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STRAIN-ENERGY INTERACTIONS BETWEEN SOLUTE ATOMS AND DISLOCATIONS 
.) 

Tibor Ste fansky 

Inorganic Materials Research Division, Lawrence Radiation Laboratory, 
Department of Mineral Technology, College of Engineering, 

University .of California, Berkeley, California 

ABSTRACT 

The stress required to drive a single dislocation through a fixed 

array of isotropic stress centers, due to substitutional solute atoms, 

is calculated using linear elasticity and numerical methods. Cottrell's 

model of the strain-energy interaction between solute atoms and disloca-

tions is extended by allowing the dislocation to relax to its equilibrium 

shape in the stress fields of such atoms. 

Two new results are obtained. First, a marked concentration depen~ 

dence of the flow stress is observed only in the very dilute range. And 

second, the force-displacement diagrams for cutting the stress fields of 

attractive and repulsive impurity atoms in solution are not identical. 



I. INTRODUCTION 

The hardening of metals by controlled additions of foreign atoms in 

solid solution is of great practical interest and it has been extensively 

studied. At the present tiIDe the relative roles of the various solute 

atom-dislocation interactions responsible for hardening, particularly in 
I 

substitutional solid solutions, are not fully understood. Nevertheless, 

1-4 a series of recent and well designed experiments, on the low temperature 

deformation mechanisms of several dilute substitutional alloys, seem to in-

dicate that most of the strengthening results from increaSes in the initial 

density of dislocations and a lowering of the stacking fault energy upon 

alloying. 

In contrf'l'st, however, the theories of Mott and Nabarro5,6 and sub-

~ 8 
sequent developments of theirwork7, attribute the hardening to a direct 

and uniquely diff'erent effect, namely the elastic interaction of disloca..; 

* tions 'with individual solute atoms. Much of the appropriate experimental 

8-12 data in the literature has been interpreted in terms of these theories 

despite the fact that these data do not identify the specific solute 

atom effects responsible for the observed strengthening .• 

It is therefore important to examine closely the dichotomy between 

the predictions of a Mott and Nabarro type of theory and those experimental 

resultsl~4 which indicate that solute atoms are not the rate controlling 

barriers to dislocation motion" To this end, we have reformulated the 

problem of the stress required to drive a dislocation through a fixed 

* b, general, 
differences 

only the strain-energy interaction due to atomic size 
is considered since it is by far the predominant effect. 
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array of solute atoms without introducing some of the simplifications 

,!llade in previous analyses. We shall discuss these simplifications later 

and mention here only their salient features. Thus, it has been customary 

to regard solute atoms as simple point obstacles and to neglect the 

equilibrium curvature ofa dislocation in ,the stress field of a solute 

atom. The result has been, as we shall p~ove later, to omit important: 
I 

details of the strain-energy interaction between solute atoms and dis-

locations. 

In the present paper, substitutional impurities are regarded as 

isotropic strain centers and dislocations are treated in the "elastic 

string" approximation. Within the framework of linear elasticity, and 

using numerical methods, we allow a dislocation to relax to its equili-

brium shape, in the stress field of an array of immobile solute atoms, 

as the applied stress is increased from zero to the flow stress. We find 

a flow stress vs. concentration dependence quite different from that 

predicted by earlier formulations 5- 8 
and relevant to recent experimental 

findings.
1

-
4 

We find also that the force-displacement diagrams for 

cutting solute atom stress fields where the interactions are repulsive 

are not identical with the case where they are attractive in conflict 

with Cottrell t s13 simple approach to this problem. 

I 
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II. SUMMARY OF EARLIER THEORETICAL CONSIDERATIONS 

Ab The Misfitting-8phere-in-Hole Model and the Stress 
Field of a Solute Atom 

The elastic behavior of a substitutional impurity can be approximated 

by the misfitting-sphere-in-hole model described in Appendix r. In this 

model a spherical cavity of radius r is cut in an elastic continuum o 
I 

representing the matrix; an elastic sphere of radius r J , representing 

the impurity atom, is introduced and the surfaces of the two are pulled 

together and cemented at an equilibrium radius r = r (1 + E), where E is 
o 

* the atomic size misfit. This process is accompanied by radial dis-

placements only, and as a result it introduces a spherically symmetrical 

distortion in the lattice. 

The strain-energy interaction between the impurity and a dislocation 

is equal to the elastic work done when the radial displacements take place 

in the hydrostatic stress field of a dislocation. In the linear elastic 

approximation a pure screw dislocation has no hydrostatic stress component 

and therefore spherical solute atoms interact only with the edge components 

of dislocations. There is nevertheless an elastic interaction between a 

SUbstitutional impurity and a screw dislocation.15 It results from the 

torque that the stress field of the impurity exerts on the dislocation, 

trying to twist it into an edge orientation where the strain energy inter-

action can lower its total energy. 

For our purposes it will be more convenient to represent the elastic 

distortions due to impurities by internal stresses in the alloy. In 

Fig. 1 assume that the x-y plane is the slip plane of an edge dislocation 

* An experimental measure of E is provided by l/a da/dc where a is 
the lattice parameter and c is the concentration of solute. 
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with Burgers vector b in the y-direction and that a solute atom is 

located at (O,O,h). As shown in Appendix I, this solute atom causes a 

shear stress in the slip plane, in the direction of b, equal to! 

'[ 
zy 

yh . 

where G is the shear modulus of elasticity~ In deriving Eq. (1) we 

have assumed the el~stic constants of solvent and solute to be identical. 

Since we shall be concerned with dilute solutions this assumption will 

only be a minor drawback. In addition, w'e also avoid the questionable 

practice of assigning different elastic constants to an individual solute 

atom when these constants are actually determined by the binding forces 

between large groups of atoms. 

If we select the slip plarie as the (111) plane in fcc crystals, we 

obtain hl = ±b/ .J6 for a solute atom on the atomic plane immediately ad

jacent to the slip plane and h2 ;:: ±3b;f6 for a second layer solute atom. 

As an illustration, we show in Fig. 2 the shear stress contours on the 

slip plane due to an oversize solute atom at (O"O,bj.J6). Similarly, we 

show in Fig. 3 the shear stress profiles at x = ° due to a solute atom 

at (O,O,bj.J6), (curve A), and (O,O,3bj.J6), (curve B). The figures 

indicate that a solute atom affects a relatively short length of disloca-

tion, up to 5b or 6b. It is also evident that the shear stress contours 

vary quite sharply. Consequently, small changes in the curvature of a 

dislocation in the neighborhood of a solute atom could result in signi-

.. 

ficant changes in the force that the solute atom exerts on the disloca- ~ 

tion. Up to the present the force-displacement relatio'nships for cutting 

the stress fields of solute atoms have been calculated only for the case 

~, . ., t . "'t d· 1 t· 8,13 or ~lglQ, s ra1gll· 1S oca lons. 
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B. Force-Disv1acement Diagram for Cutting Svherica1 
Imvurities by Straight Edge Dislocations 

The interaction energy between an infinitely long edge dislocation 

and an individual solute a.tom is also equal to the work done by the 

elastic forces due to. the solute atom when the· dislocation is introduced 

in the crystal. With reference to the dislocation-solute atom geometry 

of Fig. 1, the elastic interaction energy for a straight dislocation iSI 

u = (,,, b) dx dy 
zy (2a) 

which, when integrated, yields the well known Cottrell interaction energy, 

u 4 G r 3Eb 
o 

h 

y2+h2 (2b) 

This expression includes the contributions from both the regions interior 

and exterior to the impurity. 

The force-displacement relationship for cutting the stress field of 

an isolated solute atom by a long, straight edge dislocation, is obtained 

by taking the derivative of the interaction energy with respect to 

position: 

F 
dU 

... dY -8 G € r 3b 
o 

yh 

('; 

Cottrel1l~~s pointed out that Eq. (2b) overestimates the inter-

act::'on energy near the center of the dislocation because of the effects 

of the core and de via t i ems fram Hooke f slaw. He has suggested that 

these effec~s can be taken into account approximately by altering Eq. (2b) to: 



u 4 GEr 3 
o 

b 
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h (4) 

wherep can be thought of as the effective width of the dislocation. At 

dislocation-solute spacings less thanp, the only strain energy inter-

action is with the crystal itself and not with the dislocation. The 

. corresponding force-displacement relation becomest 

F ::: yh 

In prin<:iple,the correction term can be found by comparing measured 

binding energies9·· for substitutional impurities with the predictions of 

theory [Eqs. (2b) and (4)]. The results; however, are inconclusive as it 

is difficult to estimate the elastic contribution to the measured energies. 

A less rigorous but satisfactory choice of p can be made on physical 

grounds. The effects of the correction term on both the interaction 

energy and the force-displacement diagram should be small at distances 

roughly in excess of a Burgers vector from the center of the dislocation. 

In addition, a correction that will reduce the maximum unadjusted force 
8 . . 2 

by at least a factor of two appears reasonable. Values of p in the 

range .06 b
2 

< p2.< .08b
2 

satisfy these tw:o ·requirements" For a first layer 

solute atom at h ::: -b/~6 the choice of p2 ::: .07b2 modifies the interaction 

energy as shown in Fig. 4 and the force-displacement diagram as shown in 

Fig. 50 

No correction is necessary for second (or higher) layer solute atoms 

as their distance from the dislocation core is always greater than a 

Burgers vector. The force-displacement relation for cutting a second 

~, 
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layer atom at h ::: -3b;!6 is also shown in Fig. 5 in order to illustrate 

the rapid decrease of the maximum force with separation of the impurity 

from the slip plane. 

The core adjustment can be introduced at some other step in the 

calculations and in a later section we shall be interested in a correc-

tion term r = r(x,y,h,P) such that: 

Cr b) r(x,y,h, ) dx dy 
zy 

4 Gr \b 
o 

h 
222 

Y +h +p 
(6) 

222 2 
is satisfied numerically when r = l_e-3 (x +y +h )/b We find that E~. (6) 

2 2 
and p :::. 07b • The 

(2 2 h2)/b2 
term r ::: l_e-3 x +y + provides an empirical 

correction to the force perunit length of dislocation due to a solute 

* atom (F::: T b) near the core region of the dislocation. The interaction 
zy 

energy corresponding to this new' form of the core correction factor is! 

-00 -00 

[ 

2 2 2 2

J (Tzyb) l_e-3 (x +y +h )/b dy dx 

and as shown in Fig. 4, it gives the same result as E~. (4) with p2 

Similarly, the force-displacement relation becomes 

2 
.07b • 

F -6 Gr 3 Eb 
o J

oo 
yh 

( 2 2 h2)5/2 x +y + 

l_e-3 (x +y +h )/b dx 
[ 

2 2 2 2J 
-00 

(8) 

2 2 
and as demonstrated in Fig. 5, it is e~uivalent to E~. (5) with p ::: .07b • 

* (or e~uivalently, the force exerted by the dislocation, per unit length 
of dislocation, on a solute atom.) 
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The theories of Mott and Nabarro, and related works, have been 

forrrrulated in terms of the simple, straight dislocation interactions 

we have just presented. 

0.. Motttsand Nabarrots Theory 

! The first dislocation theory of strengthening due to impurities in 
I ' 

solid solution was that of Mott and Nabarro. 5 Starting with the sphere-

in-hole model described earlier they calculate that the internal stress 

at a distance R from the inclusion is approximately 

cr. 
1 

± € G 

r 3 
o 

R3 

They state further that a dislocation will sweep across its slip plane 

only if the applied stress is equal to some average dlf the internal 

stress in the crystal. One of the problems associated with this approach 

is the selection of the appropriate average on physical grounds., One way 

is to state that if impurities are uniformly distributed at a distance t... 

from each other, 'the average distance from a point in the matrix to the 

nearest solute atom is t.../2 and hence, the mean absolute internal stress is 

cr 
o 

. (21'0)3 
€G - t... 

~ - E G c 

where c is the atomic fraction of solute. To the approximations of the 

theory this is the incremental flow stress of the material. 

This formulation contains several additional drawbacks. Solute 

atom-dislocation interactions are not specifically considered and detail$ 

d' the motion of a dislocation through the stress fields of individual 

solute atoms remain wlclarified. Solute atom effects are further thought 

'J 
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to result in a uniform retarding stress on the dislocation and thus yield 

a long-range stress levelo As seen in-Figs'. 2 and 3, the stress fields of 

sUbstitutionals act over a limited area of the slip plane and have no 

tendency to spread as the height of the impurity from the slip plane in-

creases. It is therefore unlikely that individually dispersed solute atoms 

can result in a long-range stress field. Substitutionals may contribute 

to long-range stress fields in other ways, as for example, by -forming 

clusters. However, this lS not the problem under consideration here. 

'I'he theory of Mott and Nabarro has gone through several stages of 

development and its most advanced formulation is due to Friedelo 7 

D. Friedel's Theory 

The improvements of the theory introduced by Friede1
7 

are based on 

the idea that dislocations in the alloy do not move as rigid straight lines. 

Instead, they tend to be wavy in order to minimize their total energy in 

the stress fields of the solute atoms. In a random solid solution, one 

half of the solute atoms adjacent to the slip plane of a dislocation will 

be attractive and, according to Friedel, the dislocation line will zigzag 

from one such atom to another. Under these conditions, the flow stress is 

determined by a balance between the dislocation I s tendency to minimize its 

length and its attraction to solute atoms. 

The theory is formulated in terms of the triangular array of solute 

atoms shown in Fig. 6. A dislocation prefers the zigzag configuration ABC 

to the straight line configuration y_yt as in passing from the latter to 

t!'-,e I:)rmer it gains more in binding energy than it loses in line energy. 

The binding energy gained per unit length a.long y -y t is 
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x • I 
*' 

where DB is the total binding energy and c is the atomic fraction of solute ~ 

on the slip 
\ 
! 

plane. Since impurities are regarded'as point obstacl~s, DB 
; 

" 

is equal to 
I 

the maximum absolute value of Eq. (4) or Eq. (7). The increase 

in the total line energy is I 

2 . 
where Gb /2 is the dislocation line tension. 

By minimizing E
1

-E
2 

with respect to x, Friedel obtains the triangular 

distribution that gives the minimum barrier to the moving dislocation. 

Thus, the flow stress at OaK, Le.,the stress required to move the dis-

location from a stable position ABC to an equivalent position ABle is 

approximately 

't" -
1 
2 

(10) 

The answer, which depends somewhat on the values chosen for the binding 
. 

energy and the dislocation line tenSion, is essentially the same as .that 

of Mott and Nabarro (Eq.(9)). 

The result is based partly on the arbitrary assumption that the 

presence of repulsive atoms does n~t influence the configurations of 

Fig. 6. And even if dislocations in annealed (and unstrained) crystals 

-,T2re tel z:'gzag from one attractive impurity to another it is not clear 

-, .... r~y :2~. (::"J) aciequately represents the flow stress. Thus, the dislocation 

in Fig. 6 v.rill sweep across it s slip plane only after cutting some re-

pulsive obstacles, which are not considered, and cutting 

I 



, 
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additional attractive obstacles which will not always be positioned so as 

to offer the least resistance to the moving dislocation. 

Friedel's answer to these objections is that the cutting of impurities 

in solution is the same whether they are attractive or repulsive except 
I 
I 

that it is the attractive limpurities that determine the zigzags. We shall 

question these assertions in our model. 

Friedel has also treated the case of an array of repulsive obstacles. 

The flow stress is now determined by a different criterion, namely that 

every time an'obstacle is cut a new obstacle is met and is approximately 

equal to 

G 3/2 1/2 
E c (11) 

The validity of the "steady state" criterion used to determine the flow 

stress has not been upheld by statistical studies.20,2l 

E. Fleischer's Theory 

Fleischer's work
8 

is an attempt at erecting a more comprehensive model 

of solution strengthening in terms of the total elastic interaction 

between solute atoms and both edge and screw dislocations. The novelty 

of his approach is not in the theoretical formulation of these inter-

actions but in the way that he uses them to tnt erpret experimental data. 

Thus, size effects are described in terms of Cottrell's model (cf. 

section 11.2) including a small second order interaction with screw 

dislocations. 17 * The modulus effect, an exact theoretical treatment 

* Sclute atoms "softer" than the matrix relax a dislocation 1 s strain 
field and result in a binding contribution to the elastic interaction 
energy. The converse is true for solute atoms "harder" than the 
matrix. 
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of which appears very difficult, is calculated following an approximate 

18 procedure suggested by Eshelby. Inasmuch as an excellent review of 

Fleischer's work8 is available, only the final results will be given here. 

Fleischer shows that the total elastic force that a spherical impurity 

exerts on 

loc~tion, 
a dislocation is proportional to eEl = 'EG - 16Ea for an edge dis- ' 

I 
for a screw l,diSlocation. The term E 

G 
and toe :=: EG ~ 3 E 

S a 

measures the modulus misfit (EG :=: ~~~) and E'a the size misfit (E 
a 

! day. 
a. dc 

Since the hardening is expected to vary with the appropriate force in a 

simple manner, Fleischer plots at/dc, the observed rate of change of the 

yield stress with composition, as a function of eE and and e • 
s 

Ori the 

basis of such plots for a series of copper alloys, he concludes that 

screw dislocations control the flow stress since the correlation between 

d~/dc and E is very good. 
s 

These arguments are not very compiHling, however. The flaw stresses, 

obtained from various measurements in the literature, refer to tensile 

tests on polycrystalline alloys, whereas the critical resolved shear stress 

for glide in single crystals is a more relevant property. There is con-

siderable scatter in the tensile data and it is not clear whether the 

specimens were in the same state prior to testing. The latter is an 

important point as it has been shownl that alloying can greatly increase 

the rate of strain hardening. Fleischer's conclusions are also in 

conflict with dislocation damping measurements19 on copper alloy single 

crystals. These measurements show that the dominant contribution to the 

binding energy is the strain-energy interaction with edge dislocations. 

• ! 

.. 

, 
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In contrast with the formulations of Mott and Nabarro and of 

Friedel, the flow stress on the basis of the Fleischer model is determined 

by the maximum stress that a dislocation must overcome. If we make the 

reasonable assumption that size effects predominate, a very simple answer 

is obtained. Let F be the maximum force to cut a solute atom at OaK. 
max 
,I ' 

. I 

Based on the calculations of Sec. lIB, it is shown on Fig. 5 that 

2 
F ::: 1.17 Gb E. max Let ~ be the spacing of these forces on the slip plane 

nb In general, ~ = ---- where n is the numerical factor 
.[C 

of a dislocation. 

that depends on the type of array chosen. Egua ting the restraining force 

per unit length of dislocation, F /~, to the force per unit length max 

due to the applied stress, tb, we obtain for the flow stress 

1 .. 17 G 1/2 
--E C 

n 
(12 ) 

We will show later on the basis of a more sophisticated model that Eg. 

(12) has very limited applicability. 
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III. THE PRESENT THEORETICAL MODEL 

A. Idealized Distributions of Solute Atoms 

* The distribution of solute atoms in an alloy is more or less random. 

An exact theoretical treatment of the propagation of a dislocation through 

a random distribution of solute atoms appears to be very difficult and one 
I 

nmst generaD.y resort to regular arrays. 

. 20 21 .. 
It has been shown' that the critical applied shear stress required 

to drive a single dislocation through a random distribution of simple 

point obstacles can be sUbstantially lower than for a square array of the 

same denSity., . The discrepancy is greatest for weak obstacles and it can 

be expected to hold for more complicated examples of weak obstacles such 

as sUbstitutional solute atoms. There are also differences in the de-

tails of dislocation motion through randomly and regularly distributed 

obstacles. Nevertheless,certain features of the problem, such as the 

issue of the equilibrium curvature of the dislocation in the stress fields 

of impurities, can be conveniently illustrated in terms of regular arrays. 

Such arrays can also be used to study the concentration dependence of the 

flow stress by introducing an approximate "randomness correction". 

A dislocation line in an alloy will, on the average, pass equal 

numbers of attractive and repulsive obstacles. For this reason array 1, 

shown on Fig. 7, is of particular interest. In this array a dislocation 

that is essentially in the edge orientation, with Burgers vector in the 

y-direction, encounters alternatingly attractive and repulsive solute 

atoms - a situation which crudely resembles the real case. Array 1 is 

* We are not concerned here with the problem of impurity clouds along a 
dislocation.or clustering. ~ 
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but one of many that satisfy these conditions. However, it has the 

virtue of being among the simp;Lest of such arrays and this is of con-

siderable help in keeping the problem free of ancillary details. 

If the dislocation in question is perfectly rigid and straight it 

wi'll move under a negligibly small applied stress. This has led some I 

.1 I 22 .1 . 

authors to suggest that clustering or segregation of solute atoms must 

occur before strengthening results. The problem is avoided if one con-

siders, as we shall do here, the more realistic case of a flexible dis-

location: neighboring sections of the dislocation can now curve and move 

partly independently of each other so that the internal stress opposing 

dislocation motion is no longer zero. 

We shall use array 1, among others, to study the concentration de-

pendence of the flow stress and as a first approximation consider only 

* solute atoms innnediately adjacent to the slip plane. This is a reason-

able approximation since the maximum force to cut second layer solute atoms 

is quite small (Fig~ 5) and webavealso indicated (Section II.A) 'the un-

likelihood of such atoms contributing to a long range stress field. 

Two other arrays, shawn on Figs. 8 and 9, will be considered in this 

paper. Geometrically, they are identical to array I except that all of 

the obstacles are of the same sign: attractive in array 2 (Fig. 8) and 

repulsive in array 3 (Fig. 9). By comparing the behavior of arrays 2 

and 3, on the one hand, and array 1 on the other, we can test Friedel f s 

assertion that dislocation motion in solid solutions is controlled by 

* Throughout this ,,'ork the slip plane shall refer to the (111) plane in 
fcc crystalso 



attractive obstacles. In addition, arrays 2 and 3 will indicate 

whether the force-displacement diagrams for cutting attractive and 

repulsive solute atoms by flexible dislocations are identical. 

As noted in Section II.A, the stress field of misfitting solute 

atoms can be represepted by a shear stress on the slip plane of a dis-
" \ 
I 

As an example, if the core adjustment; factor is introduced 

as in Eq. (6), for the problem described with reference to array 1 the 

pertinent shear stress at a point (x,y,O) on the slip plane is 

't" zy 
WET 3 

o 

I 

1 
2 2 2 2f " ' " -3 [(x-x.) +(y ... y.) +h. Jib 

() 
. 111 

y-y. h_ 1 - e . 
11, 

, 2 2 2 572 [(x-xi) + (y-y.~! + h. ] 
1 1 

where (xi' ,y{) are the coordinates of the solute atoms on the atomic 

planes immediately adjacent to the slip planes and h. =' ±b/~6. In 
,1 

regular arrays these coordinate.s can be easily determined in terms of 

a suitable spacing, such as the spacing A. shown in Figs .. 7 to 9. A. in 

turn is fixed by the concentration cifsolute. Thus, in arrays 1 to 3, 

the fraction (or concentration) of solute on atomic planes is 

2 (14) c = 

where b2 is taken .as the II a rea If of' an atoI14 

B. Equilibrium Shapes of Dislocations in Arrays of' Solute Atoms 

A method of calculating the minimum energy configuration of' a dis-

location in an array of solute atoms is presented in this section. In-

asmuch as the same teChnique applies to all arrays, the calculations for 
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array 1 will be illustrated in detail and for arrays 2 and 3 only the 

results will be given., 

Despite the symmetry of array 1 many configurations are possible 

but, as shown in Section III.A"the most interesting ones appear to be 

those mainly of edge chardcter with Burgers vector in the y-direction. 
'I 

Consequently, we shall restrict ourselves to simple configurations 

periodic with' A. which can result from the relaxation of an edge disloca-

tion, originally along the x-axis, to its minimum energy shape. 

In Fig. 10 assume that the edge dislocation in question is displaced 

from the x.,.axis to an as yet unspecified (but 'periodic) shape y(x) by an 

applied stress L * or the internal stresses "[ or both. The resulting 
zy 

change in the energy of a segment of length A. is approximately 

u-u o f +A./21 [, , '] fY ,,', r ~l + (dy/dx)2_l -
-~, " 0 

L bdy - "[*by ( dx 
zy f 

where the interval -A./2 ::: x ::: A./2 was selected for convenience, and r is 

the dislocation line tension. The first term in Eq. (15) represents the 

increase in total line energy; the second term is the strain-energy interac-

tion of the segment dislocation with the internal stresses T (Eq. 13) 
zy 

and the last term is the work done by the applied stress.. The zero of 

energy, Uo ' can be assigned arbitrarily and we shall choose U
o 

= O. 

In writing Eq. (15) the elastic interaction between different parts 
, , 

of the dislocation line has been neglected. This is a reasonable assump-

tior: f:Jr weak obstacles such as substitutional solute atoms, which will 
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be cut before the curvature of the dislocation becomes appreciable. 

The validity of this assumption has been upheld by recent computer 

studies23 of the bowing of a dislocation segment. These studies have 

also confirmed the aq.equacy of the "elastic string!! model of a disloca

tion in the case of weak obstacles provided thatlthe line tension'appro':' 
II .. ' , I 

priate to the orientation.of the dislocation is used. In the linear 
I ' 

elastic approximation, spherical solute atoms constitute obstacles to 

the edge components of dislocations only and therefore, the appropriate 

line tension is 

r r ';:: 3 Gb2 
edge 4' 

(24) 

The problem now is to find the shape y(x) of the segment which 

miniIp.izes its energy U. From the calculus of variations it is known 

that if y(x) is to minimize the integral (15) it must satisfy the Euler 

equation 

d 
dx (~) - dU 

dy ::: 0 

where p ::: dy/dx. The result of performing the indicated operations is 

b 
= - f * (or + or ) zy (16a) 

which can be recognized as the differential form of the equation for 

the equilibrium radius of curvature. The negative sign was chosen to 

make the curvature positive when y(x) is concave upwards. 
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For the purpose of computation it is more convenient to use Eq. (lba) 

in the dimensionless form 

+ EC 2: 
2 

i 

(y' -y!)h! 
l l 

where the line tension has been Bet equal to 3/4 Gb
2 

and the primes 

denote guantities dimensionless in' A.. The parameter A. represents the 

.' period of the alloy lattice as shawn in Eq. (14) it is related to the 

atomic fraction of solute by A. = ~2 bc-l /
2

• 

Equation (16a or 16b) is a ~cand order non-homogeneous differential 

equation which can be solved numerically upon specifying two independent 

boundary conditions. There is an infinite number of pairs of such 

conditions and for each of them it is possible to obtain a minimum 

energy line shape :J(x~. However, only solut~ons which are symmetric _ 

about the y-axis and with period. A. are being considered here. From the 

symmetry, we can conclude that dy~x~/dxr= 0 at each solute atom, and 

this is one of the boundary conditions. The composition c, the size 

* misfit E and the reduced applied stress", / G appear as constants in 

Eqs. (16) and each set requires a separate Bolution o The computations, 

described in Appendix II, vlere performed on a CDC 6600 computer using 
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the Adams method. 25 This method involves step-by-step solution over the 

* chosen interval -1/2 < x' < 0 and it requires that the initial condi-

tions be knovm at the starting point (-1/2, y'). For arr1i1Y 1 these are: 
o Ioi 

dY'/dX'\x' = -1/2 =i o and a y~ in the range 0 sY~ S 1/2 •. Different 

line shapes are obtained for each y' but dnly those with period f...., and 

III I' 0.,. 
II 

having zero slope at x' ;:: 0, are of intere'st here. These line shapes 

can be found by plotting (for each c, E, and T* /G) the calculated slope 

at Xl = 0 as a function of y~. 

Following Friedel I s approach we consider first the equilibrium con-

figurations in the absence of an applied stress (T*/G : 0). To illustrate 

this case we use E = 0.06 and c = 0.00125 which are within the range that 

Friedel states as representative in his formulation. 9 As shown on Fig. 11 

there exist 'four line shapes (corresponding to y' = 0 or 1/2, 0.0026, 1/4 
o 

and 0.4841) compatible with the periodicity condition and they are sketched 

on Fig. 10 (curves a,b,c and d, respectively). Each of these configurations 

yl(X') minimizes the energy U, according toEq. (15), but the most stable 

one will have the smallest "minimum" energy. Figure 12, where U is plotted 

as a function of y', indicates that configuration "d" (or its mirror o 

image "b ") is the most stable. An accurate drawing of line shape "d" is 

given on Fig. 13 to show the actual deviation of the dislocation from a 

straight line. The identical configurations "a" and "c" are unstable 

and have zero energy in agreement with U = O. o 

Similar configurations prevail under a finite applied stress. This 

is illustrated in Figs. 10-12 for T* /G = .001. The lowest energy shape is 

* The line shapes are symmetric about the y-axis, hence only half the 
period need be considered. 
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again "dtl and as shown in Fig. 11 this is the only possible type of 

* CD nfiguration when T /G > .00124. The higher applied stress required 

to make configurat ion tl d'" unstable will later be shown as due to the 

stronger strain-energy interaction between repulsive solute atoms and 

f+exible dislocations. * . The two other line shapes (at T /G = .001) for 

which dyt/dx'i = 0 are unstable and they correspond to a position 
X '::::0 

of the dislocation on the descending portion of the internal stress 

curve (Fig. 3). 

There is no essential change in the details of Figs. 10-13 over the 

whole range of composition (0 < c ~ .16) and atoinic size mefit (.20 < €< .10) 

studied in this paper. In array l~ therefore, the quilibrium shape of a 

dislocation line is wavy but the waviness is not in the form of zigzags 

from one attractive obstacle to another. 

In arrays 2 and 3, when * T /G :::: 0, only straight line configurations 

are compatible with the periodicity requirement. In array 2, where all 

the solute atoms are attractive, the minimum energy shape is a straight 

line along the x-axis. Similarly, in array 3 where all the obstacles 

are repulsive a straight line along y' :::: 1/4 has the least energy. 

Equilibrium configurations under an applied stress are sketched in Figs. 

8 and 9. 

More detailed information on dislocation line shapes in the neigh-

borhood of solute atoms will be presented later in connection with the 

force-displacement diagrams. At this stage, however, it can be stated 

that Friedelts model of dislocation lines in alloys, as zigzags joining 

attractive obstacles, is not generally valid. 
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the solute atom. Choosing c = .01 and E = .06, as an example, the 

result of evaluating Eq. (17) over all stable line shapes y(x) is shown 

by curve i of Fig. 16 as a function of displacement ~rom the solute atom. 

For a curved dislocation this displacement is not uniquely defined anq. 

we have taken it as ,the distance of closest approach between the. solute 

I' 
atom and the dislocation. I: 

A similar calculation ~or an attractive atom in array 2 yields curve 

ii· of Fig. 16. To the accuracy of the present computations, this latter 

" 
result is identical to that obtained by Cottrell for an infinitely long 

and rigid dislocation. This was expected from the agreement between the 

calculated ~low .stress ~or array 2 and the predictions of Fleischer's. 

theory. 

The corresponding force-displacement diagrams are obtained by taking 

the derivative (graphically, in this case) of the interaction energy with 

respect to distance from the obstacle and they are shown on Fig~ 17. Only 

the ascending branch of the ~orce-displacement diagram can be calculated 

. * this viay. There are no equilibrium line shapes of the dislocation ~or 

displacements on the descending branch even if the stress is reversed. 

A greater maximum ~orce is required to cut a repulsive solute .atom 

at OaK and this can be understood with reference to the shape of the 

internal shear stress contours by which solute atoms oppose the motion 

of dislocations. Only the ascending portio~ of the internal shear stress 

contours are effective in arresting the motion of a dislocation and as 

shOlm iIi Figs o· 2 and 3, they vary quite rapidly for attractive atoms and are 

* In arrays 2 and 3, the flow stress is reached whim the applied stress 
is just Inrge enough to push the dislocation past the peak of the 
opposing internal shear stress. 

,1' 
'4, . 
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broader, varying more slowly, for repulsive ones (changes in E alter 

the height but not the shape of these contours). For a fixed value 

of the applied stress a dislocation can therefore bend more sharply 

in the opposing stress field of an attractive solute atom than of 

a repulsive one. The ultimate effect is that the critical curvature, 

at which the force on a solute atom due to the line tension of the 

dislocation exceeds the maximum opposing force, is reached at a lower 

value of the applied stress for attractive atoms. This is illustrated 

on Fig. 18 where the equilibrium radius of curvature at each type of 

obstacle is plotted as a function of the applied stress (as before, 

c = .01 and E = .06). 

It was shown in Section DI. C that the maximum force to cut 

a repulsive solute atom varies with the concentration but, as we 

see in the present section, the computations involved in determining 

a force-displacement diagram are cumbersome and time consuming. For

tunately, it is possible to arrive at an empirical relationship for 

the maximum force in terms of the flow' stress vs concentration curves 

that have already been calculated. 

For a given value of E, the results on Fig. 15 indicate that 
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K( E,.C) (18) 

* * where ('f /G)3 and ('f /G)2 are the flow stresses for arrays 3 and 2 

respectively, and K(E,c) is a numerical factor which can be read from 
! 

ealch set of curves and which depends on E and c. Let the maximum force .". I 
to cut a repulsive 'solute atom be denotedlby ~ (E,C). In array 3, max 

equating the restraining force per unit length of dislocation to the 

force per unit length due to the applied stress we obtain 

~ (E, c) 
max 1/2 

c 

:!for array 2, on the other hand, which behaves accordin& to the Ii'leiscner 

theory we have 
I 

.827 c 
1/2 (20) 

Substituting Eqs. (19) and (20) into (18) we arrive at the final result 

or 

R 
F (E,C) = max 

L 2 
",2 Gb K(E.1c) 

1/2 
c 

+ ~ max 

wnere ~ is the maximum force, at OaK, to cut an attractive solute 
lIla.,{ 

(21) 

... 
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It is also seen on Fig. 15 that for each E there is a concentration 

range c > Co where K is independent of concentration and a range c < Co 

where K decreases rapidly with decreasing concentration. 
R ' 

F (E,C), max 

therefore approaches ~ax gradually at high concentrations and rapidly 
I 

at very low concentrations. This is confirmed in Fig. 19 where the 

critical (or fTcutting") radius of curvature at a solute atom (in arrays 

2 and 3) is shown as a function of concentration. As determined by co' 

there is little change in the critical curvature in the concentration 

range of practical interest. 

I 
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IV. DISCUSSION OF RESULTS 

A. The Flow Stress 

It is corrunonly known that the hardness of a crystal containing in-

clusions (G. P .. zones or precipitates) can vary strongly with their state 

of dispersion. 
i 16 26 

Several authors ' have speculated that somewhat 
I I, 

analogous effects should be apparent in solid solutions and this is 
,I' i, 

precisely what is observed on Fig. 14. At low concentrations, where 

the spacing of solute atoms is large, the curvature of the dislocation 

is such that there is an appreciable internal stress opposing its motioh. 

As the spacing of solute atoms decreases, the dislocation becomes 

straighter because of its finite line tension. The internal stresses 

along its length now begin to cancel out and it can therefore move at 

a lower applied stress. 
" 

This explanation i:s confirmed by the calculated effech of changing 

the :spacing of solute atoms on the shape 'of the dislocation line at the 

* flow stress. This is :shown on Fig. 20a for E = .06. Along ul 

(;\;= 28.28b) the shear stresse.s from all three solute atoms A, B, and 

C oppose dislocation motion; along u2 (A. = 20b) atom B has little effect 

while A and C act as before; finally, along u3 (A. = 7.07b) the shear 

stresses from B are in the direction of the applied stress and only A 

and C are opposing. 

It was mentioned in: Section IILB that in array 1 there can exist 

another stable configuration, designated as "b" on Fig. 10, which becomes 

* The flow stress of array 1 was defined in Section III.B as the stre.ss 
at vihich the configuration designated as lid II on Fig. 10 became unstable. 

.. 
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unstable at low'er stress. The breakaway ,stress for configuration "b" 

* is shown in Fig. 21 in comparison with the flow stress (E ::: .06). The 

reasons why configuration "b" is weaker than lid" are twofold. First, a 

smaller force is required to cut attractive solute atoms. Second, the 

equilibrium shapes for "b" are such that cancellation of internal stresses 

along the dislocation takes place at a lower applied stress. The dis-

location line shapes are illustrated in Fig. 20b (in each case for the 

breakaway stress) and the accompanying explanation is the same as for 

Fig. 20a. 

Rather different results are obtained when the solute atoms in 

array 1 are no longer regarded as isotropic stress centers but simply 

as attractive and repulsive point obstacles. A flexible dislocation 

which moves up to contact the line of point obstacles ••• ABC ••• , in 

Fig. 20a, will bow out between each of them. On the other hand, if 

the dislocation originally (1. e., at zero ,stress) lies along the line 

of obstacles ••• BCD .... , in Fig. 20b, it will bow' out between the attrac-

tive ones and ignore the repulsive ones. If the force-displacement 

diagrams for attractive and repulsive solute atoms are assumed to be 

identical, the Fleisher model applies directly to both the above situa-

tions. The flow stress as given by that model is shown on Fig. 21 in 

comparison with the results of Section III. C. 

* Increasing the value of E results in stronger obstacles, between which 
the bowing of the dislocation can be more pronounced, and therefore the 
effects of "straightening ll appear at smaller solute spacings. 
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In contrast" the results for array 2 are the same whether solute 

atoms are treated as isotropic stress centers or as point obstacles and 

much the same for array 3 if the maximum force to cut a repulsive atom 

is taken from Eq. (21). Therefore, in the approximation of point ob

stacles the same flow st~es.s vs. concentration relationship is obtained 

1* 
f6r all three arrays provided that the appropriate spacing of solute is 

chosen in each case (in array 1 the separation of obsta.cles on the siip 

plane is ~lf of that in arrays 2 and 3). Perhaps this explains in part 

why previous authors have described solid solutions in tQrmB of arrays 

of obstacles that are all of the same sign ~ in thel~it of point ob-

stacles there is no essential difference whether they are attractive or 
, 
I 

repuls ~ ve or some of each. 
I ' 

on physical grounds" however, it, is not particularly realistic to 
! ' ' 

consider that a dislocation line in a solid solution is always anchored 

by a row of attractive impurities or opposed by a row of repulsive ones. 

In fact, we are going to show, by comparing our results with experimental 

data" that array 1 adequately describes the average environment of a 

dislocation line in an alloy and that the behavior shown in Fig. 14 is 

also cha.racteristic of a random solid solution. 

The flow stresses that we have calculated as yet overestimate the 

strengthening due to strain-energy interactions. It has been shown 

20 21 . 
elsewhere' that the Yle1d stress fora random distribution of point 

obstacles can be considerab~y smaller than fQr a square array of the 

same composition. The discrepancy is large for weak obstacles and it 

* We neglect the trivial case of a perfectly rigid and straight dis
locat ion. 

•• 



increases rapidly in the range of strengths corresponding to substitu-

tional atomS. There exists the unfortunate coincidence that the maximum 

in the force-displacement diagram occurs very near (0.3b) the center of 

the dislocation where Hookefs law is seriously in error •. We have esti

mated this maximum force I to be roughly 1.2Gb
2

E by compensating for the 

effects of the core' as described :).n Section II.B. Most authors 9 

evaluate the binding energy at an arbitrary cut-off radius of lb from the 

center of the dislocation and arrive at a maximum force approximately an 

order of magnitude lower than 1.2Gb2 
E. In the:absence of more specific 

knowledge .about the core of the dislocation it is difficult to be rigor-

ous about the adjustment factor and we have very likely erred by under-

estimating it. In the range of strengths that are customarily attributed 

2 2 
to SUbstitutional impurities, .12Gb E ~ F max ~ 1.2Gb E, the randomness 

correction can vary between a factor of 5 and 12. Assuming that this 

correction also can be used for our problem we find that the flow stresses 

in Fig.., 14 may be too large by a total factor (core and randomness) 

between 5 and 120. This is not an ad hoc correction but arises from the 

lack· of rigorous and quanti ta ti ve knowledge about the effects of the 

core and the statistical features of the problem. 

The greatest hindrance to a proper comparison between our theoretical 

predictions (and those of others) and experimental data lies in the diff-
J . 

iculty of separating the contributions of the various solute atom effects 

which cause the observed strengthening. A notable exception is the re

cent data of T. Suzuki27 on the low temperature deformation mechanisms 

of dilute eu-Ni single crystals. The distinguishing feature of his work 
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is that the density of grown-in dislocations in all his crystals waS 

4 ~ i . . about 10 em ,which is four or five orders of magn tude lower than 

in other experimental data. By studying the details of dislocation 

motion, using etch-pit and stress pulse loading techniques, Suzuki has. 

presented compelling evidence that the rate controlling (thermal) barriers 

at low tempem tUres « 2400K) are randomly dispersed solute atoms.. The 

critical resolved shear stress (less the long range or athe~l stress) 

at 4.2 oK as measured by him is shown in Fig. 22 in comp'3.rison with the 

results of our model where we have chosen a very modest factor of 10 as 

the randomness (and core) correction. 

The agreement both quantitatively and; what is more relevant; 

qualitatively is very good and it confirms the basic featUre of our 

model, namely that in substitutional alloys the strengthening due to: ;'" 

the size effect is confined to the dilute range. We believe further 

that this behavior is also characteristic of other substitutional alloys 

but that it has not been observed because the initial densities of dis-

locations are so large as to make the intersection me,c~anism in fcc metals~. 

the controlling one. 

In this respect, another example of interesting experimental data 

. 10 11 . 
is the early work of Linde and Edwardson ' on the CRSS of Cu-Si 

single crystals. These data have been conflictingly interpreted by 
I 

Friede17 as due to the size misfit interaction w'1th edge dislocations 

8 and by Fleischer as due to the modulus interaction with screw dislo-

cations. 4 More recently, however, Evans and Flanagan have demon-

strated by means of activation parameter measurements that the inter-

section mechanism controls the flow stress of Cu-Si single crystals. 

~ . 

.. 

." 



' .. 

· ;I'~ 

-33-

Most of the strengthening is shown to arise from the *ncreased disloca-

* . tion density due to alloying, and they obta.iIl a Illaximum, energy to effect 

intersection that is an order of magnitude larger than the bindtng energy 

between a Si atom and an edge 'dislocation. In this wqrk, afil well as in 

that of Linde and Edwardson, the initial density of dislocations' was 

about five orders of magnitude higher than in Suzuki's experiment and 

direct solute atom effects are obscured in the background. 

The apparent success of the formulations of Friedel and Fleischer 

in accounting for the, Cu-Si data seems therefpre to b~ 1'or~uitous as they 

overestimate the effects of elastic interactio!ls. As. at! illustration we 

also show on Fig. 22, for CU-Ni, the appropriate pred~ct~ons of Friedel 

according to Eq. (11) and of Fleischer [Eq. (9) of Ref. ~], the latter 
~.'. ,...; ~H 

'1 

including both the size and modulus effects with edg(i;dieilocations. 

Although their results could be scaled down by some correction "factor, 

they nevertheless do not predict the observed concentration dependence 

,of the flow stress. 

B. The Force-Displacement Diagram 

A comprehensive discussion of the differences in ;the maximum force 

required to cut attractive and repulsive substitutional atoms has already 

been given in Section III.D. 

It is reasonable to assume that equilibrium computations, of the 

type we have performed in this paper, would result in greater corrections 

to the force-displacement relationships and interaction energiE;ls of 

* Unfortunately, it is not possible to' estimate frO'm their data the 
effects O'f direct solute atO'm-dislocation interaction5~ 
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interstitial impurities and other strong tetragonal defects. The 

asymmetries in the stress fields of tetragonal distortions are con

siderably more pronounced than those of spherical distortions'but the 

problem is also more complicated as the elastic interactions betV{een 

the arms of the dislocation at the defect must now be taken into I 

account. 
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v. CONCLUSIONS 

a) In contradiction with Cottrell's simple straight dislocation 

model, the force-displacement diagrams for cutting the stress fields of 

attractive and repulsive solute atoms are not identical, when the 

equilibrium curvature of the dislocation in the vicinity of the solute 

atom is taken into account. A greater maximum force at OaK is requir~d 

to cut repulsive solute atoms as their effective opposing stress field 

is broader than that of attractive atoms. 

b) The contribution of the size effect to the strengthening of 

substitutional solid solutions cannot be properly described in terms 

of the cutting of simple point obstacles even if what is taken as the 

strength of these obstacles is not seriously in error. Instead, it is 

necessary to consider in greater detail the strain-energy interaction 

of the dislocation with the stress f;i.elds of the solute atoms and to 

compute the minimum energy shape of the dislocation line. The opposing 

internal stress along the dislocation line can be considerably less when 

the latter is allowed to relax to its equilibrium shape. 

As the spacing of solute atoms decreases the dislocation line 

straightens out rapidly and therefore a marked concentration dependence 

of the flow stress is observed in the dilute range only. This assertion, 

which is. in conflict with existing theories, is confirmed by experimental 

data in which the effects of direct solute atom-dislocation interactibns 

have been successfully isolated. 



APPENDIX I. " 

A. The Mis~itting-Sphere-in-Hole Model 

A spherical hole of radiusr is cut in the matrix, a sphere of 
o 

radius r' = r representing the solute atoms is introduced and the 
o 

~lO are cemented together 'at an intermediate radius r. (1 + E). The 
o 

I . I 

impurity and the matrix are treated as classical elastic media. 

By de~inition, i~ u is the radial displacement, the strains are 

dU 
€ = rrdr 

and 

From the generalized form 'o~ Hooke's law we obtain ~or the stresses 

E 
(J = 
rr (1 +v) (1-2v) 

and 

E (~.r +v~r ) cree = cr¢¢ = (l+v) (1-2v) or 

where E is Young's modulus and v is Poisson's ratio. By per~orming a 

force balance on a di~ferential volume element r
2
sinedrd"¢ de one 

arrives at the d~~erential equation for the displacementst 

c 

",rhere C is a constant independent o~ r.. A solution of Eq. (JA) is 

u Ar + E.... 
2 

r 

(JA) 
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2 
where Ar is the displacement inside the spherical inclusion and B/r is 

the displacement in the surrounding matrix. 

The constants A and B are determined by equating the displacements 

a t the boundary r = :r 0 (1 + E) of the inclusion and thus are A = E and 

B = ) E. Assuming that ,'the elastic constants of the inclusion and the 
o 

matrix are identical, the stresses in the matrix from the generalized 

Hooke's law are 

and 

cr 
rr 

4GEr 3 
o 

2GEr 3 
o 

G = E/2(1 +v) and r ;> r' (1 + E). o 

B. The Internal Shear Stresses on a Plane 

With reference to Fig. Al assume that a solute atom is located at 

the origin and that the slip plane of interest is parallel to the x~y 

plane and at a height z above it. The components ofarr, cree' and cr¢¢ 

in any direction are easily obtained and, as an example, the shear 

stress T on this slip plane is zy 

or, in cartesian coordinates: 

T 
zy • 



APPENDIX II. 

A. Line Shape COnI,Eutations 

* The desired set of parameters c, Eand ~. /G are specified and at the 

starting point of the solution (x',. yf), where dy~/dx'i r = 0, the com-' 
, 0 0 Xo 

puter is first made to calculate d2yf /dxt2 from the equilibrium equation 

for the radius of curvature. The next value of y', at Xl = x' + ~r, is 
o 

calculated using a power series expansion 

= y' + (~) o dx' 

and 

x' o 

where 6x t is a suitably small interval, usually taken as .0010 

This procedure is repeated for the next two intervals .6x t after 

which the remaining values of yt, i.e., those needed to cover a period 'A., 

are calculated f'rom the Adams technique formula 

~ (~) (yt) t + 2.2917, ,: 
xo+(n_l)6xf dx x'+(n-l).6x' 

o 

At each step (y', x'+n6x') of the calculations it is necessary to know o 

T and therefore the coordinates of the solute atoms are arranged in z fyl 

order of' increasing distance from (yf ,Xl + n6x t ) and the contributions 
, . 0 

.' 
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of each atom to the internal shear stress are added until further addi-

tions are less than .1% of the total. 

The energy of a small segment of dislocation between (n - l).6x f and 

n6x' is computed from 

U J"2 [31-
Gb3 = l c 4~ 1+ -(dy ')2 

dx I x' +r:J.6x: I 
o 

T 

~ dy' 
G 

T* J[ y,] .6x! 
G lc 

(2A) 

and the total energy of aperiodic length A of dislocation line is 

obtained by adding the energies of all such small segments. The in-

tegration ipdicated in Eq. (2A) is performed by a separate computer 

routine based on Simpson's Rule. 

By reducing the size of the interval .6x', the line shapes and 

energies can be obtained to any desired accuracy. 
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Fig. 1 Solute atom-dislocation geometry 
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Fig. 3 Internal shear stress profiles 



t 

(G:3E) 

-46-

(Y/b) --

or-__________ ~.5~0~----------~IT·0~~--------~I~.5~----------~2.0 

-.20 

-.40 

-.60 

-.80 

-1.0 

-1.2 

-1.4 

A 
b 

EO (211)), h =-\76 

B b ,/ , EO (4),h=-'V6, =.o7I(b
' 

OR 
EO(7) 

Fig. 4 strain energy interaction for rigid 
dislocations 

XBL 687-1412 

.. 



". 

2 

t 
(

FORCE) 
Gb2c 

o Ib 

-47-

CURVE A : EQ(3) , h=-b/.J6 

B : EQ(3) , h=-3b/v'G 

. C : EQ(5) , h= - b I V6 
OR EQ (8) 

2b 
DISPLACEMENT Y-

3b 

XBL 687-1403 

Fig. 5 Force-displacement diagrams for rigid dislocations 
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Fig. 11 Displacements satisfying the periodicity 
condition 
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Fig. 12 Minimum energy calculations 
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Fig. 19 Critical or cutting radius of curvature 
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