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ABSTRACT 

A quantum mechanical Boltzmann equation is derived for a 

dilute diatomic gas by means of $cattering theory rather than a 

many body approach. The classical aspects of molecular motion are 

heavily relied upon to clarify and relate the quantum-'theoretic 

and semi classical approaches. In par-c.icular the limits of 

. validity of the highly successful HCU ansatz are shown to be 

classical rather than quantal. Finally, an extension of. the present 

teclinique to account for three and four body collisions is proposed. 



L ... 

I) Introduction 

Transport phenomena in dilute gases of spherical molecules 

without internal structure are quite well described by the Chapman-

Enskog (i, 2) method of solving the classical Boltzmann equation. 

In a dense gas where the volume per molecule is of the same order 

of magnitude as the volume ofa molecule Enskog (2) found a satis-

f~ctory (in .a practical sense) way to modify Boltzmann's original 

approach Yhile still considering only binary collisions. However, 

a thorough-going theoretical account of density effects, including 

three- and four-body terms, has had very limited success due to 

certain divergences (3). 

Whereas the experimental state of the art has not reached 

the point where one knows enough to pronounce judgment on the 

current theoretical approaches for dense gases, it was realized 

long ago (4) that a theory of heat transport for molecules that 
. . . 

ignored their structure would fail badly. Momentum transport or 

I 

viscosity appeared insensitive to the presence of internal states and 

the most recent work has not changed this belief (5). A phYSical but 

ad hoc theory due to Hirschfelder (6) succeeded in giving a good semi-

empirical solution to the problem of heat transport, but what was 

needed really was a sound theoretical basis Yhich would lead in a 

natural way toward predicting what was known about transport phenomena 

for gases with internal states. The first and most successful descrip-

tion was due to Wang-Chang and Uhlenbeck (7) (the weu equation) which, 

theoretically, was on the same basis as Boltzmann's original work. 

Thus it was felt that a treatment starting from more fundamental 

.'." 



principles was still needed in order II to be sure". Mason and co

workers did not wait for such assurances but instead went ahead and 

found a way to solve the weu equation not only for the case of a 

single specie homonuclear diatomic gas, but for polatomic and polar 

gas mixtures as well (5). Their efforts were highly successful and 

led them to pursue other lines of research, confident that the 

problem was, in the main, satisfactorally solved. 

The weu equation and its formal solutions pass smoothly 

over to the purely classical Taxman equation (8) and its predic

tions in the limit of classical internal states, i.e., continuous 

rather than discrete rotational momenta. Taxman's theory was 

developed with classical models rather than quantal molecules in 

mind. The great success of the weu equation strongly suggests 

tha t a quantal approach to the problem should take as much 

advantage as possible of classical-quantal analogues. 

The purely quantum theoretical attempts at solving this 

problem exploited classical analogies with the translational motion 

only. That is, what was well known and accepted about the solu

tions to the classical Boltzmann equation was then put to use when 

approximations were being sought for in handling the position and 

linear momentum dependence of the quantum expressions. The internal 

motion was not handled in any manner based on classical analogy. 

Thus, after forming a density matrix for the gas, both Snider (9) 

and Waldmann (10) constructed the Wigner function (11) for the 

translational part but left the internal state density matrix 

intact. Actually, they started with a density matrix for a one- or 

2 
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two-molecule system and replaced it with an ensemble averaged matrix 

without saying'much about how this should be done or what exactly 
I '. happens while it .·is being done. Of particular concern is what 

becomes of the off-diagonal te~s of the density matrix after 

averaging. There seemed to be no way of arguing in mathematical 

detail what might become of them so they were just carried along, 

repositories perhaps of information the gas could never divulge. 

Their efforts resulted in a matrix equation (the Snider-

Waldmann or SW equation) which reduced to the WCU equation for the 

diagonal elements. But when off-diagonal elements were retained, 

this equation generated :Lncrediblycomplex and physically opaque 

solutions (12) in terms of quantities that one should not hope to 

calculate or measure. 

Again what has emerged is the insistent suggestion that 

one should push as far as possible a classical analogy when handling 

the internal states and this has been successfully carried out in 

this thesis. For the diagonal elements of the matrix equation did 

in fact give the weu equation and a classical description is com-

plete in te~s of the diagonal elements of the denSity matrix, i.e., 

classically, interference effects do not survive at the mascroscopic 

level (sometimes quantum effects do survive of course, the behavior 

of liquid Helium-3 for example). 

The approach to be presented here uses quantum mechanical 

scattering theory. Classical notions of particles are constantly 

kept in mind. Thus wave packets were used rather than plane waves 

and even angular momentum wave packets were considered (with rigid 

rotators in mind). The latter would be needed to describe the 



rotational behaviour of a macroscopic (i.e., classical) rotator or 

cylinder or loaded sphere (to name a few molecular models). 

However, it turns out that the unobservability of probabilities 

for values of'the internal angular variables, i.e., their lack of 

relevance for the transport phenomena in the gas, leads to a 

crucial simplification of the problem and undercuts the need for 

angular momentum wave packets. All this became clear once a 

genera'lization of the Wigner function could be found for internal 

states that would allow an exploitation of the quasi-classical 

rotational behavior. Having found this generalization, a single 

equation (rather than a matrix equation) was found for the time 

behaviour of this Wigner function. Had the internal state denSity 

matrix been left alone, the procedure developed here would have 

led to the SW equation. Instead, using the internal Wigner func-

tion, one derives the WCU equation and a clear statement of the 

physical ideas that have led to it and argue for its validity. 

(Actually there is one stop along the way to the WCU equation, 

namely an equation written down by Watson (13) Which leads to the 

final result immediately in the absence of preferred orientations 

of the gas. ) 

The procedure can be outlined briefly as follows: 

Consider a collision between two molecules to have taken place 

and call "1'''' the wave function of the system. Then 

'0/+;: 1\ + 1¥sc 
where ?\ is the original free part and Vsc the scattered portion 

of the wave packets. Form the \~igner function f (for transational 

4 
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states in the usual manner, for internal states in a manner to be 

described below): f is a particular fourier transform of the 

density matrix p while p is 1/1((11,,) 4/J~(d.J) where ex represents the 

totality of coordinates. Now1!i"has two parts so p, and hence f, 

has four: one dependent on'( alone which gives, ultimately, the 

streaming terms or left hand side of the WCU equation; a second 

part dependent on 1/'$( alone which gives the scattering-in part of 

the collision integral and two parts due to the interference 

between ~ and ~c which, together, give the scattering-out part 

of the collision integral. 

One thus constructs f(t) and then performs an ensemble 

average to get F(t), the distribution function that appears in the 

Boltzmann or WCU equation. The equation for F is 

F (-to) F(O) - 8F - -t at 
with the understanding that t is of the order of a mean free time. 

This way of getting the partial differential equation for F is not 
" 

new (10, 14) and is equivalent to the "t:i:me-smoothing tl introduced 

by Kirkwood (15). As usual, one considers. binary collisions only 

and for t:i:mes prior to a collision the pair distribution function 

factors into a product of singlet functions - a statistical assump-

tion which divides past from future and can be said to introduce 

irreversibility in t:i:me into the theory. Compared to other 

approaches, the one developed here is strikingly s:i:mple, phYSical, 

and direct. By allowing more generality into the problem, for 

example by conSidering three and four body contributions in addi-

tion to the binary ones or by allowing a more rapid position 

. ~;": 
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dependence of F to handle denser systems, matters become exceedingly 

complicated. The method presented here might be better suited than 

the other approaches for handling the larger questions because of the 

great need for a simple way of sorting out the various effects. Some 

thoughts on this are presented among the concluding remarks. 

2) Some Notions on Distribution Functions 

To begin with, all the usual relevent distribution functions 

need defining and some discussion and this will be done for both the 

classical and quantal cases. This would be useful in any discussion 

concerned with finding an equation for a distribution function, but 

more is needed here than a convenient refreshing of memory. For 

all attempts at a rigorous derivation of an equation for a one-

particle distribution function start with some rigorously correct 

equation for the N-particle function which is then reduced to an 

equation describing some averaged Single-particle state. The method 

to be presented here starts at the other end and works back from the 

properties of one specific particle to some averaged one-particle 

state. How and where these two approaches intersect is the main 

result achieved, the question of internal states being handled.as 

an analogous case.' 

Again, the begin, we define certain classical phase spaces. 

First, a 6-dimensional space, each point of which is referred to by 

6 numbers, (r., D.), the subscript i being a particle label. A gas 
""~ ~~ 

of N molecules appears as a cloud of N points in this ~-space (~ for 

molecule). The N points appear as a single point in a second construct 

, . .:., ,'. 
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the 6N-dimensional r-space (~for gas) whose points are specified by 

. . - N N 
the 6N numbers (£1' ~l' £2' ~2' ••• £N' ~N) = (£ , ~ ). 

The case where all N molecules are identical implies 

certain connections. First of all, interchanging the labels of two 

points in fJ.-space leaves the N'-point cloud unchanged but alters the 

location of the system point in ((-space. Thus N! points in r-space 

correspond to the N! phYSically equivalent configurations in fJ.-space. 

Now the probability that a molecule is in d3rd3p at 

(£, ~) in fJ.-space can not depend on the particle label and so the 

probability that at time t the volume elements d3rl d3Pl • 

d3rd3p = d 3Nd 3N = d 3Nd 3N at (r.N, n
N) are occupied must be a 

N N - r p - r p -- ~ 

symmetric function of the particle labels. This probability is 

written as 

r (,N) ( N N ) d9N d'" 
r r>f?>t r 'f 

The equivalence of the N! configurations obtained by 

pe~utation of the particle labels implies that the probability 

denSity of a particular arrangement is F(N)/N!. Of course, this 

is also the probability denSity associated with a particular one 

of the N! corresponding volume elements in If'-space. This proba

bility denSity is written peN), i.e., 

At once there is a question of normalization and by 

convention one sets 

7 



The probability associated with a configuration of fewer 

than N molecules is expressed in terms of "reducedOi distribution 

function, defined as follows: The probability that the volume 

elements dEl d;el • • • d£md;em at (£l.:el ••• £~m) are each occupied 

by same molecule is written as 

and the probability for a particular assignment of labeled mole-

cules to these volume elements has the smaller probability 

F l"') d~1'f\ 'b~!J I ) 
rd ,/(NYcN-m)~ 

since there are N:j(N-m)! different though physically equivalent 

ways of choosing and ordering the m molecules. 

th But since a given molecule, the m say, must lie some-

where in the phase VOlume, integrating the above over all r , n 
"'m A;;m 

must result in the probability for the remaining particular con-

figuration of (m-l) molecules. We have the equation 

or 

which, in turn, implies 

Flh'l':. 

which gives the one-particle distribution function used in the £-;e 

8 



Boltzmann equation. (The latter usually is written in terms of 

velocities and F(~> !) witho~t a superscript is employed. ) 

Before one can arrive at a Boltzmann equation, repeated 

use is made of ensemble and time averages. As a result of such 

averages, the probabilities in momentum and coordinate space are 

independent. How to achieve such independenc e when one starts 

with a single particle is discussed in the next section. 

The quantal function corresponding to p(N) is the 

density matrix introduced by von Neumann. Defined here in 

coordinate space in terms of the full N-body wave function 

~N) Cr.N, t), it is 

(N) 1b (.N) *" I 
"tf .(£~ t) T (rN, t) 

- <r." \~) t)<~'~)1: '~') 

with \ 

Since 'tJiN) is normalized to l-

One callsjO(N) the analog of p(N) in the sense that in 

each function resides all the information that can be mustered to 

make physical predictions. 

The analog of F(N) is the Wigner function which is the 

density matrix in a mixed representation and is given by 

9 



with the highly suggestive properties 

( .... , ( . '" .... i) 
P ~ )~ J 

Thus the densities in coordinate and momentum space are extraced 

from f(N) just as they are from F(N) in the classical case. The un

certainty principle prevents us from interpreting f(N) as the 

probability density for the simultaneous occupation of RN and pN. .... .... 

Other problems arise when one pushes the classical interpretation. 

For example, f(N) is not necessarily real everywhere. Still, the 

preceding equations are more than an anomaly and the equation for 

expectation values in ter.ms of f(N) is written precisely the same 

way as is the phase space average of classical variables. 

The sweeping generality of these remarks might make a 

specialist on the Wigner function wince. My remarks are those 

of a layman, by comparison, using only what he needs to understand 

a related problem. In this respect I am no different than others 

who have tackled this problem. If they have had more specialized 

knowledge of the Wigner function, they at least have not had to 

display it. 

10 

f' 



To re~urp.,we define reduced functions f(m), m < N 

analogously to the F(m). Since f(N) is normalized to 1 instead of 

N! we have 

The function f( 1 \r, :e) must undergo necessary but often 

vaguely defined changes before it becomes useful. All derivations 

of the classical Boltzmann equation fram the equation for f(l) must 

somewhere along the Way and usually more than once employ emsemble 

and tilne averages on f(l)(or product~ of f(l).s) before it can 

emerge in the place occupied by Boltzmann's f. Even the quantum

Boltzmann equations involv~ an averaged f(l) although just where 

or how the averaging has taken place often is not specified. One 

can get away with this because the solution to the classical part 

of the problem is known from the outset. Whatever else it might be, 

f(l) must be made to be smoothly and slowly varying in coordinate 

space and time. Previous derivations assume this to be true which 

implies great simplifications. In working out the consequences of 

such an assumption, the procedure is asserted to be justified by a 

demonstration of self-consistency. 

We close with same observations on the equations govern-

ing the time evolution of these distribution functions. First 

consider how p(N) is related to the notion of an ensemble. The 

probability that the system point inGl-space is in a certain 

volume element is proportional to the number of members of an 

" ~., , " 

~, ,', ; 
, .L 
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ensemble whose system point is found in that element. In the limit 

of an enormous number of systems, p(N) is a continuous distribution. 

The points move through I-space along trajectories determined by 

the classical Hamiltonian H(~N, ~N). Consider an· arbitrary point on 

one such trajectory as representing the initial conditions in a solu-

tion of Hamilton's e~uations. Each trajectory is in a one-to-one 

correspondence with such a point. Thus two trajectories never inter-

sect at a single point only, the point uniquely determining the 

trajectories henceforth (and by the time reversibility of the 

equations of motion, the trajectories are also determined for all 

previous times). The points of the ensemble are often likened to a 

gas of non-interacting particles. Such interactions are meaningless 

in this context as are the notions of sources and sinks. Thus the 

continuity equation for these pOints is simply 

and since 

)' 

we get the Liouville equation 

o 

or 
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where { , J is shorthand for what is called the Poisson bracket, 

written here because of the striking similarity of this equation 

with the quantal result. 

From the Schrodinger equation one quickly derives the 

equation for the debsity matrix: 

. ,1'6, 
@.e ~ at -

These two equations are the traditional starting pOints 

in both the classical and quantal many-body approaches to the kinetic 

equations. 

Perfor.ming the appropriate fourier transfor.m on the above 

equation gives the equation for feN): 

. 
0:: ~ 

.1\ 

N 1 N N Expanding the potential ter.ms V(~ ~ 2 ~ ) about V(B ) 

allows the third term to be written 

where 'V ~ acts on V(~N) only. 
'" 
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If the particles experienced no potential, the equation 

N 2 would reduce to the Liouville equation for an H = (p ) /'2rn. If 

there was instead only an external potential we would then expect 

the full Liouville equation. However only if V(RN) varies slowly 
'" 

enough over molecular dimensions can we obtain the classical result. 

The same thing comes about if we simply pass to the classical limit 

1\ .... 0, equivalent to retaining lowest order gradients of V. But 

the classical equation accounts for collisions between particles 

so requiring V to be external in the quanta 1 equation is too 

restrictive if one wants to examine the classical limit. If an 

internal V did not vary much over molecular dimensions the classical 

form of the equation would result. This restriction on the poten-

tial proves equivalent to the condition needed that a quantal 

object obey classical equations. Classically an analog is the short 

wavelength limit of optics. With such a potential, molecules are 

well described by localized wave packets whose detailed shape is 

irrelevant. 

Since the external force Fext • doesnot depend on r N 
'" '" 

while the internal force fint. does, a reduction of thequantal 

equation to fell appears as 

with a similar classical equation. For two-body forces Fint• = 

i~j f ij and there are (N-l) identical integrals, a typical one 

being 

, '. ~. : 
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resulting In. 

for the sum of these (N-l) integrals. 

This can further be reduced so that only f(l),s are 

involved by invoking the principle of molecular chaos -- prior to a 

collision, two particles are unrelated -- and the assumption of 

binary encounters only. Expressions arise in the classical equation 

which are interpreted in classical terms only. A semi_classical 

(or semi-quantal) result is achieved merely by substituting in the 

classical equation for all expressions or quantities with a quantal 

analog, e.g., cross-sections. The question remains as to whether 

a treatment based solely on the quantal equation would have led to 

the same result. The answer is yes if one makes the additional 

demand that "h -9 O. 

From another point of view we note that at high tempera-

tures, the effects of molecules of very low energy are negligible. 

If then we had expanded f(N)(~N/) about ~N keeping only the first 

non-vanishing contribution, instead of expanding V about BN, we 

15 



again would come up with the classical equation for f(N). At low 

enough temperatures small velocities count and the procedure needs 

modification at the very least. Moreover, the thermal deBroglie 

wavelength becomes large enough that one can no longer assume the 

intermolecular potential constant across molecular dimensions. In 

other words, when the wave packets overlap, representing their 

interaction by a function of the separation of their centers of 

mass is simply anachronistic and fruitless. Still one can push 

the equations by carrying out the expansion of V to higher terms 

to see if lower temperature effects can be handled. Something is 

gained but there are limits of course and when they are exceeded, 

the classical equation is quite wrong and one must start again with 

the quantal eqUation. But this time as the limit 1\= 0 is reached, 

terms proportional to 1\ 2 are retained and with such terms a much 

improved description results. Still, this method, expansion in 

powers oft2 , is itself limited and fails at sufficiently low 

temperatures since the correction terms are proportional to powers 

ofP = l/kT as well and diverge badly. Also, but for He, all 

substances crystallize at low temperatures (H at 140
) so He offers 

the only possibility for observing macroscopic quantum effects in 

a fluid. Below the A-point the expansion in i;2 diverges and 

another approach is required. A semi-classical method using an 

expansion in powers of the coupling constant in an assumed form 

of the intermolecular potential leads to a theory valid below the 

A·point but other techniques less closely allied in spirit with 

the classical approach are currently proving more useful. 

'-":"" ." 
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With all these limitations in mind, we can begin describing 

a procedure valid at high temperatures for dilute .gases which makes 

full use of our- knowledge of such systems to derive quite simply a 

quantum-Boltzmann equation which accounts for internal molecular 

states. 

The procedure starts with a description of a single 

molecule in the gas in order that the left hand side or streaming 

terms of the Boltzmann equation be derived. The right hand side or 

collision integral results from a description of a particular binary 

collision. In either the single- or two-particle case, a wave 

function for the system, strictly speaking, does not exist if the 

system is in statistical interaction with another one. The inter--

action prevents a factorization of the total system wave function 

into parts relating only toone subsystem or the other. The den-

sity matrix for the subsystem always exists however but it must 

be derive.d from the full density matrix. Once so reduced the 

matrix will not explicitly depend on the coordinates of the rest of , 
the gas but it will depend on the state of the system as a whole 

through the form of the total wave function remaining in the reduced 

matrix. 

If a wave function did exist, we could expand it in terms 

of energy eigenfunctions (we consider a canonical ensemble, for 

example). The wave function for such a state (called a "pure ll 

state, i.e., describable by a single wave function) is 

11 
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and f is 

If instead we are dealing with a "mixed" state for which there is no 

single wave function, only a density matrix, a double expansion of 

* is still allowed, but instead of cncm we would have c • One nm 

should not think that the non-factorable c arises from an ensemble nm 

* averag.e of the c c since the latter simply do not exist unless nm 

the state is pure to begin with (18). 

But the facts of the matter are that in a dilute gas 

each molecule leads a fairly solitary existence, only rarely 

encountering another, almost never engaging in triple or more com-

plicated collisions. The assmnptions of only binary encounters 

and no prior correlations allow the state to be considered pure. 

This becomes less well justified for dense gases and not at all 

for liquids. Still, the errors introduced by this assmnption in 

applications to dense gases are less important than those incurred 

by assmning negligible changes in f(l) over distances comparable 

to molecular dimensions. When the latter approximation is. dis-

pensed with, one can give a good semi-empirical account of 

18 

phenomena in dense gases both in theory and practice. The assmnption 
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of binary encounters is quite difficult to supplant and this is one 

of the most pressing current problems in many-body physics. Some 

thoughts on this question will be presented later. 

In view of the above remarks, one should not expect 

disaster if one starts by assuming a pure state and. then performs 

an ensemble average. In other words, if one makes physical assump

tions leadi~gto a disregard of certain strict tenets of quantum 

19 

mechanics, the implications should still be valid to the extent that 

are the assumptions. It turns out that proceeding in this way gives 

a very practical solution to the problem. What is perhaps a little 

surprising is that this procedure is so very simple and effortless 

in comparison with the other more rigorous treatments. However, 

my method is tailored to fit a specific problem. The approximations 

limit the generalization of the original problem the method is 

designed to handle. Thus while a more direct path toward a parti-

cular end is achieved, adjacent goals may be without access though 

they may still be reached by the other more general theoretical 

approaches. 

In the next section, the single particle description in 

terms of wave packets is developed and the notion of an ensemble 

average is made precise in order to derive the streaming terms in 

the Boltzmann equation. Accounting for external forces results in 

a precise specification of the limits of a "classical" wave packet's 

usefulness. The commutability of the operations "ensemble average" 

a and lJt are also discussed. () 
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3) Wave Packets 

The problem at hand is simply to discover how the presence 

of internal molecular states modify the Boltzmann equation of an 

otherwise claSSical gas. What is meant by classical will be de-

tailed in the next section in quantal terms. For now we turn our 

attention on how to describe an object both localized and with well-

defined energy. A molecule in a gas at roughly NTP is best 

described by a wave packet for our present purposes, there being 

intuitively more useful information conveyed here by the word 

particle rather than wave. Having argued for particles, I proceed 

by discussing waves. 

We represent a plane wave in ~-space (momentum =1;'~) by 

and by 

<1:\ ~> 

in coordinate space. With the free Hamiltonian H = _ !.-V 2 a 
o 2m 

solution to the time-dependent wave equation is 

- i Hot \ .\.!! -i Elt t X,,,, (£)t) = e ." tt (!) o} -::. - -.If. e 
.... '\ - ('2..11.[' 1.-

) ~~ t 

A particle can be "created" from a superposition of such 

waves and information on the initial conditions of its trajectory 

built in at the same time. With weighting function a
k

, a super

position of the X k leads to the packet ~k o.k 'Xk with"'momentum '\ 
'" '" '" 

r. 

" ~. 



., 
~ 

localized about! = ~ if a k is. Moreover, if t k is multiplied by 
, .... .... 

e-i~o + iEkto , the packet becomes with ak = a(! - ~) 
'" 

Expanding Ek about'Ep to first order in (! - ~), changing dummy 

variable from ~ to~ = ~ - ~, we get 

where 

The function a(j!) has width w-lwhich implies G has 

width w. The wave enevelope G is appreciably different from zero 

.... 1 
when r = r + v(t - t ), v =- n. The group velocity of the 

...... "'0 '" 0 '" m ~ 

packet is !_ Using X , we find<r~ (t) = r l(t) = classicalr(t) ;e . """-tI ""C "" 

to within an uncertainty w. The width w is many times larger 

than the mean de Broglie wavelength in order that the packet be 

so well defined. These statements need not be made more precise 

at this time (16). Normalization of X to unity implies 
~ 

·,'.,>j,,,.:S .. ,", .. ir. 

21 



2 The corrections to X arising from the neglect of thejO 
~ 

term in the expansion of Ek about E lead to the conclusion that 
.... ~ 

the true envelope spreads in time and ceases to be localized. 

For the times of interest here, the mean free time or collision 

time, the spreading is utterly negligible. 

The density matrix associated with the free packet is 

4'1' 

P ( ! ) r: ~ -t) = X J ( r ) X ~ (£') -

." cr-t-') r.,.. __ 
= J.. , e /':'.- (r - V' (t -to) - ro 
(tm \:=J ,.. -- -

From what is known of G, P cannot be much different from zero for 

1£ - £'1 > w. The center of mass of the molecule is like a piece 

22 

of classical apparatus showing no non-local effects over macroscopic 

distances. 

Defining new variables 

) 
x--=.r-r' ,... --' 

the Wigner function is 

'J 

.' 



I .' 

*1 If the GIS are insensitive to ~ over the range of ~ where GG is 

non-vanishing, we get 

A better approximation appears when we rewrite the GiS in terms of 

integrals over the a(e) 'so The result is to replace the &(!: - .:e) 

by laq~ - ~)(2 so 

Thus the uncertainty ~ in the GiS is retained to the extent that 

it produces a corresponding uncertainty in P. The interpretation 
, '" 

of this f is straightforward in classical terms. The corrections 

to it are proportional to gradients of the GIS. Anything involving 

the detailed shape bf the packets will be neglected since all 

measurements of properties of the gas are independent of such 

information. To carry along the gradient terms would not improve 

our description of the gas. This approximation is equivalent to 

retaining only gradient terms on the left side of the Boltzmann 

equation. 

;' ... ~ 
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An ensemble average of this f is written as f: 

f ~ J I F(!"o)~)to)j (g)£)~) 
~~ 

24 

where F{r , TI, t lis proportional to the probability that at t = t 
"'0 ~ 0 0 

there was a molecule at r with momentum TI. Clearly we have 
"'0 ~ 

c 
at 

so f satisfies the Boltzmann equation for a gas without external 

forces or interactions. Also it is assumed that F does not vary 

over distances' and momenta of the order of the quantum mechanical 

uncertainties. F is the classical distribution function and in its 

argument, the coordinate is associated with the time (as is the 

momentum). In this case the "classicalti argument corresponds to 

1· R - - p(t - t ) - where the particle is at t = t , call it R(t ). 
'" m- 0 0 '" 0 

The solution to the above equation satisfies the relationship 

an obvious result considering that no forces or interactions are 

present; so we have 

j-

or f is free of "initial" conditions and the coordinate argument is 

independent of the momentum. 



Wbathave we don.e?We have assumed the existence of the 

Boltzmann·· F and used. it to perform an ensemble a v~rage of the f of 

a single molecule to find that the averagedf obeys an equation 

implying that it is identical to the classical F if the usual 

classical approximations are retained. Since rotational energies 

of molecules 'are so small (with respect to ld'), the internal 

motion is nearly classical, characterized by high angular momentum 

quantum n~bers; The distribution function should describe such 

internal states in"a manner approximating the description of a 

statisticai ensemble of classical rotators. The procedure of 

assuming a 'classical typeF to average the rotational part of a 

quantum mechanical f should result, as in the simple case just con-

sidered, in a useful generalization of the Boltzmann equation to 

account for rotational states. For internal modes of high energy 

such as vibrational states, such a procedure would not be expected 

to work. But only at extremely high temperatures are the effects 

of the vibrational modes felt. An equation ignoring them is thus 

expected to be valid over a wide temperature range. 

If the ensemble averaging had been carried out after 

taking the a/at, the final result would have been the same, 

although in order to get there, the approximation of neglecting 

effects due to quantum mechanical uncertainties would appear in a 

different place. It was used to write f = F plus no gradient 

terms due to uncertainties. The equation fordf/8t followed at 

once. Taking 8 /8t first would lead to the equation 

.. ' ' .. 
" ..... "\. 
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where 

and f is the same as before. Higher derivatives of fare con-

sistently dropped. Here we neglect~ with respect to £. 
These considerations tell us which results of this 

method are to be regarded as spurious and are to be systemati-

cally ignored. After all; the approximations involved in choosing 

the arguments of the· distribution functions come up only in the 

collision integral, the form of the streaming terms being exact. 

The usual approximations arise where expected when the collision 

integral is derived. The averaging procedure then becomes 

analogous to atinie (as well as space) smoothing and the notion 

of a tinie derivative comes in for closer scrutiny. The streaming 

terms are well behaved. They always come out the same regardless 

of the averaging procedure. 

The effects of external forces, discussed next, modify 

the streaming terms and are also involved with the liniitations of 

the classical approximation. 

4) The Classical Approximation, Stationary States, and the 

Streaming Terms 

26 

The trajectories of the molecules between collisions will 

be classical if the external potential V satisfies certain require-

ments. The situation encountered in practice is one in which 

~I 

I 

] 
i 

.1 
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external forces can be considered constant over distances of the 

order of a mean free path and external potentials constant across. 

the extent of a molecule. In terms of the potential, the Hamiltonian 

is· thus considered at most a linear function of the coordinates of 

the center of mass of the molecule. 

Quite generally, Ehrenfest's theorem states, for any 

wave function, that 

For example, in the absence of a magnetic field 

-VH = i= lr) 
. --' -

and the classical trajectory is followed if we can replace F(r) by 
'" 'V 

F( <1:''»). An expansion ofF about r = <r'> when substituted into ,..., ,...., "',...., '" 

Ehrenfest's equation yields 

so a classical trajectory will result if the second term is 

negligible compared to the first. The quantity in square brackets 
. 2 
is of the order of w (was before is the width of the packet) so 

the condition reads 

.... : .. :-: ; " .. '~'. . . ~;. 
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This is always satisfied under the physical conditions weare concerned 

with. 

An elegant derivation of the conditions for classical 

motion proceeds from a reduction of the Schrodinger equation to 

the Hamilton-Jacobi equation by assuming the phase of the wave 

function to be slowly varying in space. Writing 

) 

Schrodinger'~ equation becomes an equation for S: 

as v - -at 

Letting-h ... 0 so S ~ S ( since S can depend on 1; ) gives the H-J 
o 

equation for S , a particular solution of which completely describes o 

a classical orbit. The same follows if 

The classical momentum it derived from S via 
o 

To estimate the limitations of this result, expand S to 

first order in ~: 

,.J 

I 
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8.ubstitute into the equation for 8. and equate coefficients ofil, the 

rewi.iningterms vanishing by virtue of satisfying the H-J equation. 

The inclusion of 8.1 allows ,the probability density to be written 

p = exp(28.
1

), the probability current as 

, ~ l~ 

1lt;t):~! ~ 1j)~Vtf -:. !;. e VSO = ;;. e ~ = f 't 
;.. fY\ 

and p 'and.J satisfy the continuity equation by implication of the 

equation for 8.1 : 

• 
.,'" $, iSo 

Thus,to the extent that -r=e e is valid, 1/1 describes a 

continuous mass distribution moving according to the classical 

equa tions. 

The neglect of wave packet spreading is equivalent to 

considering this description valid. 

When the Hamiltonian is not a function of time, one can 

make the separation 8. = W(r} - Et. ' In the one-dimensional case, 
'" 

the eq,ua tion for W( x) " 

~ 
~ = , 1/ (20m ( E --v» t.. 

can be integrated to give 

" .. : .... ',', '~"</.:..". 



so that, except for normalization, the stationary wave function is 

and the necessary conditions that the motion be classical are still 

\d~ \ ""(dVl)t.. 1\ o.y."« ~ or I ~ I « I ) 

The latter is fulfilled in the absence of classical turning points 

wichcan occUr" at very low energies, i.e., precisely when con-

tributions to transport are negligible. Thus the condition is 

generally assumed to be satisfied. When the former is satisfied 

as well, a superposition of the <V'.s can be used to build a wave 

packet executing classical behavior. This will now be done in the 

one-dimensional case. In the general case, the coordinate x 

becomes the location of a point on the classical trajectory and 

the condition that the gradient of X along the trajectory be much 

less than 1 is sufficient to insure the validity of the approach. 

We now consider a molecule having just suffered a 

collision and wich is now out of range of any other molecules. 

The potential is written V = - Fx, the zero being chosen at the 

last point of collision so that x is the distance traveled since 

that collision. The Schrodinger equation reads 

;,' ;;.', r" 
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In terms of the dimensionless variable 

the equation becomes 

For i"))1 , i. e., . far from a clas s ical turning point (where E = V), 

the Wave function is quasi~classical, for in this region the 

stationary solution for 1f is 

where 

The normalization oftfwas determined by requi~ing that when 1./1 be 

written as a sum of two traveling waves, each shall be normalized 

to a current of (21f'1\). We will come back to this point later. 

The corresponding momentum space wave function is 

normalized as 

) liE tl.: I = J (E - E,' ) 
p 
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These ideas which ape briefly discussed and accepted as a starting 

point here are developed in de~~il in stanoard references (e.g., 17). 

The point here is that the folloi-iing is justified, 

VIe "''ant to build a wave packet from the aE(p) of" the .C/J 

and the question arises as to the spread of energies that is 

achl1issible. If ti-10 i-laves of energy E, E' are in phase at x, then 

we 1-l3.nt a phase difference of1T o at x + w if E - E' is to be the 

maximum amnissible energy spread. The phase difference at time t 

for the Waves 1f is set equ.al to1l" to give the equation 

Using the fact that F"l« E, E' and setting E' = E -.dE, i-le assume 

AE« E to find the self-conslstent result 

~ ~ 'lrrl::'h. 

E E1Af 

The external potential is a small perturbation of the motion, i.e., 

Fx« E where x ls of the order of a mean free path. Thus ue get 

) 

Since the width of a packet, 1-7, is much larger than the mean de Broglie 

-wavelength ve have fOlmdAE « E as was assumed. In terms of the 

width .... ' of the mo:r:entu;n spac e vl8. ve funet ion, vre have 
p 
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E 
) 

The wave packet will be fo~ed from traveling waves rather 

than stationary ones of energy E. First the normalization must be 

changed to confo~. with previous formulae. To get traveling waves 

,of current'density v/21J'1i the above normalization must be multiplied 

by the factor tv = (m/(E + FX)2)-l/4. Then the coefficient squared 
. . , . . (! ~ ~It 1l) 

. of the wave e " S!> + :.r gives 

[ 
2 E "IL (2- rn) 'I J ']L. 

iL~) ITI/L F'J(. ~-t/~ ~'14 = 

'corresponding to normalization to a i -functi~n in moment1m! instead 

of energy for the wave function -CP. The phase 

'can be approximated, since E ')') Fx, by 

or kx plus a constant which can be absorbed by the phase of the 

normalization constant. In the limit F ~ 0, ~becomes a S1m! of 

plane waves . • L 

f 
\1(.)( 

~ -<. lz. -,(1))"h e -



so what we must packet is 'that part of~WhiCh reduces ,to exp(ikx) 
. ~ . 

1.IJ + i~ also a solution to the problem if cP is ,and to the same 

de~re~ of approximation. 
"c' 

; The coefficient '~f the exponential is (21rh}'-l/2. With 

the time included, the argument of the exponent is 

; " ;' , 3k' 
'l ft 1== )'}h( ~ )Ih _l ~ §. (~) 1/'2.1 ~ s t 
~ L~E+ 7l fl"t F F +-& ~ 

Call E = 'P02/2m and 'packet with weighting function a(po - Ii). 

Once again we expand about Po = Ii dropping terms of order (po _ p)2. 

The exponent becomes 

Now 
) 

and setting x/v -;A t we have as a result of packeting 

G is non-zero when x is within w of the value 



,I,". " 

35 

and <At )-= t to the same degree of approximation, i. e., to within w/v. 

The· Wigner" functio·n constructed in the same -way as before is 

(dropping bars :on.: mean values) 

That part of the exponent proportional. to p is 

and the coeffi~ient of r is an approximation to 

since p = mv, which is the familiar kinematical relationship for the 

momentum as a function of position under the influence of a constant 

acceleration. Thus we have, in the spirit. of previous approximations, 

Calling the initial time and coordinate t and r instead of 0 and 0 o . 0 

gives 



The absence of collisions implies, as in the classical 

argument, that the above is equal to F(R, P, t). The differential 

equation satisfied by F results for example from setting the two 

expressions for F equal to one another for t - t = dt, dt <:< t, o 

and expanding the former about the latter to first order in dt and 

then letting dt .... 0: . 

so . :-. 

'R~call the meaning of P, R, and g: P and g are the 

components of the momentum and acceleration along the trajectory 
. ',. " . 

and R is the curvillinear coordinate locating the particle on its 

trajectory. Thus the above is equivalent to the usual expression 

of the streaming terms: 

Introducing nothing new, this same result follows from 

the procedure of averaging after rather than before derivatives 

are taken. 

Doing things still another way as a check against an 

anomalous result, if one does not setAt = t, then simply operating 

on F(R-~lt-t.Mjtt-t.,): l'-~l:l-rt» to) witho/CJt again yields 

the correct result if at one point mg!t/P can be dropped with 

• 



"'I 

, .' 
respec;t to 1 which is the :samething as dropping terms IOf order Fx 

with respect to .E. 

5) The Wigner .Function for Internal States 

Originally, Wigner was motivated by the realization that 

there are two /scalesof distance, one appropriate for macroscopic 

events and one for microscopic events. The density matrix of' 

von Ne:umann could be written in terms of these scales 'or 

,coordinates as 

f· .'(r- r'~ --"" r' '!( RIG ) :: '-cp ,e R r't/ t. ) 1/J ''( .~-:V~) 
, N,)iJ " ,._)-' - } 

" ".".11 .r ' 
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Th~ density matrix contains all the theoretically available informa

tion about the system described by 1/J. The "average" ,coordinate ~ 

is associated with the center of mass of the system if the system 
,'. " - ' 

can be considered localized with respect'to its surroundings, the 

environment with which it interacts. Then the expectation value 

·lR)( t) behaves classically- the center of mass can be regarded as - ' . 

a classical apparatus. Another way of stating this is to point out 

that interference effects due to the 1/1 -wave describing thec'enter 

of mass are not observable over macroscopic distances. Non-local 

.microscopic behaviour is associated with the ",difference" 

coordinate ~ 'Which of course goes to zero for a truly classical 

object. The Wignerfunction is a part icula.r fourier transform of 

P 'Which replaces the two vectors r, rl by Rand P, the center of 
'" ,,..., -rv ,rv 

.mass coordinate and momenta. When the latter are suffiei,ent to 



describe a process, the Wigner function is more to the point than the 

density matrix. 

In the case of internal states there are' striking 

differences and Parallels. For example, consider what is meant 

by the assertion that a'molecule is in a particular rotational 

state JM.First of all, we know nothing about the polar angle of 

the molecular axis'except that it is equally likely to be anywhere 
. " 

from 0 to 2t. The azimuthal coordinate, though not characterized 

by a flat distribution, can be localized only by a" superposition of 

high J states. If we wanted to describe a classical rotator for 

example,we could imagine it rotating in the x-y plane, its 

center of ma.ss at the origin. A wave packet of angular momentum 

states with M ~J could describe its motion by predicting that, to ) 

within quantum mechanical uncertainties, 

"" L = -<:r> 
) 

) 

A two-parameter rotation of the coordinate axes transforms the 

packeted wave function into a description of a rotator rotating 

about same axis other than the z-axis. 

For such a packeted state, one can talk about macro- and 

microscopic angular coordinates as in the case of the center of 

mass motion. But unless one ultimately wants a description of a 

gas of chemical rotators, loaded spheres, or what have you, there 

is no need to do this. Not that one is never interested in loaded 

spheres and the like. They enter model-based calculations of 
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transport properties through values of their moments of inertia and 

classical or semi-classical cross sections for example. And here is 
.•... , 

an important point - the limitations of such calculations whatever 

they may be, are hot connected with the fact that one is ignorant of 

the internal'coordinates. A 'knowledge of inte~al energy levels and 

how they are coupled' with each other and with translationai motion 

is all that is needed. Of course the coupling is not at all well 

, un.derstood and we' have to rely on empirical quantities like, 

viscosity and diffusioii coefficients (which do not sensitively 
, , 

depend on internal state~) in order to calculate quantities like 

thermal conductivity (which do)'. Highly successful calculations of 

thi's.' 'type have been carri~d out (5) and the errors are within experi-

mental uncertainties and are due to an imprecise knowledge of cer-
t " 

ta:Ln empirically determined inputs rather than theoretically 

calculated ones. The starting point -is the WCU equation which 
l'i 

involves internal state labels, i.e., angular momenta, but not 

internal coordinates. As Uhlenbeck bas pointed out, for a 

description of polyatomic gases in the classical regime, the WCU 

equation tells the whole story. (1 think this has little to do 

wi th what the U in WCU stands for.) Of course the details are 

still missing from this story - the cross sections are unknown. 

But ip principle, one cannot say that internal c09l'dinates are 

lacking. They have simply been averaged out of the picture. 

Thus one is motivated to find a generalization of the Wigner 

function so that internal states may be described with the 

important proviso that internal coordinates will not be retained. 



The generalization proves to be quite simple and straightforward. 

The angular wave function is represented by the super-

position 

~ere Y; is the spherical harmonic and '~v 14c.-v' Co -= I . A 

tacit assumption is .that internal and translational motions are 

decoupled. Furthermore, any internal vibrational motion is 

ignored. Such motion becomes significant only at temperatures 

much hi~er than those, ~der consideration here. Instead of f}, 

x = cosO will be used. The density matrix is 

and the difference~nd sum coordinates are 

') 

, 

We seek a kernel ~ ,Ii tx~ ) such that 

has the properties 

\c \' LM ) 
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Due 'to tlie orth~gon~iity prope~ies of the spherical harmonics, the 
'.. '. ~ 

~orrectkernel 'is " ' 

'With 

Wh~n' expectation values of operators are calculated with this Wigner 

rune'tion accordi~ to the usUal prescription, the operators are 
" . 

repladedby"the1r"classical analogs in a phase integral over 

internal coordinates and momenta. For' calculating sucll quantities 

~s the mean internal energy or polarization, 'the classical 

quantities are independent of coordinates and only an average over 

momentum states survives. For a given molecule in the state JM, 

the relevant part Of: the Wigner function is Jr j ~ hm = 4 h7 J :r M 

which, when averaged over an ensemble via.fM '3-M('''' ), gives F.fmo 

In other words the pro~edure goes just as before only it is 

actually stmpler in the present case. Of course, before we were 

guided by the fact that an F with all the right classical behaviour 

did in fact exist. For rotational states, such as F also exists, 

the distance between energy levels being very much smaller than kT, 

the mean transational energy and the rotation-translation coupling 

strong so that rotational levels are easily excited and distributed 

via collisions in the classical Boltzmann manner for all but the 

,':,/' .' 



lowest temperatures, i.e., everywhere except near the point of 

liquefaction. For vibrational states, the energies and their 

separations are large compared with kT and the vibration-trans

lation coupling weak except for the exceptional case of end-on 

collisions between vibrating rotators. Relaxation of vibrational 

excitation is of the order of at least 100 times longer than 

rotational relaxation, which in turn is about 10 times longer 

than translational relaxation (18). 

In the next' section, the effect of collisions are 

derived, including a derivation of the optical theorem for wave 

packets and a lower limit for the mean time between collisions 

in order to justify the approach. We will not consider tempera

tures so high that excitation of vibrational ~evels is important. 

Thus it is sufficient to consider rotational states only. The 

generalized Wigner function is really just that - qute general. 

Instead of the yLmrS, any orthonormalized set could be used to 

expand the internal wave function. The intergration over 

internal coordinates of the new f again will yield the square of 

the corresponding expansion coefficient. 

42 
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6), Collisions Integral I ,,- "Scattering In" 

'" 
We will consider the problem of a molecule scattering from 

a static target rather than do a more general two-body ,colliSion. 
,,' , , " 

Generality is not lost however because this procedure amounts to 

going to the rest frame of the second particle. It will be easy to 

reWrite the final~esults valid in the more general case. For one 

interested -in all the detailed calculation, some remarks on the 
" ' 

wave packet picture of a two body collision are in appendices to 

this section~ 
, : 

.~ In treating 'the terms involving the scatt"eredwave, we 
. . .' " . ~.,: .. '.", . .)-" , .' 

ignore the effects of an external potential in the sense that for 

tim~s·prior t6 the colli~ion, th~ mol~cule is represe~ted by a 

free Wave Packet. Such neglect is standard procedure when deriving 
': '" '~ ,', r .. :, .I:,' ..... ' "',. :-.' ' " 
the collision integral by any means, the external potential being 

regar~ed; a~ t6ctsmall a perturbation to lead to any significant 

contribution. 
, " 

What is envisaged here is a kind of experiment. We 

have a target s'itting at the origin bombarded with a single 

molecule. Then we examine the effects related to the scattered 

portion of the wave and to the interference between the free and 

scattered parts, ,each making a contribution to the Wigner function. 
. , 

The experiment is considered to be repeated many times with the 

incoming molecule having a different momentum, internal state, and 

initial position each time. The dependence ot' the post-collision 

states on the initial conditions are removed by an ensemble aver-

age over such conditions which is slightly more involved than the 

previous averagings. 

_,f/' 



The contribution to the Wigner functi6~ from the initial 

wave alone gives of course the streaming terms and these were con-

sidered·in the previous sections. The pre-collision state is de-

- VL .: h..Q" " '-' f:' 
noted by the plane wave X:("L71') e 1\00 .., IJ..~ (Y( is the 

internal state function) .and after scattering, the wave is 

where the scattering is assumed for now to have taken place at the 

origin and the target is structureless. The scattering amplitude 

f is a matrix in angular momentum quantum numbers. The quantity 

k is some function of the kinematical variables and is the 

magnitude·of the momentum associated with the outgoing spherical ,. 

wave. 

. Theinit~al state has mean momentum ;e and internal 

energy Et . '~en packeted, the scattered portion of the time 
I 

dependent wave is 

where 

as 
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and 

) 

The quantity r/vf -= I>.t is such that < At) = t = time elapsed 
. ~ ," -

since the scattering took place at t = O. Putting in initial 

condition~, we shall instead say that at t= 0 the molecule was 

iocalized at - vt + b 'and the collision occurred at t = t . 
'" 0 '" 0 

The 'vector :e is the impact parameter. Gf becomes 

.' , 

. 6 ::. 6 (11" 1 A -h- (t -tl»] .~ 2 ) 
~ , - ,. '''oJ. , 

~o < 6 t):: =t - to' The implicit understanding of :eis that it 

is smail enough that G' is non-zero somewhere for t > t , i.e., o 

the impact' parameter is sufficiently small that a collision did 

in fact take place. We include it here because it is explicitly 

averaged over later. Since b • v = 0, b must be < w regardless 
'" '" '" 

of the rest of GiS argument in order that G not always vanish. 

Also, even for such :e, G vanishes unless t = to + A t to within 

w/v f' For t < to this cannot be unlessA t is of the order of 

w/v
f

• But we consider the scattered wave to be in the asymptotic 

region where At > w/vf so the scattered wave is properly negli

gible prior to the mean time of collision t. 
o 

That part of the density matrix p due alone to the 

scattered portion of the wave is calledJO+ (the notation is 

motivated by the knowledge that f+ gives the "scattered-in" 

45 ' 



collision integral) 

where .. Gfl,.Pf ; are Gfand Pf evaluated for J ... J ' • Going over 

to the variables R, x we do the following: 
'" '" 

In the phase we set 

. A 
r'= R- R~J2. 

and in the arguments of the G'S we set 

) 

while f is assumed constant over the range of ~, i. e., f is 

A ~ A . 
evaluated for r, r' both equal to R and the macroscopic 

lengths r, r I are both replac ed by R • The corresponding 

Wigner function f+ is 

:5"-" (til~ J e-i:g! J Kt../I..ff"-
~ ~4t 

The internal state kernel works so that we get the double sum 

to give 
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whe~e Pf' G f are 'evaluated with Lf • 

,.[, "The I, gi"';'es('l~d{p- D R) because we ignore x 
~ ~ tt " . '" 

in the argume~ts 'bi the' G r s. The improved approx~tion is, as 

'befo~e, tb;; replace acg- fJ' ~ )by lll.(g- PI ~ ) 12- so that ~~ have 

.:5-+=~ 3\()J:g~f~ ~)iI6 (~ -(ir--ioq-12) Itl.flf~~ l}II;) \1, 
, : (~., ," '. ,.1(1.-

with an obvious physical interpretation of the arguments.' 

H~wever,when 'eval~ting the collision integral, all uncer

tainties due to the widths of tat 2 and' G \ 2 will be' neglected 

consistent with dropping gradi~nt terms in the collision inte-

gral. 
. ,. ", , '2 2 " • 
Thus the quantities I a \ and I Gt will be treated like 

J-~ct1ons. The parameters ~, ;e, and to are to be a.veraged 

over. hence the two 

averagings are equivalent. The range of.variation of the 

j,nitial state parameters needs defining since there are 

definite physical limitations inherent in this hypothetical 

experiment. The two molecules are members of a gas of course 

and so, regardless of n,we expect a free flight time t from r 
~ 0 -0 

to the point of scattering to be weighted by the probability of 

such a free time, namely exp(-t IT) where T is a mean free time. o .' 

(This is not necessary mathematically however and other phYSical 

arguments suffice as will be seen below.) The volume over which 

'}, 



r ranges is likewise characterized by the mean free path and R 
-0 -

I 

is more or less central to this volume. The probability of the 

initial conditions is proportional to F~(~, lo' 0) = 

F ~ (~, -~o + ,e, 0) =F ~ (~, - ~o' 0) since I GI 2 restricts ,e 
to the order of wand F is insensitive to such a microscopic 

length. The molecule moves freely, i.e., streams, from 

t = 0 t t = t so F.o . .cn, - vt , 0) = F.o .. (n, 0, t). The naming o 0 'l.f.L~ -0 'l.f.L~ 0 

of the origin is arbitrary and we will write F~(~, ~, to) 

because we want to average in general over the mass denSity of 

target molecules at ~l~ For now we write the ensemble averaged 

where nl is the density function for the target at t = o. In 

the point ~ is relabeled ~ - ~l' consistant with its meaning 

as the vector from the region of collision to the position where 

f+ is being evaluated. Defining E = B - ~, d3u = d3~, the 

) dilxl"' J d~ is removed by the restriction due to I al 2 that 

G = ~ to within uncertainties over a wave packet. The point R 
'" 

is considered the center of the volume over which ~ is integrated. 

We also have p
2

dp = p2dPf I ~~fl::: Pfpdpf and the rest of the 

restraint imposed by I a \2 is to hold Pf to wi thin il/w of P. So 

far this means 
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~ tE .! ) e): L: J4u-J tJil.p Jd'1,J lfJ.to e (' J ( l£l¥'-ftwi (t-t..l-k ) \"l 
. If-., , ." ll.1fY~ 

"~'X \ ~5~lf.~g LM) \:L~ F,:~ ~'~+,g-u..P) 0) n, (g) 
, p-/m'T' 

where p'is fixed by kinematics' in terms of ,E, L, and -t and n1 (~) 

has, been replaced by n
1

(B), an approximation due originally to 

Boltzmann (~n'd discussed further below). The operation 
,Y; 

leaves an integral over t to be performed. What is left so far 
, ,0 ' 

is 

.ffM = Z Jdit~ J trJ.t. et..'~~)_ U'to-t ~ + !HA:ol, 0) n I ( !S )\:W 
~, , ' . 

J:n the coordinate argument ofF~, as to ranges from 0 to T, the 
. . P 

1 ,1 - ). argument ranges from R + - Pt to R + - p. t - (v + - 't. Now the 
- m- - m- - m 

time t is such that t - t is of the order of a mean free time o 

at most (and a collision duration at the least) since we seek 

the average change due toa single collision. 'Thus both! Pt 
m-

and - vt . + p(t - t )/m are of the order of a mean free path. 
-'0 - 0 

Thus approximatm, F~ simply by F~(~) is again equivalent to 

one of Boltzmann's original approximations leading to errors 

well investigated (14). 



In the usual derivation of the Boltzmann equation, when 

constructing the collision integrals, one focusses attention on 

some small volume element d3R within which everything is happening 

particles are being scattered in and out of some momentum all 

in this lit'tle volume element during a time dt. The distribution 

functions used to describe the mean occurrence of events are 

assumed constant 'ove~ d3R and during dt (although they are 

allowed to varY,wllEm constructing the streaming terms). In the 

above work one can simply consider the ranges of t J xl' and r 
o '" "'0 

small enough that these approximations are valid, the point R 
'" 

being central to the vOlume that contributes. Further rewriting 

of .f""': comes by noticing that 
LM 

by parity and time reversal invariance, while 

so that 
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so 

With no preferred'orientattons, nothing is lost though much is 

Simplified,: by including a sum over Msending .f~ -... ,j-~ 
'and' allowing:"M -.:.;. 1'4 on the right hand' side (M being a dummy 

index) We 'also' aXop'themagnetic quantum number from F: 

and again note that ~ is being integrated over while p is fixed 

bYf'i~~~ G.t. = 22/~~ + ~&.. • 

i{ the target, remaining static, had structure 

~epresented by ~o~~ initial internal state function y~~l, which 

could change as a result of the collision, then the scattered 
.. . 

part of the wave would be 

The kernel for the internal part of theWigner function -
would remain the same and .f~N 'Would include a sum over JlMl 

from above due to a trace over~,plus an additional average over 

-;~l. Moreover, if the second particle were allowed to have an 
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initial momentum~, certain obvious changes would occur in the final 

expression for ltM. Firstly, we would have 

~ 'J%Jf.lM~~~)da,f \t(f) n,- ~ 

/<\ 11J' rl~f( :gLtf> A~::r. M, ..... ~ft-4~, ~~,) cJ.(l,,,* d p.' ~ L?) ~Jf J 
4-- . d4~.. . . . 

~: ; r 'lr,-dcr(~ LMJi Mi".ftLf.<-¥ ,)Jp.' ~ fi,[L' 
.... 

~ 
and Kf is the direction of the final 

relative momentum (tacitly defined with respect to the direction 

of the initialrelativemonientum) 

The original integratiop. variables were of the original 

initial state ( p)~, ), but well known kinematical arguments 

allowed the initial and final states to be interchanged in the 

argument of dcr to give the transformation to the above. 

The momentum arguments of F~, F ~1J.1 originally were ~ 

and ~l but in the final form we would have 

fi~~) ~,tt~-l! ,) ~ ~(t~ T ~-S) ~flt{t~- ~:t) 

'Where ~ = ~ T .fa and· 

K£ = [ K,l.+ 

.. 

Jt 



.. 

• 

wi~h 

The f,ina.l.resultis 

The point R, as before, is' considered the central point in the 
'" 

volume of integration over the collision pOint. If no orienta

tions are preferred, the F' s do not depend on the magnetic quantk 

number and we write'Ftinstead of F~. This is always the case for 

homo-nuclear'diatomic molecules, symmetry considerations ruling out 

electric or magnetic moments. In the absence of electric or magne-

tic fields there is no preferred orientation in any case. 

Finally a word about the time arguments of the Fls. 

, ' + 
Since fL = 0 for t = 0 because,' of the causal instruCtions from 

'2 ' "",' , , 
tGI (no scattered wave packet prior to collision time), the 

procedure of' obtaining fL+(t) knowing F(O), t ::::l 0 (mean free time), 

can be considered an iteration process like a repeated disorder 

assumption. Then one could regard 

--

and since any initial time may be used, the empty time slot can 

be filled by t when J+ (the usual symbol for the scattering-in 

part of the collision integral) is written in terms of an integral 
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over the F( 0) IS. 

.c 

Alternatively, since t is of the order of T we could 

have used T for t all along or have dropped the factor e-to/ T 

with the understanding that for the, usual reasons the variation 

in the F I S due to changes in the coordinate argument dependent 

on t are ignored. In the latter case the physical restrictions 
o 

on the range of integration over tare (1) that the minimum t o 0 

is T - something of the order of the duration of a collision c 

because initially the molecules are out of each others range 

and (2) the maximum t is t - T since t is an asymptotic time o c 

or t ~ t must be atieast great enough that again the moleo 

cules are free of each other. Then the t integration gives 
o 

t - 2T ~ t since t ")') T so? i~ proportional to the time c c 

elapsed from the start. ClaSSically the same result holds, t 

being analogous to the A t or dt during which changes are 

occurring, the Fls remaining constant during dt. Finally, 

taking at first and then performing the averages would have -

resulted in zero Since, unlike the case of the streaming terms, 

gradients of the Fls are dropped from-the collision integral 

and it is only such terms that result from taking Ot 
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". 

The kinematics and close relation to a classical picture 

are brought out in the evaluation of a cross section for the 

scattering of two wave packets. 

The starting point is the unpacketed wave generated 

by a co"llision beginning with the initial state 

which, when packeted and time dependent, is 

with 
'-:-, . 

where the mean momenta are ~l' ~2 and the packets are localized 

at ir.. at t = t • 
"'~o"" 0 

The usual procedures lead to the unpacketed scattered 

wave 

where 
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-1 - -I -I 
~ =t'Yl. t"ml. ) M= n1 t-tmt. 

) 

r= 

. ". .~ A 

and T is the T-matrix element T(E, Q,K • r), E = El + E2• 

Energy and momentum delta functions extracted' from the T-matrix 

fix the final total momentum and final magnitude of the relative 
I ' '. 

momentum in. the asymptotic region at their original values (no 

changes in internal states being 'considered, for simplicity here). 

The direction of the final relative momentum is not fixed of 

course, the relative probabilities for the different directions 

being proportional to the square of the appropriate scattering 

amplitude. _ 

When the scattered wave is packeted we write 

:: b ",+ '0 .. x. .... - Kt"'+ K r-'P ,'X,o-t>~X'L1> 't1..., "" .. ...., -- ,.,., ,.,.,. .".,. + ........ 

+(Il,-o,). t x., - X'O +;; (tfi -U-C)-~ t" ) 
- ¥ -..., ur 'V - 1'1\ -

+ (ttl. --1l.). ( X'l - X1.o1'!: (1.(", -trc.)+-~\ r ) 
'" +" - - <ft'''''' - M"'" 

to first order inf?~= ~~-~\ with barred quantities evaluated 

for ~l~~ 
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'. 
.. 

since 

K.:: f-L I t£t ~t£t. +~, I tf\J - f~/ m.,. \ 

= f:tv=';. + ff v,. (p. /.,.,., - ,ft. 1 nt.,) 

•.. ) ",' I"' . 

toflrst order in ~:. and 

so 

[/...,.. ... = Vi .....; trc. 
..... "'l,' ,Iv '" ) 

where 

Extracted from the packeting integral is 
. . . . 

'e)(f' [i~.l ~ . .:~.v) + ift (~~ ~~'1» -:- i ~.! -I" i 1\ r 1 
which equals. 

where 

) 

Including the time dependence in the usual way, the 

integration over ~,~ gives the factors (dropping bars) 
z" - ~ . 

c:r. (t.1 + V; l ~,. - L-f.:...:to))-~ r-~ 1Ft. - X, 0) 
'" ,.., "r 'T\ - V,..'" ..... 
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and 

But since 

e ;- nt't r = 'X I 
i'\,.. M '" -

c -!!!.. r -= XI. 
,...,.. M"" . -

the arguments became 

and 

and in ter.ms of the classical point of collision z : 
"'0 

we get 

and 
.. 



. ., 

... 

, '. 
The scattering "amplit':lde f is considered constant across the width 

of the packets so the scattered wave packet is 

Specifying the direction of the final relative momentum fixes the 
$' \ ffI 

final state. In other words the final momenta can be defined in 

terms of the nUmbers (~l' .e2) ~ It goes this way: 

The first equation defines ;elf' the second ~2f and, by construc

tion, momentum and energy are conserved. We find ;elf to be 

and 

further illustrating the role of z as the classical point of . -0 

collision. Now x-and x2 are arbitrary so z is not deceSSarily 
~~ ~ ~o 

the mean point of Collis.ion. However the G
1

G2 factor is signi.

ficant only for those values of ~ and.e2 such that < :eo'> = 

~IO or~. Since all expectation values are uncertain due 
i 

to the finite size of the packets, ~ z ) can be either ~IO orX.,,_ 
-0 ...., ...... -

because, for a collision to have occurred (a tacit assumption), 
I 

\ ~ I) - ~ uA must be ~ w • o 
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The final momenta can be introduced into the phase of tf!(. 
by the following manipulations: 

~ (f-~ )+Kr .. ~!!= @E+ ~£ -.@ £o-.!S!) ... 
. ' = (; (C --=!/)+ K ~ r -(G t C-:e-",)+ .tS !:,.1I1 

~ ,..",..r f/II'1#wIr ,v ~,.", ~ 

:: (~'k+~~)(£~~y,·(tt~) [;- [ 1 
= .fa ·(C-i:o-+'!'l. ~)+1) (£,,~-~, '!:)-f ' 5' ;oJ,.; M,;J "fJZ;! #OJ M· ) 

= ~\l t~ -~l»+~~:f t~~-~) - [ 1 

The first two terms give the increase in phase from 

the initial point ~o to ~l' ~2 while the last term including the 

minus sign is the initial phase at ~o' Le., for ~l' ~2~Zt0 ,"2-0' 

The time dependent part of the initial phase is defined as zero 

so the last term is the total, phase for ~l' ~2' t --iI> ,ZIO) ~p:o' 

For later use, note the kinematical relations 

lfr - = 1Ji;f So 
, 
'-yo 

\X,i -tc, \ 
'" ..; 

R 

We now proceed to get the cross-section from ~c... We have 

'c=tl-10 ~ ~ pi lP..t I ~I ~l-tp,,!,\ ~:r!9l- EttA;.~ ~.t:f ~o 
1'<. try 

where 



", ' 

Jfl7 :: "PtlP i f 6, ( ~o - Co ) - ~f, 1 G \ G 1-
'ro - -l', L"", "" "" 

~·e>tfi [~I (~.-~.)-t~~(~ - ~.o)] G,G .. 

If when packeting we had changed the integration variables from 

~, ~2 to Q, ~, the argument of the G's would be 

c - Co 

and 

;'\ 

K r - '-0 
"" 

for the center of mass and relative packets respectively. Since 
'" A 
It = V , the argument of the latter is 

r 

-
so tPsc vanishes unless r o~ w, i. e., unless the packets do 

actually overlap at t = to - something only tacitly assumed 

before. For t < t , ~c always vanishes. The argument of G 
, 0 c 

simply requires 

and tells us nothing about the initial conditions. Actually 

everything has been preordained in the arguments of Gl and G2 

,appearing in the initial state packet X. There, it is generally 

required that 
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; 

for X to be appreciably different from zero. 

If at t = to we require a collision, then < r') ~ 42.> 
the range of ,the intermolecular force. Now dt<W'"by construction 

"" 
so we want 

l r - r" 1 < 0 ( w ) .... ,... ...... 

which implies ro <. 0 (W). 
, "'"" 

To return, the density of ml at ~ is 

where ~o -,<. U '> in the denominator and was brought out of 
"" "'" 

the integral. The integration can be more simply carried out in 

terms of z ra therthan x
2

• We have 
-0 '" 

.,... \ (jX;t,/ \ . ' 
where.J:: - "'~D is found by solv~ng for ~o in terms of ~2' -
forming \~/B1!"'\ and inverting. The result is 

J ; l ~J3 ( I -d- ~ ~ r' 



.... ' 

The initial flux at t = t is o 

~o=(f1t5btrr ~l G l1.: I" d~.-=(Zi!56trrJ I q I (!;.-.( g)fit ( ~-.::~"lI>-
.- ..... . to 
, AJ 

a generalization correctly reducing to the more usual case where 

the be~ packet is much broader than the target packet. The final 
~.. .,~ 

flux of ~ at~~is Vlfl'l(~l) arid the number of particles per 
, .,:; 2 . 

second throUgh R ~f at ~l is 

N 

then 

or 

which is the usual non-realistivistic cross section in the lab 

system. This result depended on the cancellation of 

5 \ 6 \ lio-~I;t> ~) 6, (~_<~o~)\"l.. 
-eo -



wi th % -+ 1 not allowed, i. e., the outgoing and inc oming fluxes 

are non-zero by hypothesis. When ~l' ~2 are such that the 

classical kinematical expectation values are realized, i. e., when· 

6t -:::.{A:C)for instance, we also have z =Lz,> as well, all 
-0 -0 

equal signs correct to within quantum ~echanical uncertainties. 
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Appendix 6B Handling a non-static target 

The part of the phase of the scattered wave packet dependent 

on ~l' ~2 is 

When the Wigner,flUiction· is formed, the part of the phase propor

tional to x = x - x- I is 
I"lJ - ""1 I'V..L 

. ml 
But nl = -M G 

~ " '" + It so we have as the coefficient of x 
'''' -

p 

where 

and 

and the €. 's are the initial and final internal state energies. 
~ 

The internal state functions and internal Wigner function were 

handled in the case of the static target with internal structure. 

Only where the kinematics are affected by internal states will 

their presence be made explicit. The point of this appendix is 



to present the method needed to handle the algebraic,complications 

arising from doing the problem in the lab frame rather than the 

rest frame of the target particle. In the spirit of neglecting 

terms proportional to gradients of the Fls in the collision inte

gral, the expressions la(~)12 and IG(~)f2 will~e han~ed as if 

they were cS'(~) and (21f)3 G (~). .. 
The unaveraged Wigner i'wlction for "scattering in" is 

~('llf5?> ~ eif~ J e'-~IIZ (LX)" 16 \G~ I "'-I £- It 

~ ~ 2. I 8 - ZZ 11. 
where 

G,:: 6, ( ~ - ~.f6.1:.t Jfa [61:.- <~t~ 1-t t'D- ~,o) 

G~ =Gt- (~t ~ ~tf &t.. +~ l~t- <4-b) 1-\' ~o - ~to) 
.f ::: .1- ( ~ t, l, ~ {l,l-(!.\';f K. uf-:')tt,) ) 

~t ~t ~- Zt- \ / 'lrr;f 

~o -= g - ..!'k At 

)(.\D~ lGt..o are the localizations of ~ and ID2 at t = to and 
""' -
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by postulating a co+lision, X'O - ~ = b - an impact parameter 
I'J ..... tD '" 

whose magnitude is at most of the order of the range of the 

intermolecular potential. For larger b, Cfsc vanishes since 
2 . 2 

then there is no vay for'}Gl \ and IG2 1 to be simultaneously 

appreciable. Eventually:e is· averaged over and the factor (G1G212 

restricts b to a magnitude too small to affect the averaging 

functions F
1

F
2 

••. 

. : At t = 0" the packets are localized at rand r 

respectively with 

the last condition by the definition ,of an impact parameter. The . . '. .'.', ' ... 

averaging functions are 

-and f+ is given by 

and 



Now define ~~,~ - ~2with d3u = d3
X2 and make, the transformation 

and . , 1 . 

K ~ d'<! d.l11A., -= d K:f 

, . 

so 

where K is written as a function of Kf and the internal states. 

Next, since 

or 

> -l~')~dl we have d K.£ - M f2.5 -+ so f becomes 
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... 

.~ 

: '" ," 

It= 5 5 5dIL Jdll.~JdP's F)fi If I~I(~~ r (~) 
r,o ('t.~ . 
,... AJ 

and, whereV:er it appears, ~ ~K~':'K(t\:§-)A€-)K and K
f 

is 

given in terms of £ ahd .:e2f" The arguments of the G' s may be 

written 

t 
l6\~1.·\ :: 
(2-7f)' ... . . (Z7f)3, 

(z7f)' 

since the only:appreciable contributions from their product come 

when both arguments are simultaneously zero to within w)the 

width of the packets" 

Holding rIo. and K fixed during the integration over !&.. 
. 2 

the following transformation helps remove\G2' : 

From rto = tlo-b +tr ... to and b. tr ... = 0 , the three 
.... .... ~ N· ,..J _ 

independent components of ~ and !r can be used instead of ~o " 

We define the new variable y: 

) 

and with 
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, , ' ~ 

1£-11-'!( ... r; It g -j[ l!:-f..>-So -5t ,J \ -s ~d!l..J ~~ !=J: -
~:f'; 

where ~o has gone oyer to ,~ - !( t - to)' ! = £/m, and.e ~ 0 

frOOl ar~,Ol2 = Q." The, integral over !lOgoes, out with 'G~ 2 

l~aving an integral over to which has been discussed before 

along with the meaning ~f a~"" or J+ so we canwri te 
" ~ 

,.. ",' , ",' A 

:t\{,o 0) = joil\ ) dJp~.f lfr~ F, (~ ('g+:?.,) + ~ K), £ -~(t-taft 
o.a~ , 

, -:~to) (») F'"t, 

where !l' !2 are expressed in ter.ms of £, ~2f' and K and the 

coordinate arguments are £10 and £20 respectively. Again as is 

well discussed elsewhere (14), the coordinate arguments are 

each set equal to R Since, for situations not far removed from 
'" 

eqUilibrium, the left hand side of the Boltzmann equation is 

linear inVR and the collision integral with F:: ~t~){ \-tq)(~)&) 
.... 

substituted as the solution (Fo is the equilibrium distribu-

tion, ~ the perturbation parameter) is also linear in VR• 



,.. .. 

. . 
the leading term gives an inconsistent result, 1. e., terms non-

linear inVR• 

" " Relabeling variables and using 1r(dcr( Ke~1" -:.r ca ...... ~~)= 
AA 

= '1.fr;,.cir{ "'.f6-5--=> 6 K-I(.f) and reversing the labels of initial and 

final states, we have 

with It
f 

written in terms of It, and Il G and trr= 1~1?-~,,~ \ .-
The momenta £ and~2 define via ~ the direction of the axis with 

respect to which..f\... is defined in acr and the F' s. 
It 
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7) Collision Integral II "Scattering Out" 

The remainder of the work will be 'carried out in the rest 

frame of the target particle. The generalization to the lab or 

rest frame of the Emtire gas will, as before, be obvious. 

We work with 

t ' 
'q> ::: 1\ + '4Jsc 

where 'X is a 'free packet moving off in the forward direction and 

't\;sc'i~ a' spiie:Hc~1 shell 'of a packet propagating outward from the 

target center. These two packets overlap'in'the forward direction 

oniy arid then only for times SUbs'~quent to the collision. The 

part of the density matrix'orWigner function arising from cross 

terms or in:terfer~nce between 1( and <Vsc vanishes prior to the 

collision so the previous notion of a time derivative of the 

Wigm!r function hOldS:tt~~-fJo)11 t with t of the order of a 

mean free time and5-~t()): o. Since OnlY~SC in the forward 

direction comes into the calculation (and hence f( 0) i. e., 

scattering amplitude in forward direction) one anticipates that 

the optical theorem will playa role. For there are two inter-

ference terms, one the complex conjugate of the other, and thus 

one proportional to the scattering amplitude f(o) and abe to 

f*(o). At first glance however, one thing is lacking - a sign 

difference. One needs f(o) ~ f*(o) to invoke the optical 

theorem but the two interference terms come in with the same 

sign. It all comes out in the wash of course and then one is 

left with the correct sign change which gives the imaginary part 
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of fCo)' which, then is eliminated in favor of the total c ross section 

and this is;, precisely what appears in J- - the scattering-out part 

of the collision~ntegral. .The demonstration follows: 

" ~ 
The packeted 1lJ is 

~q}=(t7T);j~e ':~(£-)~)..iE(-t~k i O:-,r(t-to).:..k) YJ.~Yt~~ 

-~h Z .f eJ<p i ( P3.r - E-l t...:to)-.f2-k.1 G,dy[At-t.&t)H)Y I£. '\ 
-t ~1{) , u. - ~ 

""'f'c-':f c-
.t..'t.~ cf . .' 

where 

.b,.1f ~ 0 . 
,'. ,.;J ,.., :. ..' , ' . 

~f -=t?~';t.n\As.~.1'1: ~=-Pd-C\ ~t~::eti1"Ei~-q~-~ 

j-~ fly» ;-. f» L\~, L~t-t"a- ->J~'I f-t·f I ~i'fl~d-) 

E = p"-I'lr'M + €:L, + t.e'l. 

At -= rl tJ! to =: t~e oj t.0l1l.ri9V\ 



where rand r' have been set equal to R in the denominator and 
~ - -

arguments of the f and G' s while in the phase, rand r '-"t ~ t R ~ . 
. ". '. . - 'S J -,p", J .' t 

respectively. The effect of the operation(21J") e - - p 
,. . . )C _" 

. . .. '. ~'. 
on these terms ,gives the usual Wigner function due to the 

interference or f-. In addition we operate with the internal 

statekernal on f-

to get the generalized Wigner function 

+ c..C· 

i.e., everything that depends on final internal 

angular momenta. is evaluated with the initial momenta instead and we 

set the initial values ~I-Ll -+ LM as well. The arguments of the 

GIS are simultaneously small when 

-\ :f., 
By hypothesis b ~ 0 so~) G t• G.t has the effect of a 

delta function with respect to Fls as before. Furthermore,' the 
-the ,... 

momentum delta function requires E = ~ once~~ G's imply ~ = R 



,.:it 

since we already have p ~ Pf from AG-1Mt = O. However with respect 

to phases or' rapi~y oscillating terms, ~he factor GiG: and even 

c5 (~- t(~-t'~:t » is considered broad (recall that the latter 

2 
approximates lal ). 

'
Next, f LM- is averaged over -1". 1-.1.

1
, D, r =-vt' + b, 

J. ~ ""0 "". 0 '" 

t21-.1.2 and the density of targets: 

where -nIt' t ~) is the density of targets at the point ~ with 
"qt. 

internal wave function Yl~'" and ~ = B - ~ as before, Le., 

consider the target to have been at ~ - the meaning of B in the 

former case was the vector from the static target and in the 

latter case~ ~ replaces B. We have 

We cannot set ~ = pu in the phase since the 4,:6; 
acts like a delta function only with respect to F

LM
• The 

integration over ;e eventually sends ;e ~f in FLM and removes 
, 

the momentum delta function. But first the integration over ~ 

will be carefully handled. As far as the bracket expression 

,goes, ~ is limited to a small finite region in the forward 

direction, i.e., to~-::~&)1-;' With x = cos(p, ~) we consider 
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The exponential'factor oscillates rapidly as u varies 

~i~~e ?~9)l,Lt' (the. only PhY~i~a'llY reason~ble circumstance) 

whereas none of th7 0ther u-dependent terms behave this way so 

we can drop the exponentials from f LM-. Looked at in another 

Way, this factor will be averaged overp and in actuality the 
"L 

momentl.Ull delta function is only an approximation, la.(g-tW"'~ 

being a better one when averaging rapidly varyi~g quantities 

, 2 
The broadness of la\ insures that 

the exponential does not survive an average in f -space. Thus 

we have, with this understanding, 

... ~ L ipv.(S,IJ)l./Z r ,r.*_L 
¥_et

t>""l'9)tl-tf' - [I-e I 1 ~ - . :~: 
' .:pu. . c. ptA.-

and now we can set ~ = £ everywhere else and remove the momentl.Ull 

delta function or \a \2 to give 

But ~.". - f = - z. ~ ~ .t 
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and 1 ... p.~~.;5't(»)=a.;.bY the optical tho rem where 0-,. is the total Cross 

section for scattering from 'the initial state E, LM, t
2

1J.:2 to all 

possible final states. This means 

where again, in the collision integral one makes the approximation 

and the 
L 

J d>t"o ~ S dt
b J 1J~ ~ 5d~b J Vdtt, = J d~ VT 

. -rc 
-C "» 1:' e 

Writing 

77 

we have WithT-: - ~ and calling the initial time t instead of 0, 
-) 

T 

j-lt)= L ("dcrF'-M(~)~J-t) 0t"Ut-t~-t) L"t-~t J ,-
tiP.': 
UM' 



The generalization to a non-static ta,rget is straightforward. V 

is a relative velocity and if the target has momentum ~2 then V 

becomes 1ft'= \ -g - ~'t \ Moreover, 1) (~;b)""" F(~.,. ~ l-C-) 
rY\ 1 r'n,.. ) 

so 

If there are no preferredorientatio~s as before, we sum on M 

and the resUltingriSht hand side for the Boltzmann equation is 

where some of the variables have been changed to conform with 

common usage. For example, the momentum of the beam particle m
l

, 

. is ~l' and E now becomes ~l + ~2· 

The right hand side without the summation over ~l is 

the result given by Watson (13). Summing over ~lallowed the 

cross-section in J+ to be written in the same form as in J- so 

a factoring could be effected. In this form we have the weu 

equation. 



" 
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8) Afterthoughts and Conclusions 

Some side questions have not been answered or even brought 

up. This is partly for the reason that they in no way affect the 

main thrust of this work, and partly because to have treated them 

in detail would have involved a great deal of additional paperwork 

which in the end would have been no more revealing or of interest 

than a brief phYSical discussion of the ideas. So these questions 

will, now be raised in the fonm of afterthoughts and discussed in 

a Simple, direct manner. 

First there is the question of quantum statistics. There 

was no mention of when or how to symmetrize the wave function. Any 

text on quantum mechanics can tell you how. Just when it should be 

done is a question best answered by experience for many end results 

of a calculation are left unaffected by the decision of whether or 
" ' 

not to symmetri~e. When constructing a kinetic equation, the 

cross section is considered an imputdatum --someone else's 

problem to solve theoretically or empirically. In practice the 

cross section itself is not always used., If it can be related to 

a measured quantity then it is often eliminate_d in favor of that 

quanti ty. This has always been the practice when handling 

internal transitions. The cross-section has been eliminated in 

favor of an empirically detenmined relaxation time for the transfer 

of internal rotational or vibrational energy to translational 

motion (19). In this sense the gas itself'has handled the question 

of symmetrization. But for ~le purposes of this work, the question 

must be decided at the outset. If one symmetrizes the scattered 



wave function then one· does roughly twice as much paperwork as 

before to find that 'in the end one has a correspondingly 

symmetrized cross section instead of an unsyinmetrized one. 

That 1S all. 

Anoiherproblem arises when one considers the initial 

internal state' of. a: molecule to be superposition~cIli Y-fm instead 

of just Y-fm. What happens here is Jpst that the form of the. 
, . 

cross section is changed in the usual way for a beam mixture of 

internal states. For example in J-, the relevant part becomes 

wherefMri = cMcn* =~* and fnM = f(M-.n),all other variables 

supressed. But, in the forward. scattering amplitude we can set 

FL \ eM \1. C:f ~ (0) - f( 0» =-li \ 4,..\ "to (-ll: ~ f{ 0) ) 

(An ensemble average would send FL\cM' 2 ~ F
LM

) and a ~ removes 
2 ' 

the (cMI or the M subscript leaving the same final result as 

before. 

For J+ things look a little different and what appears 

is ~ 11 L f",n l ~ (lV\~LM) J t (tn'..:, LM) ~tf 
L \"\'1\' . 1f"r 
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, " + 
the coefficient of F -t, is Tr(pff ) 

over initial spin states. Whenr 
M 

v flv which is ~ averaged 
r r M 

is included, one again can 

invoke conservation of parity and time reversal invariance to be 
-

able to rewrite the differentialcros6 section with initial and 

final scattering states interchanged. 

There is also the question of the connections between 

these resUlts 'and the 'work of Snider and Waldmann. They also 

used an approach bas~don scattering theory to give the density 

matrix as a function of time. Their physical assumptions are 

the same as those used here except 'they (and everyone else for 

that matter who has approached this problem) made no attempt to 

treat the' :i.'nternal states classically in the sense of finding an 

internal state Wig~er,function. Had the derivation here been 

carried through with the internal state information deposited in 

a density matrix, the 'results 'would have been identical to theirs. 

Such results are however not useful being written in te~s of 

presently unknown scattering amplitudes rather than cross sections. 

To assert 

function, 

that the integrated fo~ of the internal state Wigner 

i.e., {fL,M(..(l) is the whole story, one must have faith 
-4 

in one's intuition. It has not been proved although the calcula-

tions of Mason have given strong support to this supposition. 

Mason foresees no experimental conditions where it may be dis-

proved (private communication) and Uhlenbeck concurs -- the WeD 

equation is, in his opinion, the last word (also private 

cormnunication ). 

81 



82 

For a spin system such as gaseous He3 rather than a gas of 
. -

polyatomic molecules one is not faced with a multitude of possible 
'. 

rotational states, all easily excited. The density matrix is 
, . 

particularly simple but there are no internal coordinates to deal 

with --at least 'none with classical characteristics. There is 
.' 

of course no classical analogy to be exploited,no Wigner function 

from spin wave functions and no hope for a high temperature, high 

quantum number passagetoa classical limit. Here one must use 

the full 'density matrix for lack 'of an alternative approach if 

for no other reason. • Still, in the end, calculStions' have been 

performed' in this case only after the rough approximation of 

throwinga:wyofr ':"'diag~~alcontributions (10)~ 
, . 

Thus the WCU equation for polyatomic molecules is a 

well justified·an~atz. Inthe limit of continuous rather'than 

qUantized internal angular momenta, the ~u equation and its 
. -

results pass~0';'ert6 the purely classical work of Taxman. 

Finally there is the possibility that the approach 

presented here. could be pushed further. For example, density 

corrections and multiple collisions might be handled along these 

lines. Consider then ,a hypothetical situation in which a molecule 

(beam) is impinging upon a volume element in which there are two 

other molecules (targets). The initial beam wave function is 

and the scattering matrices from the two targets are tl and t 2 • 

The Schrodinger equation for the scattered beam is 

. ' 



,. . 

where d -::E :-K 

K = free Hamiltonian for beam and total target Hamiltonian 

v = sum of interactions between beam and target particles 

Then a solution for1}+ is (16) 

where. 

~.: '" x. + k t.j \Pj 

• I 

t. ~ J 
., 

so 

i. e., the wave incident on target I is the sum ufree wave plus 

once scattered wave plus twice scattered wave plus ••• " and"t{J+ 

becomes 

.1VT=X +*ttj\'tt-) 'l( +J:{ t.,rtz+ tzct t.) X + 

~(t,~t~~t.-t 1 ~L.) X +a- (t'Jt,,~t;IJ t z+ 1""""''2.) 'J( + ... 

Now V was car~ied out to only 4 collisions for a 

definite reason. For hard spheres, kinemetical arguments forbid 

more than 4 collisions so corrections to the Boltzmann equation 



due to multiple collisions have not been carrie,d beyond this point. 

Quantum mechanically, more than four collisions are ailowed but to 

begin with, one might limit an attempt to just producing at most· 

the,four body corrections since other attempts have not gone 

beyond this point while experiments have riot yet even reached it. 

,,. + Graphically orie could represent ~ . as 

. \ .. 

where 11 means targetlonc~ scattered. The first term gives 

the streaming' contribution, -t;he second gives the usual collision 

integral, the third allows for the denSity corrections considered 

by Enskog (2), the fourth gives the so-called 3-body terms and 

the last gives the 4-body terms. The classical kinematics have 

been worked out (3) and the wave packets will have to build in 

the appropriate initial conditions. Since for the case of the 

normal or binary collision Boltzmann equation, this method proved 

to be far simpler than previous methods, perhaps one can hope it 

will remain the most physical, direct, and shortest approach. 
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