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We consider PP — PP scattering (P = 0" meson), and using Finite-

. Energy Sum Rules (FESR)l we compute the coﬁplings PPV and PPT of the

17 and 2+ nonets. Taking degenerdte masses for each JP, ﬁe show that
the existence of the observed resonances is cénsistent with our equations,
aéd we prove that the observed 0 , 1, and A2+ multiplets must have SU(3)
symmetric couplings. In addition we show that self-consistency requires a
definite ratio of singlet/bctet coupling‘for the 2+ nonet. Next, using'
the observed masses we compute the broken couplings. In principle; we

have here a bootstrap theory.of SU(}) and its breaking. We obtain couplings
reasonably in agreement with experiment.

The basic tools of the bootstrap are the finite-energy sum rules

.(FESR)E

N
% dv V" Im A(v,t) =
-

(t)+n+l |
Bt ‘ (1)

a(t) +n+1 °

We work at fixed ¢, with definife isospin in the t channel. We
aésume the high-energy term on the right-hand side (RHS) of (1) is given by
one Regge bolé in the t channel. We thefefore neglect secondary Regge
poles (such as p'), cuts, and the backgrdund integral in the J plane.

We approximate the low-energy integral on the left-hand side (LHS) of (1)
by the dominant resonances in the s andb u channels, neglecting nonreso-

nant background. The validity of our approximations requires large N



(mB-)g. We evaluate the FESR at t = (m
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on the RHS and'small N on the LHS? In order to check the dependence of

our results on N, we consider the three choices: (I) N between (ml-)2

and (m2+)2; (I1) W~ at 1@ﬁ

2+)2; (IIT) N halfway between (m2+)2 -and

- )2 because that is the
re SQnanC_e

~only point at which we know 8(t). We use the lowest moment sum rules

only, SO for ‘'odd amplitudes (l-_resonanées on the RHS), Sl for even

ampiitudes (é+ resonances on thé Rﬁ@fi,'This gives one equation for each
'resbnanCe, enébiing us to comﬁﬁfe‘00u§ling:rati§s. We do not attempt to
compute masses heré. We usg'th;}narroﬁ:résdnance approximation on the LHS
and thereforé pbtaih élgebfaic'ééﬁétioﬁs iﬁ the_:B's; For each amplitude

we have ah‘indépehdent syétem of n 'lihear and homogéneous'equations,for

the n resonances contributing.  For example, the contributors in

*

Kx —Kr are (K*, p, K *,vff').' Each system has a solution if and only

if the determinant of the coefficierits of the unknown p's is zero. This
N A strong check

on the self-consistency of our. dynamical systemfis'that the calculated s

fixes the exact value of the limit of integration, s

N
coincide approximately with'the a'priori choice for eadh of (1), (II),
(III) described ébove. o

In the mass degenerate.case'thére is no diétinétion between f
and f', and betwéen ¢ and Q.- The mixing anéies are theréfd£é indeter-
minate. hPurely for.conveniencé we élso cémbine theée particies in the
numerical analysis.

For some quantum numbers,_thé*ft» channél‘does not contain a known
resonance'and (1) becomes a superconvérgence relation. We use these reld—

tions in our algebraic considerations for the mass degenerate case. We
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do not use them numerically because their sensitivity to N is much
greater than that of the nonsuperconvergent sum rules.

To exhibit the algebraic properties of (1) we make the particle
labels explicit and write, assuming each multiplet is degenerate,

2 .
Y el o2 s ot o )] - Lol o g,

abs cds
s J=1
(2)

Again, (2) is evaluated at fixed t, and the s channel process is
a+b-oc + d.

5

In (2) the gégz are effective dimensionless coupling constants.

The first two subscripts refer to O states, the third subscript refers

to a sum over intermediate spin J states. Jn and KéJ) are positive

kinematic factors depending on the masses - (mo, m, , m2) and on the limits

of integration, N. f(J) is the fraction of the full contribution of the

intermediate spin J states included on the LHS; f(J)' is related to the

choice of N. If we choose f(g) =0 and f(l)

=1, N should be
approximately.halfway between the 1 = and 2+ states; if f(g) = 1/2,
then f(l) =1, andv N should be approximately at m§+,--}. If the term
on the RHS of (2) is a t channel Regge pole; the terms on‘the left arise
from resonances in s and u respectively. No crossing matrices appéar3
in (3); however, the signs of the kinematic factors are shown explicitly.
(These signs arise from the signs of V" and of Disq(x - + ie)’l

We shall first evaluate (2),.including only 1~ states on the LHS in the
lower moment equations as in choice (I) above. In addition we evaluate

the higher and lower moment equations including both 1~ -and 2+ on the

LHS, as in choices (II), (III) above, but in our group theoretical
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discussion we leave f(J) and s_ . free. The lower moment equations for

N :
: . : s s (1)
cgse (I) give, introducing the convenient notation. Fabc = &b
Fabchds +.Fads Fbcé * Moo Fcas des = 0 ' (3)

4wherel Moo = Jo/f(l) Kélj. Multip;ying (3) 5y 6éd,.webhave
(roo = 1) Faé;iFag"_= 0. I _"fﬁ B .(u)
::The F's are rea},>éﬁd takiqg. b = c in»(h); we gét XOO'z l,v>
'provided at least one F 1s nongzero. This gives5 |
F. F . +F_ .  F +F _F = 0. ? "' ()

abs “cds ads “bes cas “bds

The three conditions: (A) equality of the 0  and 1~ multipli-
cities; (B) total antisymmetry of Fabc; (C) brthbnormality condition
Fabs F bs' 5

.ss’? combined with (5),'are the necessary and sufficient

conditions for the F's to be the structure constants of.a.cbmpact,v
b The condition (C) has the thsical meaning that‘
all V's have the same total reduced width, and that the"vfs couple to _

orthogonal combinations of PP states.”

Alternatively, we can include the 1~ and a fraction (2)- of

ﬁhe. 2f ‘contribuﬁions on:the'LHS of (2). .Infrqducing: Dabc ;.géig,'ye
have | | |
.Fabs,chs + Fadé F’bcs. * XO Fcés'deé * gO(Dab's Déds B Dads chs
(6)
DabsDcds * DoasPebs. ™ MPeaslhas +'§1(Fabchdé ﬁ_Fadstcs) = 0.
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Hére N = JO/K§(1);~ N = Jl/f(g) Kig); £ = T 0

(1) /0(2) (2)
£, =K £ AN S
Parity conservation requires D = +D s, F = _Fbac‘ Using
(5), it is easy to show (6) and (7) reduce to the conditions Moo= 2,

Ay - 1 4

0 - go = 0, and

1

D D -D D + ¢

ads “cbs dcs “abs 0. (8)

1 Fcas des

Assuming f’ and Y iconservation, and inserting the known O,
1, o particles, it is clear from (5) and (8) that our bootstrap allows
an SU(3) symmetric solution for the couplings. Writing (5) and (8) out
explicitly one verifies that this solution is unique. There is no consis-
tent solution té our equations if one tries to use a pure SU(3) octet of
2+ mesons, along with the known 0 and 1 particles. The singlet/
octet coupling ratio for the 2 mesons is fixed by (5) and (8), and is
equal to the one chosen by Glashow and Socolow.6’7

Eduations similar in algebraic form to (3), (6), (7) have been

derived by many authors8 by drastically simplifying the assumed dynamics,
for example‘the dynamics of the N/D equations.‘ However, these methodsL
have not yet yielded_reliable qﬁantitative, dynamical résults. In contrast,
we believe our approach yields reliable numerical predictions for such
quantities as the 2+/l- coupiing'ratios,9
Because of the appearance of the D's, (5) and (8) lead to

interesting restriction on possible solutions involving multiplets trans-

| forming like representations of Lie'algebras.lq For example, one cannot

even define Dabc for the symmetric coupling of a pair of adjoint repre-

sentations to a third adjoint representation, for a compact semisimple
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Lie algebra other than SU(n).ll Furthermore, we conjeéture that a
consistent solution to our equations does not exist if the 2% mesons
transformvirreducibly under an arbitrary Lie algebré..l2
S

In the mass degenerate case, the supercbnvergent higher moment
sum rule can only be satisfied for.a particular vélue of f(g). In the.
lower moment case the l- and 2" contribuﬁibnsvcancel among themselves;
and using the SU(3) coupling ratios the equation is satisfied identically,
indepgndent of f(2). In the higher moment équatidn, however, 1  cancels
against a definite:fraction, 'f(g),v of 2+. The remaining fraction of
the 2+ contributioh presumably cancels against a piece of the 3
contributién. | |

We can also make some interesting statements regarding exchange

degeneracy.l3 iBy exchange degeneracy we mean for example,
o A, wg ' fl#fg _ :
FKK : rEK = Y=,  T= » where the Y's are the reduced widths. -

KK © KK

Clearly-a 1” octet .and a '2f octet cannot -be exchange degenerate in this
‘sense,.since'they:have. F and D type coupiing, respectively. However,
the addition of a 2+ singiet of the proper‘streﬁgth enabies exchange

degeneracy to be realized for p - A,, wya - (f;, + T K*'— K** in
P Tfpr Wg T Uy * igls .

: : ' * T *x% :
Kn — Kn, but it is not realized for K - K in Kn - K1.

. * - *% *
K K X K
( )

Ykﬂh ;'Ykn = 9 Ykﬂ HER ¢
| Physigally; we expect, and ﬁe do obtain from our boofstrép,
exchangé deéeneracy bétween‘resonances of even and odd J, in the KK
sysﬁem,.because there afe ohly direct forces and no exchange forces. By
qontrast the K*_ and K** heed not be exchange degenerate'sinée the

Kn — Kr (Kn — Kn) channel contains not oﬁly direct forces: h,"ff'(ff'),

: ‘ * % X% '
but also exchange forces: K, K (K*, K ).13 Unless the exchange forces
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cancel there is no exchange degeneracy. The K* and K** forces are
alwéys opposite in sign because of the sign of Pz(z). If the fraction
f(2> is chosen equal to the one which produces'superconvergence in the
appropriate channels, the exchange forces in the higher moment equation
cancel in the Kx, but not in the Kﬁ,’channel.

In Table‘l, we show our numerical results for the three independent

systems: (= nn); (K = Kxj KK = n}; (KK - KK; KK - KK}. While the
f(g)u

+(2)

e

mass degenerate, symmetric .case requires. l/h, the numerical

0, 1/2, 1, in order to

test the sensitivity of the results with respect to the choice of the
1imit of integration. The leculated,self-consistent limits of integration,
sys for the cases (1), (II),g (III), (see above) can be compared with the

a priori values estimated from the experimental masses. For example, for

- Kn —»Krx the a priori values are SN(I) X 1.3, SN(II) X 1.9, SN(III) ~ 2.k

The tabulated values differ from these by 10-~15%. This is a strong check
on thé quantitative self-consistency of our équations.

The calculated self-consistent PR's are seen to agree reasonably
with experiment. The theoretical uncertaintylin the B's arising frém
different choices of N is shown explicitly, in columns E(I) - E(III).
The avefage deviation of the. B's from 1 shows the deviation'ofvthe
couplings from their symmetric values, as induced 5y the>massléplittings.

In principle, factorization could lead to an internal contradiction

betweeh various channels; this does not happen in our system.lh In \

Table I we have assumed all a'(t) = 1.1 We have combined (w, §) and

(f, £') into two effective particles for numerical convenience.

We are grateful to Professor Korkut Bardakci for several helpful

. suggestions, and also to Professors Robert Hermann and Christian Fronsdal

for several helpful discussions regarding the properties 6f Lie algebras.
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For B, C (n >2), adjoint Qadjoint contains adjoint

n+1’ Dﬁ+2
only once. In that case the Clebsch-Gordan coefficients are the
(antisymmetric) structure constants. The same statement is true, by
explicit calculation, for G2, and we conjecture it also works for
F),» E6,7,8. See R. E. Behrends et al, Rev. Mod. Phys. 3k, 1 (1962).
This is equivalent to the statement that the crossing matrix has at
least one nongzero nohdiagonal element in the row and column corres-
ponding to a symmetric coupling.

R. C. Arnold, Phyé. Rev. Letters 1k, 657 (1965).

For the SU(3) symmetric case, a éontradiction with factorization is
impossible, since the amplitudes explicitly factorize in the symmetric.
limit.

This slope is our energy scaling factor.

In Table I, we have not employed factorization.

Experimental reduced widths taken from A. H. Rosenfeld et al,

Rev. Mod. Phys. Lo, 77 (1968).
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with the corresponding selchonsistent limits of integration.

@
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TABLE CAPTIONS. '

'Indepehdent groups of reactions corresponding to one amplitudé.

Resonancesoccurring in (A) as intermediate states.

(iSoscalar factor)2 for{SU(B),.aSSuming“magié ﬁixing angles ”tan?9 ¥'l/2,
and the o* singlet/octet coupling ratio GE/F2.= 8. (2+ isoscalars
are multiplied by 5/9.) |

Reducéd experimental widths,bdiViding byvfhe corresponding ehtries in
column (C). | |

Our pfedicted theorétical reduced widths divided by the corresﬁonding
entries in column (C). Showniare results for cases (I), (II); (III),

16

Experimental partial'widthgbtaken from -Reference 17.  In the nx —?KK
éase:' f(i)j) =-(Fi ‘:F“L)%‘fisithe éfféctive width
. Texp U TKK S A )
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TABLE I.
1]
A B c D E i F
Iso- B(exp) Btheory/isoscalars ! I‘exp(:"J)
Channel | Resonance ! Scalars | Isoscalars I II III { in Bev
b 2/3 |0.73 + 0.18} 1 0.91 {1.04 | 0.124
- . 1
£ 1 1 (zo0ahP ; ' 0.137
. £
T ot | £+ g . - - il 1
T 0 not observed 7 <0.010
. ]
. . 2 - !
limit of integration, SN(Bev) 1.05: 1.57 : 1.87 ;
» T i
o 1/5 | - 1.0410.0110.85 ¢ -
K* /% {1 (£0.02f 1 i1 i1 | 0.049
Kn — Kn ; :
RE: 1/ V6 1 0.83 + 0.32 | 0.021
nr - KK - . -
| £+ fg - 1.30 11.13 |
T 0 not observed; i <0.023
K** 1/4 0.85 + 0.05§ - 0.9210.76 | 0.0b45
limit of integration, sN(Bev)2 l'.l7 1.75 1 2.08
P - 1/6 - 1.0610.94 10.92 | -
W ' 1/6 | - ' -
“g 2N I S Y
KK - KK ! ¢ 1/3 | 0.85 & 0.20 | 0.0029
KK - KK | A, 1/6 0.54 + 0,14 - 1.59 % 1.37 0.00%6
T 1/6 0.69 + 0.24 0.003%2
£+ fg . - 1.36{1.22
£l 1/3 1.20 + 0.hh 0.053
limit of integration, SN(BeV)2 -1 1.2712.00{ 2.40
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