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Abstract

_Baséd on thé usual PCAC and current algebra aSSUmptiqné together
with the assumption that the BBM &ertex'function vanishes as the four
momentum sduared of one of the béryons ig "dispersed" to infinity, it is
shown that the classic SU(6) and current algebra resuits‘for'thevaxial :
vector curreﬁt coupling constant—-GAZS/B,and F/D=2/3—-are the unrenor-
malized &élues. The renbrmalized values are £hen,expressed.in térms of
the unrenormalized values aﬁd certainféide—wise dispersion integrals
anaiogous to those iﬁtroduced by Bincef,'Drell and Pageis. A rough estimation
| of these intégrals~gives Gp=1.22, which is improved to 1;20 if the ex-
| perimental pion—nucleon scattering lengths are used in the cal¢ulation.
The method is general and can.be applied-tb other leptonic decays-of.'
"baryons, two of which are also considered-and the results agree well with

experiment,
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_1; Inﬁrddﬁction

Not lpﬁg dgo, X. URfdakci 1~madevnse of a sidewise disﬁérsive
meﬁhod'to.cuICulate the axial veétdr current coupling constant GA
vand obtained a value»offl.oh . His method is purely theoretical
and 1is easily.applicable to other 1eptoniévdecuys of bharyons where
direct applicatioﬁ ovadler and Weisherger's method fails because
the cross scctions for genéral baryon-meson scattering have not
been mcasured accurutely.: |

"In the following.BardukciYs method will be modified and
gehefaiized'tofthe cqléuiation of the axial §ector curreﬁt coupling

i

constunt GA via-

for the leptonic decay of baryon Bi to baryon Br

the axial vector-curreht_Aa.'.In hccord;nce_with dur-sidewisq
dispersion: approach, we éhall.let'the fouf momentum squared, p2=é,
éf the iﬁitial baryonlBi.takgvon any yalue qﬁove the phreshoid.
The épectfui Iﬁnctionlis thensbhfaiped by'insefting a complete set
df intergediate.states.bepween the'initiul and final stutes,.und.
‘we simplify the_calculaiioh by'neglgptiﬁg all three nndvhighér
numbef hody intermedinte staﬁés. V(Therg,cun bé né,singlc baryon

intermediate state.) This is shown diagrummatically in fig. 1 .
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, Goldberger-Tréimen relaﬁi;;.ié usedfto.réplac;.fhe axial
. vector current Aé by thé meson‘state Ma.' The séectral function
is thus proportiohal to‘iﬁe’product of a BBM vertex and a bary-
on méson‘to baryon-meson scattering émplitude.
The metﬁod of currént.algebra will be used_together with
éxacthU(}), in the sense discuésed later, approximation.v The

final expression obtainéd'is of the form:

Sia ¢ ofia | oq- ‘ -+
G = G -1 -
A : ( A0 i« )/( ! ‘lfia )

- where the index 0 denotes the corresponding unrenormalized quantity,



obtainable from an exact sU(3) calculation, and the I's are dis-
persion integrals.
Section I and II show that the usual éssumption GAO-= GV for

beta decay is not coMpétible with the present theory, and that the

classic SU(6) and current algebra results GA = 5/% , F/D = 2/3

(assuming no representation mixing 5) are the unrenormalized values .

Section IIIX and.IV giveva very crude méthod of evaluating the dis-

pgrsion intégrélé I; and 1, assumiﬁgvthat all the‘baryon magses
and all the meson maSScs'are degenerate, and that the dispersion»
integrals afe dominatéd by loﬁ enefgy'région; The fesult:isﬁ

QA = 1.0 to 1.16 ,'F/D.é'U.SZS to O.GQ,vdependent on the cut off

vulue chosen. Section V takes into account the effect of mass

A

- the experimental values for the pion-nucleon-s wave. scattering

splitting and giVes G, = 1.22, which is improved to 1.20 if we use
" length and p wave effecﬂivevfaﬁge in stead of the.corresponding:b
‘valqes caiculated‘by-Weihbérg's 3 metﬁod;r Furthermore the result
obtained is élmdsp completelj cﬁt éff indépendgnt.anﬁ.iﬁ noﬁvvery.
sensitive tolsmall errors_in{theldispérsion intggrals. Finally.
the"éppendicés,giwe some deﬁails éfvcalculating thé scattering |
‘lenths_and éffective;fanges. | .

Application to other processes are also considered.



We list all our basic assumptions below:

(a). The usual PCAC assumption,

haf(x) = c M) (1)
with »

£i _ 2 fia
€y == (MgrM U G,/

fia (2)
where f, i, j etc always refer_to Baryon states ahd.a, 5 etc to‘
‘meson states and M,}L are the baryon and meson ﬁasses respectively.
"(b).  The Bny vertex; defined in terms of the meson field of the
‘ab0ve equations, goes to zefo when the external mass of one of

the baryons gocs.to,iﬁfinity._ This assumption includes Nambu's
agsumptionxand partially COntains’equation (1), and was used by
Bardakei l‘in his caiculatiphs.

%

(c). The usual cﬁrrent algebra assumptions: If
5 x

A;(x) ;q)_(x)%ggxf;wcx) - (4)

INORERES

are the vector and axial vector currents and

= | vix) Ox ' . (5)



B

& - J' A%(x) ax (6)

their corresponding charges (called'charges and chiral charges

from now on) then the following commutation rules are true:

[Q .Q"j 1f°‘53" . |
[ of]-amd ()
16 @1 et

The first commmtation relatioﬁ-statés_that the cﬁaiges-Qa gen-
erate the SU(3) algebfa. This‘fdiléws f%6m.ﬁhevcommutatiOn
rules for'ﬁhe'k matrics,; The secondnqommutation'réléfi@n says
that the chiral cﬁargéé»Qg aré.vector-QperAtors in the oétet re-
presentatlon of bU(j) The Iast relat1on is a ba81c assumpt1on
of current algebra; it clearly 1nd1cates that the chiral charges
canhot form an algebra.. Instead the 11near comblnat1ons
1/2;(Q + Q5) together form the ch1ra1 bU(}) x SU(}) ulgebra.
(d);'_The dispersion 1ntegrals are dom1nated py its low energy
.régibn; o | |

(e); Same F/D ratio ht the strong'(BBM) and weak vertics.

(L



1I. Ward Jdentity

tla( '2’ p2, k'&.')

Let G he the BIM vertex function, with

f, i the final and initial baryon states of momenta q' and p and

meson state a with momentum k', then the Ward identity in our

[}

notation is, in terms of renormalized quantities,

fia 2 2 2 Fifia, 2 2 .2
, ' yp L k! ) ! 1a(q' P ) +

'ﬂr'm = 1(:“} G , k (8)

+ —-mlglq. /) + (7355“/”“—5{3‘;)-—

fia . . - .
Here rﬂ is the axial vector current vertex function and
can bhe expunded into positive and negative energy components

as in Ref. 1:
Lfia fla f1a ' fla :
Mop = dsdut ! 350w’ DA, (9)
RATIN f o, gl VRN
10(8 b’}k 1C( Zf,)-kM** 1 XS #V )A_
Similarly we write:

Gfia - fm 3 Q fm 35Q.. B ‘,

,_ - - (10)
_ Lfia A .gfia :
= i, .35 Ao+ T B AL

where



W‘Fl{ ‘ ’
Q. = ”25 ; we - s (11)
andv
M.+ b . '
A, = —— (12)

Substituting (9), (10) into the Ward identity we get two equations
by letting ﬁ go to zerb and infinitity; eliminating»fl_ he tween;

thed,ahd letting k'2 go to zero leads to the following equations:
f1a RETRN7 £, fia, 2
(Mt,s o)X = (xsxz/z)fi -C, /ZMi.(H+ (Mf,s,q) -
- uf0E,5,0)) (1)

In accordance with our basic assunption, H; and H; ge to zero

_és s'aﬁproaches infiniiy. - Therefore,

Lim fl"‘(Mf,s 0)3 .Q(-X'A“/Q) . ' (1)
8 - ® 2 f; , :
" Note fﬁat ke'mﬁst-conéidef (3 Aa/2) as one opéraior; Now since
‘;( ¥ Aa/Z) do not form an algebra, we must evaluate the matrix
'.element on the RIS by using the full ch1ral algebra bU(B) x SU(B)
blf we fpllow the usual aesumptlons, that thevcurrents transform .
as the (1;8) and (8,1) representation ﬁhile the baryons form
the 6ctet part ﬁf the (6,3) rebregéntation‘we obtain’the_well

known result,



i fai

a o/ s
(35} /2) g5 =¥5(2/3008 0+ dpy) (15)
Substituting into (14) and noting that

fio . F D

Lo = Mty * depifin

(16)
we get the following asymtotic values:

. F, 2
Lim £, (M},s,0) = 2/3
8 » 00 . :

(17)

. D (2
Lim f1+(Mf,s,O) =1
8 > 00 T

5

If we follow Harrari's point of vieﬁ and say that the baryons

are s linear combination of the octet part of (6,3) and (3,3%),
S . , e

with coefficients Cosw and»Sinw»resbectively, then we get in-

stead of (17), the following asymtotic values:

l|1

Lim kS

+(M§,s,0) = 2&05%&/3
8 > 00 -_‘

(18)

- Lim f?+(M§,s,0) = coszw + sin2m/3
8 » @ :

We shall restrict ourselves to the first point of view. Let

‘us consider ordinarx beta decay. \By’convention,

pnT  F 2 9 D .2 .2
GK“ = 1y, (M, M0, 0) + £ (MG, M, 0)

"
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. We can. draw several conclusions:

‘ (A) The class1c results GA = 5/3 and F/D'are true as s » .

That is, these are the unrenormallzed values. (Assumptlon b. )

. (B) It is not true that b A0 =vbv ’ yhere 0 denotes the cor-

-respend1ng unrenormalxzed value. In fact, the above expressions

tshow that GA = 5/3 whlle G = 1

From now on we shall om1t the 1nd1ces pnT 1n Gp T and nNN -

in gnNﬁ'



I11. Dispersion relation for the axial vector current form
factor: Degenerate mass case.
From the definition of the axial vector current Vertex,b
we obtain on putting both baryons on mass shell, an expression

3

~for the axial vector current coupling constant GR

for leptonic
decay from baryon state i to haryon state f through the axial
~vector current AQ, (Frdm now on we shall omit the subscripts

1+ in 11+ )

fia 8 8 8%\ F ~ (88 8%\ »
G, =—6<iaf)f - ‘10/j<iaf>f (19)

where DeSwart's notation has been used and again the convention

is
G, = f + f for heta decay (20)

For specific physical processes, it is more transparent to use

spherical basis as these have definite quantum numbers. Thus
the evaluation of Gf¥a

A in the degenerate mass approximation

ends up with the evaluation of two form factors fb and fD.

Since we know the asymtotic values of them we can write once

subtracted dispersion relations,

o vdS . | 0
F(y2 F —_ P, s
i

11



fD(M;%,Mizf,o).a fg + 1/%. Im fD»(M?,s,o) (22)

We can see from ﬂhe above two expre881ons that the F/D ratlo is
no longer equal to 2/3, even w1thout representat1on mxxlng,
prov1ded that the con¢r;put10n from the dispersion 1nt¢gra1§
are not zequ v »  o _

- Using (10), (1})vWevcan rgléte ﬁhe spectral'fupctioﬁs Im tF,
1In £2 to the absorptive'partvof £hefBBM'§ertex'functién; The

final expressions are as follows:
“m £7(s) == cil/20. 1m ( k[(s) - K'(s))
| S (23)
Im £2(s) = -:-'-;c:ﬂ‘/zw. In ( K)(s) —KX(s))
v'wheré;’whéneyerﬁthere is no- confusion, we shall write

vﬁ(s)v” i“iﬁ:éteéd of ff(M2,§,6) u;i'

From the unltarxty relat10n for the "meSon form factor" o
Kfql-we get, u81ng stralghtforeward SU(j) manlpulatlons, uni-

tar1ty cond1t10ns for the two reduced meson form factors KF, K

ImK (s) —P{ yae k¥ ( ) + Mb xf(s)*

12

(2n)
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where e is the phase space factor and Maa, Mas’ M2, M°%  are

.the four octet-octet scattering amplitudes and l- , 0+ denote
the particular partial wave. Note that we have only 8 to 8
'amplitﬁdes in the exact SU(3) approximation, because the initial
béryon»is in the octet representation.

We write,

e Ao 2 2
¥ 9 o (1 - a)g}'_(Mi)S) Mb)
K (M%,s,k°) = =
8 - (25)
' A 2 2
D,.2 9. agF"(Mj)S) Mé)
K+(M.,s,k ) = 5 5
rJ ;Lé' - k°

Here a and 1 - a are the usual symmetric and antisymmetric part
of the pion~nucleon coupling congtant, and by convention, F¥ois

norqyliied to one when:all the particles are on the mass shell,

F+(M§,ME,AL§) =1 o ©(26)

To find the corresponding value for F, we go back to the Ward

identity and obtain after some algebra,

rl [+ S 1"2,2 :
2M, ( 351 /2)31 8i5:F (Mj’ui’o)-(27)

| ‘ jis - 2
M, o+ MJ GAH ALa

xféi(ui,uf,o) -

- Note that ( X5Aq/2) is essentially Giga . Y



We can express (27) in terms of reduced matrix elememts, and

ekprppolate'équatton.(é6) to zero'mgés by gssumigg

| 1’*(“2_’,“2"0) = 1 | (29)
:we'ggt,&
Kf(Mz»MQ:bjgci'.(i;aég/}L?

o o . v . v, o
Kf(u?,ug,o) = ag/ M

o o "(30)
F,2 Q. F 2
KO (M%,M%,0) = fog/GA/lgLr ,

'K?(_Mz;M,Q,O‘) ~ fgg/G-A' ,uf

We write out the spectral funétioﬁvagain,-in‘terms of théfme90n
form fagtors: 

O (K0 0,0) - 0 00) ) (1)

L I £ M:', ',0 = it
S Amt () it ) TV

14

El4
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with an analogous expression for the D part. Note that the meson
form factors must satify thé coupled unitarity equation (24).

The eventual problem to solve is thus to find a suitable ex-
pression‘for the K(s)'s and for the four‘octet—octet scattering
amplitudes such that unitarity is satisfied hoth at the BBM

vertex and for the scattering process.



orthoébna1 matt{x that diagonaliies it:

1IV. Solution of the coupled unitarity equation

We shall rewrite .the ¢oupled unitarity equation (24) in

matrix form. Let

1+

with similar expression for M0+,. In terms of matrices eqution

(2&) takes the fofm,
k() - P (sl (9K, ()"

to (a) = Py, ()6 ()]

the:the matrix M is éymmetrid,'since_Mas =M_ . Let vae:the

sa

e e (MO ey

,On.the'ﬁeﬁ»baéisjthe-K m5trix_bécomes'

16

(32)

K' '='QTK . UK =GR (o)

Do
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Let us call the matrix elements of K' Kl and K2 ,

The unitaritybequatiou hecomes

[

Im Ko(s)b P(S)M'(‘S)K'(.S)* (35)

or in component form,

P(s) Ay(8)K ()"

Im K,(s) = _
(36)
' *
, In Ky(s) = P(s) Ay(s)K,(s)
Since /\‘; /\2; are séattering amplitudes, they must satisfy

the unifarityvequhtiqh
Im /\(S) = P(s) ACWNGS (37)

We shall unitarize /\ hy a.scattering length type appro-

ximation. If we define

S |
Ao.leg) = 1o,

i i,
/\1-(80) = Lim L] k'k
0

o~
I
-
~
no
—
(&}
oc
~—

8 - 8
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where so'is the threshold value ot s and whenever there is no
- confusion, k and k' will stand for the absolute value of the
center of mass meson thrée.momenta. k = gd and k' = Lg.(see'fig.l),

then the amplitudes

[
f
P~
w
N’
|

 ‘:‘(Lil)+1“;?;P(s) (39)
, o+/  '1 :

(L1 wk)™h - iP(s)

Satisfx‘uhitariy equation (37), and the unitarity . equation for

K determines

Ki(s) = 120 1-1p06%) 1L 0 (63)]/[1-4P(0) 1 ()i ()]

ki(e)

' K:_i_(Mé:) [i.fif?(v._u‘g).l;m(M?‘f)]/ [Zlvfié('s)vLéJ- - (40)

'Note that at s = Mz, where M 1s the bU(3) mean . mass, the abovel
;equatlons are reduced to two tr1v1a1 1dent1tles, as they should

vaaklng the 1mag1nary parts both 81des we have

s? (s)P(s)/hL S
(x) )"’* [sPLs>P’u_]2;'

Im K (s) - x (M )[1 IP(M ) ‘*1 k(M )k»'(l’z)}

W



P(s)/1y,

(Lp,) " %+P%(s)

Im k1(s) = Ki(MQ)[l-iP(Mz)L3+]

where k(MQ) and P(M2) aré the meéon momentum and phase space

factor evaluated at the'unphysical point s = M2, and are purely
imaginary numbers. In the‘presenm case k = k', hut we kéep the
prime so that the expressions can be easily compared with those

obtained in later secfions, when mass splitting is taken into

account.,
Let
P P
‘11 €o1
® = | (43)
. P p
€12 €29

witQ a similar expression for Qs, where the indices p and s.re;
present the corresponding quantities for the p and s partial waves.
From (34),
: F, ) R | P 2
In K+(s) = ) ;mK+(s) + eg Im K (s)
| ()

- D, p 1, P 2

;m K+(s) = e, In K+‘s) + ey, Inm K (s)
with similar expressions for Im KE(S) and Im K?(s) . Using (44),

 (22), (23) and noting that

19



vmeth0d§.j We beg1n4w1th any resonable values of G

20

- we get
. F D T D

G, = (6,0=-1_-10)/(1 -1 _-1) (45)
F F. o« F _ +F ‘ A

£ 0= £+ G I -1 , , (16)
D DD DT

£ o= fp e G0 -1 | ()

vwhere
, max v
1, 12, 18, 1 cwme| o (i, 60 )2 (ue)
. o p T [s(s-4%)

Equatlons (46), (A?) are our f1na1 results for SU(j)

symmetr1c calculatlonﬁ The Xmal vector current coupl1ng constanm
fia
A

G for any leptonlc decay of baryon B to baryon Bf are glyen

by (ae>, (47) and (19)

Now 81nce the d1hpers1on 1ntegrals depend on the parameter L3

“aS'well as G 1tself, equatlon (45) must be. solved ‘by numerlcal

A and q, calculate

thevsvwéve scatterlng-length and p wave eifectlve‘rahgeeamd,use_

(41) (AQ),(AS) (46) and” (47) to calculate G amdfthe'F/D_?dtio.' ;

By assumpt1on (e ),-,_ L _';

ey



so that the parameter a can be calculated as well. We repeat the
calculation until consistent solution for hoth a and GA are obtained,
The results are ‘as follows: 1If we choose 8 ax = (2M)2 with M = 1.13

Bev we get,

G, = 1.16 F/D = 0.600
If we cﬁoose 8 = (3M)2 we get

max .

G, = 1.00 ¥/D = 0.575

The details of calculating the scattering amplitudes are shown in
the Appendix. We see that the solutions are quite cut off depend-

"ent. In fact, if we extend 8 ax to infinity G, would get well below

A
1.0 ahd it is difficult to get consistent solutions for bhoth GA

ahd F/D « In view of oﬁr lJow energy approximation, a‘cuf off value
of much higher than (2M)2 ié not‘jugtified anyway. Thefefore we
can say that the fesults for an .exact SU(B)Acalgulation.is GA
Aerbably lies between 1.0 and 1.2 and F/D ratidn prbbably lies

- between 0.57 té 0.60. Noting that our unrenormalized values forb
GA anq for theF/D ratio are 5/3 and 2/% respectively, the ahove
résults'aré not bad for such s crﬁde cgléulation.

It will be seen that in the following broken symmetry cal-

culation.thé results are far less cut off dependent.



V. ﬁffect of mass spiitﬁing

'Lgt us repeat the prévious éalculatiqns, taking into account
the effect of mass spiitting, but otherwisevthe underlying symmetr&
érbup»is'still that of SG(j). 'Thts“iﬁplies, along with others,
that the iﬁiefmmediate’gtate Bj, M6 and the final stébe Bf’ Ma
must combine to form pgtets; since Wévassume né‘syﬁmetry breaking
"at the BBM vertex and:thé sqatﬁeriﬁ#:bgbble. :waeQer,_thé scatter-
ing ptocess is now CQngiQerédzas a muitichannel one. ‘The channels

involved are all those communicating with the initial baryon

“state Bi’ If we again{aésume that two‘body»chénnels dominate,

- then the;ﬁumber of chaﬁnélé;is finite, The meson forﬁ'factdrs 

K;(M%,S,O) in.generél'iéJa column matrix witﬁ matrix élementé Kié’l

_ where j,8 is the barxonéméson1defbody chahnei commnnicéting'with

B, The scattering amplitude is an n x n symmetric matrix (see

.t Unitafityaat the BBM vertex requires

appendix 1I) M,

e o _-"f p.*,' o T S -

m M, =My - b

' ﬁefe'P"is the uSualuﬂiagod§1 ph&se space factor. Again we con—

struct Ml-’ M0+ by’a_Scéﬁtéringvlengthitype apprbximaiibn.. Let

St
R

LI



tfoa, jo - fa, jo o

(,,) LE | (52)

(3,)" 9 < acL®d® (53)

- and BU ’ Bl- the corresponding matrices, where LO+ and Ll- are

the scattering length matrices given. in appendix II. Let
Y,, = 1/2;((>BO+ + 30+f) : (54)

with a similar expresion for Yl—’ then

-1, o -1
Moy = P Yo, (1 - iy ) (55)

with a similar expression: for Ml_,_satisfies (51) and is symmetric,

while

‘ 1

”=_P’1(1-iyli)“1fic+ ~(56)
o+ =

» C_»

_where.C+, C_ are cohstant matrices, satisfy (50). To find C
we impose the condition ‘that at s = M? = Mz; KJG’;(M WM ,0) must

give back the exact SU(B) coupling constants gjéif N0t1ng that

Kié.i(Mz M 0) - g », F (M WM ,o)//u8 o (57)

where

S o g ' ' :
P+(“j'¥t'°) ~ 1 | : (58)



o odid
2Mi(wA0

, jis
(Mi+ _MJ.)GA

F_(M,H5,0) = (59)

we have

(@
1}

[l—i PO(MQ)B(;_(M2)} K | (60)

[1-i PO(MZ)E&(M?)J'K? (61)

(@]
[}

where the argument Mz means that the corresponding quantity is
evaluated at the unphysical point s = M2, and the superscript 0
means that all the masses involved are set equai te M, the SU(3)

mean mass. Define

R, (o) = P ¥, _(L¥ )7 (62)

o, (6) = 7y, (1072, (6)

then the spectral function becomes

. fio, 2 fia , 2/, ' ‘ ‘
In f (Mf,s,O)_ = (Mi+ Mf)(xA /L{_d/ngia X (6M)
Z R{a,JO(S)CJb’i - R(i;a)Jé(s)CJé)i

36 - + + -

As we have pointed out before, the coupling constants gfia’
810 etc are charge. independen,t ones (like Exng’ gZEK) while the

axial vector current couplihg constants are basically dependent
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on the charge states of the baryons, the ratios}Gii§/g is no

jis

longer a constant, but is obtainable by an. isospin analysis. Let

g316 be the charge dependent coupling constant correponding to ngé’
then,
]16 = Iﬂ c(j,o, 1)g ‘ (65)
(example: gpnﬁ = ﬁfSi‘fj§7g)gNNn )
where . o e c(j,8,i) are Clebsch-

Gordan. coefficients of the isospin group. Thus,

i oyt . (66
Gi /gjiS = c(J,b,1)bA‘ /c(f,a,x)gfia (66)
From which,
s .
fia fia pfie fiey - _ '
Gy =Gy -1/ -1,.77) k (67)

where,

. { "n+l- fa,jé . joi . .
N T RO i e(j,0,i) \
Ifla, M.+ M zuu/an' gs Rz . (68)
. T Z {?(s—Mi)c(f,a,i)gm

]5 sn

sﬁ+1
' Rfa,jé 361 316

fia (M . M )M?/2“':§i_ ds_n10+ ga- AO (69)
3o (e

ot
[}

8
n



Some explaination must be given to the summation. over n.
Suppose m. channels are involved. Let us denote the channels
by AI’A" e Am in order of increasing‘threshold valuesfsl,

Syr eee Sy When.sl<:s < 8y1 only Al is open.and Rl—’ BO+ must

be 1 x. 1 matrices corresponding to. the leading 1 x 1 submatrices

of L,_and L, ; and C_, C_ are one row column matrices cor-
0

responding to the first row of the column matrices KS , Ko

When 8, 8 < sslboth-A and A, are:open.and Rl;’ R, are 2 x 2

1 20+

‘matrices corresponding to the leading 2 x 2 submatrices of L, , L

1- 0+

and C_, C_ are two-rew column matrices corresponding to the first

N +
o 0

two rows of.K+, K~, and so on. VFinally when all the channels '

L,,» K,» K_ are used, .

are open (s >'sm) the:full matrices Ll—’

The summation over n is the summation over the above pieces. S 1

is thus an arbitrary cut off value.
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Vi. Results and conclusion

L are calculated using a

In appendix II the matrices Ll-’ 0+

method very similar to that of Weinherg's °. The input vaiues of

GA and « (note that the dispersion integrals contain GA and a) being
1.16 and 0.635 (F/D ratio = 0.575) respectively. These trial

values are suggested by the results of section IV, The coupling
constants are calculated with exéct sU(3), as in Carruthers 6.

Three decay processes are considered: ordinary beta depay; jf'3~a/\

and /\'?’F' . The results are listed below, together with their

respective unrenormalized values (according to the presesnt theory).

Process F part . D part G G

AQ A
n > op 1 B 1.667 1,22
=S A | 3/{6 -1/(6 L4508 - Lu1L

A>op -3/{6 -1/{&  -l.225 . -1.01

A cut off valﬁe'of (5M;)2 has been used. If we incréase the cut
off value fo infinitx, or decréése it-to-(jMi)Q, the results
will change'by leés ihgﬁ-j per cent.. Sé'the calculﬁtion is rea-
sonally éﬁt of f indeﬁeﬁdent;v

If we.like'ye'cah’répeat tbeieﬁfire calculation, ﬁging‘GA =
l,22»as trial valne;' Bﬁ? tﬁis,is hard1y.necessafy since 1.22 is
aiready quite néarvto-the first trial value GA;Iflé and the results
are not too sensiti?e fousmall errdrg'in the dispersion integrals.

‘in the>firsﬁ case;(Beta decay),_ﬁé found that SO pef cent
of'the contributi6n t; the;dispersidn integrals.comes.from the

elastic region.' Since the 8 ane séattcring'length and p wave
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effective range for the I = 1/2, aN to 7N scattering are known

]1-

is worthwhile to evaluate GA again, using these_experimental

experimentally ( LOJQI.O y Ly & -20"BeV‘j in our units?’) ), it

values, while keeping.all other scattering 1engths.and effective

- ranges as those calculated in appendix IX. In thisiway we found

GA = 1.20 . The change 0 02 thus represents; roughly the effect
of 5U(j) break1ng dt the BBM vertex and the scatterxng buhble.
(The scatterxug lengths given in appendlx II is calculated “1th
"mess‘ccrrected" SU(}), see also beginning of section V,)
fhus.we see,»for‘cetavdecay at least, agreement with ex-

periment is very good. Ve can check the results for the other

two cases by-calculating'the leptqnic branching ratio,‘using the

28

valﬁes of Gila calculeted‘by_our method{ ‘(See, eg; Bell's
lecture‘7.) @he'reSﬁlts areilisted below:
- Branch1ng ratlo‘
_process . present method ' otheru~~ Y exPefimemtal
=SSN 5% 10 ,3 o ‘.'6_.0 x 1072 an 4 1. x 1070
A= 1_.09' ;’: 1w U496 x 1077 1.0+ 0.1 x 1077

The resu]ts under "other method" is obtalned by u31ng G

'calculated as follows. flrst take f + f = 1, 18 and F/D ratlo

=:Q}5 as known experlmentally, then calculate G ;,'assumxng-‘

. exact bU(B)7 - We see that our method does glve better agreement
v “1th exper1ment thanlthe s1mp1e m1nded theory, for the decay
-':’_‘—'__;, /\ ! and for the decay /\-?P the resultsvobtame_d :

,by‘both methodsare_compatible withvexperiment.

fio-
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Another.merit of the present method is that the result is
stable against small errors in the dispersion integrals, which
contain the scattering amplitudes and meson form factors, both
cannot he determined accurately. Thus, for example, an error of
say 20 per cent in I; changes the value of GA by ahout 0.03 .

The axial vector qurréni 6oupling constant for all other -
processes can be calculated by the same method. In some cases it
is more tedious as the.number ﬁf channels invélved incréaseé to

five.
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Appendix I. [Evaluation of the octet-octet scattering amplitudes

3

using Weinberg's low energy theorem.

Consider the scattering of Bj(q), Mg(k) into Bf(q'), M“(k‘).

The S-matrix element is given by:

(S-1)g; = J d*x d‘*y (ﬂi‘%)(ﬂ;wz) x

cké(*lﬁx
X <§(3)‘T{¢() 435((}) ‘3 %>(;zv)5 Yww’
' j%ﬁjé
= - L(ZW) 5‘1‘-(Z+ﬁ é ﬁ\) ﬁ) T Z) (Ai)

(zrr) \[4EE ww’

Mg Mj

Curr?nt algebra gives

.iﬁ’g;iﬁx '

X

Ry () e
Sk <§czf>{-r{f\ 9, A/L(w} /3(3)>

x C)%C,Bz,{ d"ty (/L ﬁ)(ﬂo( /02) ﬁg zﬁ)(

ol T 8 B fY] - L,

- e [ VO[30 EHE (i) uf-£)



: | o 2,2
If we take the gradient coupled Born approximation and let k , k'

go to zero (this implies both low energy and small meson mass,
- the latter uSsumption is unfortunately not quite justified except

for pions) we have

’i(%'} ,_I,“f%géulz) : | - _. . (A?))

— -_," zd,o{ﬂégz 5/7"%—/'”4/’
%{Z) (MJ‘/'M)(MfH’/) }‘Z | 3/(% -+

fo(,é . - | | |
it % /3/-,@ . a&ﬂja(z)wL-

(%%MJ(%+M)‘il v w- M

5l By o) 8

, ﬁete Zﬁa}3§‘ are 6§£et;§ct§£iégatt;ring'fagtorg_ﬁafbe determined_
Jater. ST o o
| "Thé"fifét térm:gﬁrfegponds\fé‘tﬁé direct;baryOn octet pole;
“the seéohd term.éorfeégbﬁds'td‘tﬁe exchaﬁged £aryonv6é£et pbie,
';and the 11na1 term éorresponds to the equal time. cnmmutator.' In
‘f;our calculatlon, the 1n1t181 baryon B ,1s 1n-the octet respre- -.
'éentdt1on, theretore under our assumptxnn that thére is no %ymmetry
'breadlng at the BBM Vprtex and the scatterlng bubble, the inter-
'medlatevburyon—meson states,BJ Mb must couble to form an octet. 
_Simjiérly' - the. f1nal baryon me son stateq Bf, | MQst-coﬁplelto:':

'form.an octet. Hence the scatterlngvumplltudes are of the octet—
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octet type and is therefore a 2 x 2 symmetric matrix with matrix
elements equal to the odd-odd, odd-even, even-odd and even-even
amplitudes. Furthermore, the direct pole must he a baryon pole,
The exchanged pole can be a baryon octet, a baryon decuplet, or
anythiﬁg. However,_it can be shown that the contribution from the
exchaﬁged decuplet to_the scattering amplitude is one order in k2
sméller and therefore negligible in our approximation.

We write in the usual way,
T_,fan.jb - qu,jé' + ‘1/2._(}4'_* K')B‘f“"jo' (A;*)

where A, B are scalar functions. We can find the contribution to
A, B from the direct Born, crossed Born>and comnutator terms by
the usual method. After some straightforeward bﬁt tedious algebra
we Ilnd (the subscr1pts d *, c sténd for contibutiohs from the

dlrect Born, crossed Born and commutator term)

N L“’Jé g2 (M .44 )(s-M2) (M +M_)(s-M2)
RCIP LI d : . p SO Sl - 1.\ (a5)
d - (MJ + ui)(ufaf Mi), _ 2(s-M2) - | 2(5_2‘{2) _
o L fa,§6 2 2 2,)
aAfendd 2y  g ' [(EJfMD')(u—Mf)+ (M o M )(u-MJ)Z(A6)
x . (MJ. + Mi)(Mf_* Mi)l 2(‘1-1\42.) 2(\1—1&2') | j 0
ot s | .
. S el _ _ M +M M.
ags o Ea e - s+MJl§4f+MjMp+\{QMJZ (a7
e "(Mj*-Mi)(,""f‘f M) o=} '
s - - _ p
- t fcf "6 ‘ 2 , V .. . .
e, 3o _ 4e “rd0 g _ uu«;JMﬁ MEfMpr+M M (a8)
x N (MJ+Mi)(Mf+Mi) U'Mi. » _
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where é and p' denote: the direct and crossed poles.
To find the Z's, we assume exact SU(3) but for the time being
keep the subscripté to the M's. Then fd;SX ’ j6=88/, where B’éa or

s. There are all‘togefher gix independent factors:
5 = 20/3.0%
,as8 . o S 88

4y 7‘4I§h(lfa) =44

758 = 12(1+a)2

(A9)‘

- 2(ha®- 6x 43)

43 < /3. (ua®- 28w 4 9)

the:phat?z depends on the parameter a«.- To find corresponding

expressions for the commutator term.we note

. “i/éf(g!;k2véf;63<f(§!5lyg(é5ligéij};   ,QN5 

o~ "-.‘F"f)‘if% Iy ﬁ"‘q%% w(a) (-2 13) (1) /2

- where £ = 1.0 and fa;s 3.71 -are -electric and magnetic moment form

- factors, and ﬁ?., ;?téﬁgud for the F—spiﬁ operators for the meson



(A11) we have neglected a term containing a factor (Efk').(k+
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octet and the haryon octet. Using Gordan decomposition we can

write the iight hand side as

G(q'){—(fe+fm)(K+K')/2,- faatea) (ke ) /204 MJ)} u(q) x
x‘(igy.ﬁ?)

Comparing with (A4) we get,

aa-

‘ 2 ‘ . .
a (1 01,) ——2 = s - -2 ) (aw0)
e m , 2 ~
(MifMJ)(Mi+Mf)GA :

o
ot

f

aa m 9 o o, 2 2.7 2(
At = * ssZMj+ ) &“S - [,(Mj + Mp) - (W +/Aa)J x

2 | L2 2

R (MJ+M1)(Mf+Mi)GA |
8s _.as - ”ss” L pd8 N
éc,t - Ac,t = Bb,t = Bc,t =0 (sz)

where }Lis the F-sﬁin~dberator for the combined baryon'and'mesbn

octet and the subscript t reminds us of the fact that we'afe

working in the t channel. Only the odd-odd amplitude is non-

M- B

zero because of the presence of the factor F .F'. 1In deriving

k')

in consistency with our low energy assumption,

In accordance with the usual assumption in current algebra,
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the commutator of two current octets is again an octet of currents.

Therefore

F = F = .1‘1 : = 3 . . . . (}\13)

Finally using the crossing matrix in the octet-octet space6 we can

find the contribution}frbm the commutator to the scattering

~amplitudes in the s'chahnel:

e L |
. ?(fef fé)g; i - o (Alk)v
(Eﬁf Mi)(¥i+ nf)GA' - '

Do

8ss _ paa
BT

aa

T S S A P S !
;f_éfﬁg(égjgli(MT+Mj)e(pa L F N B (A15)
:Bs(Mifo)(“i?Mj)(Mf*MJ)GA

B2 =A% o0 o (A16)

The partial ane-gmplitudes.fL"fis‘related to A, beY%o‘

f '" % 8iW ( ) /2(L' M )1/2 iA *. (w ﬁ4§_£)ﬁl'. . (AIB)V»'

| e i oM, )
Tt = srw (L-M )1/2(h' -M )1/3{_ A+ (W ~J——1)B} (A1)

£, =1/2. S {f (x)l (x ) + f ( O ﬂ,,l(x)j - (an
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The partial wave amplitudes must satisfy the unitarity equation

3 yo% Y |
In fu = Z knfﬁin £, (A20)
' n

wﬁere kn.= LE?J ié the momentum of the intermediute:state in‘their
center of mass frame.

_it is‘more customary to define the ﬁartigl wave amplitude yzg
related to the above partial wave amplitudes by

: / / o
Mw- = w/z.f‘yx , (a21)

i+

and satisfies the unitarity equation

/ ' *
v Im uaj = Z pmkii” M i”y - (A22)
' n .
" with
P = 2k /¥ | | | (A23)

80 that (?n-a 1 ag 8 -> ® .
We define the svwaéevscattering length and p wave effective

range L0+, Ll- » by the following equafidns

ooyt

AV | | _
My, (_'SO) i L, o - (a24)
2y - 8/ |

M,_ (sy)) = Lim kk' L, _ S (a25)

Tk, k=30



where 0 denotes thé-thféshpldﬁvalué,'&

?5b1e8 1 and 2 giie the:valﬂeé of L0+’ L1— ’ as well as

their eigenyalues, for different values of a. The mean masses.

are taken as M=1.13BeV, (t=}.49BeV and G, is 1.16 .
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Appendix 11 .Octetooctet_séattering amplitudes with mass splitting.
We shgll give in ﬁhg following section expressions for the
octet part of thé barybh?meson s?atteripg ahplitudes, taking into
account the effect df mass éplitfing,'bﬁtlwith coupling constants
and the contribution ffom thc commutator asvgivén by exact SU(3).
The first approximatfqn.may'be controversial. Fréuﬁschi and
Dashen 1 have shown,»ia'a‘thebretical calculation bhased on self-
cohsistency; ‘that the couplfhg shifts in broken‘SU(3) is'typically.
100 per cent of the values glven by exact SU(B) Kim 12 in an
analysis based on KN scatterlng data, showed that NAK and N3K
coupling constants are consistent with those obtainéd from exaét
‘.SU(j); céntrary to Dashén énd ErautSChi's conclusion. In view of
this uncertainty we shall carry out the,éalculatibn with coupling
constunts.as given by exaéf‘SU(B)G; The Scattering amplitudes
will he written in the form of symmetrié m x m métrics where m is
.the number of comMunicgting'tﬁo{quyvchannels. The métfix elément

fa, jo

M represents the sbattefing from_j;é to f,a. We define;'as

in uppehdix I,

fa,Jé fa,Jé :

M, ( 0) - L (A26)
Mgf"_’J"(;s-O) .."Lim. Kk L“’"Jé (a27)

. kk'-}O.

All the results in aPPend1x 1 can. be carried over to this section,
with the 1ollow1n mod1f1cat10ns

(i). The unitarity equatidn~become$
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* _ ,
Im Mﬁ - My P Lf@+ | . (A28)

where-P is a diagonal matrix. If the channel is open, the corres-
ponding matrix element ﬁ,is as defined in (A23), otherwise it is
zero. The * stands for complex conjugation.

(ii). The factors Zm’Jé ZIQ’JO -Zia’Jb

, , can. be expressed in terms
d , X -

)

aa Z&S Z:ﬂ

of the nine factors Zd v Lo

‘(note that from.(Alh)-(A16),,

Zza = z:s =1, Z:S = 0 ) by noting that 6

,4.{3)(8 .8
CANE i o

,u%> are isoscalar factors as we are neglecting

g8 8

/Q}Q/j

! | /- .
/“3’) Zﬂx#x (29)"
) A

i
¢

where 8 8
, j 5

‘electromagnetic effects. In particular, if we kéep only the octet

A

part of the scattering amplitude the sum extends over 2%% , 2%%

and 22® only.

Using (45) to (A8), (Alx) to (A19) and (A29) we can caleulate
the s wave scattering length and p wave effective range. These
‘are put into the form of symmetrie matrices: (We use GA ;1.16',

a = .635)
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T TR o N— .

1 =1/2, ¥ = 1

; O+

N
/

1=1/2, Y

0+

: fl

—

—

-27.057

1375

(302

T
'V5:772f-

4,167

257
670

 ;f,)o13}:'

,:_. 113;117 -

NK
1.779

-1.522

. -.882

-.932

-.94uk

. 259

- ZK
2,031
2.457
=6.609

-1.07%
C1.71

1,235

. [
.-

zK

~6.218 )

C3.91%

C0.61h

2,226

,-2;254\

R 3
2,361

—1.5Q9 -
_ )

—.206\

- BeV

Ber
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Il = 0, Y = 0

T - NK  AM . EK
Cah.618 0 1,955 L.497 e

g R, TR BeV
1- (R Ceu6 . 2,087

. . ' ’ . ..22' | ‘ .b',_ea
N )

,(2.641 ' -1,553? 368 '~.77§\,
,980  =.500 .8k

04 o "-,_,_11,9 . .616




Table ¥ :

"eigenvalues for different values of «.

- 88

" as

Octet-octet p-wave effective range Ll— and its

eigenvalues

1

2

-.401

035

.41

~1.285

f;1.73§'v

C-10.419
210,314
fgidgié§ _

' 210.076

-9.9kk

"Table IT : 0cté£§6é£et‘

eigenvalues

TR

. as.

s-wave scattering length L

. 88

11.43%
11.455
11,481
115515

11.556

-9, 488

-9.347.
-9. 283
-9.216

~9. 174

0+ and its

'forfdifferent values of a.

eigenvalues

1

2

615
.625
635
645
655

C1.7ekn

,_-1‘691 :;

f1{675

1.660

o +3293:5'

i

To301
o295

- 1,548

fifﬁlé:'
'.'1;6#3 ::
:1.674‘.

| :1,950'f'
S 1.949

1,950

1,950

 1;95&;‘

1.322 -
1.339
1.354

1.368

1.380
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Figure Caption

The axial vector current vertex and its absorptive

part.
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