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ABSTRACT
A quantum mechanical Boltzmann equation is.defived for a
dilute diatomic gas by means of scattiering theory rather than a
many'bbdy approach., The classical aspects of molecular motion are
heavily relied uéon to elarify and relate the quantum-theoretic

and semi classical approaches., In particular the limits of

" validity of the highly successful WCU ansatz are shown to be

classical rather than quantal. Finally, an extension of the present

téchnique to accountvfofithree and four body collisions is proposed.



i) Introduction

: Traﬁépbrt phenomena in dilute gésés of spherical molecules
wiihouﬁ ihternél structure are‘guite wéll descfibed by the Chapman-
Enskog (1, 2) method of solving the classical Boltzmann equation.

In a dense gas where the volume per molecule is of the same order
of magnltude as the volume of a molecule Enskog (2) found a satis-
factory (1n.a practlcal sense) way to modify Boltzmann s original
approach whlle stlll con51der1ng only binary collisionms. However,
a thorough-g01ng theoretlcal account of density effects, including
three- and four-body terms, has had very limited success due to
certain divergences (3). - | )

Whereas the experimental state of the art has ﬂot reached
‘the point where one knows enough to pfonounce Jjudgment on the
current theoretical apprOaches for depse gases, if was realized
long ago (4) that a theory of heat transﬁort for molecules that
ignored iheif'sfructure #ouid fail badly; Momentum transpoft or
viscosity appéared insensitive to the'presence of internal states and
the most . recent work has not changed this belief (5). A physical but
ad hoc theory due to Hirschfelder (6) succeeded in giving a good semi-
‘empirical solution to the problem of heat transport, but what was
needed really was a éound theoreticai basis which would lead in a
natural way toward predicting what was known about.tfansport phenomena.
for éases—with internal states. The first and most successful descrip-
tion was due to Wang-Chang and Uhlenbeck (7) (the WCU équétion) which,
theoretically, was on the same basis as Boltzmann's original work.

Thus it was felt that a treatment starting from more fundamental




" to be sure”. Mason and co-

pfincipleé'was still needed in order
workers did not wait for such assurances but instead went ahead and
found a way tovsolve the WCU equation not only for the case of a
single specie homonﬁclear diatomic gas, but for polatomic and polar
gas mixtureé as wéll'(S). Their efforts were highly successful and
led them to pﬁrsue other lines of research, confident that the
problem was, in the main, satisfactorally solved.

The WCU equation and its forﬁal solutions pass smoothly
over to the purely classical Téxman equation (8) and its predic-
tions in the limit of classical internal states, i.e., continuous
rathef than discrete rotational momenta. Taxman's theory was
developed with classical models rather than quantal molecules in
mind. The great success of the WCU equation strongly suggests
that a quantal apprbach to the problem should take as much
advantagé'as'pésSible of classical-quantal anaiogues.

| The purely quantum theoretical attempts at sol?ing this
problem exploiféd cléssical analogies with the franslational motion
only. That is, what was well known and accepted about the solu~
tions to the classical Boltzmann equation was then put to use when
approximations were being sought for in handling the positidn and
linear momentum dependence of the guantum expreésions. The internal
motion was not handled in any manner based on classical analogy.
Thus, after forming a density matrix for the gas, both Snider (9)
and Waldmann (10) constructed the Wigner function (11) for the
translational part but left the internal state density matrix

intact. Actually, they started with a density matrix for & one~ or

Y
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two-mblecule Syetem'and replaced it with ah ensemble averaged matrix

without saying much about how this should be done or what exactly

happens while it is beingldone. Of particular concern is what

becomes of the off-diagonal terms of the density matrix after

v averaglng.' There-seemed to be no wayfof arguing in mathematical

detail what might become of them S0 they were Jjust carried along,

' repositories perhaps'of information the gas could never divulge.

Thelr efforts resulted in a matrlx equation (the Snider-
Waldmann or SW equatlon) which reduced to the WCU equation for the
diagonal elements. But when'off-diagonEl elements were retained,
this equation generated incredibly complex and physically opaque
eelutions (12) in terﬁs_of quantities.ﬁhat one should not hope to
calculate or measure.

Agaln what has emerged is the insistent suggestion that

'one should push as far as possible a class1cal analogy when handllng

the internal states and this has been successfully carried out in
this‘thesis. For the diagonal elements of the matrix'equation'did
in fact giVe the WCU equation and a classical description is com-

plete in terms of the diagonal elements of the density matrix, i.e.,

-classically, ihterferehce_effects do not survive at the mascroscopic

level (sometimes gquantum effects do survive of course, the behavior

of 1liquid Helium-3 for example).

The approach to.be presented here uses quantum mechanieal
scattering theory. Classical notions of particles are constantly
kept in mind. Thus wave packets were used rather than plane waves
and even angular momeetum wave packets were considered (with rigid -

rotators in mind). The latter would be needed to describe the




rotational behaviour of a macroscopic (i.e., classical) rotator or
cylinder or loaded spheré'(to name a few molecular models ).
However, it turns out that the unobservability of probabilities
for values of the internal angular variables, i.e., their lack of
relevance for the transport phenomena in the gas, leads to a
crucial simplification of the problem and undercuts the need for
angular momentum wavé packets, All this became clear once a
generalization of the Wigner function could be found for.internal
states that would allow an exploitation of‘the guasi~-classical
rotational behavior. Having found this generalization, a single
equation (rather than a matrix equation) was found for the time
behaviour of this Wigner function. Had the internal state density
matrix been left alone, the procedure developed here would have
led to the éw équafion. Instead, using the iﬁternal‘Wigner func-
tion, one derives the WCU equation and a clear statement of the
physical ideas that have led to it and argue for its validity.
(Aétuélly there is one stop along the way to the WCU equation,
namely an equation written down by Watson (13) ﬁhich leads to the
final result immediately in the absence of preferred orientations
of the gas. )

The procedure can be outlined briefly as follows:
Consider a collision between two molecules to have taken place
and call'w*' the wave function of the system. Then

¥ = 7('*‘q§c

where 7( is the original free part and 1?;: the scattered portion

of the wave packets. Form the Wigner function f (for transational
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states in the usual mé.nﬁer, for internal states in a manner to be
described below): f is a particular fourier transform of the

density matrix p while p. is W) '50*(0(’) where o represents the

.to‘bality of coordinates. Now'?*has' two pafts 50 P, ‘and hence £,

has four: = one d.ep.enc.ient' on X alone which gives, uitimately, the
streaming terms or left hand side of the WCU equation; a second
paf‘g d‘epenaientv on t,’sc alone which givés the scattering-in part of
the collision integral and two parts due fo thé interference
between 7( and ‘l{,c which, together, give the scattering-out ﬁart
of the collision integrai. , |

One thus constructs f(t) and then performs an ensemble
average to get F(t), the distribution function that appears in the

Boltzmann or WCU equation. The equation for F is

Fi¥) - Flo) _ JF

€ at

with the understanding that t is of the order of a mean free time.

This way of getting the partial differential equation for F is not

nev (10, Vlh) and is equivalent to the "time-smoothing" introduced

by Kirkwood (15). As usual, one considers binary collisions only
~and for ti_nies prior to a collision the pair distribution function

' factors into a product of singlet functions - a statistical assump-

tion which divides past from future and can be said to introduce

iri'eversibility in time into the theory. Compared to other

.approaches, the one developed here is strikingly simple, physical,

and direct. By allowing more generality into the problem, for
example by considering three and four body contributioné in addi-

tion to the binary ones or by allowing & more rapid position




dependence of F to handle denser systems, mﬁtters become exceedingly
complicated. The method presented here might be better suited than

the ofher'appfoaches for handling the larger questions because of the
great need fof a simple way of sorting out the various effects. OSome

thoughts on this are presented among the concluding remarks.

2) Some Notions on Distribution Functions

To begin with, all the usual relevent distribution functions
need defining and some discussion and this will be done for both the
classical and quantal cases. This would be useful in any discussion
concerned with finding an equation for a distribution function, but
more is needed here than a convenient refreshing of memory. For
all attempts at a rigorous derivation of an equation for a one-
particle distfibution function start with some rigorously correct
equation for the N-particle function which is then reduced to an
equation describing some averaged single-particle state; The method
to 5e presentéd here starts at the other end and works'back from the
properties of one specific particle to some averaged one-particle
state. How and where these two apprbaches intersect is the main
result achieved, the guestion of internal states being handled.as
an analogous case. |

Again, the begin, we define certain classical phase spaces,
First, a 6-dimensional space, each point of which is referred to by
6 numbers, (Ei’ Bi)’ the subscript i being a particle label. A ges

of N molecules appears as a cloud of N points in this p~space (p for

molecule). The N points appear as a single point in a second construct =--

f_

-
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the 6N~ dlmen51onal lepace (¥ for gas) whose points are spec1f1ed by

' N
the 6N numbers ( I Byr o Rpr ¢ ¢ - 'BN) - (r , P ).

The case where all N molecules are identical 1mp11es

certain connections. First of all, interchanging the labels of two

.points in u-space leaves the N-point cloud unchanged but alters the

location of_the system point infazspaCe. Thus N! points in ¥ -space

correspond to the N. physically equivalent configurations in p-space.

Now the probablllty that a molecule is in d3rd3p at
(2, B) in H-space can not depend on the partlcle label and so the
pfobability that at time t the volume elements d.3rl d3p1 . o .
( N

at (r, EN) are occupied must be a

PN = p
symmetric‘function_of the particle labels; This probability is
written as o ‘ :

FY (" g" t) dr
The equiﬁalence of the N! configurations_obtained by
permutation of the particle labels implies that the probability
density of a particular arrangement is F(N)/NJ . Of course, this
is also fhe probability density associated with a particular one
of the N! corresponding volume elements in ¥-space. This proba-

bility density is written P(N), i.e.,
Ny N W \ W) enoon
C = — C
At once there is a gquestion of normalization and by

convention one sets

_S‘c“ SB" P(M _ l



The probability associated with a configuration of fewer

than N molecules is expressed in terms of "reduced” distribution

o

function, defined as follows: The probability that the volume

elements @glqu e . d£md£m at (r

IRy -+ v - shgm) are each occupied "

by some molecule is written as
(M wm oma {3Mm 3™
F'™(em pm drdd
and the probability for a particular assigmnment of labeled mole-

cules to these volume elements has the smaller probability

Fm) g3m d‘bP/(N/(N iy} )

since there are N!/(N-m)! different though physically equivalent
ways pf'chqosing and ordering the m molecules.

But since a given molecule, the mth say, must lie some-
where in the phase volume, integrating the above over all r n Bn
must result in the probability for the remaining particular con-

figuration of (m-1) molecules. We have the equation

- . _ I aim-) 3(ma) o tm-1)
(N m) %(p )ds(l?')s ! tn) _ (N nr:ﬂ).d Lr ‘cl P Etm
N
-

" .

or
(m-1)
([ Fm™ = emen B
Len Pm
which, in turn, implies y
L) | S N} 3 (N-w) | BlN-m) |
F - (N"W\)\. F d d 'A

and so, finally,

N - - 3 (N=-D , 3(N-1)
£ “\: . SFL ) 3 ndsm Y me)d d*5

which gives the one-particle distribution function used in the r-p
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Boltzmann equation. (The latter usually is written in terms of

_veiocities and F(E’ v) without a superscript:is employed. )

Before one can arrive at a Boltzmann equation, repeated
use is made of ensemble and time avefagesﬂ' As‘a result of.such
averages, the probabilities in mémentum and coordinate space are
independent. dew to achieve such indepéndence when one starts
with a singie particle'is'discussed in the next section.

The.quantal function corresponding to P(N) is the

. density matrix introduced by von Neumann. Defined here in

coordinate space in terms of the full N-body wave function

‘qSN) (", t), it is
(N ' (N) N) ¥
pgt e e) =) Y TN
L S

= et 909 [ o

(N) N (N)
with JY.N/O (L-“,.E,’t)ETl"/’ VN= ‘

Since tp(N) is normalized to 1.

One calls/O(N) the analog of P(N) in the sense fhat in
each function resides all the information that can be mustered to
make physical predictions,

- The analog of F(N) is the Wigner function which is the

density matrix in a mixed representation and is given by
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(R | ! .-%E?‘("ﬂ‘cm NN N
$(RNEN ) = 56 P (RYX,R-ILE)
, N

52“‘71(&) _ P(N)(‘gﬂ Eﬂ)t) _ \W"’(g",t)}z

~

SRNJCM—“- |§2m(§:t>lz

whereé(N,)(EN, t) = <§N ‘WN, t> is the momentum space wave function.
Thus the densities in coordinate and momentum space are extraced

() (W)

from Jjust as they are from F in the classical case. The un-

certainty principie prevents us from interpreting f(N) as the
probability density for the simultaneous occupation of gN and EN.
Other problems arise when one pushes the classical interpretation.
D)

For example, is not necessarily real everywhere. ©S5till, the

preceding equations are more than an anomaly and the equation for

(N)

expectation values in terms of T is written precisely the same
way as is the phase space average of classical variables.

The sweeping generality of these remarks might make a
specialist on the Wigner function wince. My remarks are those
of a laymah, by comparison, using only what he needs to understand
a related problem. In this respect I am no different than others
who have tackled this problem. If they have had more specialized
knowledge of the Wigner function, they at least have not had to

display it.
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(m)

To return, we define reduced functions £\ ', m < N

analogously to the F(m); Sincevf(N) is_normaliied to 1 instead of

N! we have

: _ o _ (N) 3(N-m) 3(N-m) | v
‘-' (™ N / 7( N
: ) = m<

Thegfuhction f(l)(g, p) must undergd necessary but often
vaguely defined changes before it becomes useful. All derivations
| ' (1)

_of the c¢lassical Boltzmann equation from the equation for f must

somevhere along the way and usually more than once employ emsemble

(1),

and fiﬁe averégeé on f(l)(or productg of £ s) before it can
emérgé'in the place occupied by Boltzmann's f. Even the quantum-
(Boltzmann equations invoivé an avéragéd f(;) alﬁhough Just where
6r how'the averaging has taken place often is not épecified. One
‘can get away with this because the solutlon to the classical part
of the problemils known from the outset. Whatever else it might be,
f(;) must be made to bé smoothly and.slowly varying in coordinate
space and time. Previous derivations assume this to be true which
implies great simplificatiéns. In working out the consequences of
such an assumption, the procedure is asserted to be Justified by a
 “demonstration of self-consistency. |
53? , : Ve ¢lo§e with some observations on the equation; govern-
ing the time evolution of these distribution functions. First

o)

consider how is related to the notion of an ensemble. The .
probability that the system point ind -space is in a certain

.-volume element is proportional to the number of members of an




ensemble whose system point is found in that element. In the limit

of an enormous number of systems, is a continuous distribution.

The points move through Ilspace along trajectories determined by

the classical Hamiltonian H(EN, EN). Consider an arbitrary point on

one such trajecfory as representing the initial conditions in a solu-

tion of Hamilton's equations. Each trajectory is in a one-to-one

12

correspondence with such a point. Thus two trajectories never inter-

sect at a single poiht only, the point uniquely determining the
trajectories henceforth (and by the time reversibility of the
equations of motion, the trajéctories are aiso detefmined for all
previous times); "The points 6f the ensemble are often likened to a
gas offnoﬁ—ihteracting particles., Such interactions are meaningless
in this context as are the notions of sources and sinks. Thus the
continuitytequation for these points is simply
T0) ’ . 0 ‘u (NS) _
g_l_: '_‘”VL"‘;(ENP )*V?'N(Ep =0

and since .

IiN - V. <H 5 13" = -:‘an F*
we get the Liouville equation

op™ . P — p
é;]? -+ ‘JS FD ‘Z&u‘* ‘;Ga“

or QED—(N\ _ ()
= {H)P }

ot

£ b
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'where{ , } is shorthand for what is calied the PoissQn bracket,
ﬁrittén}ﬁéré bécéuéé of the striking'similarity of this equation
_with ‘the guantal result.
From fhe'Sch;édihger equatién one quickly derives thé
equation for the deﬁéify matrix: |
Vv é?ézu‘:; [HJ /D(N)]
ot ik

where [H (N)] (H(rN) - H(r Ji))fJN) (rN, gN').
These two equatlons are the tradltlonal starting points
in both.the classical and gquantal many—bodyvapproaches to the kinetic
equations.
Lo 'Performing the appropriate fourier transform on the above

(),

equatlon glves the equation for f

v e | (13“ 13“ N
ot i )L EE R prenifies
2" |
05" 4 L Eﬂ.vr,,,f‘" ,-‘{3> )
3¢ me

) about V(R )

l\)ll—‘

Expandlng the potential terms V(BN

allows the third term to be written
, ik T
._.Ei SLH.( %F.‘nsr'xy’ri) \J’(E; )Jﬁ' (!3;,;2, f)

where ‘7RN acts on V(BN) only.
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If the pérficles experienced no potential, the equation
woﬁld reduce to the Liouville equation for an H = (pN)2/2m. If
there ﬁas instead only an external potential we would then expect
the full Liouville equation. However only if V(BN) varies slowly
enough over molecular dimensions can we obtain the classical_result.
The same thingICQmes abéut if we simply pass to the classical limit
'K—+O, equivalent to retaining lowest order gradients of V. But
the classical equatibn accounts for collisions between particles

- s0 requiring V to be external in the gquantal equation is too

| restrictive if one wants to examine the classical limit. Tf an
intérnal V did not vary much over molecular dimensions the classical
form of_the eéuation would result. This resfriction on the poten-
tiél pfbves équivalent to the condition needed that a guantal

object obey claséical equations. Classically an analog is the short
wa#elehgth limit of optics. With such a potential, molecules are

well described by localized wave packets whose detailed shape is

irrelevant.
Slnce the external force Fe xt. doesnot depend on EN
while the internal force El at. does, a reduction of the quantal

1)

equation to f( appears as

0! ext. Q) sm—\) 3in-1) _tnt: ()
é—§+L£‘VR F °v'3"5' = jjcl 'P F J;

with a similar classical equation. For two-body forces glnt° =

iés Eij and there are (N-1) identical integrals, a typical one

being

j .
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for the.sun of these (N-i) integrais.

This can further be reduced so that only f(l)'s are
inrolved>ny invoking the principle of.molecular chaos.~- prior to a
collision,vtwo particles are unrelated -- and the assumption of
blnary encounters only Expressions arise in the classical equation
whlch are 1nterpreted in classical terms only; A semi-classical
(or seml-quantal) result is achieved merely by substitﬁting in the
classical equation for all expressions or guantities with a quanfal
analog, e;g., cross~-sections. The question remains as £o whether
a treatment based solely on the gquantal equation‘would have led to
the same result. The answer is yes if one makes the additional
demend that f—v 0.

From another point of view we note that at high tempera~
tures, the effects of molecules of very low energy are negligible.
If then we had expanded f(N)(ENI) about EN keeping only the first

non-vanishing contribution, instead of expanding V about ﬁN, we
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again would come up with the classical equation for f(N). At low |
enough temperatures small velocities count and ﬁhe procedure needs
modification at the very least. Mdreover, the thermal deBroglie
wavelength becomes large enough that one can nb longer assume the
intermolecular potential cohstant across molecular dimensions, In
other words, ﬁhen the wave packets overlaé, representing théir
interactiéh by a function of the separation of their centers of
masé is simbly anachronistic and fruitless. Still one can push
the equations bj carrying out thé expansion of V to higher terms
to see if lower temperature effects can be handled. OSomething is
géined but there are limits of course and when they are exceeded,
the ciassical’equatidn'is quite wrong and one must start agéin with
the quantal equation. But this time as the limith= 0 is reaéhed,
terms proportional to f\e are retained énd with such ferms a much
improved description results. Still, this method, expansion in
powers of'ﬁe, is itself limited and fails at sufficiently low
temperatﬁres since the correction terms are proportional to powers
of B = 1/kT as well and diverge badly. Also, but for He, all
substancés crystallize at low temperatures_(H at lho)kso He offérs
the only possibility for observing macroscopic quantum effects in
.a fluid. Below thg )ppoint the expansion infﬁz diverges and
another approach is required. A semi-classical method using an
expansion in powers of the coupling constant in aﬁ assumed form
of the intérmolecular potential leads to a theory valid below the
A-point but other techniques less closely allied in spifit with

the classical approach are currently proving more useful.

T

kY

@
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With allvthese limitations in.mind we can begin describing
a procedure valld at high temperatures for dllute gases whlch makes
full use of our knowledge of such systems to derive qulte 51mply a
quantum—Boltzmann equation which accounts for 1nternal molecular
states. |

The procedure starts with a description of a single
moleeule in the gas in order that the left hand side or streaming

terms of the Boltzmann equation be derived. The right band side or

‘collision integral results from a description of a particular binary

collision. In either the single- or two-particle case, a wave

'fuhction for the system, strictlybspeaking, does not exist if the

system is in stafistical interaction with another one; The‘infer~
action ﬁrevents a factorization of the totalbsyStem wave function
into parts felating only to one subsystem or the.other. The deh-
sity matfix for the subsystem'always exists however'ﬁut it must

be derived from the full density matrix. Once so reduced the

' maﬁfix will not explicitly depend on the coordinates of the rest of

the gas but it will depend on the state of the system as a whole
through the form of the total wave function remaining in the reduced

matrix.,

If a wave function did exist, we could expand it in terms

. of energy eigenfunctions (we consider a canonical ensemble, for

example), The wave function for such a state (called a "pure"

state, ‘i.e., describable by a single wave function) is




, and P is
(En—EW\Bt
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pl = Pxt) ¥ (_:g,t)-zmcn&n e

It instead we are dealing with a “mixed" state for which there is no
single wave function, ohly a denéity matrix, a double expansion of
is still allowed, bﬁt3instéad‘of cncm* we would have c . Oné
should nét think thaﬁ the'non-faéterable Com arises from an ensemble
_average of the cncm* éince the latter simply do not exist unless

the state is pure to begin with (18).

| But the facts of the matter ére that in a dilute gas

éach molechleileadéba fairly sblitary exiStence, only rarely
encountefiﬁg another, almost never engaging in triple or more com-
plicated collisions. The assumptions of only binary encounters

and no prior correlations allow thé state to be considered puré.
This bécomes less well justified fof dense gaseé\and not at a;i
for liquids. -5till, the errors introduced by this assumption in
applications to dense gases are less imporﬁant than those incurred

(1)

by assuming negligible changes in f over distances comparable
to molecular dimensions. When the latter approximation is dis-

pensed with, one can give a good semi-empirical account of

18

phenomena in dense gases both in theory and practice. The assumption
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of binary'encoﬁﬁters'is quite difficult to supplant and this is one

- -of the most pressing current problems in manbeody physics. Some

.thoughts on this question will be pfesented later.

' In view of the above remarks, one should not expect
disaster if one startsvby:a5suming a pure state and then performs
an enéémble‘avérage."lﬁ 6ther words, if one makes physical assump-
ﬁiéns‘leédihg to a disregéfd of certain stfict‘tenets of quantum
mechanics, the implicatidns'should still be valid to the extent that

ére the asSumptions. It turns out that proceeding in this way gives

. & very practical solution to’ﬁhebproblem; What is perhapsia little

surprising is that this procedure is so very simple and effortless
iﬁ”cdmparisoﬁ'with thé'other more rigorous treatments. Howéver,
my methdd is”tailored to fit é'specific prdblem; The approximations
limit the generélizatién pf the original problem the method is
deéigned'tb‘handlé; vThus while a more direct path ﬁoward a8 parti-
cﬁlafﬂeqd is achieved, adjacent goals may be without access though
they may still be reached by the other more general theoretical
appfoaches.

vIn the hext section, the single particle description in
terms of wave packets is developed.and the hotion of an ensemble

average is made precise in order to derive the streaming terms in

_ the Boltzmann equation. Accounting for external forces results in

a precise specification of the limits of a "classical" wave packet's

usefulness. The commutability of the operations "ensemble average"

and% are also discussed,
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3) Wave Packets

The problem at hand is simply to diséover how the presence
of internal molecular states modify the Boltzmann equation of an
otherwise classical gas. What is meant by cléssical will be de-
tailed in the next section in quantal terms. For now we turn our
attention on how to describe an object both localized and with well-
defined energy. >A‘molecuie in g gas at roughly NTP is best
-describgd by a wave packet for our present purposes, there being
intuitively more'useful'information c;nveyed here by the word
particle rather than wave. Having argued fof‘particles, I proceed
by discussing wayes.

We represent a plane wave in k-space (momentum =f k) by
<plk> = § (p-R)

and by
_ 1 GiRE
<tlk> = g

Vea

in coordinate space. With the free Hamiltonian HO = - %

solution to the time-dependent wave equation is
| ~iH, ¢t kr-1E,t
° 1 -1 k
(L) = e (r0)=2t e~~~
XE ) ’(E. ) (2>

Eh‘-‘- k"/Zn\ ) h"‘"

A particle can be "created" from a superposition of such
waves and information on the initial conditions of its trajectory

built in at the same time. With weighting function a a super-

k’

. position of the X-k leads to the packet Sk Qkxk with momentum -

~ A

.

-
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‘localized about k=p. 1f &y is. Moreover, if x is multiplied by

-1kro + 1Ekt° , the packet becomes with a, = a(}g -2

‘ ;£(£—£’> --‘lEh ‘.t—tp)
alk-pe ™" 7

.
X = e

| k

~

Expanding E, a.bou‘t'Ep to first order in (k - p), changing dummy

variable from ktoPp=%k - p, e get

X L .;R(r-r, —IE (t t

1P (-5 - L PIET)
3 (ur)’/t | / a.gg) € |

“—Xg | G (S"’So "‘;‘;‘,g_(t-'to))' :

vhere

.

: | ’ 1p
auwiz fapre
£

The function a(Q) has width w! vhich implies G has

width w, The wave enevelope G is appreciably different from zero

e

' 1 : 4
when r =1  + v(t - to), v==p The group velocity of the
 packet is v. Using XB, ve findery (t) = zcl(t) = classical r(t)
to within an uncertainty w. The width w is many times larger
| than the mean de Broglie wavelength in o'fder that the packet be

so well defined. These statements need not be made more precise

at this time (16). Normalization of XE to unity implies
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A t =
Sr(”vﬂ)’lc‘l .

~

(lagi*=1 .
et - |

The correc£ions to XB arising from the neglect of the‘p2
term in the éxpansion of E5 about EB lead to the conclusion that
the true envelope spreads in time and ceases to be localized.

For the fimes ofAinterest:here, the mean free time or collision

time, the spreading is utterly negligible;

The deﬁsity matrix associated with the free packet is

P(E,EI,") -_.-,Xg(r)Xg (-

' ip(o-2')
3BF G!(.E’E(t—tO)-j“ )G¥]
. =&

_~

-
“(zm

From what is known of G, P cannot be much different from zero for
|£ - £'| > w. The center of mass of the molecule is liké a piece
of classical apparatus showing no non;local effects over macroscopic
diétances. | : t
Defining new variables
. ¢
' ' 7
Ly x=r-x

R =

the Wigner function is
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v 7 . ‘ | . , %/
If the G's are insensitive to X over the range of x where GG "1is

non-vanishing, we get

£(R g)t):-(%,&(g—g) |G.(&“L‘f“t°)“_:" )}

A better approximation appéars when we rewrite the G's in terms of
integrals over the a(f)'s. The result is to replace the &(P - p)
by la(P - g)l

f(g,g _._.(._L \a(P 3)\‘(@“& y(t— o) - Do)\

Thus the uncertainty x in the G's is retained to the extent that

it produées a cofresponding uncertainty in P. The interpretaﬁion
of this f is straightforward in classical terms. The corrections
to if are proportional to gradients'of the G's., Anything involving
the detailed shape of the packets will be neglected since all
measurements of propertiés of the gas are ihdepéndent'of such
information. To carry along the gradient terms would not improve
our description ofvthe gas.- This approximation is eéuivalentvto
retaining only gradient terms on the left side of the Boltzmann

equation.
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An ensemblevaverége of this f is written as ?f
_f-:HF(g)g)t,,)f(g)g)e)z F(R-V(t-%) P ¢,)
, S’R . o | . S :

where F(go, B, to)‘is proportioﬁal to the probability that at t = to

there was a molecule at go-with momentum p. Clearly we have

of , Y-Vt =0
ot -
so T s;tisfies‘éhe goltzmahn equation for a gas without external
forces‘or interactions. Also it is assumed that F does not vary
over disﬁahées'énd momenta of the order of the quantum mechanical
undertainties. F is the élassical distributiop function and in its
argunent, the coordinate is asséciated with the time (as is the
momentum). In this case the “ciassical“ argument corrésponds to

R - ig(t”- t) - where the particle is at t = t_, call it R(t ).

The solution ﬁo the above equation satisfies the relationship

Flept+) = FlexT, 2, t)

an obvious result considering that no forces or interactions are

present, so we have

F=Flgee *"

"or T is free of “initial” conditions and the coordinate argument is

independent of the momentum.
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What have we done° We. have assumed the existence of the'

Boltzmann F and used 1t to perfonm an ensemble average of the f of

a single molecule to flnd that the averaged f obeys an equation

implying that 1t is identical to the classical F if the usual
cla351cal approx1mat10ns are retalned Since rotational energies
of molecules are so_small (with respect to XT), the internal
motion is hearly classicai,icharacterized by high angular momentum
éﬁantumbnﬁqbers}t The distribution function should'describe.sueh

internal states in'a manner approximating the description of a

statistical ensemble of elassical rotators. The procedure of

assumingAa?classical type F to'average the rotational part of a

quantum mechenical f should result, as in the simple case just con-
Sidered,'in‘a useful generalization of the Boltzmann-equation to
account .for rotational states. For internal modes of high energy
sﬁeh as ribratiohal states;.such.a procedure ﬁould not be expected
to work;"But'onli at extremely high temperatures are the effects
of'the vibrational modes felt. An equation ignoring them is thus
expected to be valid over a wide temperature'range. |

| If the ensemble averaglng had been carrled out after
taking the 3/6t the final result would have been the same,
although in order to get there, the approximation of neglectlng

effects due to quantum mechanlcal uncertalntles would appear in a

different place. It was used to write f=F plus'no gradient

terms due to uncertainties. The equation foréf/at followed at

once. Taking & /at first would lead to the equatlon
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(Pff)'v,@a[’-‘é

\
+ m '~

2

where - ;_” R e S ' 7
4e»=7efﬁ‘a‘#”‘- o | | )
and T is the same as before. Higher derivatives of T are con-
sistenﬁly dropped. Here.wevnéglectj§ ﬁith.reSpect to P.
| These cbnsiderations tell us Whiéh.results of this
method are to be regarded-as spurious and are to be systemati-
cally ignored. Aftér all, the approximations involved'in éhoosing
the arguﬁents bf the‘digﬁfibuﬁion fﬁnctions come up énly‘in thé
éoliiéiod:iniegrai;'the fonm of the streaming ferms being exact.
The usual approximatibns arise where expected when the collision
iﬁtegfal'is défived. 'Thé averaging procedure then becomes
analogous tb:aitime (as well as space) smoothing and the notion
ofva time derivative comes:iﬁ for closer scrutiny. The streaming
terms are well behaved. They always come oﬁt the same regardless
of the averaging procedure. | |
The effects.bf external forces, discussed next, modify
the streaming terms and are also involved with the limitatioﬁs‘of

‘the classical approximation.

4) The Classical Approximation, Stationary States, and the

Streaming Terms

The trajectories of the molecules between collisions #ill
be classical if the external potential V satisfies certain require-

ments. The situation encountered in practice is one in which
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extefhéindrces‘can be considered constant over distances of the

ordervof a mean freé‘path'and extérnal potentials constant across

the extent of a molecule. In ferms of the potential, the Hamiltonian

is thus considered at most a linear function of the coofdinates of

 the center of mass of thé_molécule.

" Quite generally, Ehrenfest's theorem states, for any

wave fuhc#ioh, that _ .
0 d epy = — KUHY
dt<27 = | |

For example, in the absence of & magnetic field

-VhH = EE_(I:)
and the classical trajectbry is followed if we can replace E(z) by

g(.Q))J " An expansion ,of-g about r = <r” vhen substituted into

Ehrenfest's equation yields

| | OF
é.<g>=F(<,:>)+-‘-Z [<rel])-<rc><l3>—]——‘= + .-
dt ~ 2 | orory |
' : : : o r=<L°)
so a classical trajectory will result if the second term is
negligible cqmpared to the first. The quantity in square brackets
is of the order of w2(w as before is the width of the packet) so
the conditioh_reads _
Nt @50 502 ov |
wl / r. r-a ‘ 4< ‘ ———— l
‘ o 0_54 {3 | ou
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Thi's is always satiéfied undef the physicval conditions we are concerned
with.

An elvegantt derivation of the conditions for classical
" motion proceeds from a reduction __of‘ the Schrodinger equation to "
the Hamiltén-Jacobi equation by assuming the phasg of the wave |

function to be slowly varying in space. Writing
Y0 E)= exp[£S f>]
Séhrodinger"é équatioh becomes an equation for S:

35 _ 1 - F v
'é“tfzm @vs> vs]+

Letting ‘F\—» 0 S0 S—» So (since S can depend on’K) gives the H-J
equation for So’ a pa.vrt.icula'vr solution of which completely describes

" a classical orbit. The same follows if
Fivis) << (vs)
The vélassical momentum if derived from §  via

F(t) - VS, ~) )

To estimate the limitations of this result, expand S to

first order in ‘R:

S= s, +ti,'5,



t

Thus, to the extent that ﬁb-—

“the equation for W(x)

29

' Substltute 1nto the equatlon for ] and equate coefflclents of1; the

remalning terms vanlshlng by virtue of satisfying the H-J eguation.

The inclusion of Sl allows the probablllty den51ty to be wrltten

- P= exp(ES ), the probablllty current as‘“v

zfﬁ
¥-
j()f) % im’(UV#’ -Le VS.= s e P ,0"
ad - m ) : ‘ _ _
and p and’ ;‘ satlsfy the contlnuity equation by mpllcatlon of the

equatlon for Sl

_O% - L (VS, Vs, +L¥?s,)
ot wm ' z 7
S. ﬁ 5° is wvalid, '¢ describes a
contlnuous mass dastrlbutlon moving according'to the élassical :
eqtatioﬁs. - |
"The’neglect of wave packet steadingiis equivalent to
considering this description valid. | |

When the Hamiltonian is not a function of time, one can

make the separation S = W(r) - Et. In the one-dimensional case,

5
(zm(E-W)"2

AN\, e vy fF\2
()= 2me-V)-E)

can be integrated to givé

Wx) = & fxdx’"F/Mx’)
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so that, except for normalization, the stationaiy wave function is
| NG, -LEt
Wixt)= exp {ttf %/ %x) } er

and the necessary conditions that the motion be classical are still
dW1i - ydwi X
——— et 0O
_ﬂd%’\«(dx) or. vld-xl<<| , A

The latter is fulfilled in the absence of classical turning points
ﬁhich‘canvoécurﬁat very‘low énergies, i.e., precisély wheﬁ con-
vtribﬁtidns to £ranéport afe negligible. Thus the condition is
génerélly assumed fo'be satisfied. When the former is satisfied
as well, z_é. superposition of the 4’ can be used to build a ’wave
packet executing classical behavior. This will now be done in the
one-dimensional case. In the general case, the coordinate x .
becomes the location of a point on the classical trajectory and
the condition that the gradient of'x along the trajectory be much
less than 1 is sufficient to inSure.the validity of the approach.
Wé now consider a molecule having just suffered a

collision and which is now out of range of any other molecules.
The potential is written V = - Fx, the zero being chosen at the
last point of collision so that x is the distance traveled since

that collision. The Schrodinger equation reads

P, %. (E+Fx)¥ =0



normalized as
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In -‘t'e_rm's. of thediinerisidnless variable

5 | ' mF |
EER (|+ E/Fx)(ZMF/ﬁ )2 x(,__.) ( ZW )‘/5

the equatlon becomes | v v . : iy

’LP+§'1P

For §57 ‘ , 1. e., far from a classical turning point (where E = V),

. the wave function is qua51-class1cal for in thls region “the

statlonary solution for 1# 1s

"/)(§)—(zm)"31r"" "ﬁ""/’é‘"/" sm( 53/2 ) 5 -

where

zgs/L ‘S a\"dx . W, +’cms{:, | S=W-Et

‘I'he normalization of‘lfwas determined by requiring that when"(p be
written as a sum of two traveling waves, each shall be normalized
to a current of (2h). We will come back to this point later.

The correspondlng momentum space wave function is

%(P)~L21r1iF) e"?{FF(E Pz/ém)‘P‘l

(agae, = & (E-€')
I
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These ideas mh#ch are briefly discuﬁsed énd acéepted aé a-$farting
point here are developed in detéil in stéhdard referenqes (é.g., 17).
The point here is that the following is Justlfled

We want to bulld a wave racket from the a (p) of the 4)
and the QUcotlon arlses as to the onlead of energles that is
admissible. If two waves of energy B, E' are in phase at x, then
we vant a phase dlfference of MWatx+w if E - E'.ls to be the
maximum adm1551ble energy spread. The phase difference at tlme t

for the waves ‘P is set equal to 7l to give the equatlon

:—(EE)t %(zm\:) [(xm-:--)/—(x ,")./z]

Using the fact that Fw << E, E' and setting E' = E -AE, ve assune

AE << E to find the self-consistent result

. ) t
AE . erER (xre/E)E

—d
e PR
——

E BEw (Zm/'ﬁ"')‘/f-

The external potential is a small perturbation of the motion, i.e.,

Fx < E vhere x is of the order of a mean free path. Thus ve get

P afiinte i

AE L oarh o N h=de Beglic wl.
E  w(emg)z W -

‘Since_ the width of a packet, w, is much larger than the mean de Broglie

wav;:lengt.h we have found AE << E as wés assuned. In terms of the

width wp of the momentum space wave function, we have

3
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"I"_he wave packet will be formed 'fr;om traveling waves rather
fhan 'stationarglr:' 6nés of énerg& E.. First the 1:10rmalization must be
‘changed to"confor.xri_ with previous formulae. To get ’tr'avleling waves
of current.‘dens.ity V/21\'5 the abov.e_'normalization must be multiplied
by the factor {V = (m/(E + 'Fx)2‘)-l/_'u. ~Then the éoefficient équared
"of the wave @ i(%ng "'g‘ ) “gives |

12BN (zm¥3 Az -\
L= — o Uy
2 Voo 4 Ti-lh, F_-\l(, ‘K'Ivla g'/ll Z

-é’orresponding to normalization to a J -function in momentum instead

of energy for the wave function P, e phase

T, : | 32 m
243 = Z(g+Fx) (&
%3 +Z S(E (

‘can be approximated, since E P Fx, by

By, 2 E¥(anle Tz bt C
) v3 e ) v g

or kx plus a constant which can be absorbed by the phase of the
normalization constant. In the 1imit F —» O, ‘(pbecomes a sum of

plane waves

P < @Ry [e:hx«— _ch}

e
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so what we mus_'t packet is ‘that part-of-t/)which reduces to exp(ikx)
when F4 0. Call it ¥ so we packet

(2R I-0)

v T S
+oey 1 (2E+Fx)] (207 |
v (g)— —2-[ ™ ]-""/tl:’ﬁh?/} g‘/d | , ' .

’(P+ is also a solution to the problem if @ is, and to the same
degree of approxmatlon

1/2

‘' The coefflclent of the exponential is (27!’3;) With

the tlme included, the argmnent of the exponent is

¢ [ () -2 (20)"]- £

Call E = P /2m and packet with weighting function a( - D).

Once a.ga.ln we expand a.bout P, = P dropping terms of order,(po - '15)2.

The exponent becomes 7
5 '-'E'_(‘-_“{'- = 4 vt (p,-B)
(P“.PJ Bz )_ [ (l x/ E) ] PP’

) 3:'_}—.

and setting x/v At we have as a result of packetlng

"/""-)‘(}E) exp[(F(x+13(At)z EQ]G(x_—#_Lj(At)z)

Vv

G is non-zero when x is within w of the value

X = ct + %—oa,tZ
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and <8t >= t to the same degree of approximation, i.e., to within w/v.
The'Wigher!functioh constructed in the same way as before is

(dropping bars ‘on mean values)

§_1Pr+tpr+t|?2 [(K"’ ) (R- F)IG(Q.} _1,—'(:-1-3(6‘5)1)

(tﬁ) =R~

" That part of thev e?c'ponen‘?‘.p_rf'opoftional'_- topis |
| - ?(\—\-Czﬁ/h‘")r

" and the ébeffiéiéhf of T is an approximation to
?m ey

since p = mv, which is the familiar kinema.tical relationship for the
momentum as a functlon of position under the 1nfluence of a constant

acceleratlon. Thus e have, in the splrlt of previous approxlmatlons s

3c.. . \q(?-Pm)\ (@(R—vt—-‘- gt")l’-

Calling -the initial time and coordipate to and. ry instead of O and O

‘gives

=1 [cLG(R-v(t-’c;)Jz—g(t,—‘to)’—n)\t p(\zhp(ﬁ-"o‘)

and an ensemble average over r, and v gives £:

T F(R-Zt-to)- £ gttt B-mglt), t,)
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KThe abéghcélsf‘ééllisions implies, és>in'the élassiéai
~ argument, that the abowe is.equal to F(R, P, t). The différential
equation sati;fied by F'resﬁlts for examblé from setting the two
expfessions fofrF éqﬁal td 6ne éﬁother for t - fo = dt; at <3:‘t,
and exéandihg‘the formér about the lattef to first order in dt and

then lettlng dt—~ O: :

Fe o [ +MJ‘ 2+ot]r:dt F=F(R,Pt)
SO | . — h ! . a ’

Bt o m . -

“Recall fhevmeanihg of P, R, and g: P and g are the
éom@dheﬁté of the momentum and acceleration along the trajectory
and R is the curvillinear coordinate locating the particle on its
trajectory. Thus the above is equivélent to the usual expression

of the streamlng terms

Introducing nothing new, this same result follows from
the procéduré of averaging.after rather than before dérivatives
are taken.

Doing things.still another way as a check against an
anomalous fesult, if one does not set,At‘= t, then simply operating
on F (R-"%&‘ta)“‘z"jtt‘tu): B—msu’ft) ) t ) - withd /9t again yields

the correct result if at one point mgAt/g can be dropped with

£
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respect to 1 Whiéb'isﬂthé"éamb"thingﬂas»dropping terms of order Fx

with respect to E.

5) The ngner Functlon for Internal States

Orlglnally, ngner was motlvated by the reallzatlon that
‘there are two scales of dlstance, one approprlate for macroscopic
‘events and one for microscopic events. The dens1ty matrix of
von Neumann could be written in terms of these scales or

coordlnates as

)0(5,,_,)—-@,’(? m—“P(R”‘hW (‘?- JZ) .

=1
'.
i

The density matrix contains all the'theoretically available informa-

tlon about the system descrlbed by W. The "avérage“wcdordinate R

- is assoc1ated w1th the center of mass of the system 1f the system

can be’cons;dered‘locallzed_WIth respect to its su:roundlngs, the
énvironmeht with which itlinteracts; Then thevexpectation value
(R)(t) behaves classmally - the center of mass can be regarded as
a cla551cal‘apparatus. Another way of statlng this is to point out
thﬁt intefferehce effects due to the 1b-wave describing the center

of mass are not observable over macroscopic distances. Non-local

-microscopic bebaviour is associated with the "difference”

coordinate X which of course goes to zero for a truly classical

object. The Wigner function is a particular fourier transform of

P vhich replaces the two vectors r, r' by R and P, the center of

mass coordinate and momenta. When the latter are sufficient to
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describe a process, thé Wigner function is more to fhe-point than the
dehsity matrix, . |
in the.caée of internal states there are ‘striking

differences and'pérallels. .For eiample,vconsider what is meant
Bytfhé assertion that a'molecule is in a_particular;rotational
state JM; ;Firéf bf'all, we know nothing about the ﬁolar angle of
the molecular axis{except that it»is equally likely to be anywhere
from O to 2F. The azimuthal coordinate, though not characterized
by a flat d;stribuﬁion, can be localized only by a superposition of
high J states. If=we‘wantéd to describe a classical rotator for
example,_we_cbuld imaginé it rotating in the x-y plane, its
éentef_of mﬁss at fhe ofigin. A wave packet of angular momentum
_ gfba‘t,es m}th Mad ,;:ould describe its.motion by predicting that, to,
within quantum mecﬁanicél uncertainties, |

1I‘E%<??> =L - ) L = <J> a
<9y = .O | , T = mom.of inevtic |

A two-parameter rdtation of the coordinate axes transforms the
packeted wave function into a description of a rotator rotating
about some axis other than fhe z-axis,

" For such a packeted state, one can talk about macro- and
microscopic angular coordinates as in the case of the center of
mass motion. But unless one ultimately wants a description of a
gas of chemical rotators, loaded spheres, or what have you, there
is no need to do this. Not that one is nevér interested'in loaded

spheres and the like., They enter model-based calculations of
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transport propertles through values of their moments of 1nert1& and

clas31cal or seml—cla551cal cross sections for example. And here is

‘,an 1mportant p01nt - the llmltations of such calculatlons whatever

f they may be, are not’connected_w1th the fact that one is ignorant of

the internal coordinates. A knowledge of internal energy levels and

how they are coupled with each other and with translational motion

is all that is needed. Of course the coupling is not at all well

- _ understood and we havé to rely on enpirical quantities like

viscosity and diffusion'coefficients (which do not sensitively"

depend on internal states) 1n order to calculate quantltles like

thernal conduct1v1ty'(wh1ch do) nghly successful calculatlons of
thls type have been carrled out (5) and the errors are W1th1n experi-~

mental uncertalntles and are due to an unpreclse knowledge of cer-

taln empirlcally determlned 1nputs rather than theoretlcally

calculated ones. The startlng point ‘is the WCU equation which

: 1nvolves 1nternal state labels, i.e., angular momenta, but not

1nternal coordlnates. As Uhlenbeck has p01nted out, for a

‘description of polyatomic gases in.the classical regime, the WCU

equation tells the whole story. (I think this has little to do

with what the U in WCU stands for;) Of course the details are

stlll m1551ng from this story - the cross sectlons are unknown.
But in pr1nc1ple, one cannot say that 1nternal co/rdlnates are
lacklng. They have simply been averaged out of the'plcture.
Thus one is motivated to find a generalization of the Wigner
function so that internal states may be described with the

important proviso that internal coordinates will not be retained,



The generalizativon pfoves 1o be quite simple 'and straightforward;
‘The angular wavé function is represented by fhe super=

position

Y=L Gl as 9

_ where Y; is the spherical hann9nic’ and ,g‘)lc‘gv\b: I . a
tacit assumption is that internal and translational motions are
decoupled. Furthermore, any internal vibrational motion is
ignored. Such.motion becqmés significant‘only at temperatures
much higher than those under consideration here. Instead of 19,

x = cosB will be used. The density matrix is

I o v #o
P (g, X2 q)= g, C,.Loc}ere,(X.?\)Yp (X, )
and ]tﬁe diffezienée and suin coordinates are . »
3 (@+9,)
%-9.

X-z(x\**l) 5 §

x=X—X2 q)

b

"

We seek a kernel K\ (X% |xg)such that

£, 58 = [ [ Kuap
=0

has the properties

b L £ X3 = el LS D19
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Due to the orthogonallty propertles of the Spherical harmonlcs, the

correct kernel is

(=Y @’ M) -

with

Z'Km ;'5_;""(;5;;;)51@,-9,)f.gtx')cf(cy’l)_ |

Wﬁen‘EXpeetation'valnes‘of operatorsvere calculated Vith this Wigner

functlon accordlng to the usual prescription, the operators are

'replaced by thelr c15531cal analogs in a phase 1ntegra1 over

'_1nternal coordlnates and momenta.' For calculatlng such quantlties

as the mean internal energy or polarization, the classieal'

quantities are independent of coordinates-and'only an aVerage over

mdmentum states survives. For a glven molecule in. the state JM

the relevant part of the Wigner function is S S§ ~£¢m 1,,, IM

which, when averaged over an ensemble via 2: AAG" )' gives F{m'

In other words the procedure goes just as before only it is

.‘actually 31mpler in the present case._ Of course, before we were

guided by_the_fect that an F with»all the right classical behaviour

did in fact exist. For rotational states, such as F also exlsts,

the dlstance between energy levels being very much smaller than kT, N

the mean transatlonal energy and the rotatlon-translation coupling

strong so that rotational levels are easily excited and distributed

via collisions in thetclassical Boltzmann manner for all but the
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loﬁéSt temperatures; i.e;,vevéryﬁhere'eXéept'near'the point bf’
iiquéfaCtibn. .Fér.vibfational Statéé, the energies and their
separations are léfgé compared with KT and the vibration-trans-
lation coupling weak except for the exceptional case of end-on
collisions betﬁeeﬁ vibrating rotators. 'Rela;ation of vibrational
excitation is of the order of at least 100 times longer than
rotational relaxation, which in turn is about 10 times longer
vthan_ translational relaxation (18).

In the next section, the effect of collisions are
éérived, including é derivation'of the optical theoremAfor wave
packets and & lower limit for the mean time between collisions
in‘order_toijustify the‘approaéh. We will not consider tempera-
vtures so high that excitétion of wibrational levels is'important.
Thus it is sﬁfficient térconsidér rotational stgteS’only. The
generalized Wigner function is really just'that - qute genefal.
Instead of the YLm’S, any orthonormalized set could be used fo
expand the internal wave function. The intergrafioh over
intérnal coordinates of the new f again will yield the square of

the'corresponding expansion coefficient.,

e
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' 6) 0011131ons Integral I .- Scatterlng In"

- We w1ll conS1der the problem of a molecule scatterlng from

. a statlc target rather than do & more general two-body colllsion.

Generallty is not lost however because this procedure amounts to p"'
g01ng to the rest frame of the second particle._ It w1ll be easy to
rewrlte the flnal results valld in the more general case. For one
interested in all the detalled calculatlon, some remarks on the

wave packet plcture of a two body colllsion are in appendlces to

thls sectlon. | |

o In treatlng the terms 1nvolv1ng the scattered wave, we

' 1gnore the effects of an external potential 1n the sense that for

__times prlor to the collls1on, the molecule is’ represented by a .

free wave packet. Such neglect is standard procedure when der1v1ng

the colllsion 1ntegral by any means, the external potentlal belng

.....

:'regarded as too small a perturbatlon to lead to any 81gn1f1cant

contributlon. o

What is envisaged here is & kind of experiment. We

have a target -S‘itti‘ng at the origin bombarded with & single
."moleculeg- Then we examine the effects related to the scattered
‘_portion of the-wave and to the interference'between-the free and
'scattered parts, each maklng a contrlbutlon to. the ngner functlon.
:The experiment is con81dered to be repeated many times Wlth the
tlncoming molecule hav1ng a different momentum, 1nternal state, and

initmal positlon each time, The dependence of' the post-c011181on

states on the initial conditions are removed by an ensemble aver-~

‘age overvsuch'conditions which is slightly more involved than the

previous averagings.




The contribution to the Wigner function from the initia.l
Vavé éldﬁe gives of coufsé the. streaming te.rms and these.‘were con~-
sidered 'in the prevlous sectlons.‘ The pre-collision state is de-.
;kox 2y b‘-. (Y:Lisvthe
internal state function) and after scattering, the wave is

ikr
1,0 x +2 Y”‘(zm”’-e f

noted by the plane wave X=(?—TT)

where the sca;-ttering is assumed for now to have taken place at the
origin é,nd thé target is structureless. The’ scattering amplitude
f is a matrix in angular momentum ‘quantﬁm numbers., The quantity
k is some functlon of the klnematlcal variables and is the
magnltude of the momentum associated with the outgoing spherical
wave.

| The initial state has mean momentum p and internal
_ enérgsr € 9 ‘W;J'hen ﬁécketed‘; the scattered portidn. of the time

dependent wave is

7P, r..zEt

i ,
(s L Z Y3 & FlplungfING,

where

E __= _\_ .,P'z__‘_ e, - %m?; “* _G_J dgjﬁnes\ PJ—

as

Y_pﬂ- 2m (€, - £5))'/2
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and

GGy ( 5;*3} '#.42:,, G h

The 'quen't'ity f/\irféAt isleﬁeh that(A ty = t‘ = time elapsed
sifice the scattering took place at t = O. Putting in initial
.veohd'itien"s'-, we 'éhall instead say that at t'= O the molecule was
locallzed a.t - vt + b and the collision occurred at t = |

_ The vector b is the impact pa.rameter.t Gf bec.omes
| .64 = .,,,6'..,(.«5-&* ta)] - )

| __eo (A t”)‘T' t - t,. The impllc:Lt understa.ndlng of b is that it

: is ‘small enough that ¢’ 1s non-zero somewhere for t+ > t o’ i. e.,

' the impact parameter is S'ufficiently smal‘l that a collision did
inv'i"aet tal.ce”‘place. We include th here because it is e;cplieitly
avez;ageci ox.rer.]\_eterl.(v 'Sinc'eb " v ='6,- bvmust beg w fegard.].ess
of the rest of G's argument in order that G not always vanish.
Also, even for sﬁch b, G vanishes unless t = Vt_o. +At te withiﬁ
w/vf. For t < t_o this'cahnot be uniessA;t is_. of the order of
w/vf.v Bﬁt we consider the scattered wave to be_in the asymptotic
region .Vhere At .> w/vf, so the scettered wave is pfoperly negli-'
gib..le prior 1;,0 the mean time of collision té. : .
Thev‘.t'..part' of ‘the__dens'ity matrix p due alone to the
scattered portion of the wave is called P+ (the notation is

motivated by the knowledge that f' gives the "scattered-in"



collision integral )

- L?’Ur m oy ¥/
P+=_l_Z e }(me_s.rTM)a( YJ.Y .:FG;F,

3 —
(2n) XJ;'MA' r r-l

where G ;Pf. are Gf and Pf evaluated for Jw»J'. Going over
to the variables R, x we do the following:

In the phase we set
re=lR+%/2l = R+ R X /2
o, A
r's R-RX/2

and in the arguments of the G's we set
At:= At L R&/2y; At =R/
T B '.
AL's BET -RX [20, -
vhile f is assumed consta‘.ntv over the range of x, i.e., f is
evaluated for T, £' both equal to R and the macroscopic

lengths r, r' are both replaced by R. ‘The corresponding

Wigner function £ is

' +

<3 ~ ~

ST en e K'-; _/o
Lo el |

The internal state kernel works so that we get the double. sum

¢ - collapsing.via S to give
'SZN -ﬂw W*»L&‘%SUM yLs g
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.lq

f - Je 25@ )3, j 'lf("f'f"RLJ..MJ)\ lG}V’ .

where pf, (}f are evaluated wlth Lf

TheS glves('zﬂ')}s (P..E'_ﬁ) because we 1gnore X

R .‘_‘zv.

‘1n the arguments of the G s.' The mproved approx1mat10n 1s, as

before, 6" replace J(P— ?!ﬁ) by la(P- 0 12) |2" so that we have

5._ l@(?-bﬂ)\ &e r(“ (em] @\’- (;Hgaﬁ%g L}M )\’-

R

"w1th an obv1ous physmal 1nterpretat10n of the arguments.

' However, when evaluatmg “the colllslon mtegral all uncer-

tainties due to the widths of {al and [Gl Wlll be’ neglected"
con31stent wlth d.ropplng gra.dlent terms in the colllslon inte-

gral. " Thus- the quantitles la\ and | G[2 will be treated like

J-functmns. 'I'he parameters ;e, "g and t are to be averaged
» over. Before we averagedover I, = - ‘u‘t + b hence the two

B averaglngs are equlvalent. The range of variation of the

initial state’ parameters needs deflnlng since there are

' .@finite physical limitations ;.nherent in this hypothetlcal

' experiment. The two molecules are members .of a gas of course

and so, regardless of p, we expect a free flight time t_ from r
to the point of“scattering to be weighted'by the probability of '

such & free time, namely exp(-to/'r) where T is a mean free time.

" (This is not necessary mathematically however and other physical

| arguments suffice as will be seen below.) The volume over which



x, fanges is likewise characterized by the méan free path and R

is more or less c'eﬁtfal to this volume. The probability of the
initial conditions is propor‘bional'_to.F’&J(B, I, o) =

F,&;(B: - vt +b, o) ='F'E-“(£, - vt ., o) since |G,2 restricts b
to the order of w and F is insemsitive to such a microscopic
length. The molectle moves freely, i.e., streams, from
t=o0t t=t_ so F&l(;g, - Yt o) = F&l(g, o, to). ‘;‘he naming
of the origin is arbitrary and we will write F ,&J(g, X, to)
because Wé want to average in general over the mass density of

target molecules at x For nowv we write the ensémble averaged .

l
f+ as (droppmg subscrlpt f from Lf, Mf)

J'Lu\ (2 g,i;) Z J J jdzbg‘fdtoe /I: (E,G-FK' O):;‘ h, (x, 0)
= lft “g

where ny is the density function for the target at t = o, In

+

£, the point R is relabeled R - %y consistant with its meaning
as the vector from the region of collision to the position where

' is being evaluated. Defining u=R-x, d3 d3x1, the

Sd.(\xi-a S dLy is removed by the restriction due to l:a.l‘2 that

8= 6 to within uncertainties over a wave packet. The point R

is considered the center of the volume over which u is integrated.
2. 2

We also have p'dp = p d.pf dp l pfpd.pf and the rest of the

restraint imposed by Ial is to hold pf to withinh/ur of P. So

far this means
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is

hg |

AT L P e )

S €2 |
X \.":5 (eLe-»E LM) \1!" £ (g,i§»+g—u-f, oym(2)
N E/m’j‘?‘ o L

~ vhere p is fixed by kinematics in terms of P, L, and 4 and n (%)

hasfbeen replaced by n (R), ah approximatidn due originally'to

| Boltzmann (and dlscussed further below) The_operation_

Gyl L

Sd‘b&du‘éll P/"‘--
ey Y

leaves an integral over t, to be performed. What is left so far

—
-

: z Sd‘L@jUdtbeuF (2 U‘t,-tﬁ-rg H:'to) 0)” (R)\f‘

| :,F_‘_‘ La

In the coordinate argument of'F{u, as t_'ranges from O to T, the

P

~ argument ranges from R + %‘gt to R + % Pt -{(3‘+ % t).'Now'the

time t is such that t - t_ is of the order of a mean free time
at most (and a collision duration at'the'lea3£)fsince we seek’

the average change due to a single collision. Thus both %‘gt

‘and - vt + P(t B )/m are of the'order of a mean free path.

Thus approx1matnna F{u simply by F{“(R) is agaln equlvalent to

- one of Boltzmann s orlginal approx1mations leadlng to errors

: well 1nvest1gated (14).
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In the usual derivation of the Boltzménn equation, when
éonétructing the collision integrals, one focusses atféntion on
some small volume elemen£ d3R within which everything is happening
_— particles are being scgttered in‘and'out of_some momentum all
in this liftlé'volﬁme élement‘during é time dt. The distribution
functions used to describe the mean occurrenée of events are
éssﬁﬁéd coﬁstaﬁtrbvef.dsﬁ and during at (although they are
allowed to vary, wvhen cdnStructing;the_streaming,terms). In the
above Vork one can simply consider the'raﬁges of'to,'gl, and I,
smail énoﬁgh that these approximations are valid, the point R

being central to the volume that contrlbutes. Further reﬁriting

of § ; cqmes by noticing tha.t | o
2 lf(?ﬂg—»l? LM)F"—' L l.:f'(l?L;‘M—# ,El(u) I*
fu Y

by parity and time reversal invariance, while

'U'H’\?'?V (%\:Hz) Q‘wrc V=P/m

,,,z [:}(ﬂgaELM vZ’ “aﬁ (BLm—z “t*)‘

—VZ I (PL-M~ 2 L)
Lyl
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" would remain the same and’ j'tm w0uld include a sum over J M

51

s L VbR om 2,0

With no preferred orlentatlons R ,nothlng is lost though much is

-‘-
sn.mpllfied by 1nclud1ng a sum over M sending 5‘+ - :S'

-and a.llowmg - M- M on the rlght ‘band side (M bemg a dumny

:mdex) We ;valso:fdro'p; ""c;he"magnetic guantum number from F:

E JVdoBLi-pll F (pR,OIN (R OT
and a.galn note that p is bemg integrated over while P is fixed
by P /2M1*e‘¢- EZ/ZN + el.. .
If the target ranaining stafic, had structure
M

represented by some in1t1a1 1nternal state fu.nctlon Y {1 l, which
could change as a result of the colllslon, then the scattered
part of the wave would be | | |
| . ikr o S
/A Y:',“(a)YD.l'(iL.)_?_. S (ol S~ kIM, M, )
M ‘ : :

, ‘ e
B ( z;ff r

vwhere h/zn, 1—6;-1-&-3- &o/Zm Cpt €p, rfixes k.

The kernel for the internal part of the ngner function

P

1
from above due to a trace over.ﬂ,‘ plus an additional average over

'f&ul. Moreover, if the second particle were allowed to have an
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initial mbinentum P, 'cer‘oain obvious c.hange's“would occur in the final

=F

expressiori for _—f LM * Flrstly, we would have

Evd‘(PLM—vglp d(LF (g)n—-v

e g

" 7w MﬁPLm,z.IMr*ﬂmW”‘“ A (FD
. Le_ A*

. = T wrdots LM:m—mztu%»)oﬁa

1 {Po’| A s .
vhere Uy m\g g\ ‘ and k. is the direction of the final
relative"momentmn (tacitly defined with respect to the direction

of the initia,l relative momentum)

ks = L (g-py)

_The _'oz;iéinal- integration vafiables were of‘ the .original.
initial sta{:e ( ? R 2‘ ), but well known ki_nematical arguments
allowed the initial and final 'étates to be interchahged in the
argument of de" to give the transformatioh to thé above.

-The momentum a.rguments of F T \ {1 N orlglnally were p |

and B but in the fmal form we would have
L 1
EéP)E,BE¥')H.%( 74+ %) Fi-,e‘(z &- 53) .
' where{?:g -r,?.v and - |
‘ . . VL
K;S_ = [K’ +_ (él—‘\'é:y,* ef_ e-es) m—_\
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‘with K =

]
2

2 -pll

The, final 'result is T

5+ 7;2: Sd{\,« Jd}]’dfr 1&(?—(?"?? )+ ) Lyphs

B é‘l -Ci‘1’ﬂ£p_ . : '

.M ‘
The point R, as befére,_is;considered'the central point in the
vvolume of integration ovef fhe coliisioniroint.e_lf no oriehta— |
tions are breferred, the F's do not depend on the magnetic quantﬁm
ngmber and we Wfite'F{;instead of'F{u. This is aiwaye the case for
homo-nuclearid;atamic molecules, symmetry considerationsiruling out
electric or mégnetic moments.v In the absence of electric or magne-
tic flelds there is no preferred orientatlon in any case.
Flnally a word about the time arguments of the F S.

Siﬁee fL = 0 for t = O because of the causal instructions from
iGlg (no éeatte;ed'ﬁave packet prior to.eoilision time), the
procedure of obtaining_E;:Zt)vknoﬁing F(0), t ~ 0 (mean free time),
'can be consideredven iteration proceéé like a repeated disorder

“assumption. Then one could regard
flw -3 | 3 LTy =T¥ (o)
= T et

and since any initial time may be used, the empty time slot can
"be filled by t when J* (the usual symbol for the scattering~in

part of the collision integral) is written in terms of an integral
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over the F(0)'s.

. Alternatively, since t is of the order of T we could

-

have used T for t all'along‘or héve drépped thevfactor e'tO/T
with the understandihg that for the'usualrreasoné the variation
inAthe F’s'due.to changes in the éoordinate.argument dependent
on t are ignored. In the latter case the physical restrictions
- on the range of integration over t; are (1) that the minimum ty
iszc; ggmething‘of éhebbrder qf'the duration of a collision
.bggausé initially the molecules are out, of each 6thérsbfange'
»aﬂa:(2)v£helm$ximum té is t.-'Té since‘t is éh ésymptotic time
or t - t; must be at least great enough fhat'again the mole-
cules are free of each othér.' Then the.t0 integration gives

t - 2Tcg: t since £t Y T, so‘;¥ ié prqpo;tional to the time
elapsed from the start. Classically the same result holds, t
being analagous to the At or dt during which changes are |
occurring, the F's remaining constant during dt. Finally,
taking at- firét an’d then performing the averages would have -
resulted in zero since, unliké the case of ihe streaming terms,
grédients of the F's are drbpped ffom.the collision integral

and it is only such terms that result from taking C?t .

&
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Appendix 6A - Wave Packets in Collision

_ The kinematics and close relation to a classical picture
~are brought out in the evaluation of a cross section for the
scattering of two wave'packets.v

| » The starting point is the unpacketed wave generated.

by a collision beglnnlng with the initial state

’b x;_{-lkb?(-z
’)( (27T>36 =

which, when packeted and .t-ime' dependent, is

- 1 ‘(KJ "'Xlo) (X;,'—'Xw)—t(E-i'Ep)H?"t)
)(:.(27r>’3e2 “2’ I G G

with

Gi= Gl ki -t (b o) Kio)

where the mean momenta are Ry B and the packets are localized
at® att=t.
The usual procedures lead to the unpacketed scattered

P, = s

C

where G = h\ +k,_-
o~ ~ .



B

-1~ -1 :
) g.':'m. + My , M=m+mMe

K=u lb/m
f: l'X-\—'X—t‘

'_5—:' "(.Z'\') t&T

and T is the T—matfii eiement T(E, E,;Q,. ), E = E, + E,.
Energy and momentum delta functlons extracted from the T-matrlx
fix the final total mcmentum and final magnltude of the relative
momentum in the asymﬂtotlc reglon at thelr orlglnal values (no
_changes in internal states being‘con51dered}for 31mp11city‘here).
The direction of the final relative momentum is pot fixed of
course, the relative probabiiities fer ﬁhe different direcfions.
_being éroportional to the square of the appropriafe SCatteripg

amplitude.;5

When the scattered wave is packeted we write_
an £+ KT — k\ﬁ.o- Etf” =~ .k.l é' +&t §t—£ £+ Kr—bé 0_—&—7'57’0
= B+ PaKa— KE+R P XyoPaKeo
v lly-pd- (0 -2+ (-1 ¢ )
-+-(kz:f2£> (Xh-—Xho1'—'(1ﬁi“4fb)%- } T‘)

to first order in _p':z h;-—x‘- with barred quantities evaluated

for E&i-ﬂrxa:

56
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K= (le ‘»Q+,£/ml f/mz\
 = e + ulh (p/m,—Llm)

‘to first order in 'D and
A :

E=p-pd KT RTKS
so o '
where

.= G /m

Extracted from the packetlng 1ntegral is | |
EXP[LE ( X\ "Kao) + '»Pi (Kc —X'zo)— (! K r+ K r_l

~ which equals | |

exp G (e-C) TR - i»;‘:{,.?]

where

Including the time dependence in the usuel way, the

integration over P' N P gives the factors (dropping bars)
2 _ . .
~ " .

G, (L+y (Z-tt))-Tr r-C v -« o)
AN A T4 0) M~ T~ !
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the arguments become

e e - "‘(r +1r(--(t—'6)) Xio)

and

o ]
Gule-%grulg-

and in terms of the classical point of collision z,

u; at At=°C (A~b> -t
~ | (rr

%o:C“tfc.
-vlfr ~

A

we get

G Ui | At —(E-to) | +20 - Xio)

and

GI-,_ ( 1{:. [A'b +(to"t)]"\"'§o "ﬁzo)



. The scattering amplitude f is considered constant across the width

of the packets so the scattered wave packet is

29

N ,q)scl,;,.: @"3 57(P t[é (Q"%’ )+ K,l’—';V.) !:o — EL“D"Q,)}& 6;67_
. Ka | .

Specifying the direction of the final relative momentmn-fixes the
final state. ~In other words the final momenta can be defined in

terms of th_e numbers (51, §é)‘ ‘It goes this way:

iRy Ps ™ (&-Ps) ) BgmE Py
I A M
The first equation defines Bigs the second p,. and, by construc-.

' tion,' momentum é.n_d energy are conserved. We find Eif to be

§

“and ) ' : ‘

By =M )/ Al =,

2\.. = m\A(lel '%a)/A.b = mlg:lé—

further illustrating the role of zo as the classical point of
|

collision. Now LL-L and 52' are arbitrary so 50 is not necessarily

the mean point of collision. Howevef the (}1'_(}2 factor is signi-

ficant only for those values of x and X5 such that ¢ 2> =

%1, Or %X, . Since all ‘expectation values are uncertain due
~ ~Zo _ : |
to the finite size of the packets, £ 2z ) can be either Yo orka,

because, for a collision to have occurred (a tacit asgumption),

\%ﬂo" ,%2«0\ must be £ wo;
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The final momenta can be introduced into the phase of %¢

by the following manipulations:

G(C-Co)tkr-Bo=GCHReL -G Lo-K D
L zalepsr-(Gleg)r s |

= By (Go2oe ™ £ 1y -2 D)~ )

The first two terms give the increase in phase from
the initial point Zq to 51, X5 while the last term includii_xg the
minus sign is the initial phase at 2y i.e., for X5 52&29, ’xzo.
The time dependent part of the initial phase is defined as zero
so the last term is the total phase for x,, X, t —=» X0, &";to'

For later u$‘e,' note the kinematical relations
Ue o Uiy = Uy g L= Ui A
T T YU R
.. . ) r
\?“;t —ip\ R

We now proceed to get .the cxj‘oss-secticv)n‘ from "q’;c . We _ha.ve
P <y enpi [Pl s TP s - E )] 1 $ U
5C erptng' M= PegiXz-Zol- v)-l.,_;?__'_.-f

R Uy
where '



’ q};{-’:“@ﬁp ?:#[-,G‘,_»(io'—go S-— 59] G.G,
""'&‘I‘P ‘{[;?4 (ﬁ°"’,(:_'°)*/gz(f;‘b "2{;20)] G .Gz

If when packeting we had changed the integration variables from
51, }52 to G, k, the argument of the G's would be
R C - Co - U, (t "»'-to)
La d P Lo d
and . -
R Zr - to - (t "{:o)
- Rr-% - Ue -

~/

for the center of mass and relative packets respectively. Since

A

K = V., the argument of the latter is

o at-t-tad) -
so ‘l)sc‘ vanishes unless ros v, i.e., unless the packets do
actually overlap at t = to - ISOmething only tacitly assumed

before. For t < to, qéc always vanishes. The 'argument of Gc

simply requifes
(Y = Co+ e (t-To)

and télls-us riothing about the initial conditions. Actually

everything has been preordained in the arguments of Gl and G2

‘appearing in the initial state packet X. There, it is generally

required that

61
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| %103 (E-t)- X} € Olw)

for X to be aiaprec'iabl& different from zero.
If at t = t_ We require a coliision, then <. V< Q)_

the range Qf ‘the intermolecular force. Now st'by construction

sO we want .

‘L-’ 'Co‘-S‘O(DO) :
which implies o< O (wr).
To return, the density of m, at xl is

ptm,j\w \z nst kms) bcrvjla a1

1%, ~¢Zo7\* Ve

where ¥, % %> in the denominator and was brought out of
~ Ny
the integral. The integration can be more simply carried out in

terms of zo rather than x.. We have

%5
Slae\,, § T1la,6."
Xe %

K 7 .
wherej: \6 '/ \ is found by solving for Z, in terms of %55

forming | OFo \ and inverting. The result is
\ / 6%@

T- (B (e B
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The initial flux at t = t_ is

& -emy. S;\ GG, | di,=em Uy J |G, (£-¢BVGE <)
Sy - - %,
~
a generalization correctly reducing to the more usual casé'where
'the beam packet is much broader than the target packet. The final
flux of m1 at x 1s lffbl X ) and the number of particles per

,second through R dl\if at X is

E .":"', (Q*)SL‘HI jd‘ﬂ*ﬁ - -do—

o

or

. ‘ \ _ o
do o ()l e )
— fnd %
"~ . .
125
"~ which is the ﬁsual non-realistivistic éross section in the lab

éystem. This result depended on the cancellation of

. j\e (5 [at-tetd)r e Go 1

~

S \6 (‘?:o (&97)6 Lﬁ“4%0>>\

0
~r
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with 0/0 =1 not allowed, i.e., the outgoing and incoming fluxes

are non-zero by hypothesis. When ;51, 952

classical kinematical expectation values are realized, i.e., when’

are such that the

At— LAty ror instance, we also have Z, =<z > as vell, all

equal signs correct to within quantum mechanical uncertainties.
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Appendix 6B Handling a non;static'target

The part of the phase of the scattered wave packet dependent

on X1 %

is

GC o+ Kgr= %1 +Paka = K (0-Xa) 4Ky | X =Kl

When the Wigner furction is formed, the part of the phase pr0pdr-

tiohalvto X = % --51' ig

| (42|-‘5-4~ KfA(ﬁi::zz) ) %f—'!?if

- m
1 .
But By M g + K so we have as the coefficient of x

ey K —F.
;-M.gf"?f) ~

vwhere - , .
o=k, (X
R o N UAS
Kg © { ¥ (Gze,i-»ézz- Gz,}-'ezq) 26&1
and A
Ps=mp G tXs

and the é%fs are thé initial and final internal state energies.
The internal state fuhctions and internal Wigner function were
handled in the case of the static target with internal structure.
Only where the kinematics are affected by internal states will

their presence be made explicit. The point of this appendix is
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to present the mei}hod‘needed to handle the algebraic complications
arising from doing the problem 1n the lab frame m£ﬁer fhan the
rest frame qf the target particle. Inyt’he spirit of neglecting
terms proportional to gradients of the F's in the collision inte-~-
gral _the e-xpressions |a( 'g)l2 and l{,‘r(g“c)l2 will be handled as if
they were 5(3) and (21\')35(1:) |

' The unavera.ged Wigner functlon for séattering in" is.

-1Px 2 : _
£ (zmﬁ l’“’f (Rt ks, K| RK/2 ) %)

o Xe . |
. | It . . . N - T [2 |
_‘(zni"‘ﬁé"gﬁj P ense 16,6 TS |
R T S IR - Xl

- wWhere

@,=G, (R- %Ahzr[b{: <A/cﬂ—+eo-x\o)
G. =G (e - Upg 8 +g{At- )+ % —xao)
DL:DC(K(L‘Q‘ 2 Ly K.(ff-\x'.))

Ak = tR- m\/zrrac |

Zo=R-U AL

&.!’M ’,{']’0 are the localizations of m and m, at t =t and



by poétula_tipg a coliision, Xjo— %, =D - an impact parameter
whose magnitude is at most of the order of the rarige of the
inteimolecular potenﬁial. Fo.r larger b, sc vanishes since.
then there is no way for ]G \2 and lG |2 to be simultaneouslj
appreciable. Eventually b is’ averaged over and the f‘actor [G G (2
festricts 'b to a magnltude too small to affect the averaging
functlons F1F2

i A‘c t = 0; the packets are localized a’o r and

respectlvely w1th

the ],ast ,'condition by,the -definition of an impact parameter. The

averaglng functions are
F(?.)QO‘O) O c (E-.,)rw )

and f is given by

| G,G.

705 § BFe Saew\&\ T
ke rn 20 . 1(; ‘ Iﬂ—éz] .

'FirstofallwehaveS S:jg *** ' and
/2 JaJx

the integration over G removes MG - leaving
¢ removes §(£-MG ~Ky)
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F 0505 (e (R ww) (3 Pp) S8 IGG

lele e 18%)?

Now define usR - x2 with d3u = d3x2 and makq ‘the transformation

d d’& wdud, K‘de-(LK |
L idudd ( ‘A[v\,c dK}d(Lu:k

and

S0

dhed: wduday () drg

where K is wrltten as a function of k £ and the internal states.

Nex‘b s:ane

: r%j:% é X —’-?\" (@P“'/Bz:})'._fﬁ o

or

M\3 3 —
we have d K N\) d Fz:s so £ becomes
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a” 55 SduSdﬂ«S REIFIF l(g;;ﬂ (1%;)

~~

and wherever it appears X SKR= K('\*’AG)K and K, is
-given in terms of P ahd ;92 po The arguments of the G's may be
written v |

66" - 16, @ To-5tol 16k [ &-t)])]

P

Cemt T em e

,'s'in"ée” %hé oilly‘-'_avppreciable confributiéns ‘f';:'oﬁvl”their product come
when both afgﬁments are simultaneously zero to within w)the
width of the packets.

Hoidin'g o and & fixéd d\iring the int'ggratibn OVeT [e,
the following trgnsfofmation helps remove | 6\ 2

From E“z o —b +Ur to and h. Ur=0 , the three
independent components 6f b and lrr can be used instead of L‘zo R

We define the new variable y:

and with

dud’,=du o wedt, - (d b & %) dtydyudt,
| s
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we have

_ | ( U;_‘@ (* (6 (ﬂﬂr H:—Q))l
| “'_—;é SCDKLK;BS Sd iFF 5—‘ (2/703 | (z;n‘)’
Lo v ‘

(el o R 15Pr e sl
-&° | &5 (7'703 v , _

v where Z, has gone over to R - v(t -t ), = P/m, and b—)O

from arg G ' The integral over r. goes out with lGll

l2 ~10
leaving an ;ntegral over to; which has been discussed before
allongv with the meaning of Q3% or J¥ so we can write

- (™ (Dep ) +Re K R-UE
-I(‘fFO) _Sd‘ﬂ' SdPt&U(é_q.' E(M(g+:?&:§‘) e ‘tO)-r

4—-1fto b>

where TS are‘expre's'sed in terms of P, '.Bef’ and k and the |

coordinate arguments are 1o and o0 respectively.' Again as ié
well discussed elsewhere (14), the coordinate arguments are -

each set équai to R since, for situations not far removed from
egquilibriwm, the left hand side of.the Boltzmann equation is
linear inVR a.hd the collision integral with F = #“(5)(\-\' Q(&)e)

substituted as the solution (F° is the equilibrium distribu-

tion, € the perturbation parameter) is also linear in VR'

~
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Thus expanding the product F (r 0) F ( o) about F (R) F (R) beyond
the lead:.ng term glves a.n inconsmtent result, i.e., terms non=-
linear 1nV .

Relabeling variables and using U, dOT(KEpr —7 5'5. i “ )=

= UQCU' ( V\J,e's_—b_é K'KJ.) and reversing the labels of initial and

final states, we have
T+)= |dax \dpurda A

. | ,
with k, written in terms of k, and Ade  and Up= l?ﬂg-%hz,‘g’-‘ .
]

The momenta 2 and -;g2 define via K the direction of the axis with

respect to whichfl«n is defined in 46 and the F's,



T2

7) Collision Integral II - "Scattering Out"

The remainder of the'ﬁork'will be carried out in the rest
frame of the target particle. The generalization to the lab or
rest frame of the entire gas will, as before; be obvious.

We work with

. QP* = 7{ +, «‘Psc
wheféﬁK is a free packet.mOViné off.ih the forward direction and
112;&54a:épﬁéficélvshéiliﬁf‘é‘packef propagating outward from the
téfgef ééﬁéef: These tiro packefquverlab;ingﬁhe forward direction
bﬁlyvand then only for times subsequent to the collision. The
part of thé dgﬁsity matrixuér'Wigner function arising frdﬁ cross
tefms orlihtérferénéé betﬁeehj( andf(P;;‘vanisheé prior to tﬁé
coliisipn S0 the previous notion of a time derivative of>the'
Wignér function holds:[;&'&e)‘isoﬂ / € with t of the order of a
~ mean free timevand'&wlb)‘-'o." Sinc'e. oﬁly"PsC in the forward
dirégtiaﬁvcéﬁésvinto‘the calqﬁiation (and hence f(o) i.e.,
scéttering amplitude in forward‘diréction) one anticipates that
the optical théqrem will play.ﬁ role. For there are two inter-
fergnce termé, one the complex conjugate of the other, and thus
dne proportional to the scéttéring.ampiitude (o) and ame to
f*(o). At first glaﬁcé however, one thing is laéking - a sign
- difference. One needs f(o) - £*(o) to invoke the optical
theorem but the two interference terms come in with'tﬁe éame
sign. It all comes out in the wash of course and then one is

left with the correct sign change ‘which gives the imaginary part

e
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~of f(-o)'which._then is eliminated in favor of the total cross section .
and this is precisely what appears in J~ - the scattering-out part
of the COlllSlOn 1ntegral The demonstratlon follows:

The packeted 1P is

e (Zﬂ)ah' tp(r- b)—’bE(‘b‘to) (- 1!'('(:-"56) b) \(lstfr_

34 7 }expz[@r-{-[t-t,) eblag( 3_{w:-asa]-ig)y'ac Y,
Ln&&‘qé | ‘r—
ey SRR

whe re

= (4.9)

| -b:ot;r':v.o'_ . : '

g (peemaes ) pep?, ey 6,y
§= 5 &) biph bepta— Lig g s boppny)
E= Plan + &, + &,
"_A'-t-_-r'/w:sr | tor: t‘;hne.oj Colii:ien

)

From M(")’L\)TLP’) ’LP(Q-\—,., )'q) (.Q“'V) we pick out

the so-called’ 1nterference terms:



Th

m‘)"‘z%*e@[;g(g%w,(é%ﬁ%] YY) Y Yz

where r and r' have been set equal to R in the denominator and
arguments of the £ and G's vhile in the phase, r and r'—y ﬂt Rw :
—\Px
respectlvely. The effect of the operat10n(27n3j _sP
, X A,

on these terms glves the usual Wigner function due to the

mterference or f . 1In addition we operate with the internal

state kernal on f

j]YL (a) )a‘

to get the 'géﬁez‘aliied Wigner func(tiovn.
. LM
£ P-Lip+ s)e Gy e.* et
5 ,_( 'ﬁ) Z _( 2 s Stzwyéwa
‘zJ_e,zg‘

+ c.C..
where?i ’S' b‘t - i.e., every'bhing that depends on final internal
- angular momenta. is evaluated mth the inltial momenta instead and uue

set the initial values «(]_ul—yLM as well. The arguments of the

G's are simultaneously small when

' : R ‘ ’ o
By hypothesis b ~ 0 so@R) G G; has the effect of a

delta function with respect to F's as before. Furthermore, the

the
momentum delta function requires g =p onceAu_i-th- G's imply ﬁ =
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since we already have p pf from Aé =0, Howe\ier with respect
to phases or ra.pldly osc:.llatlng terms, the factor G G?—and even

5(?,—-\'[2*2* )) is con51dered broad (recall that the latter
approximates |a |a

Next fLM is averaged over {1;11, R X, =—X‘,bo + b,

%2 > and the densrby of targets

- 2 ( | &l cg,r,omw (R-w) T
Wb R G
Lepr

where'nl&l’f'S is the density of targets at the pomt X w1th

internal wave function YQ‘ and u R - X as befo_re, 1.e.,
consider the target to have been at X - the meaning of R in the
former case was the 'irector from the static target va,nd in the
latter case;'g replaces R. We have

= 7 ({(f § (B-Lip ))g(u-zr(e»e,,)-b)
e gﬂééé M SRR

't.{ L (pu-p JC + Q'CYI

We cannot set pu = pu in the i)ha_se since the G;G}f
acts liké a delta function only with respect to FLM' The
integration o‘ver P eventually sends p-»P in FLM and removes
the momentum delta i:unction.‘ But first the integration over Y

will be carefully handled. As far as the bracket expression

goes, & is limited to a small finite region in the forward

‘direction, i.e., toM:u@&% With x = cos(P, 1':1) we consider

5
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o o ,‘ )‘ | _.qu&-!)
fesdant €755 e 5
But.' _A | ! ' . ' ;u(*—l) _cPu(Sa)z/Z B
(A0, =en (e aud [Aae Ml
S \{Bo)% Y

EN

.The exponential factor OSciJ_lates rapidly as u varles
s:ane V“@ B)ILL 1} ('bhe only physica.lly reasonable c1rcumstance)
whereas none of the other u-dependent terms behave this way so
we can drop the exponentlals from f—'_—. . Looked at 1n another
way, thls factor will be avemged over P and in actuality the
momentum delta functlon 1s only an approx1mat10n R \Q(Q" "“’2"‘?4’9\
belng a better one when averaglng rapldly varylng quantltles :
such as eXP‘}W@O\]"'L-\ The broadness of_\a.\ 1nsures that

the exponential does not survive.an average in ‘? -space. Thus

e ha.ve, with thls understandlng,

and now we can set p = P eve'rywhere else and remove the momentum

delta function or \a\ to give -

?: S S AR w)—ﬂoﬂr— n, <§ u:—zr&i‘o)—k)
LM 7 Lejae % W . o

But g*«;} = —'Ztva\;S’
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and -—— _DM:S'LO) 0’ by the optical thorem where 0".\. is the total cmss

P

section for scattering from the initial state P, LM, f?, to all

p0531ble fma.l states, This means

T
— -7 Som, S L Pdt, SdMF O}S(g—gcbto)é)

o -tl VGRG(BR o)nw ) v__?/m
| Lepte

vhere aga.in, in the collision integral one makes the approximation

r-;&(g—g €30, (&Y (& )= LRI, {R)

~ and the :4
Sd}\- ~ So\z\,jvdb—-)Sd LSVdQ jo\‘s\/r
“ THY Te
Writing

o :3 4 da=l Sd@(gw\ Lepr B(U LM Loptd)

ﬂ-z’Hz’
we have ﬁithj—‘=—;;:m)and calling the initial time t instead of O,
- T
Tty L (Voo Fn(BRE) 0, (RE)
L ) L‘L{L; V WM et/&
Lo

\-’ Ml
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" The generalization to a non-static talrget is straightforward. V
is a relative velocity and if the target has momentum o then V

becomesU(i\g R \ . Moreover,h(E,'b)—"F(ng"(‘f) so
' My omy - > ,

S'U‘(O\G =

LM Q fb"

I":th

_L'M'

If there are no prefef'r:ed-‘brie'ntatioﬁs as before, we sum on M
and the resixltifig 'riéht h;ahd side for the Boltzmann equation is

then

Wh.ére some of the variables have beén changed to coﬁform with
common usage. For exa.mp_le_ s the» momentum of the beam pafticle m, ,
" is p,, and P now becomes p, + p,,.

The right. hand side without the summa“bion over M, is |
the result given»by Watson :(_13). - Summing over My 'v_allowed the
cross-sect}ioriv' in J+ to be wrif;ten 'in .the ‘same form és in J” so
a faéﬁoring cquid be effected. In this form we have the WCU

equation.

Wt
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8) Afterthoughts and Conclusions
| "'Sbme side éueétiéns have ﬁot heen answered or even brought
up. Thiéris‘pértly for the feéson ﬁhat they in no way affect the
maiﬁ fhrﬁst of.this wqu, and partly because tb have treated them
in detail wbuld have iﬁvolved‘a great deal of additional paperwork
whigh in the énd would have been no more révealing or of interest
than a brief physiéal discﬁssion of the ideas. So these questions
will now be raised in the form of afterthoughts and discussed in
a simple,bdirect manner. -

.First there is tﬁe.question of quéntumustatistics. There

was no mention of when or how to symmetrize the wave function. Any

text on quantum mechanics can tell you how. Just vhen it should be

‘done is a quéstioh>best answered by experience for many end results

of a caleulation are left wnaffected by the decision of whether or
ﬁot to symmetrize. When éonstrucﬁing a kinetic equation; the

cross section is considered an imput datum -- ‘someone else's
prbﬁlem to solve theoreﬁically or empirically. In practice the
cross sectionvitself is not always used.  If it can be related to-
a measured quantity then it is often eliminated in favor of that
gquantity. This has always beeﬁ the practice when handling

internal transitions. The'cross—seétion has beep eliminated in
favor of an.émpirically determined relaxation time for the transfer
of internal rotational or vibraﬁional energy to translational

motion (19). In this sense the gas itself'has handled the question

~of symmetrization. But for the purposes of this work, the question

must be decided at the outset. If one symmetrizes the scattered



wave functien then one does’ reughly twice as much paberwork as

before to find that in the end one hes & correspondingly

symmetrized crose sectiqn instead of an ugsymmetr‘ized one.

That is all. - | | ' .
Another problem a.rlses when one cons:Lders the 1n1t18.l

1nternal state of e molecule to be superposnzlon lc Y P instead

of Just Y {m What happens here is ,just that the form of the .

Cross sectmn is changed in the usual way for a beam mixture of

llntemal states. For example 1_n J- , the relevant part becomes
K Z (PanFom™ Sun o)

where PMn % a —PnM and f f(M—,n), ‘é.'ll other variables
supressed But 1n +the forward. scatterlng a.mplltude we can set

an(O)"—"f(o')SMn so ve get - . |
F1ewl® (5¥00) —$(0) =F LG\ (27 Ima (o)

(An epsemble_ average would ‘send F.'L-\CM\- — -FLM) and a g\ removes
the chl 2 or the M subscript leaving the same final result as
before. |
For J* things look a little different and what appears
TE T Pun S M) S¥(inls L) U |
L nn! s : Ur '
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the coefficient of F,

de

is.TrQfo+) vrf/vr vhich is 4% averaged

o#er initial spin'states. Whénzi is included, one again can
invoke éonservation of parity and time revers;l invariance to be
able to revrite the differential cross section with initial and
final scattering statés.iﬁteféhanged; | |

R There is also the question of the connecﬁions betveen

these results and the work of Snider and Waldmann. They also

used an approach based on scattering theory to give the density

matrix as éifunéﬁionIOfvtiﬁe. Their physical assumptions are

ﬁhé samé aé.those}usé&’here éxcept'tﬁey (aﬂd everybne else for
that matter who ﬁas appréached this problem) made no attempt to
tfeat the;ih#ernal states classicaliy in the sense of finding an
internal state Wigner .function. ’Had'the derivation here been.
carfied'ﬁhroﬁgh‘wiih}the'interhal staﬁe information deposited in
a density matfix,'the'resuits'would have been identical to theirs,

Such fesultS-are howevef not useful being written in terms of

presently unknown scattering amplitudes rather than cross sections.

To assert that the integrated fdrm of the internal state Wigner
funétion, i.é.,§5&~&<L)is the whole story, one must have faith
in one's intuition. It has not been proved although.the éalcula«
tions of Mason have given strong suppoft,to this supposition.
Mason foresees ho expérimental conditioné‘where it may be dis-
pfoved (pfivate‘commﬁnication) and Uhlenbeck concurs -- the WCU .
equation is, in his opinion, the last word (also private

communication),

81
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For a 3p1n system such as gaseous He rather than a gas of
polyatomlc molecules one is not faced with a multitude of poss1ble
rotatlonal states, all ea51ly exclted. The density matrix is
particularl&'simplexbut there are'no'internal coordinates to deal
wltb'ésuat:least;none'withvclaSSical:characteristics. There'is

of course no cla531cal analogy to be exp101ted no ngner functlon
vfrom spin wave functlons and no hope for a hlgh temperature, hlgh .
quantum number passage . to a clas51cal limit. Here one must use
the full den51ty matrlx for lack of an alternatlve approach 1f
}for no other reason. Stlll in the end calculatlons have been
performed 1n thls case only after the rough approx1mat10n of ‘
throw1ng away off -dlagonal contrlbutlons (lO)

Thus the WCU equatlon for polyatomic molecules is a
ﬁeil justlfled ansatz. In the*llmlt of contlnuous rather than
quantlzed 1nternal angular momenta the WCU equatlon and 1ts
' results pass over to the purely classical work of Taxman.

Flnally there is the p0351b111ty that the approach
presented here. could be pushed further. For example, den31ty
correctlons and multlple collis;ons mlghtlbe handled along these
lines._ Conéider then:a hypothetical sltuation in which'a'molecule
(beam) is impinging upon a volume element in which there are two
other molecules (targets). . The initial beam wave function is
and the”scattering’matrlces:from the two targets are t; and t,.
- The Schrodinger equation for the scattered beam is :

Y _ oo lyat
_x+de



_ where d.='E ng Lo

K = free Hamiltonian for beam and total target Hamiltonian

P

v

sum of interactions between beam and target particles

Then a solution for* is.(l6)v
q)"_’: K“‘c“‘“ (t‘¢| 'F%‘L'LPL)

where

<
11
>
+
‘,—
<t
<
[ ol
M
S o

- ‘Ll)‘ ;X{ai\‘{tz-\' tzJ‘ t,'\‘tz'l’ t\é"twﬁ‘ - -&X

i.e., the wave incident on target 1 is the sum "free wave plus
‘once scattered wave plus twice scattered wave plus . . ." anap*.

becomes

| e L) X L{td .+t L) K+

et o) Ko (Bt e e oD R

Now(P+ was carried out to only U4 collisions for a
definite reason. For hard spheres; kinemetical arguments forbid

more than U4 collisions so corrections to the Boltzmann equation
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due to multiple colllslons have not ‘been carried beyond this p01nt
Quantum mechanically, more than four colllslons are allowed but to
begin with, one might limit an attempt to just produclng at most -
the four hpd& corrections since other atfempts bhave not gone'
beyond.this poiht-ohile expefiments have hof yetbeven feached it..

' Graphlcally one could represent(P

(/\ /\) (/‘\ f’\*f

Q)- (X)

Ntan

\7./\

vvhefe'1'{meane:tefgetz'1dohee)scettefed;.'The fifst‘térm:éives

.the streaminglcontribupion, the second givés the uehelleoliision
vintegral the third aliowe for thevdensitj cohrectiohs coneidered“‘
by Enskog (2), the fourth gives the so-called 3-body terms and

the last glves the h_body terms. The c13551cal klnematics have
been worked _ouf (3) and the ﬁave';packets will have to 'build'ih .
the-aPPropriate‘initial conditions.' Since-for'the cese of thehd
normal or blnary colllslon Boltzmann equatlon, thls method proved
to be far 81mpler than prev1ous methods, perhaps one can hope 1t

will remain the most physical, direct,vand shortest approach.
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