.263420E+00
2.410613E+00
2.560988E+00
2.714451E+00
2.870912E+00
3.030286€E+00
3.192490E+00
3.357445E+00
3.525076E+00
3.695309E+00
3.868073E+00
4.043302€E+00
4.220929E+00
4.400893E+00
4.583132E+00
4. 7T67588E+00
4.954205E+00
5.142927€+00
5.333703E+00
5.526481E+00
5.721211E+00
5.917847E+00
6.116341E+00
6.316649E+00
6.518727E+00
6.722534E+00
6.928028E+00
7.135170E+00

~-8.350378E-01
~7.738829E-01
-7.181889E-01
-6.675414E-01
-6.215013€-01
-5.796360E-01
~5.415353€-01
-5.068200€~01
-4.751445E-01
~4.461969E-01
~4.196981E-01
-3.953985E-01
~3.730762E-01
~3.525339€-01
~3.335962E-01
~3.161074€E-01
~2.999287€E-01
~2.849369E-01
-2.710222€-01
~2.580865E-01
-2.460423E-01
~2.348112€E-01
=2.243231E-01
=2.145149E-01
-2.053300E-01
~1.968014E-01
~-1.812527€-01
~1.673236E~01
-1.549307€E-01
-1.438569€E-01
~1.339220E~-01
-1.249751€~-01
~1.168893€E-01
~1.095573E-01
~-1.028880E-01
-9.680357€E-02
~9.123717€-02
~8.613132E-02
~8.143623€E-02
~7.710868E-02
-7.311098E-02
~6.941016E-02
-6.597725E~02
-6.2786T7E-02
~5.961618BE-02
~5.704552E-02
~5.445704E-02
-5.203493€-02
~4.976506€-02
-4.763479E-02
~4.563275E-02
~4.3T4872E-02

© ~4.197348E~02

~4.0298T0E-02
~3.871684E-02
_0. .

XBL 686-908



DEDX TABLE AS COMPILED

.010  183.000
.015  230.000
.020  265.000
.030  320.000
.040  360.000
.050. 390,000
.070  430.000
.100  440.000
150 © 410,000
.200  380.000

- 4300 330.000
.400  290.000
.500 265.000

.700 220.000

1.000 172.000

1.500  131.000

2.000  109.000

3.000 83.000

4,000 - 69.000

5.000 58.0C0

7.000  45.000

10.000 34,279

CONSTANTS A{M,N)
~7+52650000E-01

DATA STATEMENTS PRINTED

7.37360000E-02
4.05560000E~02

CONSTANTS ALPHA(M,N)
© =8.01550000£+00
3.69160000E-01
-1.43070000E-02
3.47180000E~03

1= 1
1ADJ= 18.7

CONSTANTS ClIsd,K)
8.8811002199177E-02
1.7138690365610E~02

4.9497133143262E~02
1.3540201949725E-02

5.18555862777856-02
1.5541522412133E6-02

~7.0320508947949€-02
-1.4255700147520E-02

3.5990198639B76E~03
1.5967910228485E-03

.—5.8195120035795E-04

8.4062292539332E-04

9.6868735617298E-03
4.1480250614850€~-03

~7.4582561384904E-03

-1.6385237951375€6~-03

5.0138986374204E-04
~2.6562415376993E~04

-1.5773041482136E-03
~6.8461912460993E-04

8.3666352668449E-03
2.6876280235695€E-03

1.5035074028774E-03
1.6737094370482E-04

116.000 95.000 C71.000 48.000 39.000 34.000 28.000
141.000 114.000 1 86.000 58.000 47.000 40.000 33.000
164.000 132.000 99.000 66.000 54.000 47.000 38.000
205.000 164.000 122.000 80.000 65.000 56.000 47.000
235,000 187.000 140.000 93.000 75.000- 64.000 54.000
260.000 208.000 155,000 103.000 83.000 71.000 60.000
285.000 230.000 175.000 120.000 97.000 82.000 69.000
315.000 254.000 193.000 132.000 111.000 94,000 80.000
325.000 264.000 203.000 142.000 123.000 108.000 92.000
320,000 263.000 206.000 149.000 130.000 112,000 -100.000
290.000 243.000 196.000 150.000 133.000- 121.000 109.000
270.000 230.000 189.000 149.000 133.000 122.000 ' 110.000
250.000 2162000 181.000 147.000. 131.000 122.000 111.000
215.000 193,000 166.000 140.000 128.000 120.000 110.000
170.000 156.000 142,000 129.000 120.000 111.000 107.000
131.000 124,000 117.000 111.000 107.000 100.000 95.000
109.000 105.000 101.000 98.000 94.000 90.000 86.000
83.000 81.600 80.000 79.000- 78.000 75.000 73.000
69.000 68,000 67.000 67.000 66.000 64.000 62.000
58.000 58.000 $7.000 57.000 57.000 56.000 55.000
45.000 45.000 45.000 45.000 45.000 44.000 43.000
34,279 7 34.279 34.279, 34.279 34.279 34.279 34.279
2.53980000€E+00 -2.4598000CE-01
-3.12000000E-01 1.15480000€-01
1.86640000£-02 ~9.96610000E-03
1.83710000E+00 4.52330000€-02 -5.98980000E-03
~1.45200000€-02 ~9.58730000E-04 -5.23150000E-04
-3.01420000E~-02 7.1303000C€-03 -3.38020000E-04
2.36030000E-03 ~6.85380000€E~-04 3.94050000€E-05
2 3 4 5 6 7 8
42.0 38.0 60.0 70.0 ‘18.0 84.5 88.5

-1.1241521737316£-02
-4.1837248715580E-03

-7.9827735119005€-03
-2.5753724979494£~03

~1.1763486564892E~02
~4.1226660625563E-03

~1.3449692056030E-02
-4.7899763404858E-03

23.000 19.000
27.000 23.000
32.000 27.000
39.000 32.000
46,000 38.000
51.000  -43.000
59.000 50.000
69.000 60,000
80.000 70. 000
87.000 77.000
96.000 87.000

100.000 91.000
101.000 93,000
101.000 94.000
98.000  90.000
90.000 84.000
81.000 76.000
70.000 67.000
60.000 58,000
54.000 52.500
42,000 42.000
34,279 34,279
9 10
108.0 131.0

1.3976941603226E-02
9.8137632029485€E~04

9.7438614446294E-03
5.6591608351300E-05

1.2115290632189€-02
7.9626549835530E-04

1.3788090175256€~02
1.256T7130675785€~03

-1.3176586838630E-02
-5.7053662633375E-03

—i.63239074488695-02
-6.3370050198126E-03

-1.3188677117176E-02
~5.3555019602713£-03

~1+5092254582325€-02
~-5.8882305836342E-03

XBL 686-909
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B. Method For Calculating The Mean Projected Range

Many experimental ranges are reported as the mean distance
which the ion travels in the initial direction of flight. For heavy
stopping media and low ion velocity, the percentage deviation of this
range from the pathlength range may be significant; For example,
this deviation is 9% for a 1.12 MeV/amu Sr89 fission product in U,
and 11% for a 0.437 MeV/amﬁ Ce144 fission product in U.; We there-
fore prepared a method for calculatiﬁg this projeéted range and the
deviation of this projécted range from the pathlength range so that we
could make more meaningful comparisons between the theory and.'
experlments° |

We have adopted a method proposed by Lindhard et al. 18, 63
and used by Schlott, 64 In order to avoid a complex and time
consuming numerical solution to an'integro-"differential equation,
Lindhard et al. were 'forcéd to assume that ’ai_ther AZ <<.A1 or that
the average projected range I-lp (.g/cm_z) is proportional to the ion
energy E. We chose to devel'op this method in a2 more general manner
and solve the integro- d1fferent1a1 equation directly by taking advantage
of the excellent computing facilities available to us.

Let P(E, Rp)dRp be fhe ‘probability that the projected range Qf
an ion of kinetic energy E will be within dRp of Rp. (The simplar
terminology (Rp, dRp) will hereafter be equivalent to "within dR'p of
R '".) We normalize this probability function such that’

- _ , .

\P(E,R )dR_=1,0., We now have' R (E) = ("R P(E, R )JdR and

) p P P I s - T
0 )

define P(E, R ) such that R P(E, R J=0 at R =0 and at R =w,
' P P P P p

We assume that elastic coulomb collisions with nuclei and
inelastic electronic collisions can be considered in this development
to be uncorrelated. Then the probability that the ion will have a

coulomb nuclear collision in 6R and a range (R , dR ) projected onto
' p p
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the direction of flight before the collision is

nmax

NadeR gcos¢ (E T) - (E T) P(R -6R_, E-T)dT , (B 1)
P Jg . P

Where N is the number of nuclel per gra.rn of the stopping medium,

cos cp (E, T) is the cosine of the scattering angle in the laboratory
system of the ion with a kinetic energy T lost to the rec0111ng nucleus,
o (E T) is the cross. section for an ion colhsmn w1th energy transfer
T, and Tn max is the max1mum' energy transferred to a nucleus deter-
mined by the condition thé,t the nuclear potentials of the ion and nucleus
must not overlap, Note that we may use 8R instead of 6R in expres-
sion (B 1) because the probablhty of the collision is proportional to the
distance traveled before the colhslone Thus_éR and 6Rp are equiv-
alent in this case, The expressmn for electronlc colllslons which

corresponds to expression (B 1) is

emax

N&6R d - | |
p Rp S‘Ocos¢ (E, T) o (E T) P(Rp 6Rp E- T)dT ., | (B 2)

The probablhty that an 1on wh1ch has a pro_]ected range (Rp, dRp) will

not suffer a colhslon in 6R is
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emax nmax .
. | {1-N6RP[ ia JE, T)dT+ godn(E, T)dT]} P(Rp—éRp, E)dRp . (B 3)

Equating the sum of expressions (B1l), (B2), and (B 3) to P(E, Rp)dRp

and dividing by dR_ we have
P nmax

P . - _' =
(R, E)-P(R_-6R , E) NaRP{ ‘goon(E, T)

X [cos¢n(E, T) P(Rp-éRp, E-T)-P(Rp—éRp, E)ldaT

emax
gw (E, T) cosé_ (E T)P(R -5R , E-T)- P(R -6R E)]dT} .
o p’ p’

. Dividing by 6Rp and taking the limit as 6Rp eipproaches zero we have

nmax
== =N ga (E, T) cose_(E, T)P(R E-T)- P(R E)]dT

L ' emax
c | +N§0' (E, T)[cos¢ (E T)P(R E-T)- P(R E)] 4T
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Multiplying both sides of this equatlon by R dRp and 1ntegrat1ng over

Rp from 0 to & we get

» Tnmax '
-1.0=N \¢ (E T)[R (E- T) cosc|> (E, T)-R (E)]
o™

(B 4)

emax .
+N §U (E, T)[ R (E T) cos¢ (E, ’I‘) R (E)]dT

where the left hand side has been 1ntegrated by parts and we have
assumed the integrands of the T 1ntegrals on the right hand 51de to be
sufficiently well behaVed to allow the R 1ntegrat10ns to be performed
first, We shall hereafter replace Rp b}lr) Rp and deal only with average
ranges. Since the mass of the ion is much greater than the mass of
the electron,' Te mr, << E We may then expand R (E T) from the
second term on the rlght in a power serles about T =0, Truncat1ng

thlS series after two terms, thls Second term of Eq, (B 4) becomes

o pemax .. o N
N o (5 m) {R (2 coss (5, -1} ar

0
: dR Terna.x o ‘
-N-—E YTO’ (E, T) cosc|> (E T)dT
dE ),

Again, 'since the mass of_th’e.i_on ie' so much greater than .'tha_t‘ of an
electron, cos ¢'e(‘E, T) &[1.'0.,' Also,
N "Tmfe(E,'T)'dT
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is the electronic stopping power. Making use of these facts and

substituting into Eq. (B 4) we have

nmax '
(E)-—-—— 1+N g\o' (E, )[R (E T) cos¢ (E, T)-R (E)]

(B 5)

emax

-NR (E) gcr (E, T)[l—cos¢ (E, T)] 4

where Se(E) is the electronic stopping power of the ion with kinetic
energy E. We estimated [1-cos cl)e(E, T)] by temporarily assuming
the collisions with electrons to be elastic. Since cos <1>e(E, T) is very

nearly 1.0, we can make a two term expansion which yields

T-

9.51" )2 B T
2
0.51(y"-1) 1,02(y2-1)

[ l-cos¢e(E, T)] ~<931A1

where y = E/(931A1) +1, Eand T are in units of MeV. This equation
cén be found from Egs. (B9), (B10), and (B11l) below by assuming
A, >> A,. Substituting this into the third term of Eq. (B5) and
performing the integration gives one term involving the electronic
stopping power and another term invdlving the variance in energy
‘transfer per unit pathlength (i.,’e., energy straggling). The energy
straggling is estimated from an expressio‘n given by Evans. We.
have estimated the right hand side of Eq. (B 5) for a wide variety

of ions, stopping media, and energies. As one would expect the third
term is always several orders of magnitude less than the sum of the

first two. Therefore we neglect the third term. We now change

variables making the substitutions E = A1 e, T =‘AZ T, o‘n(E, T) 4T =



-156-

o (8,'T)dT, and N = 6,023 ><102'3/AZe Equation (B 5) then becomes ‘.

4R, “Alff& 6.023x 10" 23
de S (e) A
: (B 6)
Tmax(a) E :.' AZ '
S\U (e, T)[R (s) R (s-——T)COS¢ (s.T)] dre .
Jon A
The eOIresponding iequatio‘n‘ -forx the pathlength Vrange would be
S e
.A 23 max oo A, L c
CdR_ 6.023%10% 2 - :
3§ (s) 1 TR, gcr (s, T)[R(a) R(a—A -r)] d'r o (B 7)‘

Yot S

If we defme the dlfference between the pathlength and pro_]ecter ranges

as D= R- Rp, from Eqs, (B 6) and (B7): we have

()
dD 6. 023x1023 f_\g;m?x y
a 5. B dm N
| . (B 8)
A, A, - | |
X R (8- 2=7)[1-cosé_(g,7)]+D(e-127) cosé. (5, 7)-Dle) | dr .

Equatlons (B 6), (B7), and (B 8) are ready for numerical

solution as soon as expressmns for cos cp( g T), O ( g, T)dT, and T ax(g) .

are .given. - The cosine of the scattering angle for the ion in the
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laboratory system, assuming an elastic collision, can be found using

expressions presented in Ref, (66), The result is

T

2+

2 2

: 2
931y, (v, -1) 931(Y2C+1)

cosdle, T)= {1+

where

A
yh—
Y, = "2
lc
2
Al A 1/2
142 — y+{ —
2 2
L2
Y X
Yo~ Z3172 »2nd
A A
1+2-——2-y+( 2y
A0\
4 -
€ __+1.

(B 9)

(B 10)

(B 11)

(B 12)
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The elastic differential scattering cross section O'n (e, T)dT is‘
derived from the Thomas-Fermi potential. This cross section takes
into consideration the fact that for soft collisions the elecfron clouds of
the ion and the atom ;)‘f.the stopping meaium do not périetrate each other
sufficiently for the two nuclei to experience a 1/r coulomb Potential, |
For hard collisions, this cross section smoothly joins the Rutherfor.d
cross sectibn when the two nuclei become sufficiently closev°

Lindhard et al. 8 give the cross section in the form

2at o 1/2

do=ra 3/2 (t ) o . (B 13)

2t - . .

e sy (12 ] '
where a is glven in Eq.. (13), 17 2 ¢ sin 3 € is. found in Eq° (14), 6 is .

2. -
the scatterlng angle in the center of-mass system, and f(t L/ ) is

graphically presented in F1g 1 of Ref (18) and tabulated in Table IX.
below. 'From Eq. (14) and Ref. (66) we find

A_A

/T7 Tz

t1/2_ 3. 253><1o ' 172 (B 14)
Z 3731 2 &
2,2,(2) /3 22/3) J2 K ¥R, 2X931(y2 -1) L

~where Y, is g_i've.h'b'yrE’q.. (B11), Eq (B 13) becomes

-
o 1/2
L Z.Z A +A ( )
: -20 . ‘172 2¢c 1/2 dr .
o (g, 7)dT=4.573X10 ( )=, (BI5)
. 2 2 PSS
n _ (ZI/3+22/3)1/2A1A2 e . 3/2 ‘
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1/2
where we obtain values for f(t / ) by interpolating between the entries

2
in Table IX. Whenever tI/ > 10 we use the Rutherford cross section
in the form
o (e T)dT_z.119><10'21 212, 0.5 dr (B 16)
“ - 1/2 2 2/3 1 1 372
n Aze / (Zl/3+22/3) /2 ¢ /2 . /2

In order to find Tmax(e ), we assume a l/r potential and require

that the nuclear potentials of the ion and nucleus of the scattering center

‘do not overlap.  We find

2
»200736X10_26 2,2,
T (e)= :
max I A
2
(B 17)
. oA +a. z z N\
2 . -25f ‘
x| % +5.184x107° %3 L2 _1 2
min _ A1 A2 £

where the square of the minimum impact parameter b ; is given by
: : min -

+ -1 .
5 1.44X10 32122
b . ={R+ - (B 18)
min~ (B ¥7T) 1931Aﬁvh;1HR+r) . -
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Table IX. The function f(t L/z ) used with Eq. (B l3f to give the elastic
nuclear coulomb differential scatterlng cross section based
upon a Thomas- Ferm1 potential,

1/2 o 1/2

t | | it "%y
0.002 - . 0.16l
0.005 o 0.225
0.1 - 0.282°
o,oz_' 0.333
0.05 0.396
0.1 o.431
“_ogi3 o 0.435
002 '. ’ o oar
'0.3':’_ | . 0.404
0.5 0.361
Lo o
2. “_ °o¢184,
3. | ) 0.137
5. : : Qu0914

0. 0.05001
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Here R and r are the radii of the nuclear potentials of the nucleus of
the stopping medium and that of the ion respectively. The former is

given by

R = 1°2><_10-13A21/3

and the latter by

11

13 1/3‘+ 1.973 X 10"
1/2

r=1.2X10 "~ A 5

1

where the second term is the de Broglie wavele'ngth‘of the ion. When
the factor in the brackefs of Eq. (B18) is negative, then the ion is not
energétic enough for the nuclear fields to ov.erlap even for a head-on
collision. In this case Tn.aax( £) is Idleterr'nined by conservation of
momentum and enexrgy and is given by

Tl )= 2X93 (v, - 1) : (B 19)

We are hoxvieédy to solve Eqs. (B6), (B7), and (B 8)° We use
the computer subroutine ZAM, which is in the computer library at the
Laﬁrrel1ce Radiation Laboratory in Be‘rkel‘ey., It solves simultaneous,
first order, differential equations using the fourt.h—order. Adams
Moulton predictor-corrector_nnefhod Wﬁth a starting procedure based
on Zonneveld's formulabs,. see Refs, (6_7) and (68)., Here, of course,
we have only single differentia'l equations with rather complex deriv-
atives, The method requires an irﬁtial value;.'it then in effect integrates .
the deriva:tive in such small increments of the independent variable ¢
that the value of the derivative changes very little between increments.
The solution, Rq(&‘.) in the case of Ea. (B6), is thus found fof increasing

2
values of €.
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Fortunately, since the solution is found for increasing values s
of g, the ‘i_ntégrations indicated in Eqgs. (B6), (B7), and (B 8) are over
those values of the solution which have already been found. For

purposes of these integrations, the solution is extrapolated linearly to

zero from the'initial value, assumed linear between the incremental .

values of the solution found by ZAM, and 1ineér1y extrépolated from
the last two values found to higher values when necessary;
Equation (B 6) and (B 7) each have the property that, if the

initial value is in error, the solution very q.ﬁickly converges upon the .
true solution as € incx_jeéses, That is to say, the vg.lue of -Rp or R
which we obtain for €= 0.01 MeV/amu is quite insensitive to the initial
value we choose for &= 0.0001.. The solution D( ¢) of Eq. (B8) al_so.
coh&efges for increéasing " g, but we find it advantageous to take as the
initial value of D the difference between the 'so.lu'.ti_ons of Eqs. (B#6) and
(B7) at a fairly.large v'e_loc‘ity,v say ¢ = 0,03, |

- The electronic stopping power required in order to calculate the
derivatives in Eqs. (B6), (B7), and (B8) is found from Eq. (31) when-
ever the ions héve Z1 = 10 ;nd afe iﬁ the lvow-specific—energy fégion,
Otherwise it is assurned to be the total st'oppingb.power calculated by the
methods of section II. | o | |

The range values v‘r_equixv'e-d‘in the integrand of Eq (B8) é.re also

calculated by thé methods of section II. -
_ The computer programs v'describbed here were deéignatéd to find
the effect of multiple scattering oh_ the '-ion range only for ‘specivﬁc '
" energies up to about 2 to 4 Mey'/ar;’iu. Fc_)r,,vel,écities’ grééter than this,

‘vcomputer' time becomes prohibitive (greater than 5 to 10 mihutes on the

CDC 6600), and other methods of solving the problems are probably ; -

more appropi‘iate.
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C. Stopping Power From Bloch's Theory Using The Computer

As discussed in section IIIB 3, we calculated stopping power
using Bloch's theory in the medium-high-specific-energy region when-
ever Z1 > Z2 in order to test the use of the Born approximation by
Bethe's theory where it is not rigorously valid. We discontinued the -
use of Bloch's theory when it became apparent that the major uncer-
tainty lay in the choice of the function r(X) and not in the use of the
Born approximation. In this appendix we describe the approximations
made in this use of Bloch's theory.

The stopping power from Bloch's theory is calculated by
evaluating Eqs. (8) and (11). The term ([ 1] of Eq. (11) is the logarith-
mic derivative of the gamma function evaluated at 1,0, Its value is
0.4228, The term Re Y[1 + i(rZI/137{3)] is the real part of the log-
arithmic derivative of the gamma functioh evaluated-at'l + i (er/l37B).
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It is given by the series (see Jahnke and Emde 7).

1 © m+l
Re¢(l+1137ﬁ) Z[ _ er>2:| . (C 1)
m= .

1 (m+l)2+<137‘3

For m sufficiently large, the series convergeé like 1/{m(m + 1)]. We
take the sum of the first 30 er/137[3 terms or at least 20 terms,
whichever is greater, as. the value of the series,

As they are, Eqs (8) and (11) cannot be used unless inequality

(1), 2z, << 137B, 1is satisfied. Since this is a severe limitation in the

2
medium-high-specific-energy region for heavy stopping media, we
incorporated shell corrections into Eq. (8) by means of the polynomial

13, 14

36
and Bichsel. This polynomial is
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’ | o m2 -4 | -6,2

= ° ] 2 g : . = 1 1 B

cadj(x, n)=(0. 4223779 "+0.0304043n ™ "-0.0003810607" ) 071 4
(C2)

s 3

+(3.858019n—‘2-0v., 1667989n'4+0,00157955n’§)10'912d3'

2.1/2 o - . o
wheren :B/(1 -B ) / and Iadj is the average excitation potential -

adJusted as discussed following Eq. (23) of the text. This polynomial
f1ts the shell corrections of Walske ‘and Blchsel only for specific
energies greater than 8 MeV/amu. '

| The expressmn Whlch_we use to ‘calcuvla.te~ stopping power from

Bloch's theory is then

dE [ MeV : . o R
dR( : )) 0. 3072 ) B ' (C3) .

g/cm .

where -

» Zr'_neCZB . ' er
B=ZZ[ In T +0. 4228 Re¢(1+113m)
adj o
(C 4)

C.
In(1-p ) B aLdJ]
2

vwh'e'r‘e. Rey [L;+i(rz /1'37(3‘)] is'?-.gi«;en By E‘q‘.' (c 1), C dji is given by
Eq;' (C 2), and r is found from exper1menta1 Ar ion range data in Al.
as descrlbed in sectlon II B 3 Equatlons (C 3) and (C 4) can be used _
only for 8 ,>_8_MeV/a.mu since Eq. (C 2} is vahd _only for.the_se ‘ ' ‘ B

velocities,
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