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Abstract

The current distribution on a short, plane electrode in the wall
of a flow channel is calculated at various fractions of the limiting
current. Near the limiting current, the current density exceeds the

local limiting value near the downstream end of the electrode.
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Introduction

~An important geometry in électrochémical industries involves channel
flow between two plane, parallel electrodes as shown in figure 1. A

complicated procedure for treating this problem is outlined in reference 1.

" This is based on the concept2 that concentration variations are restricted

to thin diffusion layers near the eiectrodes, which allows separate treat-
ment of the diffusion layer and the potential distribution outside the

diffusion layer. This concept has been applied to the'rotating disk elec-_

trode. > * However, it is difficult to treat the channel problem, and the

. present paper is restricted to the consideration of one electrode. If

the distance between the electrodes is much_greater than the length of the

electrbdes, each electrode behaves independently. This assumption greatly

simplifies the determination of the current and concentration distributions

on the electrodes.
The following assumptions will also be_made:
1. The electrode is embedded in an infinite, plane, insulating wall.

2. Fully developed, laminar flow prevails, and the velocity can be approxi-

‘mated by a linear profile near the wall, within the diffusion layer.

3. Dilute-solution tﬁeory with constant physical properties is applicable.:
k. The transport equations used here ap?ly io either the depositién ofkan
ibﬁ;of a single salt or the reaction of -an ion in an excess of%supﬁorting
electrolyté. The effect of ionic-migratibnvfor intermediate cases is not

considered.
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Figure 1.

Plane electrodes in the walls of a
flow channel
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Mathematical Formulation of the Problem
. The mode of approach ié described in references 1, 2, and 3. The
potential in the electrolytic solution outside the diffusion layer

satisfies Laplace's equation in two-dimensional form:

2 2 - ,
370 0% W

where ¢ is the potential measured by a reference electrode of the same
type as the working electrode. The appfopriate boundary conditions are
3¢/dy =0 at y=0for x<Oand x> 1L, (2)

30/dy

“ifk, at y =0 for 0<x XL~ - (3)

Equation 2 applies to the insulating surface bounding the electrode, and

.equation 3 relates the normal potential gradient to the electrode cur-

rent density, where Kk, 1s the conductivity of the solution outside the
diffusion layer.
Wagners gives the solution of equation 1 subject to conditions
2 and 3:
. L § A
0= 0 ke [ a6e) v L 4 BT e ()

21K
o - L)

% . :
.where ¢ is an integration constant reflecting the arbitrary zero of

potential. The potential &, near the electrode surface is then
N L P
oy = 0 e [ i) v Gex P (5)

27va€°°

o

This'Should be regarded as the potential of the solution outside the

- diffusion layer extrapolated to the electrode surface as if the actual

current distribution prevails but there is no concentration variation

near‘the'électrbde.
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Another integral eQuation can be developed for the diffusion

layer;l The limiting current distribution for such a plane electrode is

. o IIFDCoo b 1/3 _ v
i(x) = - (1-t)T(L/3) <9DX> T (6)

‘where b, a constant, is the slope of the velocity profile at the wall

(b=8vx/5y at y=0). We assume here.that the concentration variation is
confined to a thin region near fhe electrode surface. Thus the velocity
profile within this diffusion layer is linear in y. This approximation.

is valid when L < 0.02 <&>’h2/D. Equation 6 applies when the concentration
of the reactant is zéro at the electrode surfacé. Application of Duhémel's
theorem to’eqﬁation 6 gives a relationship between fhe current'density

distribution and the surface concentration, for currents below the limiting

current.

A nFD v. b 1/3 ‘X ch (X. ' ) adx 1
i(x) = - )T /3) §5> J[l o (x-#”)l/3 . : ,(7)
(6] .

In many cases the electrode kinetics allow the current density and

the surface overpotential 7y to be related by an exponential expression:

-, @l B @

where a and B are qharapteristic parameters of the electrode and io'is
the exchange current density aﬁ the bulk concentration. . The exchanée.
current density at the électrode ié'taken to be proportional to the sur-
face concentration o raised to the power v. The surface overpoténtial
is related to the électrode’bo%énfiél V by

Mg =V -9 -1, | - (9)
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where né is the concentration overpotential and.is taken to be®

nc.= -(RT/ZF)[l%'(ca/cd) - t‘(l~co/cw)] 3 | (10) |
where
Z ='-z;z /(z -z ) for a single-salt, .
- + . -
. : (11)
Z = -n with supporting electrolyte.

If there is an-excess of suppofting electrolyte, the transference number

t will be zero.

Instead of the integral equation T, it might have been possible to
treat the diffusion layer with some sort of power series in x, similar

to the method used for the rotating disk.” However, even with the disk,

-a power series introduces numerical difficulties which can be avoided

" with an integral equation.* This is demonstrated in figure 2, recalculated

for the rotating disk with an integral equation similar to equation 7.
Comparison with figure 7 of reference 3 Vshows that the curves are nearly
fhe same with one important exception. The current density can rise
above the iimiting current near thé edge of'the disk and then go through
a maximum as the limited supply of reactant becoméé decisive. However,
it'éannot rise égain near the edge of the disk as shown in the earlier
work. Thus, from a pfactical point of view; the integral equation is

superior to g power series and will be used in the present work.

Numerical Calculations
. To determine the current and concentration distributions along the
electrode, equations 5 and T must be solved élong with equations 8, 9,
and 10. Thé integral in equation 5 was evaluated by Simpson’'s method.

The singularity at x'=x was removed by adding and'subtracting_i(x)‘as



|.4-  | _,|- 1 T”

L2 L

0 | :L |

1 |
0. 02 04 06 08 IO
| r/rg |

T o © XBL682-2028

Figure 2. Current distribution on a rotai;ing disk for
Tafel kinetics. For the definition of the parameters,
see reference 3.
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_ suggestéd by Kantorovichvand Krylov'.‘6 ,Fof a given distribufion of totai
overpotential nc+ns,vthe integral equaﬁion 7 was solved in conjﬁnctiOn
with equations & and 10 by the method of Acrivos and Chambré. Tt might
be noted that equation T is a_spécial for@ of a mére general equafion
which can be applied to othér flow geometries, for example, thé rotating
disk electrode.

Thevnumber of intervals required-to obtain accurate results varied
betweenVSO and 140, depeﬁding upon thé uniformity of the current distri-
bwﬁon. The answers were checked by.increasing the number of intervals
and were gonsidefed to be satiéfactory if they did not vary by more than
1 percent with an increase of 20 intervals.

The following iteration procedure was used:

l,v The current‘density Qas specified at x=0. .Since ¢, Co at x=0, this
also specifies the total overpotential at x=0. As a first guess, this
total ovefpotenfial wa.s assumed to apply over the entire electrode.

2. TFor a given distribution of total overpotential, the current density
_ana surface concentration were determined from equationé 7, 8, and 10..
3. From the current distribution, new values of the total overpotentiai
were calculated from equations 5 and 9. If the new and old values of ﬁhe
total overpotential differed by more than 0.0L percént, these valués Qere
averaged (qsually with unequal weights on the two values) and put béck
into step 2. |

This procedure appears to work weil o&er almost the entire range
between the Secondéry and lihiting current diétributiqns. Convergence

was always achieved in less than 35 iterations for the cases considered.



Results

The number of parameters'required to describe.a given situation
can be minimized by defining three dimensionless quantities:

7FL, . '
J =g i, (12)

(o]

(1-t)RT «

. nZF°De,_ <L2b> - '(1'3)_

. ZFL

° =R, |favel
RT k, {"avg

(1)
These are analogous to those defined for the fotating disk problem. >
J, N, and ® can be regarded as dimensionléss eﬁchange, average limiting,
and average current densities. The limiting current corresponds to
® = 0.807 N. The total number of parameters required to define the prob-
lem will now be sevén——J, N, and 8, the transference mumber t, and a, B,
and ¥ characteristic of the elecfrode.

The two extre@e cases are the primary and limitimg current aistribu—
tions, shown in figure 3. The primaryvcurrént occurs when the electrode
is reversibl¢ and there are no concentration.effects (N=» and J=%).

Wa‘gner5 gives the primary current distribution as

ifi, = (1/m) [x/L - (x/L)2 /e . | {(15)

Wheni the current is .limited solely by the rate of magss transfer through
the diffusion layer, the limiting current distributiom, obtained from
equation 6 is

/g = (2/3) (x/;)'1/3 - (16}

The -secondary current will result when there is a surface over- .
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Figure 3. Primary and limiting current distributions

on a plane electrode.
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potenﬁial'but no mass transfer effects; For sufficientlybgmall.cﬁrrents
(5 << J), the poiarizaﬁion lav 8 can beilinearized to
| is= (VOL+B)(VZF/R‘ITI) iéns . ' (17) |
Wagner5 calculated se@ondary_gurrent distributions as a function of the
coefficient in equation i?. A linear approximation can also be madevif‘
the current diétribution is fairly'uniform, say 8 < O.é, even if J is
small;‘
If, on the other hand, the average current is much greater than the
exchange current (® >> J), Tafel polarization will apply
| | ng = ~(re/zFB)ln |i] - il (18)
(For anodic currents, the term in o would be retained. ) Gnusin, Poddubny;,
Rudehko; and TFominé determined the sécondary currént distribution as a
funcfion of the average current.

Before considefing the case where méss transfer effects are important,
we compared our éalculated secondary distributions with those in these two
papers. Comparison for the rotating disk3~éerved as a gheck‘on the mass
transfer calcuiationé.

Because mass transfer éffects occur at higher curfent densities,‘we
used a Tafel polarization law in subsequent work considering concenfration
.variations. Figure 4 shows the cﬁrrent distribution for N=100 andlaverage
current densities at various fractions of the average limiting curfent;

At low currenﬁs, the»distribution is close to the secondary distribution,
and mass t;ansfer becomes important‘oniy at higher currents, At greater
-than gbout T5 percent of the limiting current, the current cannot continue

t0 increase near the end of the electrode because of mass transfer limil-

‘tations.
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Figure k. Current distribution for Tafel polarization
at various fractions of the ‘average limiting current.
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' Cdncentration'profiles are shown in figure_S for variousvvalues.‘
of_N. For the case of N=iOO at 75 and 95 percent’ of the limiting current,

there is a slight increase of reactant concentration near the front of

the electrode.(x/L ~ 0.1), resulting from the rapid drop in current density

" near the front of the electrode. The concentration then has a chance to

increase a little before the current density begins to increase.

In figurev6 the ratio of the maximum to minimum current density has
been plotted against the fraction 6f the'limiting'current, giving an
indication of thé uniformity of the.current distribution. At a given.
fraction of the limiting current, the current distribution becomes less
uniform With.increasing N.  In all cases theveffect of mass transfer is

to make the current distribution more uniform near the back end of the

electrode.

" Conclusions

Current distributions on a plane electrode in the wall of a flow
channel are calculated while taking into account concentration variations

near the electrode, electrode kinetics, and the ohmic potential drop in

- the bulk of the solution. The procedure is similar to that for a rotating

3

disk, leading to the conclusion that the diffusion layer can be treated
by a general method for hydrodynamic situations where the velocity deri-

vative at the electrode surface is kndwn. Such calculations can thus

‘be carried out for geometric arrangements where it is also possible to

treat the potential distribution outside the diffusion layer.
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Figure 5. Surface concentration distribution for Tafelf
polarization near the limiting current..
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Figure 6. Ratio of maximum to minimum current for Tafel
polarization versus the fraction of the average limiting
current.. :
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Nomenclature

1

6 <j:>/h, velocity derivative at the wall of the channel, sec™t
- concentrétion at electrode surface, mole/cm3
- bulk concentration of reactant, mole/cm3

‘ _ 5
- diffusion coefficient of reactant or of binary electrolyte, cm‘/sec

- Faraday's constant, 96,487 coul/equiv

- height of channel, cm

‘ 2
- normal current density at electrode surface, amp/cm-

2
.- exchange current density, amp/cm

- average current density,.amp/cm2

- average limiting current deﬁsity, amp/cm?

- dimensionless exchange current density {see equation 12]

- lengfh of electrode, cm

- number of electrons produced when one reactant ion or molecule reacts
- dimensionless limiting current [éee equation lé]
- universal gas éonstant;~joule/mole-deg

- transference number of" reactant

- absolute temperature, &g K

- avefage velocity, cm/sec ‘

- potential of électrode, volt

- distance along electrode, cm

- normal distance from electrode, cm
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' charge number of species i

 see equatioh 11.

- parameters in kinetic expression [see equation 8]

0.89298, the gamma. function of 4/3

dimensionless average current density [see equation l%]

I S s
concentration overpotential, volt

surface overpotential, volt

conductivity of bulk solution, ohm—l—cm-l

‘potential in bulk solution, volt

potential in bulk solution extrapolated to. electrode surface, volt



18-

References

1. John Newman. "Engineering Design of Electrochemical Systems."

‘Ind. Eng. Chem., 60 (no.k), 1227 (April, 1968).

2. John Newman. "The Effect of Migration in Laminar Diffusion
Layers." Intern. J. Heat Mass Transfer, 10, 983-997 (1967).

3. John Newman. "Current Distribution on a Rotating Disk below
the Limiting Current." J. Electrochem. Soc., 113, 1235-12k1 (1966).

4. John Newman. "The Diffusion Iayer on a Rotating Disk Electrode."
J. Electrochem. Soc., 11k, 239 (1967).

5. Carl Wagner. 'Theoretical Analysis of the Current Density
Distribution in Electrolytic Cells."” J. Electrochem. Soc., 98, 116-128

(1951).

6. L. V. Kantorovich and V. I. Krylov. Approximate Methods of
Higher Analysis. Translated by Curtis D. Benster. New York: Interscience
Publishers, Inc., 1959.

7. Andreas Acrivos and Paul L. Chambré. "Laminar Boundary Layer
Flows with Surface Reactions." Ind. Eng. Chem., 49, 1025-1029 (1957).

8. N. P. Gnusin, N. P. Poddubnyl, E. N. Rudenko, and A. G. Fomln
Raspredelenle toka na katode v yide polosy v polupro;transtve elek-
trolita s polyarlzat31onn01 kr1v01 vyrazhaem01 formuloi Tafelya. "
-Elektrokhimiya, 1, 452-459 (1965).







