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ABSTRACT 
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It is shown that for evaluation of two dimensional magnets with nonlinear 

iron in a conformally transformed gemnetry, only minor changes of the magneto-

static equations are required. The advantages resulting from evaluation or 

design of a magnet in a suitably transformed geometry are discussed in 

detail. 

* Work performed under the auspices of the U.S. Atomic Energy Commission. 
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1. Introduction 

Conformal mapping is a powerful technique for finding solutions, or for 

simplifying the process of finding solutions, to Laplace's differential equation 

in two dimensions, and a large number of applications to many fields can be 

found in any textbook dealing with this subject. This method has also been 

applied successfully to the design of long magnets with infinite permeability 

of the iron that, far away from the ends, can be described with sufficient 

accuracy by the two dimensional Laplace equationl ,2). However it does not 

seem to be generally known that application of a conformal transformation to 

a two dimensional multipole can greatly simplify the evaluation or design of 

that type of magnet even when the iron has nonlinear B(ri:) characteristics. 

It is the purpose of this paper to point out some of the advantages that 

result if such a magnet is conformally transformed and then, in the new 

geometry, evaluated with a digital computer that solves Poisson's equation 

numerically. To this end, we write first the magnetostatic equations in the 

original coordinate system in such a way that it will be easy.to transform 

them to the new coordinate system. From the transformed equations we then 

deduce the modifications that have to be incorporated in the computer code 

that numerically integrates the normal magnetostatic equations with nonlinear 

B(H) characteristics. In the discussi.on of the application of conformal 

transformations to two dimensional magnets witn nonlinear iron, emphasis is 

on the description of the advantages that result when the magnetostatic equations 

are solved numerically. However, to give a complete picture, we will also 

point out some of the generally known benefits associated with conformal 

transformations when applied to this kind of problem. 
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2. Magnetostatic Differential Equations in the Original and conformally 

Transformed Coordinates 

2.1. NarATION 

MKS units are used throughout. Complex numbers and operators are 

identified by underlining; their complex conjugate by an asterisk. The 

absolute value of a complex number is indicated by two vertical bars, and its 

real part by Re._ The Cartesian coordinates of the original problem are x 

and y; the Cartesian coordinates of the transformed problem are u and v, and 

they are related to x and y through a suitably chosen conformal transformation 

u + iv _ w w (x+iy) _ w (~) ( 1) 

Quantities that depend directly onx and y, or are of special significance 

in the x, y coordinate system, carry the subscript z, and similarly carry the 

subscript w when they depend directly on u and v, or are of special significance 

in the u, v coordinate system. 

The reason to consider only conformal transformations is the well known. 

fact that the structure of the magneto static equations is destroyed under any 

other than conformal transformations. 

2.2. MAGNETOSTATIC DIFFERENTIAL EQUATION IN ORIGINAL COORDINATE SYSTEM 

Without loss of generality, we can derive the two components Band 
x 

B of the magnetic flux density from a vector potential which has only a y 

component (A ) perpendicular to the x-y plane. z Introducing the complex field 

quantity 

B -z 
B +i B 
x y 

~A 
dy z 

i ~A 
dx z 

-i(~ A + idA ) 
dx z dy z (2) 

• 

t'. 
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and the complex operator 

D . (d +. d ) ::= -l - l-
~ dx dy , 

we obtain 

B ::= D A 
-z -z z 

(4 ) 

It should be noted that ~z acting on any analytical function ~(~) is zero: 

D K(z) ::= 0 • 
-z- -

Assuming an isotropic medium, and introducing ~ , the reciprocal of the 

relative permeability ~ (which may depend both on location and flux density), 

~ (x,y, IB 1)::= 1/1-1 (x,y, IE I), z -z z ~ 

we obtain for the field components H , H , and the complex field quantity x y 

H == H + i H : -z x y 

H 
1 

B 
1 

D A =-~ =-~ 
~ 1-1 . z -z 1-1 z -z z 

0 0 

(6) 

The magnetostatic equation relating H ,H to the current density jz in the x y 

direction perpendicular to the x - y plane is: 

d 
j (x,y) ::= - H 

z dx Y (H + i H ) 
x Y 

With eq. (3a) and (6),'we obtain therefore for the magnetostatic differential 

equation in the x - y coordinate system: 
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* Re £z 'Yz (x,y, I~z(x,y) I) ~z Az (x,y) == - Ilo jz (x,y) 

*. It should be noted that when D acts on 'Y , it acts not only on the explicit -z z 

dependence of 'Y on x, y; but also on the x, y dependence that results from z 

the dependence of 'Yz on I~z(x,y) I. This is, of course, the reason why total 

and not partial derivatives are used in defining D . . -z 

2.3. MAGNETOSTATIC DIFFERENTIAL EQUATION IN TRANSFORMED COORDINATION SYSTEM 

Introducing new coordinates u, v through the conformal transformation, 

eq. (1), we can express x and y inA (x,y) through u and v, obtaining a new 
z 

function A (u,v). The implicit dependence of A on x, y is of course the w w 

same as the direct dependence of A on x, y: . z 

(8 ) 

To obtain the magnetostatic equation in u, v, we express D through derivatives 
-z 

with respect to u, v. From eq. (3a) we get: 

D _ . (dU d +dv d +. ( 
-z - -1 dx du dx dv 1 

Using the Cauchy-Riemann relations: 

du dv 
dy = - dx 

we obtain, with 

D 
-w 

i (~ + i d ) 
du dv 

and 

du ~ + dv ~ .)' ) • 
dy du dy dv 

• 
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dw 
w' == dz == l/'!:.' : 

(dU _ . dv) * (9) D == 1- D == w' D 
-Z d.x d.x --W -W 

For the relation between B == D A and B we obtain from eq. 's (4), (8), and 
-w --w w -z 

* * B =w' B =B/z' • 
-z - -w ~-

(10) 

It should be noted that eq. (10) is identical to the transformation. 

formulas that one obtains if one assumes that the fields can be derived from 

a complex potential function, although that has obviously not been assumed 

in the derivation of eq. (10). 

Using, similarly to (8), and with ,eq. (10) 

'Yz (x,y, I~z I) == 'Yw (u(x,y), v(x,y), I~I/ I'!:.' 1 ) , 

we obtain from eq. (7), (8), and (9): 

Because of eq. (5) , * * we can write w' to the left of D . 

obtain, using eq. (9) again: 

2 
I~'I * Re D 'Y. D A - - f..l j . -ww-ww oz 

Introducing 

2 
jjx(u,v), y(u,v)) • I'!:.' 1 

"" 
j (u, v) 
w 

-z 
We thus 

(11) 

(12a) 
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we get for the magnetostatic differential equation in the u, v coordinate 

system: 

Re D* ~ (u,v, IE I/lz' I) D A -w w -w - -'W W 
IJ. j (u, v) . 

o w 
(12b) 

Of the many quantities that are of interest in the design or evaluation 

of magnets, we want to discuss only the trans,formation properties of two 

more quantities. Although both transformation properties are triNial, they 

are of such practical importance that it is worthwhile to state them. 

Since x, y and u, v are related through a conformal transformation, 

infinitesimal areas da and da are related through w z . 

da 
z 

With eq. (12a) we obtain therefore for the total current I passing 
w 

through any given area in the u, v coordinate system: 

I 
w = J =Jj Iz'1 2

da z - w = J = I 
z ' 

i. e. total currents passing through conformally mapped areas are identical. 

For the field energy E stored in any given area per unit length of 

magnet, we obtain from E 
w 

2 
J IE I' ~ daj21J. and eq. 's (10), (11), and (13) -w w 0 

21J. E , o z 

i.e. conformally mapped areas store equal field energy per unit magnet length. 

• 

• 
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2.4. MAGNETOSTATIC COMPUTER CODE MODIFICATIONS FOR INTEG~TION OF EQ. 12 

Comparing eq. 's (7) and (12), one notices two differences: 

a. The current density j appearing in (12b) is related to the 
w 

current density j through eq. (12a). The proper current density j can 
z w 

obviously be obtained by modifying the input data according to eq. (12a). 

Since in most practical magnets, the current density j is constant within the 
z 

boundary of each conductor, it is convenient to add a small subroutine that 

2 
allows to input ~(~) and I~' I , and the boundary and current density jz for 

each conductor, and that then prepares the input data to give the correct j . 
w 

That same routine can of course also be used to transform all other boundaries 

from the x, y coordinates to the u, v coordinates. Since this routine does 

not interact with the integration routine, it is clearly a simple task to add this 

routine to the-program. 

b. The major discrepancy between eq. 's (7) and (12b) is that 'Y z 

dep~nds on IB I, whereas'Y depends on IB I/lz' I . It would be an easy task -z w -w -

to store l/l~' I for each iron mesh zone and then to multiply each flux density 

value by l/l~' I before finding the value of 'Yw when integrating eq. (12b). 

However, since in most integration routines, the value for the flux density 

in a mesh zone is derived by appropriate numerical procedures from potentials 

at mesh points surrounding that zone, it will in general be easy to modify the 

algori thm so that it gives I B I I I z' I instead of I B I . Both this and the above 
-w - -w 

mentioned modifications were incorporated into POISSON3)With very little 

effort and without increasing the storage requirements or the execution 

time for evaluation of magnets. 
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Although we used vector potentials for the derivation of eq. (12), 

the resulting conclusions concerning the necessary modifications of j and ~ 

are, of course, independent of the method that was used to derive them, and 

are valid no matter what algorithm is used to actually integrate the magn~to- • 

static equations. 

3. Consequences of Application of Conformal Transformation to Evaluation of 

Iron Magnets 

3.1. INTRODUCTORY REMARKS 

When discussing the advantages resulting from using conformal trans-

formations in conjunction with a magnet analysis program, we will talk 

especially about the analysis program POISSON:'>. Although some connnents 

apply only to POISSON, or a nrogram similar to it, most remarks are valid no 

matter what analysis program is used. Also, we will talk mostly about 

evaluation or design of quadrupoles, since their discussion is representative 

for all higher multipoles. 

3.2. CONFORMAL TRANSFORMATION OF A QUADRUPOLE 

To provide a good quadrupole field in a circular aperture, it is 

desirable to build a magnet with the highest degree. bf synnnetrypossible. 

Figure 1 shows the schematic outline of 1/8 of such a magnet, with the 0° 

and 45° lines being ·lines of constant scalar and vector potentials respectively. 

Within the aperture, the field B can be derived from a complex potential 
-z 

A. + i V z z .-, 
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and because of the symmetry of the magnet shown in Fig •. 1, the power series 

for ~(!) has to have the form 

ro 

2 z 2(2n+l) 
(l4a) 

11 =-0 

From this follows for the fields: 

The transformation 

2 
·w = k z 

leads to 

F (w) = 
-.:w -

and 

'Xl 

L 
n=o 

n=o 
( 

4n+l 
2n+l) a2(2n+l) ! 

a • (W'_k)2n+l 
2(2n+l) :.1. 

(l5a) 

(l6a) 

When the magnet is a good quadrupole magnet, in the aperture the term 

proportional to a2 dominates in eq. (14), and therefore dO!!l.inates also in 

eq. (16). But eq. (16) then describes an essentially homogeneous field· in 
r 

the aperture, and this is of course highly desirable for evaluation as well 

as poleface design .of a nagnet. P~fore discussing the resulting advantages 

,) in detail, it is convenient to introduce a particular value for the scale 

factor t in eq. (l5a). 

1. 

I 
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To get q,imp1e relations for saturation considerations, ue introduce 
··l' '" . 

r as' the dis'tance from the center 'of the original magn~t to the iron nearest the. 
o . t 

center and require that for Iz I = r: , 
- 0 

Iwll = 1, giving IB 1= IB 1 there. -: . . ,··-z -w 

Using. for simplicity a realk, '\ole thus get from eg,o (15a) for 

Iz I == r : 'Iw' 1 = 2k r == 1. 
- 0 - 0 

Using this in eg,. (l5aY \~e obtain 

,and 

For a 2n.:.pole, one would use simil!:U'ly:' 

w p (z Ir )n ; p '= r /n 
o :::J 0 0 0.". 

. (y' )n-l WI == ·z.r .. 
~ 0 

1 
n 

(15c) 

(15d) 

Applying the transformation described in eg. (15b) to the magnet shown 

in Fig. 1 leads to th~ configura;tion shoWDin Fig. 2;' which is dravn to the 
t , .. 

13a.1'lle scale as Fig. 1. 

When evaluating a quadrupole magnet, the g,uantityof interest is usually 

the g-.cadient of the field: Fron'! eg,. ',8 (10) and (:t.5c) i'le· obtain 

(17a) 

* */ B = r B z 
-:-'Vt·O -z -

• 
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From e q. (17b) follows the B* is directly a measure for the gradient 
-w 

in the real magnet even if the quadrupole is not perfect. To obtain the 

local gradient in the aperture region, we can differentiate eq. (17a) with 

t 
;sespect to ~ 

* d B* 
( B + 2 w • --2 )jr 
-w - dw 0 

It is clear that if the magnet is a good quadrupole magnet, the 

derivative on the right side of eq. (17c) contributes very little to the 

local field gradient inside the good field aperture. 

3.3. ADVANTAGES OF TRANSFORMED MAGNETS 

The most obvious reason for gaining advantages through conformally 

transforming a magnet is, of course, the same reason why conformal mapping 

has been used advantageously for a long time in many fields: The 

(17c) 

simplifications of the geometry make many aspects of a problem so transparent 

that they become outright trivial, whereas they are often quite obscure in 

the original geometry. For instance, it is quantitatively much easier to see 

what kind of an effect a modification of the magnet near the useful field 

aperture has on the field of an essentiall.y homogeneOUS-field magnet than 

it is to see what the effect of the equivalent modification is on the 

gradient of a quadrupole magnet. Or, to take a specific drastic case: if 

a sextupole magnet has a circular useful field aperture r , and a o 

t This is., of course, correct only where B* can be derived from a complex 
-z 

potent:i.al, i. e. "here 'Y = const. and j = o. 



-12- UCRL-18173 

significant modification of the magnet is made at the distance 3r from o 

the center, it is not entirely obvious what its effect is on the second 

derivatives of the field. However, if the circular aperture of the trans-

formed magnet is p , the modification in this geometry is then at the distance 
- 0 

27'p - and it is obvious that this will have very little effect on the o 

homogenity of the field inside p , allowing the conclusion that the modification o 

-will also have very little effect on the second derivatives of the field in 

the original magnet. From these considerations follows that the task of 

designing a multipole magnet with a reasonably pure multipole field in the 

useful field aperture becomes greatly: simplified through a conformal trans-

formation, particularly since one can apply many of the fairly simple and 

well understood rules that one has for the design of homogeneous field 

magnets. 

To demonstrate this in more detail we consider the design of a 

quadrupole magnet that is required to have a good quadrupole field within:an 

elliptical aperture. Figure 3 shows one quarter of an aperture ellipse with 

a ratio of major to minor axis of 2.5, with a rough outline of one quarter 

of the magnet poleface also indicated. To see how far the poleface has to be 

carefully deSigned, we apply the transformation J! = k :!:,2, mapping the 

i/4 - ellipse of Fig. 3 into the 1/2 - ellipse in Fig. 4. Since we know that 

in order to obtain a homogeneous dipole field, the poleface should extend at 

least one quarter of the magnet gap beyond the ends of the aperture region, we 
, 

also indicate the required poleface width. It is also shown how far the pole- • 

face would have to go on the left side ,in order to get a quadrupole that is 

symmetrical with respect to the 45 0 
- line (in the original geometry), with 
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the resulting better field quality because of the higher degree of 

symmetry. Since conformally mapped areas store the same energy per unit 

magnet length, it is directly evident how much one pays in terms of stored 

energy for the magnet with the higher symmetry. After fixing the ends of 

the polefaces in the described manner, one would then transform these 

endpoints into the original geometry and design the rest of the magnet 

structure (coils, yokes, etc.) in the original geometry. Then, as the last 

step, after transforming the whole magnet and generating a mesh in the new 

geometry, one would evaluate the magnet in the transformed geometry and 

optimize the poleface to give a highly homogeneous field in the transformed 

geometry, leading to a high quality quadrupole field in the original geometry. 

There are, of course, some basic differences between true homogeneous 

field magnets and homogeneous field magnets that are obtained through conformal 

transformation of a multipole .magnet. In most magnets the coils have a uniform 

current density and the air-coil and most air-iron interfaces are straight 

lines (the magnet shown in Fig. 1 is an exception in this respect). This is 

of course no longer true after a multipole magnet has been transformed. 

Although this has generally very little effect on the design of the aperture 

region, it means for instance that one can not obtain a practical multipole 

magnet by transformation of a window frame magnet. 

A more significant difference arises when one considers saturation 

effects. When one designs a homogeneous field magnet and other considerations, 

such as stored field energy, do not preclude such a conservative design, one 

can get very good field homogeneity over a wide field range by extending the 

flat l'olef::lce significantly beyond the aperture limits. Doing the same in the 
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case of atransforned multipole .... Tould 1eacito ,a 'badly saturating 'magnet 

because, ,according toe'Q.r s '(12b) e.nd(15d ),the 
, ..' 1.-! 

satUration in iron is ! BI . '1-1,;1 p! ' n VIi th 
" ,-VT , :.:.J, 0 1 _ 1 

quanti ~Y determining the 

!~I in thepo1eface region 

essentially constant, the factor!5i'po! n Vlill lead'to'stronger saturation 

effec'ts, the more thepoleface is extended beyond, the aperture limit ~ 
. . . . 

Numerically,thiseffect can be quite significant: if the total width of the 
, ' 

syrmnetrica1po1eface of a trahsforined quadrupole 'is 3i:>' in one case, and 
, ,,' , ' " 0'" ' 

,4p oin another, the value ~ fo~, I ~ p 0 1~/2'a t the: e~d:s of, the. poleface' are,1.344 

and 1.5 :: 1.344' 1'.11. This points' out that in order to design amu1tipo1e 

magnet with 'a goodfield distributlon at lOi. ,as well :as at'high~ields, :it is 

~'xceeding1y important to be able to achieve good fieid distributions ~ith as 

little iron beyond the a:!?ertureii~its 'as possible. For this reason, a'" 

perforrnnce opti~ization' procedure that a1lpws o~e to optimize the field 
• ¥ • , ' • • 

distr:ibution simultar:eonsly at ,low andh1ghfields~)iS even more impor:tant 
. ,'.. 

for the design of rm.l,l tipole me.gnets than'it 'is for the design of ' dipole magnets. 

vlhile the presence of the ~bove mentioned saturation effects is 

obvious m thout application, ofa coriformal transformation, their qualitative 

and quantitative discussion and eyaluatioh is ,considerably easier in the trans-

formed geometry. , 

Again .... lith res:;Ject, to this subject, one gains abetter understanding 

through considering the trarisfoT1;;.ed magnet. The resulting simplificatiops of' 
, . 

the 'design process ,i-,Till ,of cotirsein many cases lead to improved design and 

'perfornianceofmaguets. 

() 
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While the advantages discussed so far are to a large degree of a 

('\ qualitative nature, evaluation of multipole magnets in the transformed 

.geometry can also lead to a very significant increase in accuracy. Magnet 

evaluation codes usually compute potentials at a large number of discrete 

mesh points that cover the geometry of the magnet. In the algorithm for the 

calculation of the potentials, the behaviour of the potential in the region 

around mesh pOints is generally approximated by polynomials in the coordinates. 

These polynomials are, to cite two examples, of first order in POISSON, and· 

5 second order in SYBIL). This basic difference is due to the meshes employed 

in these two types of programs, SIBYL using a uni.form rectangular mesh and 

POISSON a variable triangular mesh. This gives POISSON the advantage of 

being more flexible and therefore having virtually no restrictions on the 

boundaries of the problem and between different materials, at the expense of 

being less accurate. While these inaccuracies are of very little significance 

far away from the useful field aperture, they can be of importance in the 

aperture if the field there is highly inhomogeneous. Byevaluating,a 

multipole magnet in the transformed geometry, the aperture field will be very 

homogeneous for a well designed magnet. Consequently, the potentials are 

nearly exactly linear functions of the coordinates, thus practically eliminating 

this source of error. Furthermore, the local field gradients in the original 

geometry are essentially given by the field in the transformed geometry. This 

.means that in order to obtain the local field gradient in the aperture of 

a quadrupole, one has to calculate second derivatives of relatively inaccurate 

poter.ti3.ls if the evaluation is done in the original geometry, whereas one 

ha:" t,,-, t.aJ"t' essentially only first derivatives of very accurate potentials 
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if the evaluation is done in the transformed geometry. The cascading of 

these two main accuracy-improving properties lead to a very significant 

improvement of overall accuracy: Evaluating a magnet that has an analytical 

quadrupole field distribution with POISSON gave the gradients in the aperture 

region with about Flo errors when the evaluation was done in the original geo­

metry, whereas the error was only 0.01% when evaluated in the transformed 

geometry. While 0.01% accuracy is better than normally needed, 1% errors are 

more than tolerable in many cases. It is clear that the accuracy improvement 

is even more urgently needed (and obtainable with this procedure) for higher 

multipoles, where even an intrinsically more accurate program like SIBYL 

could not be expected to be quite as accurate as one would need under some 

circumstances. A minor advantage results when a multipole magnet is to be 

evaluated with an irregular variable mesh program like POISSON and the 

evaluation is done in the transformed geometry: Because of the curvature 

of the poleface in the original geometry, it is very difficult to generate 

a good mesh point distribution, while it is very easy to generate a 

practically perfect mesh in the aperture region of the transformed magnet. 

Finally, it might be worthwhile to remark that it is possible to check 

internal' consistency and accuracy of a program by computihg potentials and 

fields of a magnet in the original and a conformally transformed geometry, 

and then comparing the results. 



\.} . 

-17- UCRL-18l73 

4. Limi tations and Dra • .,.backs 
, . 

. Although it is possible to evaluate a transformed magnet geometry 

that covers more ~han one leaf of a Riemann surface, this is clearly neither 

desirable no~ practical. Therefore a magnet geometry should be sufficiently. 

symmetrical so that the transformed magnet covers onlY 360° or less 

of a plane. While mostmultipole magnets satisfy this condition, one has to 

realize that for all practical purposes this makes it impossible to evaluate in 

the transformed geometry the effects of slight assembly-asymmetries of a 

basically symmetric magnet. 

n 
It is clear that by transforming a 2n-po1e with ~ - ~ , the ratio of 

the aperture area to total magnet area is much smaller in the transformed 

geometry·than it is in the original geometry, leading to.a reduced mesh point 

density in the aperture of the transformed magnet. When using a variable mesh 

code, this can be partly corrected by adjusting the mesh spacing accordingly; 

.dth a fixed mesh code, one gains a small advantage because the fraction of 

the magnet that has to be evaluated is generally larger in the original 

geometry than it is in the transformed geometry. (For instance, one has to 

. evaluate 1/4 of a symmetricalsextupole in the original geometry, but only 

1/12 in the transformed geometry.) Depending on the details of the magnet 

under consideration, sometimes neither one of these gains is enough to com-

pensate suffiCiently the reduced mesh point density in the aperture region of 

the transformed magnet. He "lant. to discuss briefly two methods that can be 

u::;ed to j.mprove the mesh point density in the aperture. 

.' . 
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Instead of using the transformation that produces exactly the desired 

mapping, one can use one that gives the desired mapping in the aperture 

region in very good approximation, and compresses the transformed magnet far 

away from the aperture. 

vT 

r 
o 

n 

r 

For instance, instead of using the really desired transformation 

for a 2n-pole, one can use the transformation 

vT = 0 in (1 + E('!:.Ir )n) with E «1. In the aperture region (I z Ilr < 1) nE 0 - 0-

the latter transformation gives approximately the same mapping as the former, 

whereas for E( I z Ilr )n 
. - 0 

> 1 'they dif.fer markedly, making the overall size of 

the second transformed magnet relative to its aperture smaller than the 
r 

first. The slight deviation from the transformation w ~ (z/r )nshould 
n - 0 

not decrease the evaluation accuracy in the aperture if .E is not too large; 

also all the gains of qualitative nature described at the beginning of this 

section are preserved. Since the exact form of the used transformation is 

known, it is of course very easy to take the difference between it and the 

transformation~ ~ '!:..n quantitatively into account. In magnets with extreme 

dimensions one could even think of using the transformation: 

r 
w ~ in [1 + in (1 + E(z/r )n)] En . - 0 

A somewhat simpler procedure-would be to evaluate the magnet in two 

steps: First in the original geometry, giving the overall potential distribution 

and all the gross-saturation characteristics, but very poor accuracy in the 

aperture region. In the second step one evaluates, in the "ideally" 

transformed geometry, only a part of the magnet, extending, in the 

transformed geometry, from the center to about 5-20 times. the aperture 
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dimension. Depending upon whether or not this region contains coils, one 

can then evaluate this partial magnet with boundaries parallel or perpendicular 

to field lines calculated in the first step, or with boundary values of the 

potentials obtained in the first step. Since the bourrlaries are far removed 

from the aperture region, ·the accuracy of the evaluation in the aperture 

region will be practically independent of the choice of the boundaries or 

the boundary values. If the saturation behaviour is of no interest, it will 

in.most cases not even be necessary to make the first evaluation since one 

can guess in general with sufficient accuracy what one has to do at the 

boundaries. 

Refering to eq. 's (10) and (12a), it is evident that ~' * OJ ~' * 0 

has to hold in all regions containing iron and w' * 0 has to hold in coil 

regions of magnets. In the rare cases where one would like to use a 

transformation that violates these conditions, it is usually possible to 

modify the ideally wanted transformation such that it still gives essentially 

the desired mapping in the area of interest, but avoids the violation of the 

above mentioned conditions, just as was suggested to compress the outside 

portions of a mapped magnet. 
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FIGURE CAPrIONS 

1. 1/8 of quadrupole in original geometry. 

2. 1/8 of quadrupole in transformed geometry. 
I) 

3. 1/4 of aperture ellipse and poleface in original geometry. 

), 
'T. 1/4 of aperture ellipse and pole face in transformed geometry. 
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This report was prepared as an account of Government 
sponsored ~ork. Neither the United States, nor the Com­
m1SS10n, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or us~fulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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