IR, RN

< (?ﬁ\\}( ’NF@\‘QJ e

{
3

7
/

e e e s e e e e
A fa;ﬁx;)gﬁ SapLiRD | @m;um%a@%}mm9@£&$
K@%}&E@/&% @ S - ‘\L\EE}/@\ e e\ NS % (&Sg%;%\i’f‘f%% -
iﬂ\\(jﬁ; "'j;T&{fﬁ\V '//‘i’j\/}‘“ ':\Vﬁj‘*“"’» - }[,C"'— ‘T\)‘( ~ - t N, g \7’%/ : \_«?t{’:\\%//;_ ‘ N \%f\(((":
Yol ) s‘;/ | i | SO ,’H- B @A”w i g p L ﬂ,/ f'\» 2L, R w@ﬂ." g,‘.ln. }L[@&» L@m, [—@
@@
2y

Ay @
QiR

Sy

N S P

e Y N Ny e N
s o e aan e Ems o o s G Yoo o)
: FoC o0

o A NS }\
Ton o h L o n oD
NS > = Z e P i

VEL@@% LEBLX
o fiad)Can fEan)
Vit faesdnivensitn ot @al

N NN N
i
s
p SN

by
7 X,

@D

G

p //(?A
@m
.

&—‘:‘ / N /t NN
i)

SRS DI S S L
Yo e L Jg e ey
e @@@@@@M& ' Lj&f@%@@@%* [:@ﬁ‘
e
Sl e E e e e e
= f )
‘&@fﬁ@ﬁﬁ%@ﬁgﬁg%yz

ey @l
(oG s nii e
[ BRL NS
o o e e e o e K e,
ey e ial et} Ga e iiey G fan
I S l ;7‘ [‘ I

eI e e

JERS

N Sy ,/}

PR .
N _;\V/@y, & M\Q\v w2 7\ xv:/’?d
i 3
L 0 \ f",’\ i \v y 2
DI

i L

RN N '_; :\s’ FTSING

n = \\\ V) \)}\"‘ L ;@(L@%s‘ m@%\

el N /AN # R\ 7 PN X
4D oy 7

3 n
AN //& o

p ) by YLD JGCTL R, X
*”,@gﬁf%%sﬁiu

TWO-WEEK:LOAN COPY

< This is a Library Circulating Copy
- ‘which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

2N NN .
K\L\L}‘\ﬂ-\(@ A Qe s AN NS

ey P

e
NS oy
el

Yy,

e pi .\,\k‘f%;ﬂ\N\Y/ “ s

| =8 e S rTERARYTAND T
=gyt 2 et ctioR
Il ===
| Keme) i \3@5 % !L@iﬂ_l.,\»(r‘;- L,

R e e e e e e e e

DVEA S
NN |7/

{ 3&@‘-{\\‘;'@ SN
L}“/g\@% N

:"':‘ =N N 2N N ;\errfjﬁf N 33(/ —)@ (E é}\‘ﬁw@ m\}@ﬁ}(@éﬁ (ZT@T\(

RN RN TS I Sy e
VTSR D (T (T (TR Y

| s EESN ESN
RN G ZeN e T



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



1.

Submitted to Physical Review S ' UCRL-18220
Preprint

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

NUMERICAL SOLUTIONS OF THE BETHE-SALPETER EQUATION
William B. Kaufmann

May 4, 1968



 -iii-

©. . TABLE OF CONTEHTS

abstract, .. A . &

I, Introduction v « o ¢ o o s ¢ o o o0 ¢ ¢ ¢ o o o o o s o o oo 1

ILMheory o + v+ . S
A, Review of fhndamenﬁal Equations o« o o v 6 0 s 0 0 0e 0 5
B.vﬁngular Separaﬁion; Form of the Spectrum, « « & o o o o o 9
C. Reality Pronerties of - o o o o o o o o o o o o o o .. 11
D, Choice of TrialvFunctions « o 5 0 s s ; c e e e o e e 0 16
E; Variational PrincipleS: « o o o ¢ o ¢ s o o o o o o oo 18
F, Netrix Elements: Rayleigh=RitZ. o o ¢ o o ¢ ¢ 2.0 o o o o . 25 1
G

o Matrix Blenents: Schwinger. « o o o o o ¢ ¢ o ¢ ¢ o o ¢ o 25

. Hc Example= One Trial FunCtion ¢ ® ¢ 0 0 6 8 © & ® o s o & o 35 o

IT1. Rumerical ResultS o o o o o o o o o o s o s s o s o ones 38

A, Bound SEEEESe + o o s o « o s b o s s s e s e s e e e e 38

B, Scattering States ¢ o o o ¢ ¢ ¢ o ¢ ¢ o 0 ¢ ¢ o o o « ¢ o A
IV, Two Charmel Caleulation o o o o o o 6 o o o s s s o 0 o a oo 5l
V. Swmmzry and Cutlooke « o o o o o . oo c e e e e e e oo 63
AcknovledgenentS. o 4 4 e 6 o 0 6 6 ¢ 6 s 6 6 0 s 0 ... e o o s b5
ADPNGIX Lo o 4 o s o 0 o o o s o e e et N 1
Appendix Il o o o ¢ ¢ . ¢ o o o 6 06 o s 6 0 ¢ ¢ 0 o0 a o o o ; . 58
AopendixX IIT, o v o o o ¢ o o s o b s b s 0 s e e e e e 70
APPENAIX IV o 4 4 v e v h e e e n e e e e e e e 72

Foolnotes and References. o « o o o o o o o 6 s o s 6 0 s ¢« o o o . 80

Figure Captions ® o o € 0 e o @8 © 9 & O O © 0 e 6 6 e 6 O ° o e @ SS
:.“l E:ur es * L] L] L ] . .0 * L L] L] L ] [ . * o * . © * ] ® L * * . ® ® 9 L] 89



-v—

NUMERICAL SOLUTIONS OF THE BETHE-SALPETER EQUATION*

William B. Keufmann
,‘ Lawrence Radiation Labofatory

University of California
Berkeley, California

May 1, 1968

ABSTRACT

 .After éummarizing the application of the Rayieigh-Ritz And
'a;;Schﬁiﬁger variatioﬁal prineciples to the unequal mass ¢3 ﬁBethe;Salpeter
‘vequétion we present, in graphical and tabular form, the solhtionlbf the
if} bqqnd-state problem. The dependence of the coupling-paréméﬁer eigen-
“value on the exchange mass, extefhal mass ratioy and.binding energy is
. examined in detail for .s and p ground states. Mixing_of excited
leve;s leading to complex solutions is briefly studied, #dd some Regge
. trajectories are also calculated. _Scattering phase shifts for unequal;
imass écattering'have been calculafed and representative exanmles givenf
‘The fact that certain levels do not eppear to contribute fo Levinson's
theoren is}also e¢xanined. Finally the faregoing methods ere generalized
to two-channel systems, and channel phase shifts and inelasticities are

computed,



I. INTRODUCTION

»-Perturbation fheory has been the‘single most powerful tool in
analyzing électromagnetié scattering processes from the péint of view
of fieid theory. On the other hand,yin strbng-interaotion prbcesses,
the coupling strength of the interaction Hamiltonian may be large
énough ﬁhat bound states occur, in whiéh cage the perturbation series
diverges and this approach fails. One soluﬁion to this problem is to
reduce the coupling'stféngth until the perturbation series converges,
express fhe.sefiesAin closed féfm, and analyiically continue.the result
as a function of the Coﬁpling conétant to the desgired value. In terms
bf ﬁéﬁéhtial theory fhis correéponds to expressing the Born series
(insidé its domain of éonvergénce) in the form of an (Schrddinger)
ihtegral équatioh. The integral equation can then be continued in
coupling strength to values for which the Born series diverges. This
ffick can be used to sum the perturbation series of field theory, and
leads to the Bethe-Salpeter equation (BSE),l a completely relativistic
wavé equation describing two interacting particles.

In a classic paper,2 Wick. reduced the ladder approximation of
the BSE to Fredholm-form';nd showed that it posseséed a discrete
coupling-parameter ()\) spectrum at fixed energy below the elastic
threshold. Even in the ladder approximation the equation stillvhas
two nontriviél independent variables, and hence was considered somewhat
intractible. Upon setting the exchange quantum mass (M) equal to
3

o
zero, Wick  and Cutkosky” were able to reduce the equation to a



one-dimensional form, from which they obtained a clear picture of the
spectrum. .Using a fofm of the Rayleigh-Ritz variational principle,
Schwartzu numerically soived the more general equation with M nonzero
(for the lowest four levels). He restricted the calculation to a
system for which the external particles have equal mass for simplicity,
but his method is easily generalized to unequal-méss systems also, In
a subsequent paper” written in collaboration with Charles Zemach, the
Schwinger variational method was adapted to the BSE and was solved for
scat%ering phase shifts as well as for bound states.

The methods of solution of the BSE given in Refs. 4 and 5 hgve

the following in common. Both begin with stationary expressions for

» (or the phase shift &) in terms of a trial function wT(x). The

trial function is expanded in a cdmplete get of functions; this reduces
the variational problem to a liﬁear matrix equation in the expansioﬁ
coefficients. " The set of equations is truncated, and the eigenvalues
are found by standard métrix techniques with fhe gid of an electronic
computer. Successively larger matrices are used to compute \. The,
resultant sequence of )\'s gives an indication of the convergence of
the sequence of approximations.» | |

Our basic aim in this paper is to extend the numerical calcula-
tion by Schwartz and Zemach to systems of unequal mass and to provide
a ”dictidnary" of s-wave solutions in graphical and tabdlaf form. The
complete range of mass ratios for the ekternal particles was examined;
the mass M of the exchanged quantum‘was varied from 0.125 to 10,

<

where the units are defined by fixing the elastic thféshold at 2.



Aléo p-Wave‘stétes weré eiamined fér-'M = i. ‘Since the variational
solution also gives us excited—staté_solutions at 1little extra cost, we
ha&e inclﬁdea:éome'examples'of these. Invresponse to a suggestion by
Daniel Z. Freedman, we found that the Rayleigh—Ritz method could be
interpélatedvin the angular momentum, thus allowing the calculation of
Regge trajectories in the région below threshold. Some examples of
trajectofiesvare included. Next, we include elastic phase shifts for
unequal-mass  ¢5-type interactions and also for (cutoff) 5251L

~ interactions. In the final section we consider the extension to two
(two-body) channels. 1In a later article we hope to use the variational
wave %unctions to calculate some form factors fof the interactién of

the Bethe-Salpeter atom with a weakly interacting scalar field.



Lo
II. THEORY

The systems discussed in this article may be described in terms
of three basic gquantum fields. Fields ¢l and 5 generate particles
of rest mass m, and m, which are to be bound together. Field ¢5

. describes a quantum of mass M whose exchange provides the binding

forces. The interactions of these Tields to be considered here are
Hy(x) = g, ¢ B () (), 0 + gy, 1 B, (08, 008,(x): (2.1)

Hy(x) = g« f) ()8, ()F,(x): (2.2)

These fields are taken to be scalar and without any internal guantum
numﬁers{ It ié'essentially a trivial péinﬁ to include an internal sym—
metry su?erstructure, and so long as the symmetry is perfect, this
amountsvdﬁly to making the coupliﬁg paraméter in the BS equation a
function of ﬁhévCasimir‘operatérs of the symmetry group (Appendix IT).

Another interaction which has been briefly studied is

H(x) = g + B(x) s . - (2.3)

In the following subsections we reviéw the basic equations and
,notation,vfollowing élosely Refs. 4t and 5. This is followed by a brief
discussion of the.bound-state spectrum and some comments about complex
solutions. Néxt the variational principles used in the numerical cal-
culations are introduced and the tfial functions chosen. Finally the
calculation of the matrix elements is briefly discussed along with

their Regge continuations. The section closes with an example



computation using one trial function.

A. Review of the Fundamental Equations and Notation

Two-pafticie éystems are most cdnveniently expressed in terms
of center-of-mass éoordinates, since in an isolated system translational
iﬁvariance‘aliows‘us,to express the dynamics in terms of the relative
coordinate only. Fir;t define the coprdinafesv(xl,xgj as the positions of
thé particles of masses: (ml,me). :In terms of these coordinates and

their corresponding momenta (pl,pg) we define a set of total (X,P)

and relative (x,p) variables by .

T,

P

1l

™
=

+
§?
rno

Pl +_p2 ,. . X
' x ' : (2.4)
P = WPy =By s - S IR~

The parameters gi are restricted by Hy + u2 = 1 in order to leave
volume elements unchanged. This definition places the "center of mass"
X at an arbitrary point on the line connecting points Xy and X,

Natural choices from the point of view of nonrelativistic gquantum

mechanics are

T mi/(ml +m,) or by = wi/(d)l +o5) - (2.5)

2 5 ' ’
where ., = (51 + mi) and E = w +®, equals the total c.m. energy;
however, there is no need to commit ourselves to a choice now.
We work in a four«dimensional spa.ce where components x = 5?Xh)

are taken as real, hence it is useful to define spherical coordinates

4
R, © through



X = R sin@ /§£§,®), T(:Xh) = R cos0, (2.6)

where ,g(ﬂ,@) "is a unit three-vector in direction (8,9). In this

coordinate system the volume element 4 x is

. .
RO4R sin-0 40dg,, with. dg, = sind ad dO. (2.7)

We will need also the "unit four-vector" ’% = gﬁ/R,xu/R). The
analogous,formﬁlas in momentum space will be distinguished by a gub-

1A "

script p.- As a differential éperator»we define’
- 3 . | - -i(3/3x, ) . .8
P v iv and P}, op 1(5/5xh) | (2.8)

; op

The Bethe-Salpeter wave function in ladder approximation satis-

fies thevintegral equation.

ka(Xl’XQ) = kaP(Xl’XE) + A:[éA(xi~x'l)GB(x2—x'2)V(x'l~x'2)

x WKK(X'1~X'2)dhx'ldux'2 ’ ” ‘ . (2.9)

Where (A,B) equals (1,2) for direct and (2,1) for exchange ladders
(Fig.1). The eésential feature of‘the exchange ladder is the switching
of particles 1 and 2 af each successive rung, and occurs whenever
particles 1 aﬁd>‘5 carry a conserved 'charge' which pérticle 2 does
not possess. The rungs are V, a sum of irreducible Feynman graphs,

and the sides are free-particle propagators Gi defined by

2 2

(pi + 1y )Gi(x) = Bu(x) (causal boundary conditions). (2.10)

We will take



. _7_

| V(X)v‘=_.—12¥fdyq9}—<§£’—13—'—}5)—= %’I-Kl(m) , - (2.11)
R - - | |

which corresponds to the one-particle exchange potential. The inhomogeneous

term

0 . oL .v;" s 4 O -
Vo (gl,XE) = exp(lkl x, +ik xe)— exp(ik-x + iK'X) = U (x )exp(iK*X)

. (2.12)

represeﬁts the incoming plane wavé. If we are dealing with bound states, the
inhomégeneous term is absenf, hence the wave function depends only on K,

: _thé total ‘c.m. energy.

. "Equation-(2;9) may bé‘reduced to.a differential equation by use of

(2.10):
2 oy, o, L -
(2 + my By + my W (ryay) = AVGy =) Wy (3 (2.13)
Trénslational invafiance ‘implies
ka(xl,xg)”= Vg (¥) exp(i K°X) , (2.14)
and using the identity
WXy + HoXy = X + (ul - p2)x , (2.15)
we find
L) (x) = DY () (R Ny () = W) () - (2.16)

for nonexchange and

L) (0) = AT, () (2.17)
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for exchange ladders,6 In the foregoing expressions we have
+ ‘ 2 2 - ~ P . 8
DE(p) = (p » wK) +m” - ic, B(x) = Wx), (2.18)
A _ . :
V(x) = exp[i(ul-_ug)x-K] v(x), - (2.19)

and the p's are interpreted as differential bperators.
Equations (2.16) and (2.17) [with boundary conditions implicit in

(2.9)] are eguivalent to the inﬁegral equations
( ) = ° ( . | 1 £ t n 'Il | 1 v ; v
Vg () = Vg (%) + | Gp(x-x") V(x ) Vg (x') ax (2.20)

for exchange (and, with "hats" omittéd, for nonexchange) processes, where we

have defined

dhp exp(i px) du : . ~
GK(X) = Y = - = | = exp(i p°x)'GK(p). (2.21)
(2n)" Dy (p) D (p) ) (2n) |
The two-body relative Green's function GK is reducible to the single
integral
O (') = Lo f L ewp (gt K (R) 5 i(2:e0)
-(.L)2~. C
where
3 "
2 -2 L 2 2.2
o = (k" +m") and Q=0 -k) ,

as 1s derived in Ref. 5. This function is coﬁtinuous except for a logarith-
mic singularity at R = O (i.e., on the light cone).
In the remainder of this article we deal with the cohtinuation of

the preceding integral eqpationstb'the,regidlvdthugi(éipﬁ and Xh(:ixo)
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real. With the choice. ui'= QE/E it is shown in Section TIIC of Ref. 5
that this continuation presents little difficulty when E < my + m2 + M
for nonexchange and (using the séme reasoning but adding the extra ex-

ponential ) B < 2m1 + M for exchange processes, where m =,min(ml,m2).

L

We look briefly at a‘different choice of by in Section G.

B, The Angular Separation and General Form of the Spectrum

If P = (Q1iE), the differential operator L(p) becomes

[p2V+%2HlE(ipu)”f_BlJ [° - 2B(ip)) + 8] (2.23)

and equals

o' - (3, +8,)(a0)° - g, F(ap,)P

= 2B )0 (i) + 2EGuB, - HoPy ) (ip)) o+ BB, (2.24)

2

" where Bi =-'ml (uiE)g. Both the potential functions V and I are

rotational invariants, so we can choose

- \y(x.) = X, (R,cose) vym(g) . . (2.25)

Due to the presence of terms proportional to ), and pue in L and

the exponential exp[(uz-ul)Exh] multiplying the exchange potential, the
R and cos® dependences are generally not separéfle. An exception occurs
at E=0 (i.e., when thé>binding is so strong that the bound state is
maésless).7 -At this ?oint both V and L are'invariant under all
srotations'in Fuclidean four-space '[Q(M)],. so have the separationg’

V) =t R) Y, (), - (2.26)
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where Yn%mg%) are the basis functions of the (n/2,n/2) representation

of 0(4) (see Appendix T) and satisfy

2 _ [ e 2}
B E Y, = 06T, - [f L+ 3T /R - n(neR)e R ¥

. (2.27)

nim

At zero energy, -then, the spectrum of A eigenvalues is determined by
an infinite set of uncoupleci .ordinary differential .equations of fourth
order, differingvéniy'in-their'value of index n. When appropriate
boundary conditions afe imposed, each equatioh has a discrete spectrum
with A(n,1) s k(n;Q)."4 as in the usual Stu;F—Liouville problem, with
the wave function.correéponding to A(n,k) having k-1 nodes in R.
Since these differential eQuétions are independent of ¢ (this is not

the case if. E #£ 0), we have for each radial solution g, the degenerate

set of solutiohs

Wn%m<x) = gn(R) Yn£m(go for 4 =n, n-1, **°, O. (2,2§)

These general featurés of the spectrum are.shown schematically in Fig. 2.

As E is increased from zeré, the O(4) symmetry is broken, the set
of fourth-order equaﬁions becomés coupled, and the degenerate levels split.
Although (2.28) is no longer a solution in this case, it has been found
that a finite éeqﬁénée bf the form | |

N+2

Z fn(R) Ynm(lg), with N = 0,1,2,++, (2.29)
n=4 ' ‘

. ' L,
can yield a fast converging approximation to the true solution. 22
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If m =m, and p o= p, both L(p) and V(x) are invariant
under "time reflection" (i.e., I—»qt), thus allowing eigenstates to be
classified as even or odd under this operation. For this case the exchange

and nonexchange solutions are trivially related. Equation (2.17) becomes
L+z | : |
L) = ()7 " vi=)v(x) , (2.30)

where z =+ 1f ¥ ds even, or - if V¥ is odd, under time reflection,

a result differing from Schrddinger theory only by the extra factor (-)Z.

Equation (2.30) is also valid if mi % m,, at the point E = O.

C. Reality Properties of A

To discuss reality of A it is useful to introduce the following

scalar products:

(B.8,); = fﬁ*l'(xm?(x)vd”x, (B18,), = f¢*1<;x>¢2<x> a . (2.31)

For arbitrary total momentum K it follows from (2.18) that

@B,0%8,), =% (0% £.8,), (B vE), = (VE, £) , (2.32)

Il
i

(Bo02f), = 0% B8y (B V), = (VL B, . (2.33)

-+

If m o= mé, then L =D is Hermitian with either scalar product.

lD 2
This 1s another way of saying only even derivatives occur in. L. On
the other hand, if my # m, only scalar product 2 renders L Hermitian.8
Further, if ﬁA(-X) = —AﬁA(-x) and ¢B(x) = ﬁé(-x), then it is clear that
>0 i
(¢B’¢é)2 , whereas (¢A,¢A)2 < 0, so0 the second scalar product is

. \ ’
indefinite. It 1s further evident that although V is a positive
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definite operator for the first scalar product, it need not be for the
second;‘ For the moment restricting ourselves to nonexchange solutions,
we now show that certain A eigenvalues may be Eomblex.even when E

and 4 are physical. Such solutions are generally unfamililar, as they
do not‘océur with equal—mase kihematics. To see this, recall ﬁhat the
condition ml = m2 implies that the operators L and V are Hermitian,
the latter being also.positive definite (using scalar product 1). In
thisbeaee, let wi ahd Wé be solutions ef the BS equation with
eigenvalues Xl and .Xé respectively. Combining this with hermiﬁicity,

we obtain

2 1’ 1

when (wl, le) is nonzero. This is true, since V 1is positive definite.

If xl = A_., then it follows that Kl = K‘E = N hence A, dis real

If m, # mé, however; we must use the second scalar product to make L
and V Hermitian, and V 1is no longer a positive definite operater. Thus
the reality pfoof fails, since now (wi, Vwi)g may vanish. The only term
in I which is ﬁon-Hermitian contains E(me - ml), hence a purely real
spectrum exists when either of these factors vanishes (i.e., my = m, or
E = 0 assures A of reality). We will see that the violation of these
conditions frequently does lead to complex solutions.

Some insight into the appearance of complex solutions can be

obtained from the following simple model. Tet states 1 and 2 of the

same angular momentum be described by
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Loy - M_V ¥y o and LV, =X, W, 5 _ (2.35)

where LO is an Hermitian differential operator. The state vectors wl-
and wz correspond to the same c.m. energy and are orthogonal with

1

fespect to V. Assume that"h ‘and N, are nearly equal. Add a
perturbation P to L, 'ahd assume (to first order) that ¥ ~ a, ¥y + 2y,
whéfev ¥ satisfies |

T, +PW=2_VV . (2.36)

This leads to a secular determinant whose solution is

Nl

Mew:(Pll“LPeéJr?‘lJr)‘E)/é + [(Pll'P2é+”1"7‘2)/2]2+P12P2 ’
o L ‘ v - (2.37)

If P is Hérmitian,' Knew is a pair of real levels. On the other hand,

;f P 1is skew Hermitian and real, Pil and Pég vanish and 212 equals
P o1 The new levels than would be
. | | %
. 2 2
= + - -
SNSRI NG VIR (SN V7 0 b SR )
Thus A can be real or imaginary depending on the closeness of the

new

levels and the size of the perturbation.

To apply this to the BS equation, assume that vLO describes the
equal-mass configuration. Since 7T—:-T 1is a symmetry of LO and V,
we can classify solutions by their reflection symmetry under T. To
géneratevthe perturbation, let the masses change by m, —m. + 8

1 1
and m, —2m, -9 in (2.24) while holding the energy fixed. The operation
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(to first order in &) results in
L +P, | - (2.39)
where
po 2isep [0 w21 - ), e = Blmprmy) (2.40)

Note that P is real and skew Hermitian, since Py, is pure imaginary.
Since the operator P is odd in T, it can connect only states of
cmmmﬁm.f swmde(mﬁ1mésmm &L
 The fbllowing-picture emerges from Eq. (2.38). When 8 =0

aésume that there are.two real levels with equal E and nearly degenerate
As. As B grows IEiglg increases and the levels approach eagh other.
When ]I&QIQ = (Kl - kz)e/h >the'levelé coincide ("collide"). Further
increase in & leads to a pair of complex conjugate levels whoée real
part is the average of the ériginal levels and whose imaginary part is
proportional to the mass difference., Figure 3 shows a typical *pair of
"colliding" solutions as descriﬁed by Eq. (2.38).9

Numerical computations show that in fact there exist sets of
parameters which give rise to complex solutions for a range of values of
E. Figure 4 shows the collision of two ¢ = O solutions as the external
masses are allowed to vary subject to the gonstraint my + o, = 2., When
my and m,, equal ;, hermiticity forces A <to be real. .At this point
T symmetry classifies the states. The state labeled (O+)* is even
under T-reflection, the asterisk meaning that there is a lower lying

state with this symmetry. The state labeled by O  is the lowest s
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state which is odd under T-inversion. As my decreases, the eigenvalues

approach as in ﬁhe model, and at _mi: 0.6 the levels intersect. Any

further reduction of ml causes the solutions to beéome complex conjugates.
‘When We'apply thé ﬁfeceding réasoning to the exchange potential

problem an interesting resﬁit is found. Equation {2.30) shows that the

equal-mass (O+)* and 0" ‘soiutions have A eigenvalues of different

sign, hence tﬁey cannot” cross. If the external masses are now made unéqual

these tw5's£étes'éfe héé expecﬁéd to mix. Since (for a given &) all

solutions of a given sign have the same value of i, no ‘eollisions" of

x curves leading to complex solutions are expected to occur. Thus we

exﬁect a purely real spectrum even for ﬁnequal maéses.

To prove this aséertion,;we merely notethat the reality proof is

valid for unequal masses now, for

(b W), = J[w(-x)‘v(x) ¥(x) a' | (2.41)

is positive definite. The reality bf this spectrum in this simple case
unfortunately does not imply that this is a general feature of exchange

potentials; in fact with the more general potential
V=V 0sM )+ oV, (x5M,), (2.%2)

if o< -2 and Mé‘> Mi the_potential is no longer positive definite, and

again complex solutions are possible.
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D. Choice bf Trial Functions

It remains for us to choose a fofm for. the radial.basis functions
fn(R) introduced in (2.29). It is important to have trial functions that
match the true solutions closely.near R = 0, where the potential is the
strongest. ©Since the coupling terms between the set of ordinary differential
‘equations vanishes in this limit, the indicial equations may be solved

independently_yielding2 fn ~ Ryn

n # 0 and fo ~ R-E, InR, 1, Rg. For both bound and scattering states

where 7, = ~(n+2), -n, n, (n+2) if

we reject the solutions that are not finite at the origin (two for each
value of n).lo This pair of conditions along with the condition ¥ - O
as R = « for bound stgtes assures us of a discrete sPectrum of eigen-
values.

Since thé roots of the indicial equation differ by an integer we

might expect a solution of the form

) 00 . B
e @) =S ek . K | |
fn(R) =) R +uR 4R . . (e.uj)
k=n k=n+2 '

Indeed, by direct substitution into (2.13) we find that the Rnfe LnR

term is needed on the left to cancel the leading term in the potential.
Further complication, however, occurs due to the presence of the 4InR

term in V. For example, substitution of (2.43) into the differential
equation leads to a term in V¥ proportional to (RELnR)(inR) in the

case n = 0. The expansion of I¥ will contain such a term only if

£~ has a term such as R6(£nR)2, since its fouth derivative (from L)

has a term proportional to Rg(an)E. Continuing this process, we see that

all powers of {nR will be needed, although the higher powers of £nR are
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"shielded" by high powers of R.
For calculational purposes, a simple set of trial functions

(which ignores the log dependence) is

B (R) = B exp(-oR) for k=1,2,-- 5 no= g 44,000 L (2.4)

‘Thesebwere used in Ref. 4 to find the bound-state spéctrum. The parameter
a is a freé variable to be adjusted to improve convergence. A serious
drawback of the above set is that only the leading power of V¥ is
- matched by the trial function. Sinée the differential equation involves .
fourth derivatives, we should try to also match the leading behavior of
ﬁhe.derivatives.< (For éxamﬁle, although R2 4nR vanishes at the origin,
(dg/ng)(R2 inR) behaves as 24nR, while the second derivative of the
eiements of ¢n(R) given above are finite at R = O. The higher
derivatives of the true solution grow even faster.)

The most obvious solution to this problem is to simply choose

baéis functions of the form
¢nk(R) SRR e R for m=0, 1, ... (2.15)

TheEminimum k 1is a function of m, for example, if m =1, then

kmin = 2. Instead of this basis, however, we consider11

$5(R) = B g (R)  for k=12, -, (2.46)
where Kk(aR) is the modified Bessel function of order k. From the

expansion of Kk(aR) about the origin we see that this function has the

correct leading logarithmic behavior at the origin as well as the correct
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power behavior, so that all derivative terms will also have the correct

2
leading form. . Of course these trial functions do not have RY(4nR)" terms
in their expansion, but we use them anyway since they have the further ad-

vantage of being simple in momentum space:

@) 1, (3) f exp(-ipx)f F(R) ¥, () a'%

n

b
- S ont k2 Yn%m(gp) ) - (2.b7)

g (p2 + O

Trial functions that have simple forms in both x and p space are
very useful invsimplifying calculatiéns with the Schwinger variational
principle, fhese trial functions are also a great yalue evén with the
Rayleigh-Ritz method if one wishes to use a free Green's function

whose legs have been renormalized by the sum of all bubbles.%?

E. Variational Principles

For calculation ofvthe bound-state spectrum, we deal with two
Tundamental variational principles; the first is the Rayleigh-Ritz:lL
A =H§§ . ' (2.48)
T T2 v
It 1s clear that if ¥ satisfies the. BS equation, thén Ayl =,
where A is the true eigenvalue. If we Set WT =Y - 8y, it is easy
to see that Mgl - A is of order (611!)_2. |

A particularly useful'parameterization of wT 1s that of the linear

expansion

N )
=y of . | (2.49)
i=1 '



-19-

With this choiée,v s(nv]) = O--is equivalént to the set of N linear
equaﬁions ' | |
N R
b o : : .
). (Lij' - N vij) ¢ = 0; i=1,2,3,-+, N. - (2.50)
=1
Solving fhis set of equations gi&es the N eigenQalues (if no degeneracy)v
Kl’ %2,";‘, kN. ' This method is ideally suited té machine computations,
since it gives a systematic procedure for generating a sequence of
approximations. It also has the advantage of providing approximations to
higher‘eigéﬁvéluéé. ‘If m1 = m2 oné can easilj generalize the Hylleraas-
Undheimr.t-hevorem15 to ?rove that this sequence of.successive approximations
monotohicélly apﬁroaches'the true eigeﬁvalues (from above). If the
massés are unequal,.thé theorem is not true (essentially dﬁe to the presence
of éomplex solutiéns); howevér, it‘appears to be valid for those levels

which do not mix.

 If we choose to consider the integral equation
1 ! 1 )+ 1 .
¥(x) = J6 (x-x") v(x') ¥(x') 4%, - (2.51)

"we are led to the Schwinger variatidnal\expression

AV - | _/%}(x) V(x) WT(X) d%x . (.50}
= : , 2,
T ~IGE(X) v(x) g(x-x") v(x') WT(X') éhx dux'

which is statioﬁary about solutions to (2.51), as is easily checked.

Following Ref. 5 we define U(x) = V(x) ¥(x),
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’ﬁ'T(p) = fdux exp(-ip-x) Un(x) , : (2.53)
and
'.‘é(_P) =fd”x exp(-ip'x) G(x) , - (2.54)

hence (2.52) becomes

f’ﬁT(x) ) Uy )

| Ayl = 5 -5
S [8e) B Tyte) @'/ ()"

(2.55)

The advantage.of'chéésing tfial functions thaf'have simple Fourier
transforms is now ciéaf,-since the Green's function matrix’elément
of (2.55) is far simpler to éompute than thét of (2.52). Actually
a modificatibn of the trial functioné (2.47) is used, since U is taken
to be the Vériationél function. 'Finally, it is clear that a linear ex-
pansion of U(x) analogous to (2.49) will lead to a linear set of matrix
equations of the form‘(2.50).

We next set up éxpressionsyto determine the scattering phase shift.
It is poséible to use thé Rayléigh—Ritz method to calculate phase shifts
through an anlytic cohtinuation }_)I:'ocedture,llL however, for the problem'
at hand, the Schwinger method seemsvmore reliable.

To obtain a-real variational expression for the scéttering phase
shift 6£ it is convenient to first break up the Green's function (Wick-

rotated form) into real and imaginary parts in the scattering region.

6(x) = o (x) + 1 6 (x), (2.56)
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or, in terms of formal Fourier transforms,
oA S ., ‘
G(p) = Gp(p) + 1 Gy (p) - . (2.57)

' The function E%(p) need not be regl, although it is for equal-mass

5

scattering. From the expression

| . : | ar: L
o) - SRRl )'(*g%;*)(f o] Je S
, . : 00 ai

(2.58)

()

1

o 2 . 2 :
where Q = (62 - k2)' and aﬁe = (§5+m12) , it follows that
| IQ-.. ﬁ2 : 2 2 |
| G () = F 8lp,) 8(g -x7), (2.59)

and, for k >0 and x ~ x' large and spacelike,

' cos k 1;}!
GR(X-X ) T l‘%_g‘ . (2.60)

The standing-wave. solution WkP to the BS equation is defined
' Y]

by the integral equation 16
1) = ) +fog Gt Vi) 9 Fr) o (2.61)
mwo Y v

and the K matrix by

P 0 L o P L
) = =X X)) X X = ¢ (=x X x)dx .
5 ~fi o) 09 9260 0 ) v 4T »
o 2.62

Equations (2.61) and {2.62) can be an;lytically continued below the elastic

2 17
threshold where k < 0.
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Here the subscripts refer to the felative momentum. The second integral

of Eq. (2.62) fqlloﬁs from
GR('X)XI) = GR(-XrJ_X) (2'65)

which in turn follows trivially from (2.58).
The relation of Kk’ X to the physically measurable phase shifts
[V Y '

is found by partial-wave expansion of Eq. (2.62). Define the partial

wave functions by

xy;(x) =Y e +1) 1t ¢, cose) B,GrR) 5 (2.64)
3 , :
5o(x) = ) (et + 1) i* 5, () P, G5 -  (2.65)
k2 ; T |
and KAKN, K - z (2t +1) 1% K, PL(%-'Z%—) , (2.66)
{

where

X, = 6&%’) IjL(lcr') v(x) ¥,5(r, cose) a'x . | (2.67)

From the equation of motion, (2.61), the asymptotic expression (2.60)
and the expansion
cos k L£1§![

lz-z'1 =k Z (2 +1) 5,0 ) n, () Pﬁ(A%i.gE) ;
=0 -

(2.68)

we find
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P N - o fa
‘uz (r, cog?)rv Jz(kr) - na(kr) K, 3 (2.69)
and so we recognize

K, = tan B, o (2.70)

in the ECattéring region. Furthermore, since u%P solves a real

inhomogenous equation it is clear from the definition (2.61) that K,

is a real function so long as the Wick rotation is valid (i.e., below

the inelastic threshold). This proves that 5 is real in the elastic
region (elastic unltarlty)

The follow1ng expression for Kk, is stationary about solutions
MI
to Eg. (2.61):

J;' (—X)V(x)xlfk (x)d x +;/@k, ( x)V(x)w d X, J[wk'( -x) (x) dhx
M. P, oy ', RN . "
+;[‘?£; (-X)V(X)GR(XfX Wix )y$f(x axtdx . (2.71)

Employing the same Fourier transform technigue as used with the bound.-

state calculation, we fihd, on partial-wave analysis

: )
) [K?J f 2u£P(k,O) - uL?(r,f)V_l(R)'uzP(r,-T)Idhx
L. 2 T
+ E—EM [ﬁlP(p’pu)] GR(P) . (2.72)
(2x) -

where we have restricted ourselves to the region K° <0 (below threshold)

so that the Green's function integral is well defined. The u, are the

partial-wave coefficients of U(x) [=V(x)¥(x)] and are defined analogously
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to ¥, in Eq. (2.64).
To get into the scattering region, we must express the Green's
function integral in a form that is easily analytically continued. We

have seen that K& is real below the inelastic threshold, so the left-
mmdSMEof(EJE)isr%l. Since U &OL.1QWXL and VT are

of

real, we conclude that the Green's function integral is also feal, although
ﬁa(p) and l&R(p) are not necessarily real individually. We have, then,
2 L
~P A7 dp _
j[u ()1 Glo) ==, =

(2x)
¢

'[ P, 2 at ]N NP.' 2 gt
Re { J[%," (p)] .G(p) =5, - i (G (p) (v, (p)] =5}
e L U, \P ‘ p (Qﬁ)% Jh1 % (Eﬁ)%f _
| . (2.73)
Finally, using (2.58) and the reality.of rﬁz(k,O)] , we find
' 2, 4 - 5 2 Iy
-[iﬁ;P<p>1 Ge(p) 22, = Re J([u£P<p>1 o) L2, . (2.74)
_ (ex) ‘ (en)

The integral on the right side of (2.74) is analytic and may be continued
into the scattering region. Combining this result with Eq. (2.72) then gives

our stationary expression for - tand The resulting expfession differs

.
from Ref. 5 only in the sign'change (-7) in the potenfial integral,
and generalizes that result to unequal-mass séattering.

Finally, 1t is easy to see that the preceding results are édapted
to exchange potentials by only the addition of the eprnential factor to

the inverse potential term and the sign change of the argument of U(x),

provided the latter is defined by

UGx) = exp (71 -w,)B) ¥(x) ¥(x) (2.75)
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F; Calculation of the Matrix Elements and Continuation in 4: Rayleigh-Ritz
Ih this subsection we compute matrix elements of operators L .and
V with respect to the bases (2.4L) and (2.46).
The effect of the differential operator L(p) on a single trial
. Ay .. :
function fnk(R) Yn&mgﬁ) is easily calculated from Egs. (A5) and (A6)

of Appendix I, and is

G- )

1 [f‘nk(R) Y o
l'l',k'

nem c(n®k') £ o R) Y ., &), (2.76)

k-k!' = 0,1,2,3,4; n-n' = 0,11, 12,

where c(n',k') are known constants. Using thé ofthogonality of Yan,

the L matrix elements are reduced to one-dimensional integrals of the

férm -

j £ 1yt (R) fnk(R)RB_d_R ) (2.77)

For nonexchange processesr V is a function only of R, hence the R

matrix elements are simply
am,f £ R) [ OR)/RI® £ (R) B ay, (2.78)
) : ,

. . I .

where s =1 for ¢3 and s =2 for ¢ potentials. (For ¢LL potentials
n is no longer integral, but this does not introduce numerical problems. )
For exchange processes we have tWo simple alternatives: The first is to

expand the exponential exp[TE(ul-uE)] by use of
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o0

T oeh) Y )1, ) e ) . (2.79)

n=0

The resulting angulér integrals are O(L4) Clebsch-Gofd;n coefficients,

and are easily calculated by using the explicit forﬁ of Cni(x). The
radial integrals also.present ho problems. The second alternative is

to simply set Qi ='p2{ thus eliminatiﬁg the unpieasant factor. PTovided
fhat the‘mass’difference‘of thé extérnal partiéleg is not too éxtreme, this
technique proves'quife adequaté; o

With the basis (2.L44), integrals (2.77-8) reduce to the form

oo

Q(N) =-j exp(-2xR) RV ar s (2.80).
Pa(N) = f exp(—2aR):RN+l Ka(m) dr , _ ((2.81)

where a = 1; PO will also be needed below, The first integral is
simply a gamma function, hence is easily calculated. The second is more
difficult, but can be done numerically without any trouble. 'In both cases

only one value of N need be explicitly calculated, because of the existence

of the recursion formulas

a(i-1) = 2 [)/(r1)] e
PO(N-l) = [2 PO(N) + M Pl(N)]/(N+l) , (2.83)
Pl(N—l) = [M PO(N) + 2 Pi(N)‘]/N . - (2.8L4)
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For the basis (2.46) the integrals (2.77-8) become

[>¢]

0,0 = [0 xy6) o (2.85)
P = [ X, K0 5,0 F g (2.86)

whefe i,J = 0,1,2,°++ and k = 1. Due to the Bessel recursion formulas
we need compute only i,j = 0,1 numerically. By analogy to (2.83-L) it

is easy to show

U (1) = 8, (1) + Qo M/,

Quo(-1) = 2., (w)/(w+1) , | - (2.87)

Qp, (W-1) = EQOI(AN')/(M)

(which obviously simplify). Six independent recursion formulas for

Pijk(N) can be constructed from the relation

Pijk(N—l) =[Pifljk(N) + P

ijile(N) + b Pijkil(N)]/[N+li(i+j+k)].

(2.88)

A similar set of recursion formulas exists if Kk(bx) is replaced by Jk

or Ik’ a fact which is useful for exchange potential and form factor

/

calculations.
Were we to use a "square well" potential of the form V(R) = v, oif
R <R, and V(R) = 0 otherwise, all the necessary integrals are of

the form (2.85) except that now the limits are altered. The recursion

formulas are still valid provided that we include "surface' terms that arise
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from integrations by parts used in their derivation.

In the foregoing we have assumed that ¢ .is a nonnegative inte-
ger. on the other hand, once the Y&m dependence hasvbeen factored off
there is nothing to prevent us from using the resulting equatioﬁs to

: 8
analytically continue in L.l Equation (2.29) becomes in this case

-+ ' _
¥, = Y £ (R) z'n(cos@) with 8 = 0,1,2,°°°; (2.89)
n=t '
where
B | 2 “
Znﬂ(cosg) =N, ang(cosg) sin"o . : o »(2.90)
The normalization constants N , are given in Appendix I, and Cna(x)

are, as before, Gegenbauer polynomials. The index n (=£,4+l,--+) is no

longer integer, but since n-{ remains integer, Cit% are still poly-~

nomials, and the équafion (2.76) remaihs valid (provided the Y, is

first cancelled). The integrals (2.77-8) are trivially continued in n

(or N) for both sets of trial functidns, and all the récursion’formulas
are still valid. The recursion formulas have the further function of giv-
ing meaning to the integrals in the left hélf of the' n plane, where the
integral definitions diverge. 'Inbeffect, theée formulas extract poles

in the matrix elements at negative integefs and serve as a device to analy-
tically continue thé matrix elements. Thié method of computatioﬁ of
trajectories suffers from the.defect of giving only points below the elastic

threshold; however, it may be possible to use this information to learn

about points in the scattering region.l9
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G. Calculation of the Matfix Flements: Schwinger

In this section we generalize the calculatibnal forms of Ref. 5 to
unequal-mass kinematiés. At the close of the section we comment about the
Regge continuaﬁion.

The basis functions (2.46) are most convenient, since their
Fourier transforms (2,47) are very simple. Actually the trial functions

used were .
e ' n-4 Lo n, 2 ~-n-q : '
2w exp [in (n-£)/2] cos Qp sin @P v (y~ + 1) ,  (2.91)
n-{ = 0,1,°*° ; q=1,2,°°",
where
= Jol/a 1= (ol + 5,202 |
v = |pl/a [= (p] + 7, )%/al  and  cos 9p=PL/|P' .

The Y&m “have been factored out, and the phase has been chosen to make
the matrix equations real. The integer ¢ has values 1,2,-<+« instead
of 3,4+« as with ¥, because V’Vg/Rg for small R. The angular

functions have been simplified to make the Green's function integrals

simpler. Equation (2.91) can be Fourier transformed to yield, after some

algebra,
'unzlq(R,}T) = Z (oel‘/lm) exp [in(n-2+k)/2] B(n-1,k) sin’e Ck“l(cose)
-k
. /3 '-X o]t ;
X j{:(x}-)a [P(c+2)2 ] () Kk_c(aR) ,  (2.9)
A=O . _

where j 1is the maximum integer in (n-4-k)/2 and o =n+q - £ - 2
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and X = 0,2,++,n-4 if n-{ is even or 1,3,+--,n-L if n-L is odd.
The matrix B(n-{,k) is defined by
cos™ %o = y B(n-2,k) ck“l(gose)  (2.9)
v -

Taking matrix elements of the Green's function Go with respect
to a single term of the momentum-space trial function (2.91) shows us

that we need to evaluate expressions of the'form

. : T . ) ' '
N K L
A(K}M) N) = an/Q - & x M ;L' j d'_“g_i“—"‘os_ ° ’ » (2'9L")
_ 1+ x ) ) g TH(e,x) :

-where c :.O?/huluéEQ; .The inverse two-particle propagator function
-1; . ‘
[GO (O,X)} is

x2c0329 +1i¢! x cosO(Aux + 7 ) +c x4 + (ﬁl+62)x + BlB

(2.95)

‘where

2 L (BRI,

D
-
e
F
]
F
™
i

c!

2Ec/a.

The bracketed expression in (2.94) will be denoted by J(K). The
substitution z = exp(i@) reduces (2.91) to a contour integration around
the unit cirele (using symmetry). The four poles in the denominator occur
in pairs which are reciprocals, so (except if the poles are on the unit

circle) we pick up exactly two residues. The prescription is to evaluate
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. the integral for a value of the parameters (n's and k) such that the
ranches are known and then analytically continue the result to the desired

parameter values. We find

. ) ' 7 )
B o S I V! _
7(0) = = f G (6,x)a0 = = — | L 4 21, (2.96)
T ‘ o] ‘ C X2+7' Dl D2
o, +
N i gy X?+52
J) == G. (6,%x)cos0 A6 = =5 5 -5 P
, m ° _ ' xc 2E(x +7+) 1 2

| (2.97)

N

where Di = [(X2 + Bi)e + (2uiEx/d)2] -, thus reducing (2.91) to a
single integral if K=0 or 1l. It is possible to evaluate J(K)

‘for arbitfary K‘ by éontéuf integrations, but thése two values of K
will be sufficient for calculational purposes due to.the existence of

the recursion formulas

A(K, M1, N) = -A(K,M+1,§+2) + A(K,M,N) ' (2.98a)
and '
A(K+2,M,N) = -c exp(i n X/2) I(X) E(M,N-2)
+ c'[Au A(K+1,M-1,N-1) + (7_ ~Ap) A(K+1,M;N-1ﬂ

+[A(K,M—1,N) +(By + By -1) A(KM,N) + 8.8, A(KM,N-2 )] ,

(2.98b)

where



and .
i 0 if X odd
I(X) = t[ coste ae ‘=

Kl/éK [(KV@)!]E if X even .

The.proof of (2.98a) is trivial; and (2.98b).is derived by simply
multiplyihg nﬁmerator and denominator of the integrand of E(M,&) I1(K)
by the propagator. |

- Af'this‘ﬁoint WeA?digréss briefly to see for what ?ahge'of E
the Greeﬁ's functioh iﬁtegral cén be evalugtea when “1 = ug and ml % m2.
We dsed this‘for calculating exchange potential bound-state problems. The -

denominator has its zeros on the imaginary axis at

cos = * i(p° + B;)/(2p pE),

so the only way that this point coﬁld'cross the integration contour is
if Bi < 0., For ui = %} then, we have FE < 2mL, where mL is the smaller

of m, and mnm.. As long as . mL > 0 we can evaluate the integral in the

1 2

allowed region and then analytically continue the re§ulting expression.
Finally we need the precise relationship between A(K,M,N)  and the

matrix elements of Go:
ﬁ;} ¢+l |

) = / A{n+n'-24+20, n+n'+g+q’, n+n'+3).  (2.99)
" 5 _
0=0

(

un%q?o?h'%q'
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If m or m, is'zero; ﬁhe rchrsiQﬁ formula (2.98b) cannot be used, aé
it becomes indetérmiﬁafe, but-é_slight modification of it can be used.

The Green's functioh ihtégral is aﬁ improvement over its Rayleigh-
Ritz.analoé (¥, T¥) for two reasons. First, the f%@d)v(x') appearing
under the integral suppresses thertéil of V¥, whicdh can be quite large
if _E is near threshoid. Sécond, the asymptotic behavior is treated more
aécuratély;asinéé:théuéémbiﬁationsﬁjé(x,x')v(x’)wT(x')dhx' and
J[WT(X)V(X)G(X,X’)dhk have the éahe fprm at © as ¥(x) and Y(x')
respecti&ely, eyen,though WT doeé‘not. The het result is'that the be-
havior at o is taken care of automatically aﬁd all thevfreedom of the
trial.function can go into matching ¥ and WT'_néar the'ofigin.

‘There is no essential difference in the inverse potential matrix
elements introduced by uneqﬁal-méss kinematics; hence we merely summarize

the calculational formulas. We define

| 2 AN SINC &
[N _ -~ -
BB(m,m' ;) _f Kl(MWO.z) - . (2.100)
. ' O
These integrals are evaluated for m,m' = 1 and 2 for ali N needed, and

the Bessel function recursion formula is used to evaluate (2.100) for all
other m. Using‘the orthogonality relations for the Gegenbauer polynomials,

we find
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Cata? yiagr) = @D s

min(n-¢4, n'-4)

x X : (- )KB(n-2, ;K)B(n'-4; K) (K+28+1)!

oL
] bo(keta1) 2°
— D

oL

J 3
R }ﬂ BB(0-L-K, g '-L- K,c+c ) (LyimtHd -z(' ) { >
/ - 2
Lo - L
L Lo D) T 2" WA
(2.101)
vhere o =n+q-¢ and o' = n'+q'-L. The equation applies only if n and

n' are both even or both odd ; otherwiéé the matrix element vanishes. The
index X is taken over only even values 4if n- { is even, odd values if n-¢
is odd.. In- (2 lOl) we have set j= (n -k /b and j' (n'-&—k)/é.'

Although we have not computed Bethe-Salpeter Regge trajecfories
using the Schw1nger varlatlonal pr1n01ple, thls is certalnly possible, and
has the advantage of allow1ng the trajectory to be computed in the elastic
reglon.go The contlnuatlon of the potential integrals in {¢ is analogous
to the method used with the Rayleigh-Ritz principle. On the ofher hand,
we meet with some diffiCﬁity from the Green's function integrals. In particu-

lar the angular integral is proportional to

cos @ sin S ae
A(x)cos ® + B(x,E)cos® + C(x,E)

jf nin'-24, . 2442

For integer (or half integer) { we were able to evaluate this integral ex-
actly, and we found that the resulting closed form expression was easily

continued above threshold. When ¢ is general and the external masses
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are equal [so B(x,E)-= 0], the analytic continuation is also easy,
since the abo?e integral is‘expreésible aé a hypergeometric function
whose continuationvis standard. Such a coﬁtinuation is doubtless possi-
ble even if the external masses are unequal; a_judicious change of var-
iablesgl would alléw one to extract the (x2 -k )-l singularity,
leaving a wéll-behaved integral that could be evaluated numerically. We

also note that the recursion formulas carry over to general & with only

minor alterations.-

H.‘ Example: One Trial Function

‘Before pfbceeding with a iarge-scale calculation, we can obtain
SOme'insight'ihto the géﬁéral fofm of the curves X(Ee) .by the following

simple model involviﬁg only one trial function. :Assume the solution wave

function ta theieiéenvéiue problem ié of the form of the lowest (for

a given 1) zZero-energy exact.solution corresponding to exchange mass

zZero:

(aR)#+lKi(aR) Ynim(x), n= 4. (2.102)

We have inserted a free parameter «, which is unity for M = O
but will be taken as a variational parameter.go Expanding the potential func-
tion about M = O and keeping the first three terms (it is easily seen
that for any M % O an expansion to at least third order ié necessary) leads

to the Rayleigh-Ritz variational quotient:

2

2
=y 07 (1) - (n2)1E + (1)

(Ln+10) 2 .
AR D = — (2.103)

(n+2) (n+3) E(n + 1)1 44
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where 7
A= {A(E) (%gizé?+5) (nZ+7-%- %mng}wﬁ , (2.10k)
Mnf=%-j‘hi@ﬂezaﬁ5hmda 'c=ji;gzmgz)¥ﬁz=ah,
o. o :
3 =‘Q?, 7 is Euler’'s constant, and 1 = E/2 .

The variation condition

e _ | (2.105)

is made difficult by the presence'of tnd in A. . In the following we will
use for £&ng its Valﬁe for.thé case M = 0, &n approximation that will
be checked for consistency at the close of the calculation. Condition

(2.105) now implies

t = -A(n+1)_%{((n41)A)2 } 2%&%%%1 ((ﬁ+25 - n2(n+15>.+ (1-112)2}E .
- | | | (2.106)
As a éheck we set M = 0 ana.find
of =u*(1-n7), B © (2.207)
: R -
Ag(0) = (mil) (wi2) - [Eﬁn?éiiggg) } 2, (o)

which is remarkably good fit to the exact solution up to 5 = 0.8 for

2
n = 0,1. This very nearly linear character of A vs n 1is a
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. characteristic feature of ground-state solutions, and persists in the
more general cases for which M % O and -my # m, . Substitution of

(2.107-8) into (2.103) gives

[(n+l)giig?2n+5) .] M om (043) 70 [(me2) - 17 (e41)] - (n41)A

=

L {Ag(n+l)2 - 2ala) ..((n+e) S (ar)) + (1-n2)2} (2.109)

[y

If we take M tovbe 0.25 andicalculate-the constant A‘ from the value
bf a given by (2.107); we find A(n=0) = 2.26, compared with the true
value 2.21L4 -++. The resulting value of o is 1.1l, compared with
o = i.O,' leads to an erfor:iﬁ computation»of ‘A of only about 5%.
As & ‘further check, if nZ = 0.5 we find A = 1.366, which checks to
,.thfee places‘oh interpolation of Table. IT. _

| Eéuation (2.109) is particularly simple when (-ng) is large

and positive (ghost region). Expanding the square root gives

4 - (o) |Eeen)| - (O] () + o)

(2.110)

Thé curves are.nearly linear, with a slope dependent on £, but independent
of ﬁhé exchange mass. The effect of M £ O is to slightly steepen the
Qlopé}

Finallvae would like to poiﬁt out that Equation (2.109) gives an

approximnate expression for Regge trajectories below the elastic threshold.
N
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III. NUMERICAL RESULTS
This secﬁ;on’is broken into two pafts, the first and more
extensive dealing with bound'statés and the second with elasti¢
scattgring phase shifts. | |

A. Bound States

The BS‘équatioﬁ can be written in a form which has exactly four

nontrivial dimensionless quantities, for example,
o v _ . ,
ml/mT’ _ E/mT’ M/mT: >\/mT: ' _ (3.1)
where fmT = m +m,. This enables us to fix the threshold energy at
2, all other thresholds being accessible through the scaling relation

}\-('M;l 'ml”‘_ mg: E) .= 7\(MB; mlﬁy mEB; EB)/BZ ) (32)

where 'B = 2/mT. The eigenvalue parameter is most conveniently chosen

as the céupling parameter A, andlis a function 6f three nontrivial
parametgrs which we take to be E, m, ;- and M. TFor calculational
purposes, the choice M. for the scaling mass would also be convenient,
since then the same set of potential matrix élements couid be used
throughout..

By use of the variational methods described in Section IT.
Tables I-IX, constituting a "dictioﬁarY” of ground-state eigenvalues
(M, m E), have been calculated. The parameter ranges contaihed in

these tables are
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0<E<2, 1l<m<2 0<M<IO (if £=0), M=1(if ¢ = 1).

This éives us the complete rangebof mass ratios of the external
particles and all physiéél boundFétate energies. The points near
E = 0 were comﬁuted with the Rayleiéh-Ritz quotient; for most other
points the Schwingéf principle was used.

; Figuré.SJiS-a graphiéal1éummary of Table V, and illustrates the
Bésic 5ehévior 6f ﬂx.»with ﬁg; The éiope is'quite linear and indepen-
dent of fhe masé_difference-iﬁ the région EQ‘S 3, but becomes Steeper
és threshold is approached. - That the slope is everywhere negative is
intuitively clear, since less tightly bound states should require
weaker cpupling sfrengths in analogy to potential theory. TFigure 6
demonstrates that this linear behavior persists into the,"ghost”
. region (E2 < O). The basic features of these curves are well approx-
imated. by the formulaé (2.109) and (2.110), which resulted from calcula-
tibns_with a single trial function, provided that E is not too close
to threshold and M is emaller than about 0.5.

.. 2
In the limit k° << m ,m, (near threshold) and M << m ,m,,
the second term (GC) in the Green's function reduction (2.58) contrit-

utes little, and the resulting BS equation becomes a Schrodinger

‘equation with potential

- [K(ml * mz)“] exp(-Mr)
- m m. E r .
1 2

(3.3)
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Figure 7 compares'the BS solutions with those of the Schrédinger
equation. We see that the Schrddinger curves lie consistently below
those of the BS equation, although, of coufse,,becoming cloge in the

limit of M -and EB near zero. This is reasonable, since the term

neglected in the Green's function is negativé, so would tend to reduce
(Go> and to inCreasé x(~(V_l)/<G>). Another way of seeing this is
to ndte that for r ®* 0 and T = Ov the Schrodinger Green's function
behaves ag - (i/r), éompared with (4nr) for the BS equation, so the

net effect is that the potential strength is overemphasized. = A further
common_feéture-of the BS andechrBdinger curves is the.threshold shape.

. ' 1
Both approximately obey (A E - 2)2 for s-waves

_Vxﬁhresh) x
(the power.is ‘E + 4 in general). The reason for the similarity lies
in the fact that both SchrBdinger and BS Green's functions have the
same threshoid branch cut in kg. |

The order of levels shown in Fig. 5, with the more nearly
equal-mass states lying'lower,'can be intuitively understood as follows.

For a short-range potential (i.e., large M) the extent of the wave
functlop is roughly governed by exp(—mQR) if m > mg(: 2 - ml),

o] 1arger' ml' corresponds to more extended wave functions. The
corresponding particles feel a smaller average potential,rand so will
be less tightly bound. Figures 8 and 9 show that there are exceptions

to this order if the potential is long-ranged. As M becomes small

the levels cross, and eventually the order is exactly reversed.
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Increasing E2 causes the crossing points of Fig. 8 to occur closer
to M =0, and if M vanishes, the "crossing" point occurs at
threshold (where » = O or %);

The behavior of ) with exchange mass M is shown in Fig. 10.
That increase in M leads to a decrease in binding is intuitively

ciéar, since, asymptotically, if R & O
Vo~ Mx/Rg . (independent of M) , (3.4)

and if R = oo

. . |
v (R smOm) - (3.5)

" i.e., the tail of the exponential is cut off strongly as M grows,

- but the dominant behaviof'at the origin is unchanged. The roughly
parabolic form of the (M) éurves is also a feature of the one-trial-
function formulas of Section IH.

We might remark parenﬁhetically here that the ¢5 spectrum is
certainly not very physicélly reasonable when A 1is large and positive,
gince the sqﬁares of the bound-state energies 5ecome negative. The
equation may be modified in various (rather afbitrary) ways to force

E2 > 0. TFor example, we might include a factor [E/(ml + mz)] in the

) 2. '
coupling parameter. 2. This factor cuts off the effective coupling

strength as E gets near zero.
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Both variationai methods algo provide approximate values for
the excited-state eigenvalues, although with somewhat poorer accuracy.
Without using matrices larger than 28 X 28 it has been possible to

calculate with reasonable accuracy fifth or sixth excited levels. This

does not, unfortunately, mean that the wave functions are very reliable
for these levels; however, dué in part to the variational principle,
the eigehvalues clearly converge. The lowest three s states for an
equal-mass bystem-aré shown in Fig. 11. The'specfrum.is real, and the
. states possess definite symmetry under Tfinversion.' The O(L4)
symmetry at E = O is apparent in the degeneracy of the 0" and l+
states.. Both wave functiqhs éré_ ‘

o (R) Yy, (x) , (3.6)

' : - *
at this point, with £ =0, 1 for states O, 1", Since the (O%)

and O 1levels intersect v(at m % 0.5) and have opposite "t parity,"
the perturbation argument in Section IIC suggests the possible mixing
of these levels when the external masses are unequal. Figure 12 shows

the same levels with m, # m, . The upper pair of levels is geen to

"collide" and become complex as expected. Figure 12 also shows the
lowest l+ state, which lies very clése to (O+)*. This level along
with the lowest Of level is only siightly affected by the mass

alteration. In Fig. 11 the 1" and (O+)* levels are also seen to

cross, but naturally no mixing is possible here.
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A comparison of éxéhange and nonexchange potentials (Fig. 13)
cbnfirms two features already suggested earlier. When E = 0, the
exchange and nonexchangé solﬁtions.afe degenerate, a fact which is
obvious due to the O(L4) symmetry at this point. Denoting by
xi(x+) vsolutions smoothly connected to the solutions for equal-mass
systeme for which the "time parity" is f(—), we find a real spectrum
with 2~ <0 and A >‘O.: Finally we notice +that the exchange
solutions .x; lie ldwer than the nonexchange 2" for a given coupling
COhstaﬁt,'and in fact even lower than the equal mass solution. On
the‘othér han&.'—(x;) lies higher than the corresponding equal-mass
result. | |

We élose‘thié'subsection with some examples of Regge’ trajectories
computed by.the methods of Section IIF. The three trajectories of

Fig. 1L were calculated for ERY and M equal to 1, but the

method works for any combination of these masses. The coupling strength
was chosen as 16.58 to force the highest trajectory thrbugh £ =1

at E2 = 0. The trajectory labeled P (parent) is the highest-lying
("leading") trajectory and corresponds to the ground state with time-
parity P = +. Trajectory P* is simply the first excited level with
P = +. This ié intersected with the "daughter" trajectory D, which

has P = -. If we now let m, % m,, we expect these trajectories to

mix at this point; thus leading to complex trajectories of the type
already seen. A further feature is the spaceing £ = 1 of the parent

and daughter at E- = O, and is a well-known result of the O(k)
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symmetry. The corresponding exchange potential trajectories have a
parent-daughter spacing of A £ = Eﬂ

We have nof computedvtrajectdries above the elastic threshold
with thechhwinger technique; however, note that the threshold behavior
of these trajectories, being determined from the analytic properties of
the Green's function matrix élements, must be the same in character as

with the SchrBdinger equation, since G and Gng both have the

Schrdd S

game threshold branch cut, as was earlier noted.

B. Scattering States

1. Examples; -”ﬁa"ﬁphése shifts

We have calculated 'S with the Schwingér variationai principie
for a large range of ﬁass ratios and have found excellent convergence
throughout; Since the scattering problem has one more free paramefer
than that for bound states? and since the difference introduced by
unequal-mass kinematics is not great, we content ourgelves with some
exaﬁples. Figures 15 and 16 pfesent the £ =0 and. £ =1 phase shifts

for external masses mnm

;= 1.5, m, = 0.5. Comparison of these curves

with the corresponding egual-mass curves (Figs. 3 and 4 of Ref. 5) show
no qualitative difference and very little quantitative difference.

Due to the smoothness of these curves we might expect that a
simple effective range formula might well describe the data. Figure 17
confirms this to a large extent; the curves are very well fitted with

an effective range formula of the form
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(k2£+l/8 n E) cot 6£ Na, + bﬂkg ek , (3.7)

for couplings béiow those needed for a bound state of angular momentum .
£. Actually this formuié is good even if there is a bound state,
" provided that the phase shift does not pass through =« ciose to
threshold (e.g., A =5, £ =0). If the simple pole at d = x is
removed the'efféctive range formula may be good eﬁen in this region.

© Figure 17 clearly shows the development of a p-wave resonance:
the inﬁeréection of theiéffective range curve and the k2 axis first

2

occurs at’ ) ~ 6, k~ ~ 0.2 and moves to threshold at A ~ 8. For

-iargér couplings we have a p-wave bound state.

2. Levinson'g theorem

23

Levinson's theéorem - ig S(E = E where n

threg’ N = g 7 B
is the number of bound states aﬂd 8(E = 0, A =0) =0 and has not to our
knowledge beeh froven for the BS equation. The theorem is checked by
slowly turning on the coﬁpling strength from zero and demanding
(1) that for E not too close to threshold &(E, A) be a smooth
function of A, and (ii) that B8(E, 0) = O. If we then follow the
phage shift to threshold at fixed- A, we numerically find that Levingon's
theorem’is valid; at least fér potentials that bind only a small number
of bound states. | .

One stipulation must, however, be made. When the scattering

particles have equal mass, then it is'possible to construct bound states

whose wave functions (wodd) have odd time parity. Since we can choose
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o such that the incident plane wave is independent of the relative
time,. such solutiohs,cannot be excited in a scattering process. The
corresponding scattering amplitude Will not have a pole at the mass of
such a particle (or, in other words, the residue of the pole is zero),
and such a stéte will.not_be counﬁed in the number Ny

If we now allow the masses to become unequal, V¥ develops

odd
an even timefpériiy'componené.fhrough the odd part of the Green's
function. Such a wave function can cduple to the incident ﬁave,'so we
would expect a pole to develop in the S matrix. Levinson's théorem
would apbear to reqﬁire an extra jump of 5 as we increase ) - through
the zero binding value for the state. Wheh_we calculate phase shifts
for unequal-mass scattering, howevgr, we find that these states do hot
contribute to Levinson's theorem, nor do they appreciably affect the
scattering phase shifts (Fig. 15).

This éituation is somewhat clarified by decomposing the wave

function into its even and odd parts (in T):
Vo= oav eV . | (3.8) -

By symmetry it follows that

1]

(@]
-
—~~
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(¥ .V, 9) = t, | | (3.9)
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where we have fixed the normalization of We and Wo arbitrarily.

With this normalization the bound—state pole in V¥ as a function of
_énergy will appear in the coefficiénts a and p. The T matrix is
(¥, v ¢) or simply ot

Taking matrix elements of the BS quation and using relations

(3.9), &e find L C
& t Kee Ko \/ @
= + : ) . (5-10)
' B 0. Koe' Koo p

where, for example

1l

Ky = df‘Ue(x) G(#—x')-Ub(x') dux dux’

1t

’[.Ue(x) Godd(x—x') UO(X')IduX‘dMX'

B, '-fuo(x) Olxx') U (x') a'x A% = -k, (3.11)
and Ve, 0 =V qfe,o' The vsolution.of ﬁq. (3.10) is
o=-t(LK - 1)y/a : (3.12)
potlige | (5.15)
where
b= (nE, -1 k-1 + ik )P . (5.14)



L8

If the bound particles have equalxmass, then Keo vanishes,

-1 -1
s K correspond to zeros of A, hence
ee ole} :

go we find that » =K
appear to be bound-state poles of the T matrix (i.e., poles of o).

-1 . . . . '
The pole at A\ = Koo , however, is an illusion, since the numerator

of (3.11) has a simple zero at the same point, which cancels the pole.
If we now allow the masses to become slightly unequal the cancellation
does not occur, and the T mafrix ig left with two poles and a zero.

For small K and (as is usual) X _>K_ we find
T Teo . A . ee ~ o0

22

(qule Koo -‘l) " Koo/ (Ko = Kyo) ] ’

Zero oo

O K -1)=0 | | - (3.13)

g0 Kpble < xzero' The positions of the slngu;arltles are shown

scheméticaily in Figﬂ 18. At a fixed value of A ‘it is seen that the
zero lies between the bound-state pole and the physical scatteriﬁg
region. This expiains why the nearby bound-state pole did not have a
large effect on the phége shift. Also the absence of a jump of the
phase shift by x is not surprising, since the relevant number in
most proofs of Levinéon‘s theorem ig the difference of the numbers of

zeros and poles, which is unchanged when the masses become unequal.

3. Example: "¢h" phase shifts
The interaction xq¢h gives rise to a ladder whose rungs

consist of a pair of particles. The corresponding potential is the
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product of two propagators of the same argument, namely h

W2
M Kl(MR)
V{(R) ~ Mg {—T—]

If R X 0, we see that V(R) ~ (xq/Rh), which is as singular as the

centrifugal term in L(p). As a consequence the potential strength
‘ 10

.

TN appears in the indicial equation. As is shown by Bastai et al.,

there is a finite region ébout A, = O for which all four roots are

real, with two larger than zero and two smaller than O, as was the case

for the eigenvalue problem. On the other hand, if )\, exceeds a
certain value (depending on and the sign of xs) at least two roots
-become complex. This leads to behavior at the origin of the form

7§+1Yi fR
¥ ~ R = R [cos(yi In R) + i sin(Yi /n R)]

(3.15)

thus the solution has an infinite number of nodes in any neighborhood
of R = 0, a nonphysical result.
Fixing A, in the "allowable" region, we have chosen radial

basgis functions

[clR 1 ¢ R ] Rk'exp(-_oc R) o (3.16)

and where Y. .

1 and Y, are the acceptable roots of the indicial
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equation. 1In order to find bound states, however, we have had to
include an additional ¢5 interaction (for s waves, we are not even

allowed to have X_ > 0). Our numerical results were in excellent

agreement with the exact special case of Bastal et al.
. » : , )

It wasalso decided to introduce a cutoff at small distances; this

allowed us to usge any coupling strength desired. The form chosen was

o 2 S
Veutore®) = V() 7] - (3

This turn has the advantage of being relativigtically invariant and
giving V the same behavior at the origin as the ¢3 potential. When

the coupling strength is large enough that the singular problem'is'in

the ”contihuum"_range, wévexpect that the result is sengitive to A, a
_suspicioh coﬂfirmed by‘direbt‘calculation (Fig. 19). Fixing A
arbifrarily at 0;5, we have calculated 6(k2) for se&eral values of
» (Fig. 20). fhe behavior of 5 implies that a bound state exists
when X 2 0.5, since at this point the phas¢ shift abruptly jumps to
n.' These curves.aré very similér to the ¢5 results, and can be
fitted rgther well by effective range formulas up to k2 ~ 0.5.

We note in ﬁassing that this potential, being positive definite,
cannot produce a negative é-wave effective range such as seems to be
observed in it I=0 écattering. 'Such negative effective ranges

could be obtained, however, by the addition of a repulsive long-range

interaction.
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IV.vYTWO—CHANNEL CALCULATIONS

'.f'%ﬁe:cén formally geﬁeralize thé BS equatién to gystems of N
éouﬁléd éﬁo-body Channéls By‘a sim@ie matrix technique similar to the
matrix‘N/g method of Bjorken.25 Furthermore, by.interpreting Eq. (2.71)
as ﬁ'matfix equation in the channel indiceg, we will be able to apply
tn¢ZSghWinger’variational principle to the two—channei problem with
ogiy'miﬂor modifications. |

e

We.define channel '"i" to have particles of mass mll, m,

2

T 2 i1 2 ie 1
with momenta defined by (ki +my )2 + (ki + m, )2 = E. The free
.two—body propagator for channel i is denoted by Gi(x-x'). The
poténti&is Vij(x)‘ arelillustrated in Fig. 2l. We will need the

matrices_(given here for N =2 for simplicity):

N o - |
(Pk(xb - o.' ei<rl§2;2§) s (b.1)
o e1T o ,
(&) = ), h.)
. =v,T
' N0 e ¢ |
, k,/8 x E 0 G(klg) 0
. . (pE) = (®p)(eg) = ‘ | )
. : 0 : k2/8 17 E/ \Q g(k2

(k.3)
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- Gl(X,X') o o ‘ :
_(G(X;X’)> = = E(T) G(XJX’) E('T') ’
N0 G(xx) |
: ' N 4 (h.4)
Yoy () V0N o -
Ge)-{ , (h.5)

Vzl(x) Vea(x)

and

: o

In the a'bove,'v_i = |
. )

function is denoted by

E)G)E) e

and k

1 gvlgll. The BS wave

S S
21 "M

&7 (X) : ng(x) : o
(ur (x)) ) I )
\u;(__ ) ¥, (%) -

where the superscript labels the incident beam.channel and the gubscript

1"

the channel consisting of the "legs" of the wayé function.

The wave function satisfies the équation
(ﬂfk(x)) = (E(T))(Pk(x)) f(G (x x' ))(V(x ))(11/ (x") )d x',
| | (.8)

which can be rewrittenAas

CORCORYICR IS DN

(4.9)
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where

G’UX)) = (E("T><(¢k(x)) '. : | | (4.10)

We will drop the primes on ¥', G', and V', understanding that they
"are always present.

‘We next present the generalization of Section IVB of Ref. 5
to multiehannel gystems. The main points of interest are the definition
of the seattering amplitnde and'the proof of unitarity below all three-
‘body thresholds. To fadiiitate'comparison to Ref. 5 we use the came

format. ~From Eq; 7 and the asymptotic form of the Green's function we

gee:r

) '(wku)) y E) [ Gomr )6 )t o'
© @ x) = 697 [0
@ Qo) = (ulerl) e otamsxm) < ot 01
@ G<xx)> @(;X',-x))j |
® G {(G(xx)) D), } l[dgﬁ"(k"(x) IIG (o)

Note that below the ith threshold Gi becomes real, and this is taken

i

care of on the right by the © functions.
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(F) Vv(x) is real and invariant under }gfa -x; we also have

o '% oy

() "If the mass ratios are the same-in.each channel then (9(x§)

¢

= 0.

is symmetric, since vy TV

Because of (D) and_(F), we have the adjoint equation
0 Gt G+ J )N ) e
and thé'corresponaing form.for the scattefing.amplitude,
' % ' . a1 T N b
@ (g <g) = @5 /@k,(-xD (_V(x))(Pk(xD a'x

(usev'A, B,'énd H to prove this rélation). Note that the potential is

not transposed in these expressions. Frdm (B), (C), and (I) we have

Gex =)
Gonox)”

"=
N
S )

l l
3 3
< &

1 I}

To prove unitariﬁy:

(1) multiply (A) by'-<¢k,(—x25f(§(x£> from the left and
integrate over x, . | o . _
(ii) multiply the complex conjﬁgate of (H) by (%(xi)(?Wk(xi)

from the right and integrate over x,
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(iii) subtract the results of 1 and 2, and use (B), (I), and (J)

to get -
(1/21) {@(}3&;@ - G(}{‘\, - l,g))*} ]
JJ Gt D1Ge ) onitne YEoNoute) e o

Finally, by using (E) we reduce the right-hand side to

(L) 8 7 E[ ' f‘(k' < k") (éE) f(k" <. kD s

‘which is the standard result. Using (K), we could also write

G <5 - Caex) - Cu -y

where <4 stands for conjugation and matrix transpose, and t also

includes the transpose of k and k'.

The T matrix is defined (on shell) by

00 (o) = 8 (B < ¥)

and in ?artial-wave form becomes
B ‘{—' A, ~ ( :

Unitarity now reads

(0) (l/Ei){(Té(ED - (TE(ED*’} = (Té(E))"'pE@:é(ED
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As in the single-channel problem, we define

It follows that

and so we can construct a variational principle for the .scattering

amplitude of the form (schematically)

8 x EQ‘(}& <~;an f(’ék.)T (u) + 'f(ﬁk,.)(Pg)

e

T~

(U(x)j = Q(XD @Mx)) and (ﬁ(x)) E":(U(—XD . (u.ll)Ai

. G,(-x)T (\I(XD = {Q(_XD@(_X)>>T =. Cﬁ(KDT ) ()4.,125

‘o - [0 e - faaT ehey -

(h.13)

Equations (A) and (H) assure us that this expression is stationary.

As an example, let us assume that vy = vy to remove the

explicit dependence of v12 on T. We further assume that the

potential is
(Vll/)ul) = (‘Vgg‘/)\?) = (Vlg/)\j) = V . (h.1k)
vhere

v(x) = (& M/Rr) Kl(M k) | (h.1n)
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as wouldvbe the.case if the ekchanged meson. were alwayé the éame
particle. An example of a laddef generated by this model is shown ‘in
Fig. 21. |

| As wag earlier thevcase, we can reduce the double integral of

the Green's function to a single integral by use of the Fourier transform,

1

T 0 - J[d“x Ty Iy L (1.16)

This leads to the variational expressions (suppressing the k, k'

subscripts)

1 = T, +ﬁll'<5_l,o>'+/rﬁll'<p> & () T ()

. , )-|~
+ T, ) 6) THe)] (%i)lg

e o 00 v 5t g T ) v vt

-y Tt ) V) 0, 0w g T () v w0 Tt

| (4.17)

and T.,.. Each component

with similar expressions for T 517 oo

100 T

of U 1is expanded in partial waves:
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Coute = Y et uteo R@R)
‘ .
| Ull,<Xj = z (20 + 1)1* %11(){)' P,K)
£
Ulg'(x) = Z (22 + 1)1 uélg(x) Pz(%'g'e) ’ (&'18)
| i , |

where ﬁgjl(x) s a function of Lﬁl ‘and T only.

The functions 'ué are then exbanded in trial functions ¢i(x),

which we choose to be the same as in Section IID:

Y e ¢i(§<) ,

i

i

Wl = Y e g, w2 -

uel(x) = -E: d ¢i(x), “ u22(x)

i

Y4 6,60 (019)

where i = 1;2,-~-,N. Substituting (4.19) into (4.17) then leads to

algebraic eduations of the form

.

1

'[T},_n] =2 z c; W;(%y,0) + z(,ci ey (G
' i,3

+d, dj(G2)ij + xe[ci ey - xB(ci dj +d, Cj)

sy 4 dj](v’l)ij} , ' (L.20)
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with eimilar expressions for the other components of T. The conditions

that these expressions can be stationary are '(d[Téll])/(dCi) =0,°",

and lead to the matrix equation

<

@ + (@) - (@) =0 , (1.21)

where (G) and (V) are 2N X 2N dimensional matrices defined by

(Gl)
(@) =
S 0
-xﬁ(v'l) ,
-1
(V),: , (V- )ij: u, -x) V (%) u.(x) d'x ,
. Kl(V_l) :
’ (k.23)
and (U) and (C) are 2 X 2N dimensional matrices given by
‘1
Cfe @) .
() = N CONEY B BT (4.24)
(@) (a") :
N
N ﬁi
[U(k,,0)] 0 [~
(@) = ;o [W(e,0)1=] B, e
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-'Thé T matrix is then reconstructed by Eq. 4.19:

1

.'“r.u P _ _ . h .
' Tgll E: s ui(kl,O) (the other terms cancel by 4.21),

i“

Lo Ty = Zdi (k,,0) ,
i
Tyoy = §: ey ui(kl,o) s
i
. '___ . t . '
',ngg = Z d; ui(kg,O) . } : (4.26)

Aé in ;he 6ne-channel calcuiation we have found it convenient
“'td.deéi-with the K matrix instead pf the T maﬁrix. The foregoing
équafioﬁé are converted to stationary expressions for the K matrix by
'éimply interpfeting the Green'g function integral as a principal-value
inteérai. The only tricky point is that we will need the matrix element
for the Greeﬁ’s function with the higher threshold in the region between
‘eiéstic.thresholds. The analytic continuation of  the principal-value

_ integral is achieved by noting that, above both thregholds,

L

L
f [5(p) 17 6(p) 22; [ [5(2)1° o(p) '(-Z‘I)lg

En)

- i[E(k,0)1° akE . (k.27)
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The continuation to beloW‘the threshold is found by simply continuing
the two terms on the right.

in.terms of the K‘matrix, which is given (on mass shell) by
(k,) = (7,) [(1) +i@) (1™ , - (h.28)

the unitarity relation (L) is equivalent to the statement: (KE) is

a Hermitian matrix. Furthermore, Eq. (K) can be used to prove that

(T

z) [and hence_(Ké)] is a éymmetric matrix. This proves that (Kz)

is a real, symmetric matrix.

The procedure which we follow is to evaluate (Kg) through the
variational principle just described, and then to reconstruct (Tﬂ),

ig then used to compute

using definition (P). The resulting (Té)

the phase shifts 6i and the mixing angle ¢ [or inelasticity

parameter N = cos(2¢)]. These are defined by ‘
2id i(8,+8,)

cos(2¢)e + i sin(2¢)e 12

PO (CICRICOI IO

i sin(2¢)e cos(2¢)e

2id

(4.29)

‘Figure 22 shows a typical set of scattering phase shifts and the
corresponding inelasticity parameter. Both channel coupling strengths
are below that needed for forming a bound state. As the coupling

between the channels is slowly turned on, a threshold cusp is seen to
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develop. If the second éhannel coupling (XE) is increased, we find

that a bound state‘can'be formed at the second threshold (provided that

A, = O0). This ié reflected in a jump of x in 82. Further increase

5

of Kg causes the bound state to move between the two thresholds. The

is unchanged provided that k5,= 0. 1If

lower channel phase shift '61

we now coupled the channels, the "bound state" can now decay into
channel 1, and 51 is dramatically altered. This behavior is illus-

trated in Fig._23. For Xx; = 0.1 we see that the phase shift rapidly

b)
rises by n o as E passes the "bound state" energy E = 2.28. This
would give rise. to a spike in the cross section at this energy; its
narrowness indicates a long-lived resoniance and is charaqteristic'of a

weak coupling between channels. As A, is increased S} rises
) 3 ’ 1 _

lesg rapidly and the resonance becomes broader. When A\ increases

>

to 1.0 we -see that the pseudo bound state moves below the lowest
threshold and becomes absolutely stable. We further note that
Levinson's theorem remains valid in this example if we use the form
6 = = = . . =

| l(kl 0) + 52(k2 0) N oung X “here we have chosen 5, »0 as

'xi -0 if k2 >0.
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V. SUMMARY AND OﬁTLOOK
From a‘numericalvpoint of view, perhaps thelmost interesting
'conclhsién is that the Schwinger and Rayleigh-Ritz variational principles
#s formulated in Refé. h_and 5 can be extended without loss of éon&er-
gence properties to the cases of unéqual-mass systems and systems with
~ two two-body channels. Provided care is taken concerning the choice
of trial functions, the cases of general £ andvmarginally singular
potentials also present few problems. One rather striking result is
the relatively weak dependence of the level structure and phase shifts
on the mass_ratio of the external particles provided that M is not -
' too small and (for excited-state spectra) the binding energy is not tpo
. great. The similarity of phase shifts for,qual- and‘uneQual-mass .
ijjfsysteﬁs‘wasxparticularly surprising for cou§iing_strengfhsIof_d size

. such as to barely bind a 07 state, since this state couples to the

-',j'scattering amplitude only in the unequal-mass case. The one major

':‘jdifference between equal- and unequal~-mass spectra was the appearance

‘f:fof complex levels in the latter cage.

Only the first few steps have been taken to understand the
-Bethe-Sglpeter equation; a tremendous amount needs to be.déne beforé

any deep understanding of the equatioﬁ can be achieved. For example,
what is the effect of adding higher-order terms to_the kernel? How does
one add tﬁe direct~channel poles to the kernel without encountering

renormalization problems? How does one calculate the scattering ampli-

tude at arbitrary energies (in practice!)? etc. Even mo > difficult
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(snd promising) appear to .be the recent formilations of the BS equation
in e fully crossing-symmetric form. But how does one solve such

equations?
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| APPENDI¥ I. -
First we summarize some properties of the angular fUnctions. A.

.set of basis functions in O is

ol

24+1

Zn&(coso) = (2 (n+1)(n-¢ ) /xD(n+L42) [f(z+1)]

% sin’o C&+l(cos9) ‘for n-i = O,l,2,~‘-. S (AL2)

" * The square root in (A1.2) will be denoted by ano. These functions satisfy

the orthogonality relation
: Tt

5 .
‘(i de sin" @ ZnL(COSQ)VZn'&cosg) = Snn..,_4_“. | (A1.3)
o - R
and are solutions of the Laplace equation _
B d 3 9 n§n422 : Wy
Oe,®R) ¥, (x) = Ynm(X)(-—é? "tRETTZ) g (R) . (AL.h)

In (Al.4) we have set Yhzm(x) = Zn&(cose) Y&m(ﬁ’m) _if t 1s integral;
however, (Al.2-3) are valid whether or not ¢ 1s integfal, provided that
n-¢{ 1is,’

We now summarize the effect.of [J and 3/t on the basis functions.
For notetional convenience we take ¢k = Rkexp(-dR) and ¢£n = Rn+kKk(R).

Then Dq (AL.4) implies .
O (ﬂ’k Zng) = [T + Tf TB__(k’n)ﬁkﬁe]v Zng ? (A1.52)

D(p'kn Zary) = 8y (n’n Wi 2 Se'(n)jdk_&'n“ ¢1c-é,n+2] Zarg 2

(AL.5b)

vhere
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X

| Tl = - (x) = -(2k + 3), T5(k,n) '='k2;'-i-”2k - n(n+2)
and o - : |

. sl(rlx}‘,n')?: n(n+2) . n'(h'l-o—"2), ‘ Se(n) -.—-:-2(n+2).‘

. The effect of '1p) (=3/d7) 1s calculated from the recursion formulas for

the Gegenbauer polynomiels and definition (Al.2), from which follow

(/om), 2,,) = o, + (me2)fy 1) 7, 140,

+ (- + (kn)gy ] Zn+1tAr;+1a,' o (A6e)
" and '

() B 27 ,] = [(m'e2)g, - Bt nar] Zou Ay

. ! - ) :
+ {(n-n mkn-l ¢k«l,n+l} Znraathyiaae

{A1.6D)

o

]

. where Ayy =0 end A, = [(n-b)(n+z+l)/hri{n+l}7.3}‘

From (Al.5) and (A1.6) the effect of the operator I on & hesis function
is easily computed.

o
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_vasjan example_of the inclusion offdn'iﬁtérnai"symmetry to the  BS
. equation, we consider the case in which tﬁe éxtefnal-pérticlés aré |
‘~'identical and possess isospin l[ﬁ&]‘ and the exchaﬁged particle has
isospin O, 1, or 2‘[013].- The Lagfangian density can be written as

.~

& sum 'of the terms

1,0k, ¢

o= Z A () B (1) o, ()
f_The préjééfion operator P(I) for isospin Ii is defined by
17 ' :
Bea(0) = (1/3) 8y, By &
Pi‘j(l) = (1/2) (5., & . 5, .'s W)
At ) Ot Opy 7 Cug Oky’
B _ . S | 13

These operators satisfy the symmetry properties

P = (Y By,

Ld - 1 re
Py (1) = ZBII' P (')

I’

where (B) 1s the standard crossing matrix

L]

' /5 5/

1 .5/3\
/3 -y -5/6) ,
/35 1/2 1/6

hence we find that I' exchange results in a BS equation for a system



The ;fé.ctér' Res : '(,’ )

'jchangé'graphs}

Z+I

] results from the sum of the‘direct and ‘X
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- APPENDIX III, Analytiec Contim;a.tioﬁ Sy Variable 6hangeo _' |
we havo seen that lthe analytic continuation of an integral I(k),‘ -
| _ ﬁhere k is a parameter, into the region in vwhic?.x_ the .deﬁning integral’ o
| '; _- divergeé can o;t‘ben.be achieved by the use of recursion formulas ( see o

‘for example Eq. (2,87) ). Another very powerful way of extracting

g singularities is :I.llustra.ted by considering the integral

foo exp(a x) dx , which converges to (—l/a) 1f a <0, and diverges
if a>0, ' The change of variable y = exp(a x) leads to (-l/a)];
 The integral now converges for all a, as the change of variable has

" extracted the pole (-1/a) which was causing the divergence. The

' preceding example Seccmes' non=trivial if we had i.ns;tead fo © £(x) dx
" where £ is an entire function which has the asymptotic behavior '
£(x) x% exp(a x); the same variable change extracts the pole at -

the origin and leaves a convergent integral.

As a second example consider the integral

¥s

Jo

vhere £(8) =( 0 90)2 g(e), 0<9 < and g(0) being non-zero

w [6R-1®2+ o]t . (1)

in the interval (0, m). An integral of this form was encountered

earlier {CGreen's function matrix element) R howéver, we were.able to
evaluate the integral by contour methods. If the renormalization
correction is applied to the denominator, £(0) becomes quite complicated,
and it is no longer easy to find a closed form expression which can

be analytically continued to energles above threshold, If we let
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[ T PR S
Ceeo e fgo)] T - ¥ (@2)

e CEE) = g(o)

* then thé .iﬁté;g;v-:'al becomes | | |
S 3 0 ST R

(%2 - 1{2) g(Oo) ' 4. . 'df‘-{co?-zf’ ) * §iﬂ2§ [E( £ 3(0)}}‘

e (C.3)

vhere - : 3 . . |

.“"”i o e1[= 9, 50) ) . t.gl(cmso)gcef

i Loe tan : an =

S \xz_kz | <2 - K2 > A

- The resulting integral can now be ev;alua.ted mmericallya This procedure |
has removed the pole 1/ (x2 - 2) but does riot extract the branch cut

vwhich is present in the exact resuvlt,
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to me by Professor C Zemach

- In the N/D formallqm the difference of the number of (CDD) P°1eSIJVQ-

‘.and zeros of the D function only is counted The correlation

Vbetween the N/D and our requlte then suggests that the zero of o sl
,gcorresponds to a CDD Pole, since 1f the zero ware included in the- 1 e
TN function it would not contribute to Levinson s theorem.

"D.;J}’Bjorken, Phys. Rev._Letters ~,:h73 (1960),-,’ﬁ
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FIGURE CAPTIONS - .=

"Ladder Series.’. The exchange (b) differs from the ronexchange
(&) ladder by the switching of particles 1 and 2 between
‘.sucéessive rungs. . ‘

Spéctrum at E = 0. For each n there is & sequence of

. degenerate "daughters" differing only in £ value. If

E # O this degeneracy is destroyed.

‘Model Collision. This is the type of'collision.between twbh

. ?kreal eigenvalues as & function of ‘m1(= 2 - m2) predicted

by Eq. 2.38.

-

.- Computed Collision. The parameters are M = 1.0, E = 1.k, .-

Ground-State Bigenvalues (z = 0). The exchange mass is 1...

_The curves are labelled by mi(: 2 - m,).

Ghosts. The eigenvalues pass smoothly~in£o the region E2 <0
as the coupling increases.

Schrodinger vs. Bethe-Salpeter. The Schrodinger points were

calculated with potential (3.3). Note that the curves
approach each other only if both binding energy and exchange

mess are small,

Effect of Unequal Mass. Relative orientation of the levels for

different external masses m = (2 - m2) as a function of

.

exchange mass M. . Note the reversal of order as M becomes
small, The energy is fixed at 1.4, '‘As E approaches

threshold, the crossing points approach M = 0.
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" Flg. 9sb. .

Effect of Unequal Mass; A differeﬁt repreéentation of the

1fftrends,éeen in Fig. 8. Here E 1s zero., The M =0,

1-'m1 = 2 pbint is from Ref. 3.

. Fig. 10,

‘Variation with Exchange Mass. = Curves are labelled by energy

gﬁfof system. Subseript e means m =1, =1 and subseript

u means m =0, m, =2.0.

.. Excited Levels I. These curves represent the lowest four

"~ levels of the equal-mass (m1‘= m, =M= 1)  Bethe-Salpeter

" equation., Note: (a) the o0~, 1% ‘degeneracy at zero

- * : '
i energy, (b) the O, (0")"  degeneracy at B = 0.5,

‘”lﬁfﬁ and (c) the cusplike behavior at B2 =L for 0 and

Pig. 13.

Fig. lho

T * -
(0™) levels (but not for the O level).

" Excited Levels IT. This figure is the analog of Fig. 11 for

unequal-mass kinematics ‘(ml = 0.4, m, = 1.6, M=1). Note

- *
the mixing of the 0  .and (0') levels. The upper graph
gives Im ) for the mixed levels. The 17 state has been
omitted. .

Excited Levels JITI. The effect of the exchange patential

(curves with subscript X) are shown here. Note that the
spectrum is real if an exchange potential is used. The
parameters are m = 1.5, m, = 0.5, and M = 1.0.

Regge Trajectories. The trajectories shown are for equal-

mass systems {(m = 1). The coupling has been fixed to place

the parent (P) through £ = 1 at zero energy.
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Fig. 15. Scattering Phase Shifts I. - ¢3- phase shifts for s waves_f..r"‘
: i'are given here for m = 1.5, m, = 0.5,_and” M=1.0.

'.:;3 The parameter is A, the coﬁpling strength. Bound states

o % oceur at 0.8222 (07), 6.772 (0**) end 12.49 (07).

AFig. i6.;_Scattering Phase Shifts II. This is the £ =" analog of

‘; Fig. 15.

Fig. i7ff Effective Range Curves. Eq. 3,7 ié plotted vs. k2 for :
2£=1, m =15, n,=05, and M=1.0, Note the roughly
- ‘parabolic form.

Fig, 18. Pole and Zero of T. Matrix.

Fig. 19. Scattering Phase Shifts III. Effect of variation of cutoff.

: For A\ > 0 the problem without cutoff has a continuous

. spectrum so we expect (and find) large variation with cutdff.

Fig. 20.  Scattering Phase Shifts IV. S-wave equal mass (m = 1),

¢h phase shifts with cutoff parameter A = 0.5 are given.

Fig. 21, Ladder Generated by Eq. 4.8.

Flg, 22, Scattering Phase Shifts, Two Channel I. Channel thresholds
are 2,0 and 2.4k, Each channel has equal-mass system.

The parameters are £ =0, A

l A= 0-7, Ke = l.o. The

gubscript gives channel number and the argument of & is
M |
Fig. 23, Scattering Phase Shifts, Two Channel II. Same as Fig. 20

s the coupling strength between channels.

except N = 2.5. This places & bound state in the uncoupled

3 = 0) system at E X 2,28,

(n
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A.

‘Makes any warranty or representation, expressed or

implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.






