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STRAIN-ENERGY INTERACTIONS BETWEEN SOLUTE ATOMS AND DISLOCATIONS

7

" Tibor Stefansky

Inorganic Materials Research Division, Lawrence Radiation Laboratory,
Department of Mineral Technology, College of Engineering,
University of California, Berkeley, California

ABSTRACT

The stress required to drive a single dislocation through a fixed
array of isotropic stress centers, due to substitutional solute atoms,
is calculated using linear elasticity and numerical methods. Cottrell's
model of the strain-energy interaction betweeh solute atoms and disloca-
tions is extended by allowing the dislocation to relax to its equilibrium
shape in the stress filelds of such atoms. |

Two new results are obtained. First, a marked conéentration depen~-
dence of the flow stress is observed only in the very dilute range. And
second, the force-displacement diagrams for cutting the stress fields of

attractive and repulsive impurity atoms in solution are not identical,



I, INTRODUCTION

The hardening of metals by controlled additions of foreign atoms in
solid solution 1s of great practical interestvand it has been extensively
studied. At the présenf fime the relative roles of the various solute
atom-dislocation in#eractions reSponsiblé for hardening, particularly in
substitutional solid solutions, arebnot fully understood. Nevertheless,

a series of recent and well designed experiments,l-h on the low temperature
deformation mechanisms of several dilute substitutional alloys, seem to in-
dicate that most of the strengthening results'from increases in the initial
density of dislocations and a lowering of the stacking fault energy upon
alloying.

596

In contrgst,'hOWever, the theories of Mott and Nabarro

|
7’8 attribute the hardening to a direct

and sub-
sedquent develbpments of'their_ﬁork
and uniquely different effect, namely the elastic interaction of disloca-
tions with individual solute atoms.* Much of the appropriaté experimental
data in the litérature8_12 has been interpreted in terms of these theoriles

despite the fact that ‘these data do not identify the specific solute

>atOm effects responsible for the observed strengthening.

It is therefore_important to examiné closely the dichotomy between
the predictions of a Mott and Nabarro type of theory and those experimén£a1
resultrsl"lL which indicate that solute atoms are not the rate controlling
barriers to dislocation motion. To this end, we have reformulated the

problem of the stress required fo drive a dislocation through a fixed

* In general, only the strain-energy interaction due to atomic size
differences is considered since it is by far the predominant effect,
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array of solute atoms without introducing some of the simplifications

made in previous analyses. We shall discuss these simplifications later
and mention here only their salient features. Thds, it has been customary
( :

to regard solute atoms as simple point obstacles and to neglect the
equilibrium curvature of a dislocation in @he stress field of a solute
atom. The result has beén, as we shall pﬁéve later, to omit important:
details of the strain~energy interaction getween solute atoms and dis-
locations.

In the present paper, substitutional impurities are regarded as
isotropic strain centers and dislocations are treated in the "elastic
string" approximation. Within the framework of linear elasticity, and
using numerical methods, we allow a dislocation to relax to its equili-
brium shape, in the stress field of an array of immobile solute atoms,
as the applied stress is.increaséd from zero to the flow stress. We find
a flow stress vs. concentration dependence quite different from that

5m8

predicted by earlier formulations and relevant to recent experiméntal
findings.l-u We find also that the force-displacement diagrams for
cutting solute atom stress fields.where the interactions are repulsive

are not identical with the case where they are attractive in conflict

with Cottrell’s13 simple approach to this problem.
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IT. SUMMARY OF FARLIER THECRETICAL CONSIDERATIONS

A, The Migfitting-Sphere-in-Hole Model and the Stress
Field of a Solute Atom

The elastic behavior of a substitutional impurity can be approximated
vby.fhe misfitting-sphere~in-hole model described in Appendix I. In this
model a spherical cavity of radius r is cut in an elastic continuum
repreéénting the magrix; an elastic sphere‘of radius r?, representing
ﬁhe impurity atom, is introduced and the surfaces of the two are pulled
together and cemented at an equilibrium radius r = ro(l + e), where ¢ 1is
the atomic size misfit.* This process is accompanied by radial dis-
placements only, and as a'result it introduceg a sgpherically symmetrical
distortion in the lattice.

The strain-énergy interaction between the impurity and a diglocation
is equal to'thé elastic work done when the radial displacements take place
in the hydrostatié stress field of a dislocation. In the linear elastic
apprbximation & pure screw dislocation has no hydrostatic stress component
and therefore spherical solute atoms interact ohly wilth the edge coﬁponents
of dislééations. There is neveftheless an elastic interaction between a
substitutional impurity and a screw dislocation.15 It results from the
torque that the stress field of the impurity exerts on the dislocation,
trying to twist it into an édge orientation.where the strain energy inter-
actiOn can lower its total enérgy.

For our pﬁrposes it will be more convenlent to represent the elastié
distortions due to impurities by internal stresses in the alloy. Tn
Fig, 1  assume that the x-y plane is the slip plaﬁe of an edge dislocation

* An experimental measure of ¢ is provided by l/a da/dc where & 1s
the lattice parameter and c is the concentration of solute.,
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with Burgers vector b in the y~direction and that a solute atom is
located at (0,0,h). As shown in Appendix I, this solute atom causes a

shear stress in the slip plane, in the direction of b, equal to:

-6 5. yh__
"oy Gryoe (x?+y2+h2)5/§

(1)

‘where G is the shear modulus of elasticity. In deriving Eq. (1) we E
< { o

have assumed the eléstic constants of solv%nt and solute to be identicél.
Since we shall be céncerned with'diiute soiutions tﬁis assumption will
only be a minor drawback., In addition, we also avoid the questionable
practice of assigning different elastic constants to an individual solute
atom when these constants are actually determined by the binding forces
between large groups of atomsa

If we select the slip plane as the (lll) plane in fce crystals, we
obtain hl = ib/jfé for a solute atom on the atomic plane immediately ad—
jacent to the slip pléne and h2 = iBb/fé for a second layef salute atom.
As an illustration, we show in Fig.'é the shear stress contours on'fhe
slip plaﬁe due to an o&ersize solute atom at <0,0,b/Jé). Similarly, wé

show in Fig. 3 the shear stress profiles at x = O due to a solute atom

at (0,0,bN6), (curve A), and (0,0,5bA/6), (curve B). The figures

indicate that a solute atom affects a relatively short length of dislocaf

tion, up tb 5b or 6b., It is also evident that the shear stress contours
vary quite sharply. Consequently, small changes in the curvature of a
dislocation in the neighborhood of a solute atom cduld result in signi-
ficant changes in the force that the solute atom exerts on the disloca-_

-tion.. Up to the present the force-displacement relationships for cutting

the stress fields of solute atoms have been calculated only for the case

of rigid, straightdislocations.B’15

-



B. Force-Displacement Diagram for Cutting Spherical
Impurities by Straight Edge Dislocations

The interaction energy between an Infinitely long edge dislocation

and an individual solute atom is also equal to the work done by the

“elastic forces due to the solute atom when the dislocation is introduced

in the crystal., With reference to the dislocation-solute atom geometry

of Figs 1, the elastic interaction energy for a straight dislocation is:

U =‘ -Lyl: (‘szb) dx dy - ' (2a)

which, when integrated, yields the well known Cottrell interaction energy,

h
2

y2+ . (Eb)

U = LGr oo
o

s

This expression includes the contributions from both the regions interior
and exterior to the impurity.

The force~displacement relationship for cutting the stress field of
én isolated solute atom by a long, gtraight edge dislocation, is obtained
by taking the derivative of the interaction energy with respect to

pogition:?

F o= - = -8 Ger "D "‘—‘Y“'—"' (3)
v o (y2+h2)2

' . .
Cottreliﬂﬁﬂ%as pointed out that Eq. (2b) overestimates the inter-

action enérgy near the center of the dislocation because of the effects

of the core and deviations from Hooke's law. He has. suggested that

these effects can be taken into account approximately by altering Eg. (2b) tot



U = b Gero5 b —5—25——5 ' (ﬁ)
v+ "+p S

where p can be thought of as the effective width of the dislocation. At

 dislocation-solute spacings less than p, the only strain energy inter-

action is with the crystal itself and not With the dislocation. ;The |

'correspondingvforce—displacement relatien becomesx

F=-8(‘}r05_€‘b th2.22 | (5)
] o S (,V' + 10" +p )

‘In prineiple,'the correction term can be found by comparing measured
binding energiesg" for substitutional impurities with the predictions of
phebry [EqS; (2b) and (4)]. The results, however, are inconclusive as it
is difficult to estimate the elastic contribution to the measured energies.
A less rigorous but satlsfactory choice of p can be made on physical
grounds. The effects of the correction term.on both the interaction
energy and the force-dlsplacement dlagram~should be small at distances
vroughly in excess of a Burgers vector from the center of the dislocation.

In addition, a correction that will reduce the maximum unadjusted force

by at 1eaét a factor of two appears reasonable.8 'Values“of p2 in the

range .06 b2 < pgr< .O8b2 satiSfy these’tweﬂrequirementso. For a first layer
solute atom at h = -bA/6 the choice of p° = .O7b> modifies thé interaction
energy aé shewn in Fig. 4 and the force—displacement diagram'as shown in
Fige 5. | Ty

No correction is necessary for second (or higher) layer selute atems
as their distance from the dislocation core is always greafer than a

Burgers vector., The force-displacement relation for cutting a second



v

layer atom at h = -5b/Jé is also shown in Flg. 5 in order to illustrate

the rapid decrease of the meximum force with separation of the impurity

from the slip plane.

The core adjustment can be introduced at some other étep in the

calculations and in a later section we shall be interested in a correc-

tion term f = f(x,y,h,p) such that:

Y p®
h
'-f f (szb) f(X;y,h, ) dx dy = )4' GI’OEGb "——"“"———2 5 )

—oe -0 . : y +h +p

We find that Eqe (6) is satisfied numerically when f = l-e

(6)

-5(x +y 2 )/b2

and 02 = .O7b2. The term f = l—e_B(X +y‘+h )/b provides an empirical

correction to the force perunit léngth of dislocation due to a solute

*
atom (F = szb) near the core region of the dislocation. The interaction

energy corresponding to this new form of the core correction factor ist:

_ _fy/‘w (szb) [ -5(x +y +h )/b ]dydx

and as shown in Fig. 4, it gives the same result as Eq. (4) with p2

Similarly, the force-displacement relation becomes’

(7)

= .O?be.

J".*‘=-~6C.-r5€b’/‘oo yh [le-)(x+y+h)/b]
o

(x2+ 2+h2)5/2

-0

and as demonstrated in Fig. 5, it is equivalent to Eq. (5) with o

2

(8)

= .O7b2.

* (or equivalently, the force exerted by the dislocation, per unit léngth

of dislocation, on a solute atom.)
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The theories of Mott and Nabarro, and related works, have been
formulated in terms of the gimple, straight dislocation interactions

we have Jjust presented, \ : W

C. Mott's and Nabarro's Theory

[ .
. y

| The first dislocation theory of streng%heniﬁg due to impurities in
| | le
solid solution was that of Mott and Nabarro,5 Starting with the sphere-
in-hole model described earlier they calculate that the internal stress

at a distance R from the inclusion is approximately

They state further that a dislocation will sweép:across its slip plane
only if the applied stress is. equal to some average @f the internal |
stress in the crystal.‘ dne of the problemé‘aSSOCiated wifh this approach
is the ‘selection of the appropriate average on physical grouﬁds.v One way
is to state that if impurities’are uniformly disﬁributed at a distance A
from each other, ‘the average distance from a point in the matfix to the

nearest solute atom is A\/2 and hence, the.mean absolute internal stress is

» _(Qro _
o, % € G _X_) = €Ge - - (9)

where c¢ is the atomic fraction of solute. To the approximations of the ¥
theory this is the incremental flow stress of the material.

This formulation contains several additibnal drawbacks. Soluté ¥
atom~-dislocation interactions are not specifically considéred and details

of the motion of a dislocation through the stress fields of individual

~sclute atoms remain unclarified., Solute atom effects are fufther thought



to result in a uniform retarding stress on the dislocation and thus yield
a long-range stress level. As seen in-Figs. 2 and 3, the stress fields of
substitutionals act over a limited area of the slip plane and have no
tendency to spread as the height of the impurity from the slib plane in-
creases., 1t is thefefore‘unlikely that individually dispersed solute ;toms
can result in a loné—range stress field., Substitutionals may contribute
to long~-range stress fields in other ways, as for example, by forming
clusters. However, this is not thg problem undér consideration here.

The theory of Mott and Nabarro has gone through several stages of .

development and its most advanced formulation is due to Friedelo7

D. PFriedel's Theory

The imﬁrovéments of the thgbry introduced by Friedel7 are based on
the idea that diélocatiqns in the alloy do not ﬁbve as rigid straight lines.
Instead, they tend to be wavy in Qrderbto minimize their total energy in
the stress fields of the solute atoms. In a random solid solution, one
half of the soluté atoms adjacent to the slip plane of a diélocation will
be attractive and, according to Friedel, the disiocation line will zigzag
from one such atom to another. Under these conditions, the flow sfress is
determined by a balance between the disloéatidn's teﬁdéncy to minimize its
length and its attraction to solute atoms.

B The theory ig formulated in terms of the triangular array bf solute
atoms shown in Fig. 6. A dislocation prefers the zigzag configuration ABC
to the straight line configuration Y—Y' as in passing from the latter to
the former it gains more in binding energy than it loses in line energy..

The binding energy gained per unit length along Y-~Y' is -
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where U is the total binding energy and c is the atomic fraction of solute
on tho slip plane. Slnce 1mpur1t1es are reg&rded as point obstacles, UB '
is e?ual to the max1mum absolute value of Eq. (4) or Eq. (7) The increase

i | r

in the total line energy is

2
o T %’"[ o ']
where Gb°/2 is the dislocation line tension.
By minimizing El
distribution that gives thg minimum barrier to the moving dislocation,
Thus, the flow stress at 0°K, i.e., the stress required to move the dis-
location from a stable poéition ABC to an equivalent position AB'C is

approximately

T = % Gee ' : ' (10)

The énSWer, which depends soﬁewhat on the.valnes éﬁOBen forrthe.binding
energy and the dislocation line tension, is essentially the same.aé.that
of Mott and Nabarrd (Eq. (9)), | »

vfhe result is based partly on the arbitrary aésumption that-the‘
presence of repulsive atoms does not influence the configuratibns of
Fig. 6. And even if dislocationsvin annealed (and unstrained) ecrystals

- <
_ware to zi

UQ

gzag from one attractive impurity to another 1t is not clear
wry Zc. (13) adequately represents the flow stress. Thus, the dislocation
in Fig. 6 will sweep across its slip plane only after cutting some re-

pulsive obstacles, which are not considered, and cutting

with respect to x, Friedel obtains the triangular
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additional attractive obstacles which will not always be positioned so as
to offer the least resistance to the moving dislocation.

Friedel's answer to these objections is that the cutting of ilmpurities
iﬁ solution is the same w?ether they are attractive or repulsive exdept
that it is the attraétiveiimpurities thaf’determine the zigzags. We sﬁall
question these assertions in our model.

Friedel has also treated the case of an array of repulsive obstacles.
The flow stfess is now determined by a different criterion, namely that

every time an obstacle is cut a new obstacle is met and is approximately

equal to

T = G€5/2 01/2 A | (11)

The validity of the "steady state™ criterion used to determine the flow

stress has not been upheld by statistical studies,go?el

E. Fleischer's Theory

Fieischerfs Work8 is an attempt at erecting a moreléomprehensive model
of solution strengthening in terms of the total elastic interaction
betﬁeen solute atoms and both edge and screw dislocations. The novelty
of his approach‘is not in the theoretical formulation of these.inter-
actions but in the way that‘he uses them to interpret experimentél data.
Thus, size effects are described in terms of Coftrell's modei (cf.
section II.2) including a small second order interaction with screw
dislocations.l7- The modulus effect,* an exact theoreﬁical.treatmént

* = stoms "softer" than the matrix relax a dislocation's strain

v nd result in a binding contribution to the elastic interaction
energy. The converse is true for solute atoms "harder' than the

;D J-?
fa ot
m
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of which appears very difficult, is calculated following an approximate .
procedure suggested by Eshelby.l8 Inasmuch ag an excellent review of
Fleischer's work8 is available, only the final results will be given here.

Fleischer shows that the total elastic force.that a spherical impurity

" exerts on a dislocation is proportional to ep = & - l6ea for an edge dis-
lothion, and to es = eG - BGa for a screwtdislo&ation. The term eG

' e - 1dGy . : . . _ 1 day

measures the modulus misfit (eG =G dc) and ea the size misgfit (ea =3 dc)'

Since thélhardening is expected to vary with the appropriate fbrce in a -
.simpie manner, Fleischer plots dt/dc, the observed rate'of'éhange of the
yield stress withvcompositioh, as a function of e and and ey On the
basis of such'plots:for a series of copper alloys, he conéludes that |
screﬁ'dislocations éontrol the flow stress siﬁce tﬁe correlation between
dT/dC and es is_véry good.'

| Thege érguments Are not‘very compélling, however, The fibw stresses3:
obtéined from various measurements in the literature, refervﬁo tensgile .
tests on polycrystalline alloys, whereas fhe critical reSélved shear stress
for glide in single,crystals is a more relevant broperty. There»iércon-
sideraﬁle scatter in the tensile data and it is not éiear whether the
specimens were in the same state_pripr to testing. The latter ié an
important point as it has beén shoWnl ﬁhaf ailoying*can greatly inéreése
the rate of straiﬁ hardening. Fleischer's conclusions.are also in

19 on copper alloy single .

conflict with dislocation demping measurements
crystals., These measurements show that the dominant contribution to the

binding energy is the strain-energy interaction with edge dislocations,
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In contfast with the formulations of Mott and Nabarro and of
Friedel, the flow stress on the basis of the Fleischer model is determined
by the maximum stress that a dislocation must overcome. If we make the
reasonablé &SSumption that size effects predominate, a very simple answer
is obtained. Let Fmax be the maximum force to cut a solute atom at O°K.
Based on the calculétions;of Sec, IIB, it is shown on Fig. 5 that

F = l.17 Gbgea Let A be the spacing of these forces on the slip plane

max
of a dislocation. In general, A\ = il where n is the numerical factor
c

that depends on the type of array chosen. Equating the restralning force
per unit length of dislocation, Fmax/k, to the force per unit length

due to the applied stress, tb, we obtain for the flow stress

LT /2 (12)

We will show later on the basis of a more sophisticated model that Eqg.

(12) has very limited applicability.
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ITI. THE PRESENT THECORETICAIL MODEL

A, TIdealized Distributions of Solute Atoms

v . , %
The distribution of solute atoms in an alloy is more or less random.

An exact theoretical treatment of the propagation of a dislocation through

a fandom.distribution of solute atoms appears to be very difficu}t and one
1 .

mist generally resort to régular arrays.,

It has been shcwneo’Ql

that the critical applied shear stress required
to drive a single dislocatién through a random,distribution of simple‘ |
point obstacles can be substantialiy lower than for é square array of the
same.denéityo'.The discrepahcy is greatesf for Weak obstacles and it can
be expected to hold for more'complicaﬁed examples.of ﬁéak obstacles éuch
as substitutional solute atoms. There are also differences iﬁ.thé de-
tails of dislbcation motion through randoﬁly and regularly distributed
obstacles. Nevertheless, certain features of tﬁe'problem, sﬁch aé the
issue of the equilibrium curvature of the dislocafion in the étress fields
of'impurities, can be cbnveniently illustrated in terms of regular arrays.,
Such airays can also be uséd to study the ébncenfration dependence of the
flow stress by introducing én approximate "randomness correctionﬁ.

A dislocation line in an alloy will, on the average, pass eQual ,
numbers of attractive and repulsive obstacles. For this reason array 1,
shown on Fig. T, is of particular interest. In this array a diélocation
that_is essentially in the edge orientation, with Burgers vector in the
y-direction, encounters alternatingly aftractive ahd repuisive solute
atoms -~ a situation which crudely resembles the real case. Array 1 ié

* We are not concerned here with the problem of impurity clouds along &
dislocation.or clustering. ¢



but one of many that satisfy these conditions. chéver, it‘has the
virtue of being amongvthe gimplest of such arrays and this is of con~
siderable help in keeping the problem.free of ancillary deﬁails.

If the dislocatioﬁ in question is perfectly rigid and straight it

will move under a negligibly small epplied stress. This has led some
l v [ .

| author822 to suggeé% that ¢lustering or ségrégation of solute atoms must

occur. before strengthening results. The prdblem is avoided if one coﬁ—

siders, as we shall do here, the more realistic case éf a flexible dis-

- location: neighboring sections of the diglocation can now curve and move

partly ihdépendently of éach other 80 that thebinternal stress opposing
dislocation motion is no 1oﬁgef Zero., o

We shélliﬁse arra& 1 among éthers,.fo stﬁdy the concentration de-
pendence.éf the fidw stress aﬁd as a first appfoximation consider only
soluté atoms immediately adjacent to thevsliﬁ plane.% ‘This is a regson-

able approximation sincé the maximum force to cut second layer solute atoms

is quite small (Fig. 5) and we have also indicated (Section II.A)\the un-

likelihood of such atoms contributing to & long range stress fleld.
Two other arrays, shown on Figs. 8 and 9, will be considered in thisg
paper. Geometrically, they are identical to array 1 except that all-bf

the obstacles are of the same sign: attractive in array 2 (Fig. 8) and

repulsive in array 3 (Fig. 9). By comparing‘the behavior of arrays 2

and 3, on the one hand, and array 1 on the other, we can test Friedel's

assertion that dislocation motion in solid solutions is éontrolled by

¥ Throughout this work the slip plane shall refer to the (111) plane'in

fee crystals,



attractive obstacles. In addition, arrays 2 and 3 will indicate
whether the force-displacement diagrams for cutting attractive and
repulsive solute atoms by flexible dislocations are identical.

As noted in Section IT.A, the stress field of misfitting solute
atéms can be represented by a shear stress&on th? slip plane of a’dis-j
lodation. As an exaﬁple, if the core adjugtmentffactor is_intro&uced.

as in Eq. (6), for the problem described with reference to array 1 the

pertinent shear stress at a point (x,y,0) on the glip plane is

2
(y-y)n )1 - e'j [(X‘Xi)e‘f(y-yi) +hig]/b2
el s

T = 6Ger 0 3
. O

e (13)
= i [Geomy)2 + (g )P + 1,20 O (13)

where (xi,hyi)'are the coordinates of the solute atomsg on thevatémic
pianes immediately adjacéntito the siip.planes aﬁd hi = ib/fé‘__ In
regular arrays these-cbordinates can be éasily determiﬁed in terms ofr
a suitablé spacing, such as the spacing x.shqwn in Figso T to 9 A iﬁ
tﬁrn is fixed by the concentratibn of solute, Thus, in arrays 1 to 3,

the fraction (or concentration) of solute on atomic planéﬂ is -

. o .

where b2 is taken as the "area" of an atom.

B, Equilibrium Shapeg of Dislocations in Arrays of Solute Atoms

A method of calculating the minimum energy configuration of a dis~-
_loqation in an array of solute atoms is presented in this section. In--

asmuch as the same technique applies to all arrays, the calculations for
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array 1 will be illustrated in detail and for arrays 2 and 3 only the
results will be given.,
Despite the;symmetfy of array 1 many configurations are possible

but, as shown in Section ITI.A, the most'interesting ones appear. to be

‘those ‘mainly of -edge charactér with Burgers vector in the y~direction.

|

.ConSequentlyg we shdll_restriét ourselves to simple configurations

periodic with'x which can feéqlt frdm the relaxation oflén edge disloca-
tion,rdfiginally along the x-axis, fo.ité‘miniﬁum enérgy shape.

In Fig.vlovassumé that phe edge dislocation in questibn is displaced
from thé.Qéakié.to an as yet unépecifiéd.(but periddic) shape y(x) by an
appiied'sﬁressbf* or the ihfernal StTGSSeS TZy or both; The resulting

change in the eriergy of a segment of length N\ is épproximately

. : +x/2 : 2.' 1 rv E _
U-U = ,/:)-\/2 ‘%F [JT+ (dy/dac) —l] —/o T, PV - T*by} (dx

. - | S . v' " - (15)

‘where the interval -A/2 < x < /2 was selected for convenience, and I' is

the dislocation line tension. The first term in Eq. (15) represents the
increase in total line energy; the second term is the stfain—energy interac-
tion of the segment dislocation with the internal stresses sz (Eq. 15)

and the last term is the work done by the applied stress. The zero of

~energy, UO;'can‘be aésigned:arbitrarily and we shall’choose UO = 0.

In writing Eq. (15) the elastic interaction between different parts
of the dislocation line has been neglected. This:is a-reasonable assump~

tion for weak obstacles such as substitutional solute atoms, which will
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be cﬁt before the curvature of the dislocation becomes appreciable.

The validity of this assumption has been upheld by recent computer
03 '

studies of the bowing of a dislocation segment. These studies have

w

114

" also confirmed the adequacy of the “elastic string" model of a disloéa-

tion in the case of weak obstacles provided that the line tension appro-
1 . 1

’

!

priéte to the oriéntdtion .of the dislocation is @sed. In the linear

. i -
elastic approximation, spherical solute atoms constitute obstacles to
the edge components’ of dislocations only and therefore, the appropriate

line tension is

(24)
r = 1-‘edge - EﬂGb

The prdblem now is to find the shape y(x) of the segment which
V_minimizes its energy U. From the calculus of variations it ‘is known
that if y(x) is to minimize the integral (15) it must satisfy the Euler

- equation
d (). U |,
& \ op ¥
where p = dy/dx. The result of performing the indicated operations is

dgy/dxe_

b ¥ L
E 4= . £ .
| 7 (162)

(1 + (ay/ax)"] | | N
which can be recognized as the differential form of the equation for

the equilibrium radius of curvature. The negative sign was chogen to

make the curvature positive when y(x) is concave upwards,
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For the purpose of computation it is more convenient to use Eqg. (16a)

in the dimensionless form

2 2 * T - *
rlat L e - L
[1 + (ay*/ax*)"] ' zdc @

| | [ -6{(X"”X§)2+(y’~y§)2+h£2.}/c ;.
(y'yp! IL-e a1 |

(16Db)

. : ) 2 ’ .
where the line tension has been get equal to 3/4 Gb  and the primes
denote quantities dimensionless in' Ay The parameter A represents the
. period of the alloy lattice as shown in Eq. (1L4) it is related to the

atomic fraction of solute by A = Jé bchl/g.

Equation (16a or 16b) is a secand order non-homogeneous differential
equatioﬁ which can be solved numer ically upon specifying two independent
boundary conditions. There is an infinite number of pairs of such
conditions and for each of them it is possible to obtain a minimum
energy line shape f(xﬁ. However, only solutions which are symmetric
about the y-axis and{&ﬂlpeﬁbd A are being considered.here. From the
symmetfy, we can conclude that dexﬁ/dx’= 0 at eachvsolute atom, and
this is one of the boundary conditidns. The com@osition c, the size
misfit e and the reduced applied streSS'R7C}appear a8 constahts in

Egs. (15) and each set requires a separate solution., The computations,

described in Appendix II, were performed on a CDC 6600 compuber using
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the Adams method.-25

This method involves step-by~step solution over the
* v ' ’
chosen interval -1/2 fbx' <0 and it requires that the initial condi-
tions be known at the starting point (-1/2, yg). For array 1 these are:
1 ' -0 ' [ . o
dys/dx |x' - -1/e =0 and a yl in the range 0 < NGRS 1/2.,‘Different

. :
line shapes are obteined for each yg but only those with period A\, and

i ‘
haiing zero slope a% x' =0, are of'iﬁtere%t here. These line shapes ?.
can be found by‘piotting (for each c, €, and T*/G) the galculaﬁed slo?e

at x' =VO_as a'funetion of'yé. ,

Foliowing'Friedel;s approaéh we cohsider first the equilibri&m con- -
figuratiohe in the absence of an épplied:stress (T*/G ='O). To ‘illustrate
this case we use ¢ = 0,06 and ¢ = 0.00125 which are within the range that

. . 5 .

Friedel states as representative in his formulation. As shown on_fig. 11
there exist four line shapes (cerrespoﬁding to yg =0 or 1/2, 0.00é6, /b -
and O;ABMI) compatible with the periodicity condition and they are sketched
on Fig. 10 (Curves a,b,c and d, respectively). Each .of these configuratiehs
y'(x") miﬁimizes the energy U, according fdeq. (15),.but the most stable
one will have the smallest ﬁminimum" energy. Figure 12, where U is'plotted
as a fuﬁction of yg, indicates that configuratiqn "dh (or its mirror

image "d") is the most stable, An.accurate diawing of_liﬁe'shape "q" is .
given on Fig. 13 to shoﬁ the ectual deviation of the dislocation from a
etraight line. The identical configurations "a' and:"c"iarefunStablej

and have'zero energy invagreement with Uo = 0,

Similar configurations prevail under a finite'applied stress. This

is 1l1lustrated in Figs. 10-12 for T*/G = ,001l. The lewest energy shape is

¥ The line shapes are symmetric about the y-axis, hence only half the
period need be considered.
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again "d" and as shown in Fig. 11 this is the only possible type of
onfiguration when T*/G > ,00124, The ﬁigher applied stress requiféd
to make configuration "3'" ungtable will later be shownvés due to the
stronger strain-energy interaction between repulsive solute atoms and
flexible dislocations. The two other line shabes (at_T*/G =‘;601)'for

which dy'/dx‘l = 0 are unstable and they correspond to a position

x'=0

"of the dislocation on the déscending portidn of the internal stress

curve (Figs 3). |

There is no essential change in the detalls of Figs. 10—15'ovér the
whole range of composition (0 <ec S‘.l6) and atomic size misfit (.20 5’65;.10)
studied in this paper. In array 1, therefore, the quilibrium‘shape of a
dislocation line is wavy but the wavinéss is not in the form of zigzags
from one attractive obstacle to another. »

Iﬁ arréys 2 and:B, when T*/G_= 0, only straight line configurations
afe compatibie with the ﬁériodicity fequirement; iﬁ'drrava, where all
the:solute atoms are aﬁtractive, theiminimﬁm,énefgy'éhape is a straight
line along the x-axis. Similarly,‘in array 3 where‘all~the obstacleé
are repulsive a straight line along y' = 1/h has the;lea3£ énergy. |
Equilibrium cohfigurations under an applied stress are‘sketchéd in Fig$.4z
6 nd . . , S . "

| More detailed information on dislocation linejShapes in the_neigh;
borhood of solute atoms will be presented later iﬁ comnectlon with the‘
force-displacement diagramé. At this stage,'hOWever, 1t can be stated
that Friedel'!s mddel of dislocation lines in alloys; as zigzags Joinirng

attractive obstacles, 1s not generally valid.
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the sgolute atom. Choosing ¢ = .0l and ¢ = .06, as an example, the .
result of evaluating Eq. (17) over all stable line shapes y(x) is shown
by curve i of Fig. 16 as a function of displacement from the solute atom.
For a curved dislocation this displacement is not uniquely defined and

we have taken it as%the.distahce of closest approach between thefsoluté

atom and the dislocdtion. | ]
A similar calculation for an attracfive atpm iﬁ array é‘yieid; curve

ii:ovaig. 16, To the accuracy of the present computations, this iétter
result is idenmtical to that obbained by Cottrell for an infinitely long
and rigid diglocation.v This was expected from the‘agreeﬁehivbetﬁeén'the_
‘calculétéd flow stress for‘arfay 2 and the ﬁredicﬁions'of Fleischéf’s.;
theory. A

o The corresponding force-displacement diagrams_arévobtaingd by’taking
- the derivativé- (_gra.phicaiiy, _in this éase) of ti'le iﬁteraction enérgy with
respectﬁto distarnce from'thé obstacle,and théy.are:shcﬁn'én Fig; 17. 'Only
the ascending branch_of the force;diéplacement diagfém can;be'calcﬁlated
this way. There are no equilibrium line shﬁpeé* of the diglocatioﬁ for
displacements 5n the descending'branch even if the stress is reversed.‘~‘

| 'Avgreéter maximm force is required to cut & fepuiéivé solute,afoﬁ 5'v
:dt'O°K ahdiﬁhis.can bg understood;with.referencé'to the shape‘of the |
internai shear stress contours by which solute atoms opposebthe:mo%ibn _ 
of dislocations. Only the ascending portions of the internal shear stress
'.éontours are effective in arresting the motién of a dislocatioﬂ énd'as l
shown in Figso-2:and 3, they vary quite rapidly for.attiéctive atoms and are

¥ In arrays 2 and 3, the flow stress 1s reached when the applied stress
is Just large enough to push the dislocation past the peak of the

opposing internal shear stress,
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broader, varylng more slowly, fof repulsive ones (changes in e alter
the height but not the shape of these contouré). For a fixed value
of the applled stress a dislocation can therefore bend more sharply
in the opposing étress field of an attractive solute atom than 6f
a repulsive one, The ulﬁimate effect is fhat fhe critical curvature,
at which the force on a solute atom due to the line tension of the
dislocaﬁion exceeds the maximum opposing force, is reached at a lower
value of the applied stress for attractive aﬁoms. This is 1llustrated
on Fig. 18 where the equilibrium.radius of curvature at each type of
obstacle is plotted as a function of the applied stress (as before,
c = .01l and € = .06).

It was shown in Section iV.C that the maximum force to cut
a repulsive solute atom varies with the concentration but, as we
gsee in the present section, the coﬁputations involved in determining
a force-displacement diagram are cumbersome and time consuﬁing. For-
tunately, it is possible to arrive at an empirical relationship for
the maximum force in terms of the flow stress vs concentration curves
that have already been calculated. |

For a given value of e, the results on Fig. 15 indicate that
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* %
where (T /G)3 and (7 /G)2 are the flow stresses for arrays 5 and 2

respectively, and K(e,c) is a numerical factor Which,can be read;froﬁh

|
i
3 . ! )
to cut a repulsive solute atom be denoted by Fﬁax(e,c). In array 3,

: ; S
each set of curves and which depends on ¢ and c. Let the maximum force

equating the restraining force per unit length of dislocation to the

force per unit length due tb-the applied stress we obtain

xR (g0)

(%‘—)3 ) E;ZXGBE' e . | - (195'

For array 2, on the other hand, which behaves according to the Fleischer

fheory we have

*

. Substituting Egs. (19) and (20) into (18) we arrivelat‘the'final result

| | V2 6b° k(e c) 2
or .
v B 2 v
Fiax(e,c) _ (/_2 Gb K(€, C) + FA (21)

c1/2 v " max

Where Fiax is the maximum force, at 0°K, to cut an attractive solute

2tome

()G ®

T 1/2 - - ~  ._' | S |
(G_)e ) _.827 2 - @9
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It 1s also seen on Fig. 15 that for each ¢ there 1s a concentration

range ¢ > y where K is independent of concentration and a range c < o

- where K decreases rapidly with decreasing concentration. Fiax(e,c),

therefore approaches Fﬁax gradually at high concentrations and rapidly
' |

at very low concentrations. This is confirmed in Fig, 19 where the
Criticai (or "cutting") radius of curvature at a solﬁte atom (in arrays
2 and 3) is shown as a function of concenfration. As determined by Co;
there 1s little change in the critical curvature in the concentration

range of practical interest.
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IV. DISCUSSION OF RESULTS

‘ ‘ A, The Flow Stress
It is commonly known that the hardness of a crystal containing in-
clusions (G.P. zones or precipitates) can vary strongly with their state

16,26

of dispersioh. Several authors - have speculated that somewhat

. . . I . a : . L
analogous effects should be apparent in solid solutions and this is

| \ ‘
|

_precisely'what is bbserved on Fig; 1L, A£ lowyconcéntrationé, ﬁhere _
the spacing of solute atoms 1s large, the curvature of tﬁe dislocatibh
/ i . : .

is such that thére is an appreciablé infernal'stress opposing its mbﬁion.-
As the spacing of solute atoméAdecréases, the dislocatibn'becomés
sffaighter because of 1ts finite line téhsidn.' The internal.stresses
aioné its length now begin ﬁo cancel out and it can fherefdre.move'at
a lower applied'stress. | -

This eipiaﬁation is confirméé by the calculated effects of changing -
the spacing of solute atoms on the shape'of the‘dislocation lipé at the
vflqw stress.” This is shown on Fig. 20a for e_='.O6. Along_di
'(X =‘28.28b) the shear stresses from all thrée-éolute atoms A, B, aﬁa
C Qppdée dislocation motion; along u2 (A = 20b) étom'B haé littie effeét
while A aﬁd C act as'before; finélly, along w3 (N = 7.Q7b) the.éheér."
stresses from B are in the direction of thé applied'stresé and only A»
and C are Opposing. |
It was mentioned iﬁ Section III.B that in airay'l there can_éxisf

another stable configuration, designated as "»" on Fig. 10, which becomes
3 : Vs

The flow stress of array 1 was defined in Section III.B as the stress
at which the configuration designated as "d" on Fig. 10 became unstable.
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unstable at lower stress. The breakaway .stress for conflguration "b"

. N *
is shown in Fig. 21 in comparison with the flow stress (¢ = .06). The

reasons why configuration "b" is weaker than "d" are twofold. First, a

smaller force is required to cut attractivevsoldte atoms. Second, the

equilibrium shapes for "b" are such that cancellation of internal stresses

along the dislocation takes place at a lower applied stress. The dis-

location line shapes are illustrated in Fig. 20b (in each case for the
- breakaway stress) and the accompanying explanation is the same as for

Fig. 20a.

Rather different results aré bbtained whenithe solute atoms in

array-1 are no longer regarded as isotropic stress centers . but simply

as atbractive and repulsive point obstacles. A flexible dislocation-

which moves up to contact the 1ine of poiht obstacles ..{ABC..., in

Fig. 20a, will bow out between each of them. On the other hand, if

the dislocation originally (i.e., at zero stress) lies along the line

of obstacles +osBCDuss, in Fig. 20b, it will bOW‘oﬁt between the attrac-.

tive ones and ignore the repulsive oness If the force-displacement

diagrams for attractive and repulsive solute atoms are assumed to be

identical, the Fleisher model applies directly to both the above situa-

tions, The flow.stress as.given by that model is shown on Fig. 21 in

comparison with the results of Section IIT.C.

#*

Increasing the value of e results in stronger obstacles, between which

the bowing of the dislocation can be more pronounced, and therefore the

effects of "straightening" appear at smaller solute spacings.
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In oontrast, the results for array 2 are the same whether solute
atoms are treated as isotropie.stress centers or as polnt obstacles and
mich the same for array 3 if the maximum force to cst a repulsive atom
is taken from Eq, (21). Therefore, in the approximation‘of‘point ob-
stacles the same flow stress vs. concentration.relationshipvis obtained
for all three arra§s* prorided that the appropriate sPacing of solutehis
chosen in each case (in array l the separation of obstacles on the slip
plane is half of that in .arrays 2 and 3).. Perhaps this explalns in part
why previous authors have describedvsolid solutions in terms of arraya
_ of obstacles that are all of the same sign - in the limit of point ob-
stacles there is no essential difference whether they are'attractivebor
repulsive or.some of each. | v
04 physical groands; however? it is not particularl& realisticato

-consider that a dislocation line in a solid solution is always anohOred-i
. by a row of attractive 1mpur1t1es or opposed by a row of repulsive ones.
In fact, we are g01ng to show, by comparlng our results with experlmental
data, that array»l adequately_descrlbes the average env1ronment of a
dislocation line in an alloy and that the behavior shown in Fig.’lﬁ is
also oharacterlstlc of a random solid. solutlon.

| The flow stresses that we bave calculated as yet overestimate the
strengthenlng due to straln-energy 1nteract10ns. Tt has been shown
elsewhere 20,21 that the yield stress for a random distribution of pointl
obstacles can.he considerably smaller thah for a square array of’the
same composition. The discrepancy is large‘for weak ohstacles and 1t

*¥ We neglect the trivial case of a perfectly rigld and stralght dis-
location.



increases rapidly in tﬁe range of strengths corresponding to substitu-
tional atoms, There exists the unfortunate coincidénce that the meximum
in the force-displaéemgﬁt diagram oécuré very near (0.3b) the center of
the dislocation whefe Hookefs law 1s seriously in error. "We have esti-
mated this maiimum forcefto be roughly 1.2Gb2€ by compensating for thé
effects of the coré}as described in'Sectioﬁ IT.B. Most auﬁhors9» o
evaiuate_the binding energy at.an.afbitrary'gui-off radius of 1b from the
center of the dislocation and arrive at,a_maximum,forée approximately an
order of ma gnitude lover than i,EGbge. In the~abseﬁéevof_more specific
’ . . ’ . “y

knowledge about the core of. the diSlocétion 1t is difficult to be rigor-
“ous about‘thgladjuStment factor.aﬁdee'have very 1ikély erfed by under-
estimating if. In the range.of‘sfrehgths that are cﬁstomarily attributed
to substitutional impurities, .120b7c < F . < L.2Gb e, the randomnass
coffecﬁion can vary béfween a factor of 5 énﬁ lé,‘ Aésuming that this
correction also can be used for our problem we find that the flow stresses
in Fiéa.lh ma& be too largerbj a total faéﬁbr (core:énd réhdomneSS) |
‘ between 5 énd 120; This is not an ad hoc correétién but arises froﬁ the
lackﬁof rigorousAand §uantitative knowledge about‘the_effects of the
'~ core and the statistical features of the problem. |

‘The gfeétest hindrance fo'a éropef comﬁérison betﬁeen our fheéretical
‘ﬁreqictions (ahd those of othersj and expérimeﬁtai dafa liés in the diff-
‘icuity of separating the contributiohs‘of the vﬁrious solute atom éffeéts
which cause the obéerved strengthening. A notable exception.is.the re~

o , . . ,
cent data of T. Suzukl 7 on the low temperature deformation mechanisms

of dilute Cu~Ni single crystals. The distinguishing feature of.his work .
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is that the densify of grown-in dislocations in all his crystals wes
about ].Ol1L cm-2, which is four or five ordefs'of mggnitude lowei than ':e
in other experimental data; By studyingithe.details of dislocation
motion,'using etch-pin and stress pulee loading techniques, Suzuki“hael.
presented compelling evidence tnat the rate controlling (thermal) barriers_”
at low temperatures (< 2L0°K) are randomly dispersed solute atoms.: The
critical resolved shear stress (less the long range or athermal strees) e
at 4.,2°K as measured by him is shown 1in Fig. 22 in comparison with fhe' -
results of our model where we have chosen a very modest factor of 10 asnt'
the randomness (and core) correction. |

The agreement both quantitatively and, what is more relevant;

qualitatively is very good and 1t confirms the basic feature of our

model, namely that in substitutional alloys the strengthening due to
the size effect is confined to the dilute range. We believe. further
that this behavior is also characteristic of other substitutional alloys

but that it has not been observed because the initial densitiesuof‘dis—'f‘gj

T

locations are so large as to make the intersection mechanism 1in féc'metais; ;

the controlling one.
In this respect, another example of interesting experimental daté‘e_,'*

10,11 o the CRSS of Cu-Si

is the early wofk of Linde and Edwardson
single crystals. These data have been conflictingly interpreted by
Friedel7 as due to the size misfit interaction with edge dileeations
and by Fleischer8 as due to the modulus interaction with screw dislo-
cations. More recently, however, Evans and Flanaganh have demon- -

strated by means of activation parameter measurements that the inter-

section mechanism controls the flow stress of Cu-Si single crystals.
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.Mbst of the strengthening is shown to arise from the increased disloca~-
tion densitj due to,alloying,* and they obtain a maxi@ﬁm:énefgy to effect
intersection tﬁat is an order of magnitude larger thaﬁ the binding energy
between a Si atom and an edge'dislbcation.‘ In-this wé}k;vas well aé in

that of Linde and Edwardson, the initial density bf dislocations‘was |

| .
} about five orders of magnitude highef than in Suzukifé experiment and
| direct solute afom.effects are ébscured in the background.
The apparent success of the'formulatidné of'Frigdel and Fleischér :
. in accounting fdf thé,Cu~Si'data Séemsvtheréfpre tp be f@?ﬁuiﬁous.asﬁthey _
overestimate the effects of elastic interaétiops.. Agfap ;llustration‘we
élso show on Fig. ee, for Cqui, the,appropriafe\preé;ct;ohs-of[Friedel

‘according to Eq. (11) and of Fleischer [Eq, (9) of Ref, 8], the latter

5ot

including both the size and modulus effeéts.with édggfdiéioéations.
Although their results céuld.be scaied doWn-by some‘cégregtion'factor,
ﬁhey neveftheless do not predict the observed conééntrationvdependence
.of the floﬁistreés. | |

B. The Force-Displacement Diagram

‘ :A comprehensive discussion_of the differénces in the maximum forge
required to cut attractive and ¥epulsive substitutional atoms has,already
been gi&en_in‘Section II1.D.

Tt is reasonable to aSsﬁme that equilibfium computations, of the
type we have performed in this paper, would result in greatef'corrections

to thevforce—displacement relationships and interaction energies of

% Unfortunately, it is not possible to estimate from their data the
effects of direct solute atom-dislocation interactions,
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interstitial impurities and other strong tetragonal defects. The

L~

‘asymmetries in the stress fields of ﬂetragonal distortions are con-

siderably more pronounced than those of spherical distortions but the -
problem is also more complicated as the elastic interactions between

the arms of the dislocation at the defect gust now be taken into .

|

[

account. i .
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V. CONCLUSIONS

a) In contradiction witﬁ Cottrell's simple straight dislocation
model, the fdrce-displacement dilagrams for cutting the stress fieldé of
attractive and repulsive solute atoms are not identical, when the |
eqﬁilibrium curvatgre of the dislocation in the vicinity of the solute
afom is taken into‘éccount. A greater ma%imum.force at 0°K is requiréd
to cut repulsive solute atoms as their effective opposing stress field
ié broéder,than'that of attractive atoms.

b) The contribution of'the size effectvtovthe'strehgthening of
substitutional solia solutions cannot be pféperly deséribed in terms
of the cutting of simple point obstaclésveven'if what is faken as the
strength of these obstacles is not seriously in error. Instead, it is
nécéssary to consider in greater detail the étrain-energy interaction

.of the dislocation with the stress flelds of the solute atoms and to
compute the minimum energy shape of thé disiocatioﬁ line., The opppsing
internal stress along the disiocation line caﬁ be considerably less when
the latter is allowed to relax to its equilibrium shape.

As the spacing of solute atoms decre&ses the dislocation line
stralghtens out rapidly and‘thérefore a marked concentration dependence
of the flow stress is observed in thé diluté range only. - This asseition,
which is in conflict with existipg theories, is confirmed by experimental
data in which the effects of difect solute atom—dislocation.interactiOns

have been successfully isolated.
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APPENDIX I. !

A. The Migfitting-Sphere~in~Hole Model

A spherical hole of radius r_ is cut in the matrix, a sphere of
radius rt% = T representing the golute atoms is introduced and the
two are cemented together 'at an Intermediate radius ry (L + €)., The

r .

impurity and the matrix are treated as classicalLelastic media.

By definition, if u is the radial displacement, the strains are

4 =5u
rr Jor
and
e, =1
‘06 T ¢ T 1

From the generalized form of Hooke's law we obtain for the stresses

. E | u du
rr T [TRY(T2V) [2" 2+ (L) '5?]
and

Opn = Opy = E E+vau
96 = % (1H)(1-2v) \r 'or

where E is Young's modulus and v ig Polsson®*s ratio. By performing a -
force balance on a differential volume element rgsinedrid¢ d6 one

arrives at the differential equation for the displacements:

Sst+==°¢ | | (1)

where C is a constant independent of r. A solution of Eq. (1A) is



where Ar is the &iSPIacement ingide the spherilcal inclusion and B/r2 is
the displacement in the surrounding matrix. |

The constants A and B are determined by equating the displacements -
. at the boundary r = ro (1 + e) of the.;nclusion and thus are A = ¢ and
B = rze. Assuming that ‘the elastic constants of the inclusion and the
matrix are identical, the stregses in the matrix from the generalized

Hooke's law are

hGeroj
o T e e——
rr v r5
and
' 2Gero5
(J’(bqS = 0'99 = .——.;.5-—-.-

G==E8/2(1+7Yv) and r > rb(l +€)e

B. The Internal Shear Stresses on a Plane

With reference to Fig. Al assume that a solute atom is located at

the origin'and that the slip plane of interest is parallel to the x-y

&b

plane ahd at a height z above it. Thé.components of,crr, LY and o
in any direction are easily obtained and, as an example, the shear

stress sz on this slip plane is

Ty T % @D - 9 (D

or, in cartesian coordinates:

3 zy
T = -6Gr“-c .
zy T 2t 32 + 22
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APPENDIX II.

A, ILine Shape Computations

*
The desired set of parameters c, ¢ and T /G are specified and at the
starting point of the solution (xé, yé), where dy?/dx'lx, = 0, the com-’
. : o)
puter is first made to alculate dgy'/dx’g from the equilibrium equation

for the radius of curvature., The next value of y', at x' = Xé + Mxt, is

‘calculated using a power series expansion

2
= oyt o+ [T v (A Y0 -( HE
(y')x’fax' = 9 * (dx’) ' A 2 NS £
. o) X dx 4.
o x}:

and
2 ! d_e 1
(g’YT> . =(g£r>f +""’Y‘2') b
dx <1 HAx ! dx x? ax?t . ’ :
‘ o 0
where Ax! is a suitably small interval, usuaily taken ag .00Ll.
This procedure is repeated for the next two intervals &x*' after
which the remaining values of y*, l.e., those needed to cover a period A,
are calculated from the Adams technique formula

: ) 4
(7). it = (1) o+ 2.2917<$¥§)
g ,XS+( n-1)Ax* x xé+(n—l)AX'

- 2,458 (931) o+ 1.5u17'<9¥§) | - .3750(%12) | [ac
F xpr(nR) T xtH(n3 ) ot 3 x4 (n-h) At

At each step (y?, xé+n£m') of the calculations it is necessary to know

T and therefore the coordinates of the solute atoms are arranged in

Z!y!

order of increasing distance from (y',xé + nAx') and the contributions

¥
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2

of each atom to the internal shear stress are added until further addi-
tions are less than .1% of ‘the total.
The eﬁergy of a small segment of dislocation between (n - 1)Ax' and

nAx' is computed from

. X ‘
t\2 T tart *
VT [HY ) e ) S e
Gb x!tnAx! 0
. . o .

, (2h)

and the total énergy of a periodic length A of dislocation line is
obtained by adding the energies of all such small segments. The in-
tegration indicated in Eq. (2A) is performed by a separate compufer
routine based on Simpson’isule.

By reducing thé sizé of the interval Ax‘, the line shapes vand

energles can be obtained to any desired accuracye.
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Fig. 1 Solute atom-dislocation geometry
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Fig. 2 Internal shear stress contours on the slip plane
at X =0 ’
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Fig. 3 1Internal shear stress profiles
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Fig, 5‘ Force-displécement diagrams for rigid dislocations
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Fig. 6 Friedel's triangular array
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Fig. 13 Equilibrium line shape at zero stress
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Fig. 14 The flow stress of array 1



5T

307

.2-10'3— /

ARRAY 2 -
— — — ARRAY 3

1 ' 1

XBL 687-1400

Fig. 15 The flow stress of arrays 2 and 3



=58=

‘DISPLACEMENT — |

0 (.5)b (LO) b (1.5)b (2.0)b |
Q\ LI I T i S
AN
AN , (i) : ARRAY 3
-20} (ii) : ARRAY 2
(€=.06,C=.0)
-40}-
P _eof
U
Gb3€)
- -80
-0k
-|2 .

XBL 687-1401

Fig., 16 Stfainaenergy'interaction for flexible
dislocations



1.5
7 REPULSIVE SOLUTE ATOM
// ' (£:=.06, C=.0l) [
/ / ATTRACTIVE SOLUTE ATOM !
10k / / : ‘
f v
(._E_) //_
Gb% I
50+ ,
-
/
[
/
| 1 i | ' ]
0 _ (.50)b : (LO)b {(15)b (2.0)b

DISPLACEMENT —

XRL 687-1414

Fige 17 TForce-displacement diagrams for flexible
dislocations .



b0

40
(£=.06,.2=.01)
30—
REPULSIVE SOLUTE
201- ATOM
/ , _
(R/b) ATTRACTIVE
SOLUTE ATOM
10 o
- — e — . = — (Rc/b) .
| 1 1 1 | | !
0 .00l .002 003 004 005 006 007
' (T*6) —=
XBL 687-1392 .

Fig. 18 The equilibrium radius of curvature near a
solute atom



61~

€=, 10
I 1 1 )
(0] Ol .02 c .03 04

XBL 687-1415

Flg. 19 Critical or cutting radius of curvature



62~

-.50 .50

-40 -30 -.20 “10 -fy 10 20 30 .40 @

(Y /b)

XBI, 6R7-1393

Fig. 20a. Equilibrium line shapés under stress
for configuration "a"



63

. v , . * ’ '1.4() T
- : N : (Y/b)

+4 .30
-50 .40 -30 -20 -10 - = 10 20 30 40 99
A 1 1 i I ] 1 ] f £ N
Y \_j(_)i)
B c D ‘A

XBL 687-1394

Fig. 20b Equilibrium line shapes under stress for
configuration "b"

LY



- -6h-

FLOW STRESS OF ARRAY |

— — — BREAKAWAY STRESS FOR
CONFIGURATION "b"
BOTH FOR £:=.06
1.0| - -
&)
G , FLEISCHER MODEL _~
. ] -
-~
~
005+ ~
_ ~
/
~
- : PRESENT THEORY
— ,
S e ——— — —_—— — ——
—

~

| ! I 1

0 .05 .10 15 .
, cv2

Fig. 21 Critical stresses in array 1

XBL 687-1405

I



1.5-10

~65~

1

FLEISCHER'S
THEORY

FRIEDEL'S
THEORY

PRESENT THEORY
/

SUZUKI'S EXPERIMENTAL RESULTS
FOR Cu-Ni (EXTRAPOLATED TO O °K)

| | { L

.005 .0l : 015 _ 02
ATOMIC FRACTION OF Ni '

" XBL 687-1400

Fig. 22 Comparisons with experimental results



-66-

e N

XBL 687-1409

Fig, A-1 Solute atom ~ slip plane geometry.



This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. '

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.



