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ABSTRACT
It is shown that for evaluation of two dimensional magnets with nonlinear
iroh in a conformally transformed geometry, only minor changes of thé.magneto-
static equations are required. The advantages resulting from evaluation or
design of a magnet in a sﬁitably transformed geometry are discussed in

detail.
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1. Introduction

Conformal mapping is a powerful technique for finding solutions, or for
simplifying the process of finding solutions, to Laplace's differential equation
in two dimensions, and a large number of applications to many fields can be
found in any textbook dealing with this subject. This method has also been
‘applied succeésfully to the design of long magnets with infinite permeability
Qf the iron that, far away from the ends, can be described with sufficient
_ aécuracy by the two dimensional Laplace equationl??l However it does not
seem to be generally known that application of a conformal transformation to
a two dimensional multipole can‘greatly simplify the evaluation or design of
that type of magnet even when the iron has ﬁonlinedr B(H) characteristics.
It is the purpose of this paper to point out some of the advantages that
result if such a magnet is conformally transformed and then, in the néw
geometry, evaluated with a digital computer fhab solves Poisson's equation
numerically. To this end, we write first the magnetostatic equations in the
ofiginal coordinate system in such a way that it ﬁill.be easy to trénsform
them to the new coordinate system. From the transformed equations we then.
deduce the modifications that have to be incorporatedrin the computer code
that numerically integrates the normal magnetostatic equations with nonlinear
B(H) characteristics. In the discussion of the application of conformal
transformations to two dimensiénal magnets with nonlinear iron, emphasis is
qn the description of the advantages that result when the magnétostatic equations
are solved numerically. However, to give a complete picture, we will also
roint out some of the general;y known benefits associated with conformal

transformations when applied to this kind of problem.
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2. Magnetostatic Differential Equations in fhe Original and Conformally

Transformed Coordinates
2.1. NOTATION

MKS units are used throughout. Complex numbers and operators are v

identified by underlining; theif complex conjugate by an asterisk. The
absolute  value of a complex number is indicated by two vertical bars, and its
real part by Re.  The Cartesian coordinates of the originai problem are x
and y; the Cartesian coordinates of the transformed problem are u and v, and

they are related to x and y thrdugh'a sultably chosen conformal transformation
u+ivzw=vw(xty) =¥ (z) . ' : (1)

Quantities that depend dire¢tly on. X énd.y, or are of special significance

in the 2, y cQordinate system, carry the subscript z, and similarly carry the
subscript w when they depend directly on u and'v, or are of special significance
in the u, v coordinate systém,

The feason to consider only conformal transformations is the well known .
fact that the structure of fhe magnetostatic equations is destroyed under any
other than conformai transformations.

2.2. MAGNETOSTATIC DIFFERENTIAL EQUATION IN ORIGINAL CQORDINATE SYSTEM

Without loss of generality, we can derive the two components Bx ahd

By of the magnetic flux density from a vector potential which has only a

component (AZ) perpendicular to the x-y plane. Introducing the complex field ?
quantity v
d a d d
= +1i IZ ctr— P = = [ e— ] — ) .
Ez Bx * By dy Az T Az l(dx AZ i dy Az) (2)
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and the complex operator

e
D, = -i (%E + %y); (32)
we obtain
B, =D, A . v(.l*)
It should be noted that D acting on any analytical function K(z) is zero:
ng(g) =0 . | _ | (5)

Assuming an isotropic medium, and introducing <y  the reciprocal of the

relative permeability p (which may depend both on location and flux density),

'YZ(X:.V; ’BZ]) = 1/HZ(X:Y; 'Ezl) P)

we -obtain for the field components Hx’ Hy’ and the‘complex field quantity

o
1

H +1H: .
X Yy
(6)

H E—‘y B = L Y. D A .
N TN

The magnetostatic equation relating Hx’ Hy tb the current density jz in the

“direction perpendicular to the x - y plane is:

. a a (. a . d X
JZ(X,y) = Hy 3 H, Re 1(S i dy)> (HX i Hy) .

With eq. (3a) and (6), we obtain therefore for the magnetostatic differential

equation in the x - y coordinate system:
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Re D) v, Govs B,Gon)|) B, A, (oy) = - w3, (o) (7)

It should be noted that when Q: acts on Yy, it acts not only on the explicit
dependence of Y, OR X, ¥ but also on the x, y dependence that results from
4]

the dependence of on |B (x,y)|. This is, of course, the reason why total
vy, =z

and not partial derivatives are used in defining QZ.

2.3, MAGNETOSTATIC DI?FERENTIAL EQUATION IN TRANSFORMED COQRDINATION SYSTEM
Introducing new coordinates u, v through the conforméi.transformation,

eq. (1), we can express x and y in A (x,y) through u and v, obtaining a new

funcﬁion A (u,v). The implicit.dependence of Awlon X, ylis'of course the

same as the direct dependence of_'AZ on x, y:
a,007) = 8 fu(xy), v(xy)) - | -®)

To obtain the magnetostatic equation in u, v, we express Ez through derivatives

with respect to u, v. From eq. (3a) we get:

du d dv 4 ' du d dv 4
= - . m— Tt ——— — — — — R
Qz dx du ax av .t ( dy du * dy dv )

Using the Cauchy-Riemann relations:

du dv dv du

dy dx ’ 4y

D =-1i (2 +1& : ' ' -~ (3D)

E

and
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Ve — = 1/
LA
_ ¢du . dv ¥
D, = (m-1xm D =¥ D
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(9)

For the relation between B_. = D A and B we obtain from eq.'s (4), (8), and
Swo =W =2

(9):

B =w'
—-Z —

(10)

It should be noted that eq. (10) is identical to the transformation.

formulas that one obtains if one assumes that the fields can be derived from

a complex potential function, although that has obviously not been assumed

- in the derivation of eq. (10).

Using, similarly to (8), and with eq. (10)

VZ (X)y) IEZI) = VW Glix:Y); V(X)y)) |§W|/IE'I) )

we obtain from eq. (7), (8), and (9):

¥ ¥ .
. ] A = -
Re D w''vy D uOJZ

Because of eq. (5), we can write y'* to the left of QZ .

obtain, using eq. (9) again:
2 * .
! - Re D = - j ..
ot | D, v, D, A Mod,

w

Ihtroducing

jz(x(u,v), y(u,v)) .-lz'lé = jw(u,V)

(11)

We thus

(12a)
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we get for the magnetostatic differential equation in the u, v coordinate

system:
Re D v (w,v, |B1/12'1) D AL = - ud (wv) . (12p)

Of the many quantities.that are of interest in the design or evaluation
of maghets, we want to discuss only the transformation properties of two
mofe quantities. - Although both transformation propertiesvare trivial, they
are of suchvpractical'importahce that it ié worthwhile to state them.

Sincé X, yand u, v are‘related through a cdnformal tranéformation,

infinitesimal areas daw and daz are related thfough
— 1 ) . ' i
da, = [z'|" da_ . ‘ o , (13)

With eq. (12a) we obtainvtheréfore'for‘the total current IW paésing

through any given area in the u, v coordinate system:

i.e. total currents passing through conformally mappedvareas are identical.
For the field energy E stored in any given area per unit length of

) ' 2 ‘ :
magnet, we obtain from E_ = f QEW!, Yy daw/Euo and eq.'s (10), (l}), and (13)

: 2 2. é :
i By = 1 12,7 1200 aa, = S 15,17, ae, - 2T,

i.e. conformally mapped areas store equal field energy per unit magnet length.
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2.4,  MAGNETOSTATIC COMPUTER CODE MODIFICATIONS FOR INTEGRATION OF EQ. 12
Comparing eq.'s (7) and (12), one notices two differences:
a. The current density j_ appeafing in (12b) is related to the
current density j, through eq. (12a). The proper current density j,, can
obViously be obtained by modifying the input data according to eq. (12a).
Since in most practical magnets, the current density jz is constant within the
boundary of each conductor, it is convenient to add a small subroutine that
aliows to input E(E) and {E'lg, and the boundary ahd éurrent'density jZ for

each conductor, and that then prepares the input data to give the correct jw'

" That same routine can of course also be used to transform all other boundaries
" from the x, y coordinates to the u, v coordinates. ©Since this routine does

not interact with the integration routine, it is clearly a simple task to add this

routine to the-program.

b. The major discrepancy between eq.'s (7) and (12b) is that Y,
depends on |§Zt, whereas Yo depends on IEWl/lﬁ'l . It would be an easy task
to store 1/|E’l for each iron mesh zone and then to multiply each flux density
value by 1/15'| before finding the value of -y  when intégrating’eq. (12v).
However, since in most integration routines, the value fof the flux density
in a mesh zone 1s derived by appropriate numerical procedures from‘potentials
at mésh points surrounding that zone, it will in general be easy to modify the
algorithm so that it gives Igwl/lg'l instead of |§W1 . Both this and the above
mentioned deifications were incorporated into POISSON5)With very little
effort and without increasing the storage requirements or the execution

time for evaluation of magnets.
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Although we used vector pofenfials for the derivation of eq. (12),
the resulting conclusionsbconcerning the hecéssary modifications of J and -y
ére{ of course, independent of:the'method that was used to derive them,>and>
are vélid'no matter what algorithm is used to actually integrate the magneto-

static equations;

3o Consequénces of Application of Conformal Transformaﬁion to Evaluation of
Iron Magnets
5.1. INTRODUCTORY REMARKS
| When discussing the advantages resulﬁing from using conformél trans-

formationé in conjunction with a magnet analysié program, we will talk
espécially about the analysis program POISSON?L' Although some comﬁents
apply only to POISSON, or a program similar tdvit, most remarks aré_valid no
mafter what‘analysis programAis'used. Also; we will talk mostly about
e?aluation or,design Of quadrupgies; since theirrdiscussion’is répresentative
fér all highér multipoles; | |
3.2.  CONFORMAL TRANSFORMATION OF A QﬁADRUPOLE

To provide a good éuadrupdle.field:in a éircular éperture, it is
.désirable to build a magnet wiﬁh the highest degree of symmeﬁry'possible.

Figure 1 shows the schematic outline of 1/8 of such a magnet, with the 0°

and 45° lines being lines of constant scalar and vector potentials respectively.

Within the aperture, the field'gz'can be derived from a complex potential

N

-]
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T

’

for E(E) has to have fhe form
E(E) = ES 8> (2n+1) E?(2n+l) . _ , » | (1ha)ﬁ i 'i&
© h=0 _ T e
From this follows for the fields:

g; =1 F'(z) = 21 Zo (2n+1) 8 (on+1) ,E o | - L .(l,hb)f‘:,;'”::'f['f'_'

"The transformation

vk | o - o '._"(15a')"'
leads to
EW(E.) = 121) a~2(2n+l) L (W_IE)Qn.*'l ) v ‘ . : | v o (168.).
énd
¥ i , on . : . - |

" When the magnet is a good quadrupole magnet, in the aperture the term
proportional to a, dominates in eq. (14), and therefore dominates also in
eq. (16). But eq. (16) then describes an essentially homogeneous field in

the aperture, and this is of course highly desirable for evealuation as well

[

.as poleface design of a magnet. Before discussing the resulting advantages

in detail, it is convenient to introduce a particular value for the scale

factor k in eq. (15a).
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To get slmple relqtlons for saturatlon con51derat10ns, ve 1ntroduce

Ero as- the dlstance ‘from the- centar of the orlglnal magnet 6 the iron nearest the -
e

v center and require that for ]zl = r ; Iw | = l, glVlng ]B | = IB | ‘there.
Using. for’ s1mp11c1ty a real k we thus get from eq (l5a) for
|z| = r : lw'l =2kr =1 L 7

'Using.thls';n eqﬁ (ISa) ﬁe_éﬁtaih*

= o, '_(5_71?0.)2 5 o, =ro/2 . - . . o .(‘1v5b),. "

;ahd

- (E/ro)z('xypo)l/g SR o ' (15c)

For a 2n-pole, one would use similarly:

W

Py (_ZJré) 3 po_'_=_ ro/n

(_Z/ro )'n,~ = (v/e,

i

. . l
¥ I

Applylng the transformatlon descrlbad in. eq (l5b) to’ the magnet shown -

}1n Flg 1 leads to the convlguratﬂon shown 1n rlg 2 ‘Whlch is drawn to the"
Same-scale as Fig. 1.
When evélﬁatihg a'qﬁadrupole”ﬁagnet; the.quantityqof:ihtérésf'is usually

' the gradlent of the flela Froﬁ eq.{ﬁ»(lo) and (15c) we-obfain

l

Gse)

5 - E: E/rSiz E/p )l/c. ?j f:i; ;v “t:§; :ﬁ”:ili'{  .“ 1 ;» (17a)"'

«
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From eq. (17b) follows the E: is directly a measure for the gradient
in the réal magnet even if the quadrupole is not perfect. To obtain the

local gradient in the aperture region, we can differentiate eq. (17a) with

.respect to z :1L
a B% x d Eé '
— = (EW +2w - —EE— )ﬁ‘o (17¢)

It is clear that if the magnet is a good quadrupole magnet, the
derivative on the right side of eq. (17c) contributes very little to the
iocal field gradient inside the good field aberture.

5.3.  ADVANTAGES OF TRANSFORMED MAGNETS

The most obvious reason for gainihg advantages through conformally
transforming a magnet is, of course, the same reason why conformal'mapping
has been used advantageously for a long time in many fields: The
simplifications of the geometry make many aspects of g 'problem so transparent
that they become outright trivial, whereas they are ofteh qpite obscure in
the original geometry. For instance, it is quantitatively much eaéier to see
what kind of an effect a modification of the magnet near the useful field
aperture has on the field of an essentially homogeneoué-field magnet.than

it is to see what the effect of the equivalent modification is on the |
gradient of a quadrupole magnet. Or, to take a specific drastic case: if

a sextupcle magnet has a circular useful field aperture ro, and a

h .. * . :
~This is, of course, correct only where BZ can be derived from a complex

potehtial, i.e. where y = const. and j = o.



_19_ | UCRL-18173

significant modification of the magnet is made at the distance Bro from

' the center, it is not entirely obvious what its effect is on the second

derivatives of the field.. However, if the circular aperture of the trars-

formed magnet is Py’ the modification in this geometry is then at the distance

: 27'00‘ and it is obvious that this will have very little effect on the

homogenity of the field inside Py allowing the conclusion that thg modification
will aiso have very liﬁtleveffect on the second derivativés of thebfield in
thévoriginal magnet. From these considerations follows that the task of.
dééigning‘a‘multipole magnet with a reasonably pure multipoie field in the
ﬁseful field apérture becomes greétly simplified.ﬂhrdugh a cohformal trans-

formation, particularly since one can apply many of the fairly simple and v

well understood rules that one has for the design of homogeneous field

magnets.

To demoﬁstrate this in more detéil we consider the design of a
qgadrupéle magnet that is required to have a good guadrupole field withingan
eliiptical aperture. Figure 3 shows one gquarter of.an aperture ellipse with
a‘ratio Qf major to minbr axis'of.2.5, with a roﬁgh outline of one quarter
of the'magnet.poleface also indicated. To sée.how far the poleface has to be
carefully designed, we apply the trénsformation_y = k.g?, mapping the
i/h - ellipse of Fig. 3 into‘the 1/2 - ellipse in Fig. 4. Since we know that
in ordér to obtain a homogeneous dipole field, the poleface should exteﬁd at
léast onevquaftef of the magnet gap beyond the ends of the aperture rggion, we
aiso indicate the required polefacé'width. It is also shown how far the pole-
face Would have to go on the lef£ side in order to get a quadrupole that is

symmetrical with respect to the 45° - line (in the original geometry), with
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the resulting better field quality because of the higher degree of
symuetry. Since conformally mapped areas store the same energy per unit
magnet length, it is directly evident how much one pays in terms of stored
energy for the magnet with the higher symmetry. After fixing the ends of
the polefaces in the described manner, one would.then transform these
endpoints into the originél geometry and design the rest of the magnet

structure (coils, yokes, etc.) in the original geometry. Then, as the last

step, after transforming the whole magnet and generating a mesh in the new

geometry, one would evaluate the magnet in the transformed geometry and
optimize the poleface to give a highly homogeneous fieid in the transformed
geometry, leading to a high quality quadrupole field in the original geometry.

There are, of course, some basic differences between true homogeneous
field magnets and homogeneous field'magnets that are obtaihed through conformal
transformation of a multipole magnet. 1In most magnets the coils have a uniform
current density and the air-coil and most air-iron interfaces are straight
lines (the magnet shown in Fig. 1 is an exception in this respect). This is
ofvcourse no longer true after a multipole magnet has been transformed.
Although this has generally very little effect on the design of the aperture
region, it means for instance that one can :not obtain a practical multipole
magnet by transformation of a window frame magnet.

A more signifiéant difference arises when one considers saturation
éffects. When one designs a homoéeneous field magnet.and other cdnsiderations,
such as stored field energy, do not preclude such a conservative design, one
can get very good field homogeneity over a wide field range by extending the

flat poleface significantly beyond the aperture limits. Doing the same in the



> essertlally constant, the Factor I_/p |

:.oaSe>ofna:transforﬁed mnltipo e Vould lead to a badly saturatlng magnet L
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L
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“performance-of_magnebs,
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While the advantages discussed so far are to a large degree of a

gqualitative nature, evaluation of multipole magnets in the transformed

_geometry can also lead to a very significant increase in accuracy. Magnet

evaluation codes usually compute pdtentials at a large number of discrete

mesh poinﬁs that cover the geometry of the mégnet. In the algorithm for the

calculation of the potentials, the behaviour of the potential in the region

around mesh points is generally spproximated by polynomials in the coordinates.

These polynomials are, to cite two examples, of first order in POISSON, and - -
)

second order in SYBIL®), This basic difference is due to the meshes employed

in these two types of programs, SIBYL using a uniform rectangular mesh and

. POISSON a variable triangular mesh. This gives POISSON the advantage of

being more flexible and therefore having virtually no restrictions on the
boundaries of the problem and between different materials, at the expense of
being less agcurate. While these inacéuracies are of very little significance
far away from the useful field aperturé, they can be of importance in the
aperture 1f the field there is highly inhomogéneous. By evaluating. a
mﬁltipole magnet in the transformed geometry, the aperture field will be very
homogeneous for a well designed magnet. Consequently, the potentials are
nearly exactly linear functions of the coordinates, thus practicélly eliminating
this source of error. Furthermore, the local field gradients in the original

geometry are essentially given by the field in the transformed geometry. This

means that in order to obtain the local field gradient in the aperture of

a quadrupole, one has to calculate second derivatives of relatively inaccurate
voterntials if the evaluation is done in the original geometry, whereas one

has to take essentially only first derivatives of very accurate potentials
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if the evaluation is done in the transformed geometry. The cascading of
these two main accﬁracy-improving properties lead to a very significant} C
imprOQement of overall.accuracy: Evaluating a magnet that has an analytical
qﬁadrupole field distriﬁution with -POISSON gave the gradients in the aperture =
région with about 1% errors when the evaluation was‘done:in the original geo-
‘metfy, whéreas the error was only 0.0l% when evaluated in the transformed
geometryf While 0.01% acéuracy is better than normally ﬁeeded, 1% errérs are
more.than tolerable in many cases. It is clear that the accuracy improvement
is even more urgently needed (and obﬁéinable with this procedure) for higher
mﬁltipbles, where even an intrinsically ﬁore accurate program like SIBYL
could not be expected to be quite as accurate as one would need under some
circumstances. A minor advantage results when a multipole magnet is to be
evaluated with an irregular &ariable meshrprogram‘like POISSON.and the |
ejaluation is done in the transformed geometry: Becaﬁsé of the curvatqre
Qf_the poleface in the original geometry, it is véry difficult to generate f
é'good mesh point distribution, while it is very easy to generate a
practiéally perfect mesh in the aperture region of the transformed magnet.

Finglily, it might be worthwhilg to remark that it is possible to éhéck
internal éohsistency and accuracy of a program by compgting potentials and
fields of a magnet in the original and a conformally transformed géometry,

‘and then comparing the results.

.
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: 4.* Limitations and'Drawbacks'f
‘Althbﬁghvit is pOssible to evaluate‘a'transformed magnet géqmetry'

that covers more -than one leaf of a Riemann surface,Athis is clearly neither ~

desirable nor practiéal. Therefore a magnet geometry should be sufficiently.“v _:.f

symmetrical so that the transformed. magnet covers only 360° or less

of a plane. While most multipole magnets satlsfy thls condition, one has to

- realize that for all practical purposes this makes it impossible to evaluate inj*3_ "

the transformed geometry the effects of slight assemﬁly;asymmetries of a
basically symmetric magnet,
It is clear that by transforming a 2n-pole with w ~ gé, the ratio of

the aperture area to total magnet area is much smaller in the transformed

geometry -than it is in the original geometry, ieading to a reduced mesh point ."__--
vdensity in the aperture of the transformed magnet. When using a variable mesh -

- code, this can be partly corrected by adjusting the mesh spacing accordingly;

vith a fixed mesh code, one gains a small advantage because the fraction of
the magnet that has to be évaluated is generally larger in the original

geometry than it is in the transformed geometry. (For instance, one has to

- evaluate l/u of a symmetrical sextupole in the original geometry, but ohly

1/12 in the transformed geometry.) Depending on the details of the magnet
under consideration, sometimes neither one of these gains is enough to com-
pensate sufficiently the reduced mesh point density in the aperture region of

the transformed magnet. We want to discuss briefly two methods that can be

used to ihprove the mesh point dengity in the aperture.
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Instead of using the transformation that produces exactly the desired
mapping, one can use one that gives the desired mapping in the aperture (4'
region in very good approximation, and compresses the transformed magnet far

- away from the aperture. o ¥

For instance, instead of using the really desired transformation

E-z‘ﬁg (_z_/ro)n for a 2n-pole,'one can use the transformation
r, n :
v =—n (1 + e(E/ro) ) with € << 1. 1In the aperture region (|E|/ro < 1)

the latter transformation gives approximately the samevmapping as the foxmer,
whgreas for e({gl/ro)n > 1 ‘ﬁﬁey differ markedly, meking the ovérgll.size of
the second. transformed magnet relaﬁi?e to its aperture smaller than the
firsf. The slight deviatiQﬁ from:the transformation w :';3 (E/To)n -should
not decrease the evaluation accuracy in the aperture if ¢.is not too large;
- also all the gains of gqualitative nature described at the beginning of thié
‘section are preser?ed. Since the‘exact form of the used transfofmation is
knoﬁn, it is of course very easy to take the difference between it and the
transformation_z ~ g? quantitativel& into account. In magnets with extreme
diménsions‘one coulé'even tﬁink of using the tranéformationi

T

w==In[l+m(1 * e(g/ro)n)]v;

A.;omewhat simpler procedﬁie-would be to evaluate the magnet in two
'steps: First in the original geometrye giving fhe overall potential distribution
and all the gross-saturation charaéteristicé, but very poor accuracy in tﬁe
apérture region. In the second step one evaluates, in the ”idéally"
transformed geometry, only a part of the magnet, extending, in the |

transformed géometry, from the center to abdut 5-20 times. the aperture
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dimension. Depending upon whether or not this region contains coils, one
can then evaluate this partial magnet with boundaries parallel or perpendicular
to field lines calculated in the first step, or with boundary values of the

potentials obtained in the first step. Since the bourdaries are far removed

‘from the aperture region, the accuracy of the evaluation in the aperture

region will be practically independent of the choice of the. boundaries or
ﬂhe bouhdary value;. If the saturation behaviour ié of nb in£erest, it will
in most cases not even be necessary to make the first evaluation since one
can guess in general with sufficient accuracy what oné has to do at the
boﬁndaries.

‘Refering to eq.'s (10) and (12a), it is evident that z' ¥ 05 w' ¥ o0

has to hold in all regions containing iron and w' # o has to hold in coil

" regions of magnets. In the rare cases where one would like to use a’

transformation that violates these conditions, it is usually possible to

modify the ideally wanted transformation such that it still gives essentially

-the desired mapping in the area of interest, but avoids the violation of the-

above mentioned conditions, Just as was suggested to compress the outside

portions of a mapped magnet.
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FIGURE CAPTIONS
ot guadrupole in original geometry.
of quadrupole in transformed geometry.
of aperture ellipse and poleface in original geometry.

of aperture ellipse and poleface in transformed geometry.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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