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We consider PP ~PP scattering (p = 0- meson), and using Finite-

1 Energy Sum Rules (FESR) we compute the couplings PPV and PPT of the 

1 and 2+ nonets. Taking degenerate masses for each ~,we show that 

the existence of the observed resonances is consistent with our equations, 

and we prove that the observed 0, 1-, and 2+ multiplets must have SU(3) 

symmetric couplings. In addition we show that self-consistency requires a 

definite ratio pf Singlet/octet coupling for the 2+ nonet. Next, using 

the observed masses we compute the broken couplings. In principle, we 

have here a bootstrap theory of SU(3) and its breaking. We obtain couplings 

reasonably in agreement with experiment. 

The basic tools of the bootstrap are the finite-energy sum rules 

1 
"2 j +N 

dv 

-N 

n = §(t)~(t)+n+l 
v 1m A(v,t) aCt} + n + 1 (1) 

We work at fixed t, with definite isospin in the t channel. We 

assume the high-energy term on the right-hand side (RRS) of (1) is given by 

one Regge pole in the t channel. We therefore neglect secondary Regge 

poles (such as pI), cuts, and the background integral in the J plane. 

We approximate the low-energy integral on the left~hand side (LHS) of (1) 

by the dominant res9nances in the sand u channels, neglecting nonreso-

nant background. The validity of our approximations requires large N 
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on the RHS and small N on the LHS? In order to check the dependence of 

our results on N, we consider the three choices: (I) N between (~ -) 
2 

and 2 (m
2
+) ; (II) N N halfway between and 

2 
(~-) . We evaluate the FESR at t - (m )2 because that is the - resonance 

only point at which we know ~(t). We use the lowest moment sum rules 

only, So for 'odd amplitudes (1- resonances on the RHS), Sl for even 

amplitudes (2+ resonances on the RHsy~.. This gives one equation for each 

resonance, enabling us to compute coupling ratios. We do not attempt to 

compute masses here. We us~thenarrow resonance approximation on the LHS 

and therefore obtain algebraic equations in the ~'s. For each amplitude. 

we have an independent system of nlinear and homogeneous equations ,for 

the n resonances contributing. For example, the contributors in 

Kil: -7 Kn are (K*, K** ff') p, , • Each system has a solution if and only 

if the determinant of the coefficierits of the unknown ~'s is zero. This 

fixes the exact value of the limii; of integration, sN. .A strong check 

on the self-consistency of our dynamical system is that the calculated sN 

coincide approximately with the a priori choice for each of (I), (II), 

(In) described above. 

In the mass degenerate case there is no distinction bet~een f 

and f i
, and between ¢ and w. The mixing angles are therefore indeter-

rninate. Purely for convenience we also combine these particles in the 

numerical analysis. 

For some quantum numbers, thet· channel does not contain a known 

resonance and (1) becomes a superconvergence relation. We use these rela-

tions in our algebraic considerations for the mass degenerate case. We 
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do not use them numerically because their sensitivity to N is much 

2 
greater than that of the nonsuperconvergent sum rules. 

To exhibit the algebraic properties of (1) we make the particle 

labels explicit and write, assuming each multiplet is degenerate, 

(J) + (_l)n+l (J) (J)] = 
gcds gads gcbs 

s 

(n+l) (n+l) 
gacs 9;ds I n 

Again, (2) is evaluated at fixed t, and the s channel process is 

a + b -:) C + d. 

(2) 

In (2) the are effective dimensionless coupling constants. 3 

The first two subscripts refer to 

to a sum over intermediate spin J 

o states, the third subscript refers 

states. J and K(J) are positive 
ri n 

kinematic factors depending on the masses (mO'~' m2) and on the limits 

of integration, N. f(J) is the fraction of the full contribution of the 

intermediate spin J states included on the LHS; f(J) is related to the 

choice of N. If we choose f(2) = 0 and f(l) = 1, N should be 

approximately halfway between the 1- and 2+ states; if f(2) = 1/2, 

then f(l) = 1, and N should be approximately at If the term 

on the RHS of (2) is a t channel Regge pole, the terms on the left arise 

from resonances in sand u respectively. No crossing matrices appear3 

in (3); however, the signs of the kinematic factors are shown explicitly. 

(These signs arise from the signs of n 
v and of Disc (x - m2 ± iE)-l 

We shall first evaluate (2), including only 1- states on the LHS in the 

lower moment equations as in choice (I) above. In addition we evaluate 

the higher and lower moment equations including both 1 and 2+ on the 

LHS, as in choices (II), (III) above, but in our group theoretical 
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discussion we leave and free. The lower moment equations for 

( ) . t . th . t t t' F (1 ) case I give, 1n roduc1ng e conven1en no a 10n abc = gabc 

0, 

. where 11.00 

o. (4 ) 

The F' s are real, and taking b = c in (4) , we get 11.00 = 1, 

provided at least one F is nonzero. This gives3 

F F + F d F + 
abs cds a s bcs 

F cas Fbds = 0 . (5 ) 

The three conditions: (A) equality of the 0 and 1 multipli~ 

cities; (B) total anti symmetry of F . 
abc' (C) orthonormality condition 

F F abs abs ' 
5 combined with (5), are the n.ecessary and sufficient 
ss'~ 

conditions for the F's to be the structure constants of a compact, 

semisimple; Lie algebra. 4 The condition (C) has the physical meaning that 

all V's have the same total reduced width, an!ithat the V I s couple to 

orthogonal combinations of PP states. 5 

Alternatively, we can include the 1 and a fraction f(2) of 

the 2+ contributions on the LHS of (2). Introducing D b == g(2) we 
a c abc' 

have 

F F + F F + A. F F . + E (D D - D D ) 0 abs cds ads bcs 0 cas bds 0 abs cds· ads cbs = , 

(6) 
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Here "\ _ J /K (1). . 
''-0-00 ' 

Parity conservation requires Dabc = +Dbac ' Fabc = -Fbac • Using 

(5), it is easy to show (6) and (7) reduce to the conditions Al 2, 

0, and 

(8) 

. ~ d Y AssumJ.ng I an conservation, and inserting the known o , 

1 , 2+ particles, it is clear from (5) and (8) that our bootstrap allows 

an SU(3) symmetric solution for the couplings. Writing (5) and (8) out 

explicitly one verifies that this solution is unique. There is no consis-

tent solution to our equations if one tries to use a pure SU(3) octet of 

+ 2 mesons, along with the known 0 and 1 particles. The singlet/ 

octet coupling ratio for the 2+ mesons is fixed by (5) and (8), and is 

equal to the one choS'en by Glashow and Socolow. 6, 7 

Equations similar in algebraic form to (3), (6), (7) have been 

d~rived by many authors8 by drastically simplifying the assumed dynamics, 

fo'r example the dynamics of the N/D equations. However, these methods 

have not yet yielded reliable quantitative, dynamical results. In contrast, 

we believe our approach yields reliable numerical predictions for such 

quantities as the 2+/1- coupling ratios. 9 

Because of the appearance of the D's, (5) and (8) lead to 

interesting restriction on possible solutions involving multiplets trans-

f . l' k t t· fL' . al b 10 ormJ.ng J. e represen a J.ons 0 J.e ge ras. . For example, one cannot 

even define D b for the symmetric coupling of a pair of adjoint repre­a c 

sentations to a third adjoint representation, for a compact semisimple 
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. 1 b th th SU(n).ll Lle a ge ra 0 er an Furthermore, we conjecture that a 

consistent solution to our equations does not exist if the 

12 
transform irreducibly under an arbitrary Lie algebra. 

mesons 

In the mass degenerate case, the superconvergent higher moment 

sum rule can only be satisfied for a particular value of f(2). In the_ 

lower moment case the 1 and 2+ contributions cancel among themselves, 

and using the SU(3) coupling ratios the equation is satisfied identically, 

independent of In the higher moment equatio'n, however, 1 cancels 

against a definite fraction, of The remaining fraction of 

the 2+ contribution presumably cancels against a piece of the 3 

contribution. 

We can also make some interesting statements regarding exchange 

degeneracy. 13 By exchange degeneracy we mean for exaillple, 

p A Ws fl+fS y- : y_ 2 
== y..;.. r:- , where the r's are the reduced widths. 

KK KK KK KK 

Clearly a 1 octet .and a 2+ octet cannot be exchange degenerate in this 

sense, since they have F and D type coupling, respectively. However, 

the addition of a 2+ singlet of the proper strength enables exchange 

d t ( ) * K** egeneracy 0 be realized for p -A2, Ws - fl + fS ,K - ,in 

*. ** 
Krr~ Krr, but it is not realized for K - K in KfJ ~ KfJ. 

K* K** K* . K** 
( r KfJ • r KT) . == 9 r Krr : r Krr ) 

Physically, we expect, and we do obtain from our. bootstrap, 

exchange degeneracy between resonances of even and odd J, in the KK 

system, because there are only direct forces and no exchange forces. By 

contra$t the K* and ** K need not be exchange degenerate since the 

Krr ~ Krr (KfJ ~ KfJ) channel contains not only direct forces:' pj ff' (ff'), 

but also exchange forces: * ** ( *. **) 13 K ,K K, K • Unless the exchange forces 
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cancel there is no exchange degeneracy. The K* and K** forces are 

always opposite in sign because of the sign of p£(z). If the fraction 

f(2) is chosen equal to the one which produces superconvergence in the 

appropriate channels, the exchange forces in the higher moment equation 

cancel in the Krr, but not in the KT),channel. 

In Table 1, we show our numerical results for the three independent 

systems: (rrrr~ rrrr ); (Krr ~ Krr; KK ~ rrrr ); (KK ~ KK; KK ~ KK). While the 

mass degenerate, symmetric .case requires f(2).= 1/4, the, numerical 

i'lOrk has been performed with the choices 0, 1/2,1, in order to 

test the sensitivity of the results with respect to the choice of the 

limit of integration. Thecalculatedself-cons:lstent limits of integration, 

sN' for the cases (I), (II)" (III), (see above) can be compared with the 

a priori values estimated from the experimental masses. For example, for 

The tabulated values differ from these by 10-15%. This is a strong check 

on the quantitative self-consistency of our equations. 

The calculated self-consistent ~fS are seen to agree reasonably 

with experiment. The theoretical uncertainty in the ~'s arising from 

different choices of N is shown explicitly, in columns E(I) - E(III). 

The average deviation of the ~'s from 1 shows the deviation of the 

couplings from their symmetric values, as induced by the mass splittings. 

In principle, factorization could lead to an internal contradiction 

between various channels; this does not happen in our system. 14 In 

Table I we have assumed all a' (t) = 1.15 We have combined (w, ¢) and 

(f, f') into two effective particles for numerical convenience. 

We are grateful to Professor Korkut Bardakci for several helpful 

suggestions, and also to Professors Robert Hermann and Christian Fronsdal 

for several helpful discussions regarding the properties of Lie algebras. 
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TABLE CAPTIONS· 

(A) Independent groups of reactions corresponding to one amplitude. 

(B) Resonances occurring in (A) as intermediate states. 

(C) (Isoscalar factor)2 for :su(3L assuming magic ~ixing angles 
2 tan.9:::: 1/2, 

arid the 2+ singlet/octet <;!oupling ratio G'?/F2 :::: 8. (2+ isoscalars 

are multiplied by 5/9. ) 

(D) Reduced experimental widths, dividing by the corresponding entries in 

colUmn (C). 

(E) Our predicted theoretical reduced widths divided by the corresponding 

entries in column (C). Shown are results for cases (I), (II); (III), 

with the corresponding self-consistent limits of integration.16 

(F) Experimental partial widths taken from Reference 17. Inthe nn ~KK 

case: r(i,j):::: Cr· r'::"")¥:isthe effective width. exp . nn KK . 
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C DEI 
I 

F I 
re~(:i,j) 
in Bev 

1so- 8(e~ ~theorY/isoscalarsl 
Channel I Resonance i Scalars I 1soscalars I II III ~ 

P . I 2/3 o. 73 ± O.lS 1- 0.91 f 1. 01+ f'-0-.-1-2-1f--i! 
f 1 ~ l (± 0.111) 1 , i l 0.137 1 

1(Jf ~ ror ~ fl+ f s . >- L!.. !l i ~ 
. ~. J I 0 not observed I J 1 I ! <0.010 ! 

limit of integration, sN(Bev)2 i 1..05 j 1.57 f 1.S7 I ~ 
I I I! ~ 

~----~-P--------~-1-/-3--~----------+i--l-.0-1-~:~l-0-.9-1~f--0-.s-5-+f---------l 

i ' I ~ ! 
K* 1/1~ J:.. (± 0.02) I l ! 1:. i' ].._ ! 0.01+9 j 

Krr ~ Kn: !-----+----,'-----~'------+----!----;~---.: 
1/ 16 0.83 ± O.32l} } i t 0.021 j 

I - ~ 1. 30 i 1.13 I 
o notobservedt I I ! <0.023 

II! ! 
K-I('* 1/1+ 0.S5 ± 0.05 I - I 0.92 o. '(6 1 0.045 

lrl( -) KK 

11imi t of integration, sN(Bev)~ 1.1711. 75\2.0S I 
I l I j 

: } Ws :~: ~ .}:.061 :.9
4 

I :.

92
1 

KK ~KK I ¢ I 1/3 0.S5 ± 0.20 

KK ~ KK ! A2 1/6 0·51+ ± 0.11+! - 1.5911.37 I 
0.0029 I 

f } 1/6 0.69 ± 0.21+ 1 I 
f.

' . f,l+'fS - 11.36 1.22 

1/3 1.20 ± o.h1+ LJ:--_-+-_0_.0_5_3-j 

limit of integration, sr/Bev)2 . I 1.2712.00 1 2 .1iO J 
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