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Abstract 

Based on the usual PCAC and current algebra assumptions together 

vTith the assumption that the BBl1 vertex function vanishes as the four 

momentum squared of one of the baryons is IIdispersed ll to infinity, it is 

shoHn that the classic su(6) and current algebra results for the axial 

vector current coupling constant--GA=5/3.and F/D=2/3--are the unrenor-

malized values. The renormalized values are then. expressed in terms of 

the unrenorrnalized values and certain side-wise dispersion integrals 

analogous to those introduced by Bincer, Drell and Pagels. A rough estimation 

of thes.e integrals gives GA=1.22, which is improved to 1.20 if the ex-

perimental pion-nucleon scattering lengths are used in the calculation. 

The method is general and can be applied to other leptonic decays of 

. baryons, tvlO of which are also considered and the rcsults aeree well with 

experiment. 

Research supported in part by the Air Force. Office of Scientic Research, 
Ofnce of .Aerospace Research, United States Airli'orce, under erant No. 
AF-A1?mn.-6e;"1/+71 and in part by U.S. Atomic Encr[:y Commission. 

+ 
Based on a thesis submitted to the Graduate Division, University of 

California at Berkeley, in p~lrtial fulfillment of the requirements for 
the deGree Doctor o.f:' Philo~iophy. . 
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I. Introduction 

Not long ugo, K. Uardakci I made usc of a sidewise dispersive 

method to calculate the axial vector cnnrent coupling constant CiA 

and obtained a value of 1.04. l{is method is purely theoretical 

and is easily applicable to other leptonic decays of baryons where 

direct application of Adler and Weisherger's method fails because 

the cross sections for glmeral baryon-meson scattering have not 

been racLlsllrel.l accurutely. 

In ttw fQl1owill~~ finrdul<ci's IIlethod wil1 be modified untl 

general ized to, the cuI cit! a,tion of the axiul vec tor curren t coupling 

constant G!ia for the leptonic decay of baryon Di to baryon Dr via 

the axial vector currcnt Aa • In accordarLcc with our sidewise 
. 2 

dispersion approach, we shall let the four momentum squared, p =s, 

of th~ initial baryon B. take on any value above the threshold. 
1 

The spectral function is then obtained by inserting a complete set 

of inter~ediate states between th~initial ~nd final states, and 

we simplify the calculation by neglecting all three anti higher 

numher hotly in termHd iute sta tea • (There, can be no single buryoll 

,interlUetliate state.) 'this is shown diagrarJtllHtically in fig. I • 

: ;'~ .... , 

i> ' 

, 
f. 
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Goldberger-Treimen relation is used to replace the axial 

. ex . 
vector current A by the meson state M. 'fhe spectral function 

C( 

is thus proportional to the product of a BBM vertex and a bary-

on meson to baryon-meson scattering amplitude. 

The method ~f current algebra will be used ~ogether with 

exact SU(}) J in the .. sense discussed later, approximation. The 

final expression obtained is of the form: 

3 

where the index 0 denot~s the corresponding unrenormalized qtlantity, .. 



obtainable from an exact SU(l) calculation, and the I's are dis-

persi~n integrals. 

Section I and II show that the usual assumption G = G
V 

for AO 

beta decay is not compatible with the p~esent theory, and that the 

classic~U(6) and current algebra results GA :: 5/3 , F/n = 2/3 

(assuming no representation mixing 5) are the unrenormalized values 

Section III and 'IV give a very crude m~thod of evaluating the dis-

persion in~egrals I and I , assuming that all the baryon masses 
+ 

anrl all the meson masses are !iegenerate, and that the dispersion 

integrals are dominated by low energy region. T.h:e result is: 

G
A 

= 1.0 tiO 1.16 ,Fin = 0.57.5 to 0.60, dependent on the eut off 

value chosen. Section V takes iato accoun,t the effect of mass 

spl i tting &n.d give s G A = 1. 22, which is improved to 1. 20 if we use 

the experimental values for the pion-nucleon s wave scattering 

length and p wave effective range in. stead of th:e correspon.ding 

values calc,dated by Weinberg' s 3 method. l"urthermore the resul t 

obtained is alinost completely Cllt off independent aB!d Ls n.ot very 

sengi tive to small errors in' the dispersion integrals. J<'inally 

the appendices gi~ some details of caiculatin:g the scatterin.g 

len ths and effec ti veranges. 

Application to other processes are also considered. 

'-' 
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We list all our basic assumptions below: 

(a). The usual PCAC assumption, 

with. 

C
fi = 
<X 

( I) 

where f, i, j etc always refer to baryon states and <x, 6 etc to 

5 

meson states and M,ft are the baryon and meson masses respectively. 

(b). The n)rn vertex, defined in terms of the meson field of the 

above equations, goes to zero when the external maSs of one of 

the baryon!;; goes to infinity. This assumption includes Namhu's 

assumption and pa.rtially contains equation (I), and was used by 

Bardakci 1 in his calculations. 

(c). The usual current algebra assumptiollis: If 

are the vector and axial vector currents and 
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6 

(6 ) 

their c6rresponding charges (called charges and chiral charges 

from now on) then the following commutation rules are true: -,..! 

[Qa ) Q~] = Ha~~Q(/ 

[Qa 
, Q~J = ifClf>~Qg (7) 

[Q~ ) Q~1 = ifa~~Qi' 

a The first commutation relation states that the charges Q gen-

erate the SU(3) algebra. This follows from the commutation 

rules for the-').. matrice. The se~ondcomniutation relation says 

a -
that the chiral charges Q~ are vector ~perators in the octet re-

::> - . 

presentation of SU(j).The last relation is a basic assumption 

of current algebra; it clearly indicates that the chiral charges 

cannot form an alg~bra. Inste~d. the .. linear combinations 

1/2. (Qa ! Q;) togeth~r form the chiral SU(l) X. SU(3) algepra. 

(d)~ The di.per~ion integrals are domiriated ~y its low energy 

region~ 

(e). Same PID ratio at the strong (BBM) and weak vertics. 
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II. Ward Identity 

Let. Gfi<X(q,2, p2, k,2:) be the BUM vertex function, with 

f, i the final and iui tied baryon states of mOlU(>nta q' and p and 

meson state a with momentum k', then the Ward identity in our 

notation is, in terms of renormalized quantities,2 

k ,urf ia ( I 2 2 k I 2.) r- 5,lL q , p , 
'CfiGfi<X( ,2 2. k2.) = 1. q,p, + <X 

llere r;~<x is the axial vector curren·t vertex function and 

can be expunded into positive and negative energy components 

as in Hef. 1: 

Similarly ~e'write: 

= iK fia ~ (l + iKfia .." 0. ,+ 5 ~'+ - 05 -

wbere 

( 8) 

(9) 

( 10) 

7 
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• + P 
W2 n+ " - ( 11) .. 

2.W = 8 

and 

1\+ 
M.+ P 
1- ( 12) = 2M. , 1 

Substituting (9), (10) into the Ward identity we get two equations 

by letting ~ go to zer6 and infinitity; eliminating f l _ betwee~ 

them and letting k,2 go to zero leads to the following equations: 

'( v ~ «/2) Cfi /2M (lI.fia(M2 ) 05"' .. , f" -' .• I of's, 0 -1 IX 1 + 

( 13) 

In accordance with our hasic assumption, II and H 
+ 

go to zero 

as s ~pproaches infinity. Theref~re, 

Lim 
s - (D 

Note that we must consider ('?15A IX /2) as one operator. Now since 

( (f 5AIX /2) do not' forman algebra, we must e~aluate the matrix 

elem~nt on the lUIS b~ using the full ~hiral algebra SU(3) x SU(3). 

If we follow the usual ~esllmptions, that the currents tra~sforUl 

as the (1,8) and (8,1) representation while the baryons form 

the octet part of the (6,3) repres~ntation we obtain the well 

l<nown resul t, 

,"" 



Substituting into (14) and noting that 

(16) 

we get the following asymtotic values: 

]0" 2 
2/3 Lim f 1+ (M f ' s, () ) '" 

s ~ 00 ( 17) 

D 2 IJim fl+(Mf,s,O) '" I 
S + 00 

If we follow Harrari I s point of view 5 and say that the baryons 

are u linear combination of the octet part of (6,3) and (3,3*), 

with coefficients Cosw atid Sinw respectively~ then we get in-

stead of (17), the following asymtotic values: 

Lim 
s ~ 00 ( Us) 

Lim 
s -t <D 

We shall restrict ourselves to the first point of view. Let 

us c~msider ordinary: beta decay. By' convention, 



"We can. draw several conclusion.s: 

(A), The classic results GA = 5/3 and p/n are true as s ~ 00 , 

That is t these are the unrenormali zed values. (Assumption b,) 

(B). . It is not true that GAO =GV ' ,where 0 denotes the cor­

responding.unrenormalized value. In fact, the above expressions 

show that GAO = 5/3 while GV 
.. 1 

From now on we shall omit the indices purf in GpnT 
A 

and nNN 

. in 
gnNN' 

. '. 

10 

.. 

." 



Ill. Dispersion relation for the axial vector current form 

factor: Degenerate mass cuse. 

l"rom the defini tion of the axial vector currf>nt vertex, 

we obtain on putting both baryons on maAS shell, an expression 

. .fia for the axial vector current coupling constant hA for leptonic 

decay from baryon state i to baryon state f through the axial 

vector current A,a. (l"rom now on we shall omi t the subscripts 

( 19) 

where DeSwart I s no tation hGsbeen used and again the convention 

is 

for beta decay ( 20) 

l"or specific physical processes, it is more transparent to use 

spherical basis as· these have definite quantum numbers. Thus 

the evaluation of G!ia in the degenerate mass approximation 

I~ D 
ends up with theevaluatio~ of two form factors f and f . 

Since we know the asymtotic values of them we can write once 

subtracted di~persion relations, 

f F(H2 '12 U) t'lt' At1f,Di' :: 0 
.~ ds 

+ 1/ n. --s---}d"'~""-
1 

F 2 . 
1mf (U j , s,O) 

( 21) 

11 



. \ 'to' 

D 2 Z D I ~ ds f (Aff,Mi,O) = fO + 1 1t. ,'---~ 
S - M~ 

J 

( 22) 

We can see from the above two expressions that the F/D ratio is 

no longer equal to 2/), even without representation mixing, 

provided that the conltri bution from the dispersion integral s 

are not zero. 

Using (10), (13) we c~n relate th~ spectral functions 1m fF, 

1m fD to the absorptive part of the BBM' vertex fUnction. The 

final expression.s are' as follows: 

(23) 

where, whenever there ~s no confusion, we shal1w~it~ 

f(s) in stead of 
'" 2 " 
'f(M ,s,O) 

Fro~ the uni tari,.ty, r~lation for the .l'me8qnfb~mfactorll 

Kfaiwe get, ~sing straight,fOreward s,ut;) manipulations, uni­

tarity conditions for the two reduced ~esonform factors KF , KD: 

. , . 

, 1<'()' OS,a·a . F ( . * 
1m Kt s, =\'l'~+ K t 8) + 

12 
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\ I 

where p is the phase space factor and Maa, Mas, Msa , MSS are 

the four octet-octet scattering ampli tudes and 1- '. 0+ denote 

the particular partial wave. No te that we have only 8 to 8 

. amp 1 i tudes in the exact su( 3) apI)roximation, becausE' thp. ini tial 

baryon is in the octet representation. 

We write, 

}O' 2 2 
K (M.,s,k) = 

:: J 

D 2 2, 
K (M., 5, k ) = 

:!: J 

)A~ - k
2 

agF!(M~'8, ),l~) 
.1 

Here a and 1 - a are the uSllal symmetric and anti symmetric part 

of the pion-nucleon coupling constant, and lJY convention, )<,+ is 

normalized to one when, all the particles are on the mass shell, 
I 

(26) 

To find the corresponding value £or F-, we go back to the Ward 

identity and obtain after SOme algebra, 

(~2Aa/2) .. - 2 2 
Kj6i(M~,M~, 0) 

2Mi g '0'1" (AI .,M. ,0) ( 27) = Jl J 1 J 1 

- J 1 M. + M. G
jiO )12 

1 J A I) 

Note that ( ~5Aa/2) is essentially . ! . i.' 

13 



1.4 
.j: 

We can express (27) in terms of reduced matrix e lemeI\!ts, an.~ 

extrapolate equati:on, (26) to zero mass by assuming 

( 29) .. 

KF(M2 A{2 0) 
, 2 

I'J ( l-a ~g/ jJ./ + ' , . '"'v 

KJ)(M 2 M2 Or 
') 

'X,.- ag/ j..t. .... 
+- " ' 

K:(M
2 

,M
2

, 0) 
F"2 .~ 

fog/G,A pL ,-..., 

K.~(l{2 ,M2
, 0) 

}). .2 
?>c. f· g/G ).t.-O . A . 

We writ.e out the spectral function again, in terms of the meson 

form factors: 

t '. ( 
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wi th an. analogous expression for the n part. No te that the meson 

form factors must satify the coupled unitarity equation (24). 

The eventual problem to solve is thus to find a suitable ex-

.. pression for the K(s)'s an~ for the four octet-octet scattering 

amplitudes such that unitarity is sa.tisfied both at the BRA{ 

vertex and for the scattering process. 

f 

\(. 
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IV. Solution of the cotipled unitari~y equation 

We shall rewrite the coupled unitarity equation (2~) in 

matrix form. Let 

= 

Maa 
I-

Mas 
I-

Ml .... = 

Msa 
I- MSS 

I-

wi th similar expression for ~iO+. In terms of matrices eqution 

(24) takes the form, 

N'ote the mutrix M is symmetriri, since M 

orthogonal matri'x that diagonalizes it: 

as = M, sa 

(32) 

Let <l be the 

16 

Mt (33) . 

On the' new llas'isthe K matrix becomes 

. K = QK t , (34) 

• i:. 

0' 
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Let us call the matrix elclJlell:ts of J{' Kl and K2 ' 

K' = C:) 
The unitarity equation becomes 

, * 
1m K'(s) = P(s)M'(s)K'(s) 

or in componerit form, 

( 36) 

Since 1\,) 1\ 2. are scattering amplitudes, they must satisfy' 

the unitarity equation 

( 37) 

We shall uni tarize 1\ by a,.scattering length type appro-

ximation. If we define 

i = 1,2. (38) 

. \1 , 
I 

"1 ... 
• ' .!. -

J.;!i·~;~~~j·;, ! i, '.( .'.' ,",." .. ~. ,1 .•. , 



where So is the threshold value of s and whenever there is no 

confusion, k and k' ,will stand for the absolu:te value of the 

cenlter of mass meson three momenta, )s=.1J and~' = ~ (see fig. l ), 

then the amplittides 

i 
Ao+(s)= 

1 

(Li )-1 _ 10(s) 
0+ '" 

1 

(39) 

i = 1,2.: 

satisfy; uni tariy equation (:37), and tlle uni tari ty ,equation for 

K determines 

, , 

K:(s) = K:(M
2

)[I-iP(M
2

)LO+(M
2
)] I [l-~P(s)t~+] (IjO) 

2 
Note that ,at s := M , where AI is the ~U(3), mean "mass, the a'hove" 

eqhations are re4ucedt~two trivial identities, a8 they should. 

rrak ingthe imagiQary ilartsbo th 8 ide s we have 
& • • . ' • 

, i.(,) 
ImK+.<8 

('-11 ) 

18 
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(42:) 

·22 where k(M ) and P(M ) are the mesOil momentum and phase space 

factor evaluated at the unphysical point s = M2, and are purely 

imaginary numbers. In the presen,t case k = k', but we keeIJ the 

prime so that the expressions can be easily compared with those 

obtained in later sections, when mass splitting is taken into 

account. 

Let 

p 
ell 

p e
21 

QP = (43 ) 
Il e l2 

P e
22 

with a similar expression for QS, where the indicee p and sre­, 
present the corresponding quantities for the p and s partial waves. 

p'rom (:34) , 

with similar expressions for 1m K:(s) and 1m K~(s) 

(22), (23) and noting that 

Using (44), 

19 
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I· .... 

I ,-. 

we get 

(GAO 
.1" I~)/(l F II» ( 45) CiA = - I I -+ + 

fF 1" " GIl" It' ( '16) = fO + - I 
A + 

fD }) G ID 1) (47) = fO + I 
A+ 

v!here 

j
8 max 

= M/ng. 1m 

So 

(48) 

Equation,s (46), (~7) are our final results for SU()) 

symmetric calculation.' "Thcaxia.l vector current coupling coristanlt 

G!ia, for any hptor~ic decay of ~aryonB)i to baryon 13£, are given 

by (1t6), (47) and (19). 

Nowsin~e the 'di~i)ersion, in,tegrals depend on the parameter a' 

a8well as G
A 

its'elf, equation, (45)IIH18t be solved by numerical 

l'1eth(}ds. We begi~ wi thallyresoriiilblevalues of GA and a, calcUlate 

the sw~ve scattering ,length and p wave effective range,aJ1fd use 

(41),(42),(45),(46) and (47) to calculate CiA andtheF/n ratio. 

By assulnpt'ion (e), 

20 

." 

"I" 
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so that the parameter 0: CCln be calculated as well. We repeat the 

calculation until conflisten,t solution for both 0: and GA are obtained. 

The results are ·as follows: If we choose s = (21t)2 with M = 1.13 
max 

.Bev we get, 

G A = 1.16 Jc'/D -- 0.600 

If we choose 8 
max 

2 = (3M) we get 

F/D = (). 575 

'fhe details of calculating thc scattering amplitudes are shown in 

the Appendix. We see that the solutions arc quite cut off depend-

en.t. In fact, if we extend Bmax to i!l,finity G
A 

would get well below 

1.0 and it is difficult to get consistent solutioD's for both G
A 

and P/D. In view of our low energy approximation, a cut off value 
_ 2 

of much hl.gher than (2M) is not justified anyway. Therefore we 
I 

can say that the resHlts for an exact SU(3) calculation is G
A 

prQbably lies between 1.0 ::md 1.2 and r'/D ration probably lies 

between 0.57 to 0.60. N~ting that our unrcnormalized values for 

GA and for theF/D ratio arc 5/3 and 2/3 respectively, the a·bove 

resul ts arc not bad for such 1;1, crude calculation. 

It will be seen that in the following broken symmetry cal~ 

culation. the re~ults are f~r less cut off dependent. 
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v. Effect of mass spl~tting 

Let us repeat the previous calculations, taldng into account 

the effect of mass spli tting, but otherwise the ullderlyin/,l; symmetry 

group is still that of SU(3). This implies, along with others, 

that the intermmediate state l)j' Mo and the final state BC' Ma 

must combiille to form octets; .since we assume no .symmetry breaking 

at the BB~ vertex and the 8cattering~ubble. H~wev~r, the scatter­

ing process is now considered as a multichannel one. The channels 
. . . . 

involved are all those communicating with the initial baryon 

state D., 1 f we again assume that t.wo hody channel s dominate, 
1 . 

then the numi)er of channels is finite. The meson form factors 
2 . . ·0 . 

K+(M,s,O) in. general isa column matrix with mat~ix elements Ki ,1 

where j, 0 is the bar~,on~meson two body channe I communicating wi th 

Hi. 'fhe scattering ampli t~de Is an n .x n symmetric matrix (see 

appem:lix II) MI+. Unitarity at the BB~{ vertex requires 

,.' * 
1m K + = M1_f lC+ 

. - Q+'''' 
(50) . 

while uni tarity in, the scattering requires 

(51) 

Here p is the usual diagonal phase epace factor. ~\gain we COll-

struct M1 _, MO+ bya scattcrin;g length type approximation. Let 

., 

.. ' 



(B )fa,j6 = Lfa ,j6 
0+ 0+ 

(53 ) 

. and BO+' 1l
l

_ the corresponding matrices, where LO+ an-Ii LI _ aTe 

the scattering length matrices giveTh in appendix II. Let 

with a siimilar expresion for Y
I
_, then. 

wi th a simi lar expression; for MI _, satisfies (51) and is symmetric, 

while 

K 
+ 

-I( . )-1 = P l-iY 1'" pC + 
0+ -

where C+' Care consta.nt matrices, satisfy (50). To find C+ ' C_, 

we impose the condition that at s = M; = M2, Kj O,i(M
2

,M2 ,O) must 

give back the exact SU(3) coupling; constants gj6i. Noting that 

where 

(58 ) 

23 



we have 

}<' (M~,M~,O) ~ 
- 1 J 

2M' (,j ~6 . 
i TAO 

----. --.-. -6-
(M. + M. )G

A
J 1 

1 J 

( 60) 

(61 ) 

2 
where the argument M means that the corresponding quantity is 

evaluated at the unphysical point s = U2 , and the superscript 0 

means that all the masses involved are set equal to M, the SU(3) 

mean mass, Define 

(62) 

(63 ) 

then the spectral function becomes 

As we have pointed out before, the coupling constants gfia' 

gji6 etc are char~e independent ones (like gNNn' P;l;:K) while the 

axial vector current coupling constants are basically dependent 

24 

-, 
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on the charge states of the baryons, tl t · GjiO/ . 
le ra lOS, A' gjiO 18 no 

longer a constant, but is ohtainahle hy an· is081'in analysis. Let 

g~i6 be the charge dependent coupling constant correpnnding to gji6' 

then, 

g ' .. 1:- = .... rj C ( j t 6 t i ) g .. 1:-
Jlu~; Jlu 

(example: g = ~f3'(-J2/3)g ) 
pnn ' . NNn 

25 

c(j,O,i) are Glehsch-

Gordan. coefficients (If the i808pin group. 'rhus, 

G
jiO/ ( . ;;. . )(jfiex/ (f .) A g j i 6 = C J t u, 1 A c,' ex t 1 'l:f iex ( (6) 

From which, 

( 67) 

where, 

(68 ) 

(69 ) 



\ . 

", r. 

Some exp1ainationmust be given to the summation, over n. 

Suppose m. channels are irivolved. Let us denote the channels 

by A
l

,A
2

, ... Am in order of increasing threshold values 6}' 

s2' ... sm' When.s1 < S < s2' only Al is open and R1_, RO+ m\llst 

b~1 ~ 1 matrices correspon~ing to the. leadi~g 1 x 1 s~bmatrices 

of L
l

_ and 10 j and G ,C are one row column matrices cor-. 
+ . + -

responding to the first row of the column matrices KO 
+ 

When s2 < s < 53 both Al and A2 are open, and Hl_,RO+ are 2 x 2 

matrices corresponding to the leading 2 x 2 submatrices of L1_, 1.0+ 

and G ,C are two-row column matrices corresponding to the f~rst 
+ - . 

two f l rO KO . d rows 0 ~+' _, an so on. r'inally when all the channel s 

are open (s > s ) the full matrices Ll ' LO ' K , K. are used. 
m. - + -+ -

The summation over n is the summation over the above pieces. 

is thus an. arbitraiy cut off value. 

s 
.n+l 

26 
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VI. Results and conclusion 

In appendix II the matrices 1 1_, 10+ are calculated using a 

method very similar to that of Weinberg's 3. The input values of 

27 

G
A 

and ex (note that the dispersion integrals contain GA and ex) being 

1.16 and 0.63S (F/D ratio = 0.575) respectively. These trial 

values are suggested hy the results of section IV. Th.c coupling 

constants are calculated with exact SU(3), as in Carruthers 6. 

Three decay processes are considered: ordinary beta decay; 2: - -" 1\ 

and A -? 'P The results are listed below, together with their 

respective unrenormalized values (according to the presesnt theory). 

Process 1" part D part GAO G 
A 

n + p 1 1 1.667 1.22 
~-

~I\ 3/J6' -:-1/ [b .408 .411 -
" + p -3/ {if -1/ [6' -1.225 -1.01 

·2 
A cut off value of (SM.) has beeTh used. If we increase the cut 

1 

off value to infinity, or decr~ase it to (3M.)2, the results 
1 

will change· by less than 3 per cent. So the calculation is rea-

sonally cut off independent~ 

If we like we·can repeat the entire calculation, using GA = 

1.22 as trial value. But this is hardly necess.ary since 1.22- is 

already quite near to the first trial value GA=I:16 and the results 

are not too sensitive to small errors in the dispersion integrals • 

In, the fir 8t case. (,beta decay), we found that SO per cent 

of the coatribution to the dispersion integrals comes from the 

elastic region. Since the 8 wave scattering length and p wave 



effective range for the I = 1/2, 1tN to 1tN scattering are imown 

- -3 8 9 
experimentally ( LO+~1.U , LI_~ -20 -BeY in our units' ), it 

is worth~hile to evaluate G
A 

again, using these experimental 

values, while keeping all other scattering lengths and effective 

ranges as those calculated in appendix II. In this way we found 

G
A 

= 1.20. The changeU.02 thus represents;ioughly the eff~ct 

of SU(3) breaking at the llHM v.ertex an:d the scatteririgbubble. 

(The scattering lengths given in appendix II is calculated with 

_ "mass correc ted" SU( 3), see al so beginning of section V.} 

Thus we see, for beta decay at least, agreement with ex-

periment is very gdOd. We can check the results for the other 

two cases by calculati~g the leptonic branching ratio, using the 

values of G!ia calculated by our method. (See, egi Bell's 

lecture 7.) The results areH sted below: 

Br~nching ratio 

-process -pres(;m,t J.tl~\~t~9~ \~tber;"L':-g~9 experimen:tal 

.75 ':x 10-3 ,.60 x lO-3 -- 2.4 + L 4 x 10-3 

1.09 x' 10 1. 0+ O. 1 x 10 - :) 

.~ ~, 

'fhe results under "otherD.leth~,~'~ _ is obtained by. usin_gG!ia 

calculated a8fo11ows:, first take fF ... fD = 1.18 an~f }<'!D ratio 

= o. 5as 'known expe~i~eritally, then calculate G!ia ,assuming 

exac t StJ(}) '7 ~' We see that our me:tliLo~ does give better agreement 

with experiment thC1n, the si~ple'minded theory, for the decay 

~ and, for tile decay -A "7 1> the resriltsobtaihed 
,,-

by hoth methods are compatible wi th -exper im~n t. 

1 

. ;. 
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Another merit of the present method is that the result is 

stahle against small errors in the dispersion integrals, which 

contain the scattering amplitudes and meson form factors, both 

cannot he determined accurately. Thus, for example, an error of 

say 20 per cent in 1+ changes the value of GA by about 0.03 • 

'I'he axial vector curren,t coupling constant for all other 

proce5ses can be calculated hy the same method. I~ some cases it 

is more tedious as the number of channels involved increases to 

five. 

29 



The author wishes to thank Professor K. Bardakci, who suggested 

the problem, for the many g~nerous discussi.ons and guidance. 

30 

.. ' 

.,. 

~ .. 



"., 

p 

\' 

Append ix I. l~valuation of the octet-octet scattering ampli tudes 

using Wein~erg's low energy ~heorem.3 

Consider the scattering of B}q), Uh(k) into Bf(q'), Ma(k ' )' 

The S-matrix elemellt is given by: 

( s - I \ i = J rJ..4 X o.+y (O~ + ~ )( 01' T ftb) X 

tk'd-- i"kx 
X <rep\ T [<1>",(l<» <P,,(~)~ Ij(Z» (;.;y /4U)r;); 

, - ( ') T jri)j S ( CJ) 
= - ~ (2rr)4b4-C{t-~f_'f/~) ::;p_....;;.._!:!_' 0,_ 

, '(2Tf)bJ 4 E E 'w w~_ 

Current algebra gives 
I 

. . M.t Hj 

i"f: vj 0.4)( <14-y (Pb - r)(,u~-iJ~) i~~-i~)( X 

x <j('6') I T {f\~ (X)) A~ (~)J li(~) > 

( Ai) 

(A2) 
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If we take the gradient coupled ll6rn approximation and let k
2

, k,2 

go to zero (this implies both low energy and small meson mass, 

the latter tlssumption is unfortunately not quite justified except 

for pions) we have 

(A3) 

iIere Zf'<x ,jO are 0 c'tet-oc tet scat terillg , f a:ctors to he determined 

'later. 

The first termcor~esponds to the diiect baryon octet pole; 

the second termcorresponds'to the exchanged baryon octet pole, 

'and the fina'! term corresponds ,to the equal time C'ommutator. In 

our calculation, theinitio.l baryon Hil~ in the'octet respre­

sentation, ther~fore und,er OUT aS8ulUptiOll thatth~re is no symmetry 

breading at tIle im~t vert'ex and the scattering bubble, the inter-

mediate huryon-meson states~j"U6 must couple to form an octet. 

Simila.rly thefitlal baryon-meson stateR H
f

, }.{<X must couple to' 

for~ an octet. Hence the scattering amplitudes are of the octet-



octet type and is therefore a 2 x 2 symmetric matrix with matrix 

elements equal to the odd-odd, odd-even, even-odd and e~en-even 

amplitudes. 1"llrtherlllore, the direct pole must be a baryon pole. 

rrhe exchanged pole can be a haryon octet, a baryon decuplet, or 

anything. However, it can be shown that the contribution from the 

2 
exchanged decuplet to the scattering amplitude is one order in k 

smaller and therefore negligible in our approximation. 

. 1 10 We write In the usua way, 

Tfa, j6 = (A4 ) 

where A, 13 are scalar fUnctions. We can find the con tri.bution to 

A, B from the direct Born, crossed Born and commutator terms by 

the usual method. After some straightforeward b~t tedious algebra 

we find, (the subscripts d, X, c stand for contibutions from the 

d.irect Born, crossed Born and commutator term) 

. Afa,jO 
d . = 

Zfa, jo 2 
d . g 

= - --r( w..:-'J"-. +-.~M-i ){""l(~M-f-+ -M-i~)-

= 
z}a, jOg2 [ 

{M .+M. )(Mf+M .. ) 
Jl 1 

2 
(M .+M ,) (u-M

f
) 

2 + 
2{u-M ,) 

p 

u,..MJoMf+ MiMp" +M M oj . P J 
. 2 

u-M p' 

(A5) 

(A7) 

(A'S ) 
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where p and pI denote the direct and crossed poles. 

To find the ZIS, we a.Bsurne exact SU(::;) but for the time being 

keep the suhscripts to the M's. Then fa=S¥ ' j6=S~/ where 'i =a or 

s. There are all together six independent factors: 

Zss 20/3.a 2 
d = 

~as 
d = lif5'a( I-a) =' Zsa 

d 

Zua 2 
'd :::; 12(I-a) 

34 

(A9 ) 
zss 2.( 4a 2 - 6a +3) = ~ x 

,"\. 
2 \9) 'zaa = 2/3.. (4a - tSa + :X; , 

Zas == Z~a = 0 x x 

Note thatZ depends on the parameter a.' To find corresp()nding 

exj)ress:Lons for. the COlumu tat()r term we: no te 

1/2.(k'+k)V ifa60'~(~1 )jV%(O)/j(q» 
. . 

rJ . ii( q '){f e d)l + i~~ \ . Jq '-qfju( q) H'J'. ~)( k ' +k)Y / 2 

where f 
e 

f nc tors, 

= 1. 0 and .f . == ::; .?lare e 1 ectricand magn.eti.c momen.tform 
. m· .' 

and 1').1 . }~n stand for the l<'-spin operators fo'r the meson 
rv' A./ 

.. '. 



octet and the baryon octet. Using Gordan decomposition we can 

wri teo the right hand side as 

u(q') 5 (r +f )(~+~')/2 - f (q'+fI)(k+k')/2(M
f
,+ M.)( u(q) x l e m m . J J 

Comparing with (A4) we get, 

naa =-( f +1' ) 
c, t· e m 

2 
4g. 1 

2 
2 u2 

(p - }<.,.. •. 
I"J 'V 

= + fm i 2 [2 2, 2 2 ] 2] -8--,S(.-M-=.;..-+-},-l
r 

..... ) 48 - (Mj + Mf , - ()l.b +~) x 
J. 

4g 
2 

1 ( l<,2 n.2 2 
x .. . . 2 2 F t~M ) 

(Mj+Mi)(Mf+Mi)GA 
"" "-' r-v 

as ss 
='A =13: = c,t c,t 

where F is the F-spin oilerator for the combined haryon and meson 
r../ 

octet and the subscripi t reminds u~ of the f~ct that we are 

worldng in the t channel. Only the odd-odd ampli tude is non-

b r th f 'the factor L,M •. FB. zero eCause 0 e presenCe 0 r 
"'- rv 

In deriving 

(All) we have neglected a term containing a factor (~+~'). (Js.+~.: ) 

in consistency with our low energy assumption. 

In accordance with the usual assumption in current algebra, 
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( All) 

(A12) 



. , 

36 

the commutator I)f two current octets is again all octet of currents. 

Thert:fore 

(Al3) 

Finally using the~ros8ing matrix in the octet-octet space6 we can 

find the contribution from the commutator to the scatterin,g 

amplitudes in the schannel 

aa = A 
c' 

as = A '= 0 c 

2' 
(M.t- M'.)(M.+ Mf),GA J 1 ,1 , 

~'lf' '" 
The partial wave, ampl i!tudes f 'is related, to A, B' bylO 

L 

\ .' " " 

f J}: = 1/2·1d"t f 1(X)Pt (x) + f 2 (X)Pt!1(X)j 
,I" , 

l' 2 
1 --

~ 8nW 

(A14 ) 

( A15) 

(A16) 

(Ai7) , 

(AI8) 

(Al9) 

., 



The partial wave amplitudes must satisfy the unitarity equation 

(A20) 

n 

where k
n 

= l~jl is the momentum of the intermediate state in their 

center of mass frame. 
~~I 

It is more customary to de fine the partial wave ampl i tude M 1.± 

related to the above partial wave amplitudes hy 

:it' 
= W/'2.f 

+ 

and satisfies the unitarity equation 

~~I 
1m Ai = 

1: 

with 

P == 2k /W 
n n 

80 that P n -.,,: 1 as s -~ m • 

(A21) 

(A22) 

(1\2 2) 

We define the 8 wave scattering length and p wave effective 

range }'O+' Ll _ ' by the fo llowing equations 

(J~' 
(sO) 

>F(/·~ 
M =. LO+ 0+ 

(A21,. ) 

't,?J1 ~(/ ) 

,M 1_ (sO) = Lim kk' 1"1_ 
'k, \<' -~O 

.< 1\25) 

:.; ....... 

37 



where 0 denotes the threshold value. 

~able81 and 2 gi~e thevalue~ of Lo+' L1_ ' .8 ~ell as 

their eigenyalties, for ~itf~rent valucs.ofa. The mean masses 

are taken, as }.1= 1. 13~eV , jJ..r:::.;' ./cl9BeV and GA is 1. 16 

. " \,' 

. ' .. "'~. 
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Append ix II Octet-octet scattering ampli tudcs wi th mass spli tting. 

We shall give in the followin~ section, exprcssions for the 

octet part of the bary;on-meson scattering amplitudes, taking into 

account the effect of mass spii tting,but .with coupling constants 

and the ,contribution from the COllUn1.1tator as given by exact su( 3). 

The first approximation ,may be controversial. l"rautl,schi and 

11 Vashen have shown, in a theoretical calculation based on seIf-

consistency, that the coupling shifts in broken SU(3) is typically 

100 per cent of the values given by exact SU(3). 12 
Kim in an 

analys is based on KN scattering data, showed, that NI\K and NIK 

coupling constants are consistent with those obtained from exact 

SU(3), contrary to Dashen and }<'rautschi' s conclusion. In view of 

this uncertainty we shall carry out the calculation with coupling 

constants as given by exactSU(3)6~ The scattering amplitudes 

will Ibe wri tten in the form of symmetric m x m matrics where m is 

the numbe~ of communicating t~o-body channels. The matrix element 

Mfa, j 0 ',' t tl' " . so. represen s 'le scatterlng 1rom Jiv to f,a. We define, as 

in appendix I, 

(A26) 

Mfcx ,j6(, , )' = Lim 1(k'L f
l
'a_,j6 

II_SO 
k,k'+O 

( A27) 

All the resul t8 in appendix I Can. be carried over to this sec tion, 

with the following modifications: 

(i). The uniturity equation. becomes 
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(A28) 

where p is a diagonal matrix. If the channel is open~ the corres­

ponding matrix clement Pn is as defined in (A23), otherwise it is 

zero. The * stands for complex conjugation. 

( ii). 'rh f t zfa,j6 Zfa,J'6 l~fa,J'6 e ac ors d' , , .. 
. • X I C 

can. be expreasetJ in terms 

of the nine factors ZaR 
d 

that from (A11.)-(A16),. 

zao a ZSS = 1 ~as = 0 ) 
C C ' C 

where 

Zfa, j6 
• • I 

8 

6 
~~) aro 

6 hy noting that 

,8 
(A29) ., 

iso~calar factors as we are neglecting 

eler.trolUagnctic effects. In particular, if we keep only the octet 

. as ss 
part of the scattering tunpl i tude the sum extends over Z , Z 

and Zas only. 

Using (A5) to (A8), (All.) to (AI9) and (A29) we can calculate 

the s wave scattering length 'audp wave effective range. These 

nre put into the form of symtlletric matrices: (We use G
A 

=1.16 , 

a = .635) 

,\,. 

" . 

!. 
\ 



I = l/Z., Y' = 1 

N1\ 
( -27.057" 

L = 
1 0+ 

I ... 1/2, Y = -1 

L = 1-

1.'0+ = 

.393 

:=: K' 
1.375 

f3Q2 

I 

l 

. , .' . 

N?t 
';'.772 

).167 

.257 

.670 

·l\K 
3.)11 

.9.30.2 

~013 

'3~1l7 

I\K 

1.779 

-1. 522 

7'".882 

-.932 

.259 

2.0:)1 

2.457 

-6.609 

.-1.074 

1.714 

1. 233 

zK 
-6.218 

-2. bUt 

5.;83 

-1.583 

.780 

2.226 

-2.254 

-.773 

2.3bl 

-1.509 

-.206 

-. ('53 

-1.329 

.179 

'2 
BeV~ 

BeV~2 
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I .. 0, y = 0 

'LTf NK Art. "="K -
12.759 11. 982 -1.105 -1.'2.74 -. 

-".618 1.955 1.497 
BeV-2 L

1
_ .. "! 

-.2:1.6 2.087 

• 223 

! 

2.641 1. 553 .368 . -.779 

.980 -.500 • 81t 2 

LO+ .. 
.149 .616 

• 1)/~ 

.. 

1., ..• ~' .. ,":. ",'.",' 
., 
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Table 1 o e tet-o etc t p-wave effcc tive range 1..
1

_ and its 

<' eigenvalues for different values of a, 

e igenv al ue s 
a ss as ss 1 2 

.615 .035 ",:,,10.419 1.912 1l.I(j5 -9. '1~8 

.625 -.401 -10.31 II 2.482 11. 455 -9.347· 

.635 -.B41 -10 .• 199 3.039 11. 1 .. 81 -9.283 

.6115 -1.285 . ..;.10.076 3.584 11.515 -9.216 

.655 '. -1. 734 -9.944 4.116 11. 556 -9.174 

Table II Octe~~~~tet ~-wave scattering length LO and its . + 

eigenya1tt¢s for different values of a. 

eigenvalues 
ss as ss 1 2 

.615 '1. 721• . -.301 1. 5/~8 1.950 1.')22 

.625 1.708 .":~~98 1.580 1.Y49 1·339 

.635 1.691 ~.295 '1.6.12 1. 950 1. 354 
' ',' 

.645 1.675" .' ..... ;291· 1.6/ .. 3 1.950 1. )68 

.655 1.660 ~ .• 287. 1.6711 1 ~ <) 5'. 1.380 
~. 
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Figure Caption 

The axial ~ector current vertex and its absorptive 

part. 
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